HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / mm / hugetlb.c
blobbaac9a09ec0a14e87b3281247d81baa2ca964eb8
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
38 int hugepages_treat_as_movable;
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
49 __initdata LIST_HEAD(huge_boot_pages);
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
60 DEFINE_SPINLOCK(hugetlb_lock);
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76 spin_unlock(&spool->lock);
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
85 kfree(spool);
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
92 struct hugepage_subpool *spool;
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 if (!spool)
96 return NULL;
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
108 spool->rsv_hpages = min_hpages;
110 return spool;
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 long delta)
132 long ret = delta;
134 if (!spool)
135 return ret;
137 spin_lock(&spool->lock);
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
148 if (spool->min_hpages != -1) { /* minimum size accounting */
149 if (delta > spool->rsv_hpages) {
151 * Asking for more reserves than those already taken on
152 * behalf of subpool. Return difference.
154 ret = delta - spool->rsv_hpages;
155 spool->rsv_hpages = 0;
156 } else {
157 ret = 0; /* reserves already accounted for */
158 spool->rsv_hpages -= delta;
162 unlock_ret:
163 spin_unlock(&spool->lock);
164 return ret;
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 long delta)
176 long ret = delta;
178 if (!spool)
179 return delta;
181 spin_lock(&spool->lock);
183 if (spool->max_hpages != -1) /* maximum size accounting */
184 spool->used_hpages -= delta;
186 if (spool->min_hpages != -1) { /* minimum size accounting */
187 if (spool->rsv_hpages + delta <= spool->min_hpages)
188 ret = 0;
189 else
190 ret = spool->rsv_hpages + delta - spool->min_hpages;
192 spool->rsv_hpages += delta;
193 if (spool->rsv_hpages > spool->min_hpages)
194 spool->rsv_hpages = spool->min_hpages;
198 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 * quota reference, free it now.
201 unlock_or_release_subpool(spool);
203 return ret;
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
208 return HUGETLBFS_SB(inode->i_sb)->spool;
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
213 return subpool_inode(file_inode(vma->vm_file));
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 * across the pages in a mapping.
220 * The region data structures are embedded into a resv_map and protected
221 * by a resv_map's lock. The set of regions within the resv_map represent
222 * reservations for huge pages, or huge pages that have already been
223 * instantiated within the map. The from and to elements are huge page
224 * indicies into the associated mapping. from indicates the starting index
225 * of the region. to represents the first index past the end of the region.
227 * For example, a file region structure with from == 0 and to == 4 represents
228 * four huge pages in a mapping. It is important to note that the to element
229 * represents the first element past the end of the region. This is used in
230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
232 * Interval notation of the form [from, to) will be used to indicate that
233 * the endpoint from is inclusive and to is exclusive.
235 struct file_region {
236 struct list_head link;
237 long from;
238 long to;
242 * Add the huge page range represented by [f, t) to the reserve
243 * map. In the normal case, existing regions will be expanded
244 * to accommodate the specified range. Sufficient regions should
245 * exist for expansion due to the previous call to region_chg
246 * with the same range. However, it is possible that region_del
247 * could have been called after region_chg and modifed the map
248 * in such a way that no region exists to be expanded. In this
249 * case, pull a region descriptor from the cache associated with
250 * the map and use that for the new range.
252 * Return the number of new huge pages added to the map. This
253 * number is greater than or equal to zero.
255 static long region_add(struct resv_map *resv, long f, long t)
257 struct list_head *head = &resv->regions;
258 struct file_region *rg, *nrg, *trg;
259 long add = 0;
261 spin_lock(&resv->lock);
262 /* Locate the region we are either in or before. */
263 list_for_each_entry(rg, head, link)
264 if (f <= rg->to)
265 break;
268 * If no region exists which can be expanded to include the
269 * specified range, the list must have been modified by an
270 * interleving call to region_del(). Pull a region descriptor
271 * from the cache and use it for this range.
273 if (&rg->link == head || t < rg->from) {
274 VM_BUG_ON(resv->region_cache_count <= 0);
276 resv->region_cache_count--;
277 nrg = list_first_entry(&resv->region_cache, struct file_region,
278 link);
279 list_del(&nrg->link);
281 nrg->from = f;
282 nrg->to = t;
283 list_add(&nrg->link, rg->link.prev);
285 add += t - f;
286 goto out_locked;
289 /* Round our left edge to the current segment if it encloses us. */
290 if (f > rg->from)
291 f = rg->from;
293 /* Check for and consume any regions we now overlap with. */
294 nrg = rg;
295 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296 if (&rg->link == head)
297 break;
298 if (rg->from > t)
299 break;
301 /* If this area reaches higher then extend our area to
302 * include it completely. If this is not the first area
303 * which we intend to reuse, free it. */
304 if (rg->to > t)
305 t = rg->to;
306 if (rg != nrg) {
307 /* Decrement return value by the deleted range.
308 * Another range will span this area so that by
309 * end of routine add will be >= zero
311 add -= (rg->to - rg->from);
312 list_del(&rg->link);
313 kfree(rg);
317 add += (nrg->from - f); /* Added to beginning of region */
318 nrg->from = f;
319 add += t - nrg->to; /* Added to end of region */
320 nrg->to = t;
322 out_locked:
323 resv->adds_in_progress--;
324 spin_unlock(&resv->lock);
325 VM_BUG_ON(add < 0);
326 return add;
330 * Examine the existing reserve map and determine how many
331 * huge pages in the specified range [f, t) are NOT currently
332 * represented. This routine is called before a subsequent
333 * call to region_add that will actually modify the reserve
334 * map to add the specified range [f, t). region_chg does
335 * not change the number of huge pages represented by the
336 * map. However, if the existing regions in the map can not
337 * be expanded to represent the new range, a new file_region
338 * structure is added to the map as a placeholder. This is
339 * so that the subsequent region_add call will have all the
340 * regions it needs and will not fail.
342 * Upon entry, region_chg will also examine the cache of region descriptors
343 * associated with the map. If there are not enough descriptors cached, one
344 * will be allocated for the in progress add operation.
346 * Returns the number of huge pages that need to be added to the existing
347 * reservation map for the range [f, t). This number is greater or equal to
348 * zero. -ENOMEM is returned if a new file_region structure or cache entry
349 * is needed and can not be allocated.
351 static long region_chg(struct resv_map *resv, long f, long t)
353 struct list_head *head = &resv->regions;
354 struct file_region *rg, *nrg = NULL;
355 long chg = 0;
357 retry:
358 spin_lock(&resv->lock);
359 retry_locked:
360 resv->adds_in_progress++;
363 * Check for sufficient descriptors in the cache to accommodate
364 * the number of in progress add operations.
366 if (resv->adds_in_progress > resv->region_cache_count) {
367 struct file_region *trg;
369 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370 /* Must drop lock to allocate a new descriptor. */
371 resv->adds_in_progress--;
372 spin_unlock(&resv->lock);
374 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375 if (!trg) {
376 kfree(nrg);
377 return -ENOMEM;
380 spin_lock(&resv->lock);
381 list_add(&trg->link, &resv->region_cache);
382 resv->region_cache_count++;
383 goto retry_locked;
386 /* Locate the region we are before or in. */
387 list_for_each_entry(rg, head, link)
388 if (f <= rg->to)
389 break;
391 /* If we are below the current region then a new region is required.
392 * Subtle, allocate a new region at the position but make it zero
393 * size such that we can guarantee to record the reservation. */
394 if (&rg->link == head || t < rg->from) {
395 if (!nrg) {
396 resv->adds_in_progress--;
397 spin_unlock(&resv->lock);
398 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
399 if (!nrg)
400 return -ENOMEM;
402 nrg->from = f;
403 nrg->to = f;
404 INIT_LIST_HEAD(&nrg->link);
405 goto retry;
408 list_add(&nrg->link, rg->link.prev);
409 chg = t - f;
410 goto out_nrg;
413 /* Round our left edge to the current segment if it encloses us. */
414 if (f > rg->from)
415 f = rg->from;
416 chg = t - f;
418 /* Check for and consume any regions we now overlap with. */
419 list_for_each_entry(rg, rg->link.prev, link) {
420 if (&rg->link == head)
421 break;
422 if (rg->from > t)
423 goto out;
425 /* We overlap with this area, if it extends further than
426 * us then we must extend ourselves. Account for its
427 * existing reservation. */
428 if (rg->to > t) {
429 chg += rg->to - t;
430 t = rg->to;
432 chg -= rg->to - rg->from;
435 out:
436 spin_unlock(&resv->lock);
437 /* We already know we raced and no longer need the new region */
438 kfree(nrg);
439 return chg;
440 out_nrg:
441 spin_unlock(&resv->lock);
442 return chg;
446 * Abort the in progress add operation. The adds_in_progress field
447 * of the resv_map keeps track of the operations in progress between
448 * calls to region_chg and region_add. Operations are sometimes
449 * aborted after the call to region_chg. In such cases, region_abort
450 * is called to decrement the adds_in_progress counter.
452 * NOTE: The range arguments [f, t) are not needed or used in this
453 * routine. They are kept to make reading the calling code easier as
454 * arguments will match the associated region_chg call.
456 static void region_abort(struct resv_map *resv, long f, long t)
458 spin_lock(&resv->lock);
459 VM_BUG_ON(!resv->region_cache_count);
460 resv->adds_in_progress--;
461 spin_unlock(&resv->lock);
465 * Delete the specified range [f, t) from the reserve map. If the
466 * t parameter is LONG_MAX, this indicates that ALL regions after f
467 * should be deleted. Locate the regions which intersect [f, t)
468 * and either trim, delete or split the existing regions.
470 * Returns the number of huge pages deleted from the reserve map.
471 * In the normal case, the return value is zero or more. In the
472 * case where a region must be split, a new region descriptor must
473 * be allocated. If the allocation fails, -ENOMEM will be returned.
474 * NOTE: If the parameter t == LONG_MAX, then we will never split
475 * a region and possibly return -ENOMEM. Callers specifying
476 * t == LONG_MAX do not need to check for -ENOMEM error.
478 static long region_del(struct resv_map *resv, long f, long t)
480 struct list_head *head = &resv->regions;
481 struct file_region *rg, *trg;
482 struct file_region *nrg = NULL;
483 long del = 0;
485 retry:
486 spin_lock(&resv->lock);
487 list_for_each_entry_safe(rg, trg, head, link) {
489 * Skip regions before the range to be deleted. file_region
490 * ranges are normally of the form [from, to). However, there
491 * may be a "placeholder" entry in the map which is of the form
492 * (from, to) with from == to. Check for placeholder entries
493 * at the beginning of the range to be deleted.
495 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
496 continue;
498 if (rg->from >= t)
499 break;
501 if (f > rg->from && t < rg->to) { /* Must split region */
503 * Check for an entry in the cache before dropping
504 * lock and attempting allocation.
506 if (!nrg &&
507 resv->region_cache_count > resv->adds_in_progress) {
508 nrg = list_first_entry(&resv->region_cache,
509 struct file_region,
510 link);
511 list_del(&nrg->link);
512 resv->region_cache_count--;
515 if (!nrg) {
516 spin_unlock(&resv->lock);
517 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
518 if (!nrg)
519 return -ENOMEM;
520 goto retry;
523 del += t - f;
525 /* New entry for end of split region */
526 nrg->from = t;
527 nrg->to = rg->to;
528 INIT_LIST_HEAD(&nrg->link);
530 /* Original entry is trimmed */
531 rg->to = f;
533 list_add(&nrg->link, &rg->link);
534 nrg = NULL;
535 break;
538 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
539 del += rg->to - rg->from;
540 list_del(&rg->link);
541 kfree(rg);
542 continue;
545 if (f <= rg->from) { /* Trim beginning of region */
546 del += t - rg->from;
547 rg->from = t;
548 } else { /* Trim end of region */
549 del += rg->to - f;
550 rg->to = f;
554 spin_unlock(&resv->lock);
555 kfree(nrg);
556 return del;
560 * A rare out of memory error was encountered which prevented removal of
561 * the reserve map region for a page. The huge page itself was free'ed
562 * and removed from the page cache. This routine will adjust the subpool
563 * usage count, and the global reserve count if needed. By incrementing
564 * these counts, the reserve map entry which could not be deleted will
565 * appear as a "reserved" entry instead of simply dangling with incorrect
566 * counts.
568 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
570 struct hugepage_subpool *spool = subpool_inode(inode);
571 long rsv_adjust;
573 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
574 if (restore_reserve && rsv_adjust) {
575 struct hstate *h = hstate_inode(inode);
577 hugetlb_acct_memory(h, 1);
582 * Count and return the number of huge pages in the reserve map
583 * that intersect with the range [f, t).
585 static long region_count(struct resv_map *resv, long f, long t)
587 struct list_head *head = &resv->regions;
588 struct file_region *rg;
589 long chg = 0;
591 spin_lock(&resv->lock);
592 /* Locate each segment we overlap with, and count that overlap. */
593 list_for_each_entry(rg, head, link) {
594 long seg_from;
595 long seg_to;
597 if (rg->to <= f)
598 continue;
599 if (rg->from >= t)
600 break;
602 seg_from = max(rg->from, f);
603 seg_to = min(rg->to, t);
605 chg += seg_to - seg_from;
607 spin_unlock(&resv->lock);
609 return chg;
613 * Convert the address within this vma to the page offset within
614 * the mapping, in pagecache page units; huge pages here.
616 static pgoff_t vma_hugecache_offset(struct hstate *h,
617 struct vm_area_struct *vma, unsigned long address)
619 return ((address - vma->vm_start) >> huge_page_shift(h)) +
620 (vma->vm_pgoff >> huge_page_order(h));
623 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
624 unsigned long address)
626 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 * Return the size of the pages allocated when backing a VMA. In the majority
631 * cases this will be same size as used by the page table entries.
633 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
635 struct hstate *hstate;
637 if (!is_vm_hugetlb_page(vma))
638 return PAGE_SIZE;
640 hstate = hstate_vma(vma);
642 return 1UL << huge_page_shift(hstate);
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
649 * architectures where it differs, an architecture-specific version of this
650 * function is required.
652 #ifndef vma_mmu_pagesize
653 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
655 return vma_kernel_pagesize(vma);
657 #endif
660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
661 * bits of the reservation map pointer, which are always clear due to
662 * alignment.
664 #define HPAGE_RESV_OWNER (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
669 * These helpers are used to track how many pages are reserved for
670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671 * is guaranteed to have their future faults succeed.
673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674 * the reserve counters are updated with the hugetlb_lock held. It is safe
675 * to reset the VMA at fork() time as it is not in use yet and there is no
676 * chance of the global counters getting corrupted as a result of the values.
678 * The private mapping reservation is represented in a subtly different
679 * manner to a shared mapping. A shared mapping has a region map associated
680 * with the underlying file, this region map represents the backing file
681 * pages which have ever had a reservation assigned which this persists even
682 * after the page is instantiated. A private mapping has a region map
683 * associated with the original mmap which is attached to all VMAs which
684 * reference it, this region map represents those offsets which have consumed
685 * reservation ie. where pages have been instantiated.
687 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
689 return (unsigned long)vma->vm_private_data;
692 static void set_vma_private_data(struct vm_area_struct *vma,
693 unsigned long value)
695 vma->vm_private_data = (void *)value;
698 struct resv_map *resv_map_alloc(void)
700 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
703 if (!resv_map || !rg) {
704 kfree(resv_map);
705 kfree(rg);
706 return NULL;
709 kref_init(&resv_map->refs);
710 spin_lock_init(&resv_map->lock);
711 INIT_LIST_HEAD(&resv_map->regions);
713 resv_map->adds_in_progress = 0;
715 INIT_LIST_HEAD(&resv_map->region_cache);
716 list_add(&rg->link, &resv_map->region_cache);
717 resv_map->region_cache_count = 1;
719 return resv_map;
722 void resv_map_release(struct kref *ref)
724 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725 struct list_head *head = &resv_map->region_cache;
726 struct file_region *rg, *trg;
728 /* Clear out any active regions before we release the map. */
729 region_del(resv_map, 0, LONG_MAX);
731 /* ... and any entries left in the cache */
732 list_for_each_entry_safe(rg, trg, head, link) {
733 list_del(&rg->link);
734 kfree(rg);
737 VM_BUG_ON(resv_map->adds_in_progress);
739 kfree(resv_map);
742 static inline struct resv_map *inode_resv_map(struct inode *inode)
744 return inode->i_mapping->private_data;
747 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
749 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
750 if (vma->vm_flags & VM_MAYSHARE) {
751 struct address_space *mapping = vma->vm_file->f_mapping;
752 struct inode *inode = mapping->host;
754 return inode_resv_map(inode);
756 } else {
757 return (struct resv_map *)(get_vma_private_data(vma) &
758 ~HPAGE_RESV_MASK);
762 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
764 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
765 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
767 set_vma_private_data(vma, (get_vma_private_data(vma) &
768 HPAGE_RESV_MASK) | (unsigned long)map);
771 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
773 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
774 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
776 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
779 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
783 return (get_vma_private_data(vma) & flag) != 0;
786 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
787 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790 if (!(vma->vm_flags & VM_MAYSHARE))
791 vma->vm_private_data = (void *)0;
794 /* Returns true if the VMA has associated reserve pages */
795 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
797 if (vma->vm_flags & VM_NORESERVE) {
799 * This address is already reserved by other process(chg == 0),
800 * so, we should decrement reserved count. Without decrementing,
801 * reserve count remains after releasing inode, because this
802 * allocated page will go into page cache and is regarded as
803 * coming from reserved pool in releasing step. Currently, we
804 * don't have any other solution to deal with this situation
805 * properly, so add work-around here.
807 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
808 return true;
809 else
810 return false;
813 /* Shared mappings always use reserves */
814 if (vma->vm_flags & VM_MAYSHARE) {
816 * We know VM_NORESERVE is not set. Therefore, there SHOULD
817 * be a region map for all pages. The only situation where
818 * there is no region map is if a hole was punched via
819 * fallocate. In this case, there really are no reverves to
820 * use. This situation is indicated if chg != 0.
822 if (chg)
823 return false;
824 else
825 return true;
829 * Only the process that called mmap() has reserves for
830 * private mappings.
832 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
833 return true;
835 return false;
838 static void enqueue_huge_page(struct hstate *h, struct page *page)
840 int nid = page_to_nid(page);
841 list_move(&page->lru, &h->hugepage_freelists[nid]);
842 h->free_huge_pages++;
843 h->free_huge_pages_node[nid]++;
846 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
848 struct page *page;
850 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
851 if (!is_migrate_isolate_page(page))
852 break;
854 * if 'non-isolated free hugepage' not found on the list,
855 * the allocation fails.
857 if (&h->hugepage_freelists[nid] == &page->lru)
858 return NULL;
859 list_move(&page->lru, &h->hugepage_activelist);
860 set_page_refcounted(page);
861 h->free_huge_pages--;
862 h->free_huge_pages_node[nid]--;
863 return page;
866 /* Movability of hugepages depends on migration support. */
867 static inline gfp_t htlb_alloc_mask(struct hstate *h)
869 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
870 return GFP_HIGHUSER_MOVABLE;
871 else
872 return GFP_HIGHUSER;
875 static struct page *dequeue_huge_page_vma(struct hstate *h,
876 struct vm_area_struct *vma,
877 unsigned long address, int avoid_reserve,
878 long chg)
880 struct page *page = NULL;
881 struct mempolicy *mpol;
882 nodemask_t *nodemask;
883 struct zonelist *zonelist;
884 struct zone *zone;
885 struct zoneref *z;
886 unsigned int cpuset_mems_cookie;
889 * A child process with MAP_PRIVATE mappings created by their parent
890 * have no page reserves. This check ensures that reservations are
891 * not "stolen". The child may still get SIGKILLed
893 if (!vma_has_reserves(vma, chg) &&
894 h->free_huge_pages - h->resv_huge_pages == 0)
895 goto err;
897 /* If reserves cannot be used, ensure enough pages are in the pool */
898 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
899 goto err;
901 retry_cpuset:
902 cpuset_mems_cookie = read_mems_allowed_begin();
903 zonelist = huge_zonelist(vma, address,
904 htlb_alloc_mask(h), &mpol, &nodemask);
906 for_each_zone_zonelist_nodemask(zone, z, zonelist,
907 MAX_NR_ZONES - 1, nodemask) {
908 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
909 page = dequeue_huge_page_node(h, zone_to_nid(zone));
910 if (page) {
911 if (avoid_reserve)
912 break;
913 if (!vma_has_reserves(vma, chg))
914 break;
916 SetPagePrivate(page);
917 h->resv_huge_pages--;
918 break;
923 mpol_cond_put(mpol);
924 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
925 goto retry_cpuset;
926 return page;
928 err:
929 return NULL;
933 * common helper functions for hstate_next_node_to_{alloc|free}.
934 * We may have allocated or freed a huge page based on a different
935 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
936 * be outside of *nodes_allowed. Ensure that we use an allowed
937 * node for alloc or free.
939 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
941 nid = next_node(nid, *nodes_allowed);
942 if (nid == MAX_NUMNODES)
943 nid = first_node(*nodes_allowed);
944 VM_BUG_ON(nid >= MAX_NUMNODES);
946 return nid;
949 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
951 if (!node_isset(nid, *nodes_allowed))
952 nid = next_node_allowed(nid, nodes_allowed);
953 return nid;
957 * returns the previously saved node ["this node"] from which to
958 * allocate a persistent huge page for the pool and advance the
959 * next node from which to allocate, handling wrap at end of node
960 * mask.
962 static int hstate_next_node_to_alloc(struct hstate *h,
963 nodemask_t *nodes_allowed)
965 int nid;
967 VM_BUG_ON(!nodes_allowed);
969 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
970 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
972 return nid;
976 * helper for free_pool_huge_page() - return the previously saved
977 * node ["this node"] from which to free a huge page. Advance the
978 * next node id whether or not we find a free huge page to free so
979 * that the next attempt to free addresses the next node.
981 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
983 int nid;
985 VM_BUG_ON(!nodes_allowed);
987 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
988 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
990 return nid;
993 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
994 for (nr_nodes = nodes_weight(*mask); \
995 nr_nodes > 0 && \
996 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
997 nr_nodes--)
999 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1000 for (nr_nodes = nodes_weight(*mask); \
1001 nr_nodes > 0 && \
1002 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1003 nr_nodes--)
1005 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
1006 static void destroy_compound_gigantic_page(struct page *page,
1007 unsigned int order)
1009 int i;
1010 int nr_pages = 1 << order;
1011 struct page *p = page + 1;
1013 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1014 clear_compound_head(p);
1015 set_page_refcounted(p);
1018 set_compound_order(page, 0);
1019 __ClearPageHead(page);
1022 static void free_gigantic_page(struct page *page, unsigned int order)
1024 free_contig_range(page_to_pfn(page), 1 << order);
1027 static int __alloc_gigantic_page(unsigned long start_pfn,
1028 unsigned long nr_pages)
1030 unsigned long end_pfn = start_pfn + nr_pages;
1031 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1034 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1035 unsigned long nr_pages)
1037 unsigned long i, end_pfn = start_pfn + nr_pages;
1038 struct page *page;
1040 for (i = start_pfn; i < end_pfn; i++) {
1041 if (!pfn_valid(i))
1042 return false;
1044 page = pfn_to_page(i);
1046 if (PageReserved(page))
1047 return false;
1049 if (page_count(page) > 0)
1050 return false;
1052 if (PageHuge(page))
1053 return false;
1056 return true;
1059 static bool zone_spans_last_pfn(const struct zone *zone,
1060 unsigned long start_pfn, unsigned long nr_pages)
1062 unsigned long last_pfn = start_pfn + nr_pages - 1;
1063 return zone_spans_pfn(zone, last_pfn);
1066 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1068 unsigned long nr_pages = 1 << order;
1069 unsigned long ret, pfn, flags;
1070 struct zone *z;
1072 z = NODE_DATA(nid)->node_zones;
1073 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1074 spin_lock_irqsave(&z->lock, flags);
1076 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1077 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1078 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1080 * We release the zone lock here because
1081 * alloc_contig_range() will also lock the zone
1082 * at some point. If there's an allocation
1083 * spinning on this lock, it may win the race
1084 * and cause alloc_contig_range() to fail...
1086 spin_unlock_irqrestore(&z->lock, flags);
1087 ret = __alloc_gigantic_page(pfn, nr_pages);
1088 if (!ret)
1089 return pfn_to_page(pfn);
1090 spin_lock_irqsave(&z->lock, flags);
1092 pfn += nr_pages;
1095 spin_unlock_irqrestore(&z->lock, flags);
1098 return NULL;
1101 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1102 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1104 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1106 struct page *page;
1108 page = alloc_gigantic_page(nid, huge_page_order(h));
1109 if (page) {
1110 prep_compound_gigantic_page(page, huge_page_order(h));
1111 prep_new_huge_page(h, page, nid);
1114 return page;
1117 static int alloc_fresh_gigantic_page(struct hstate *h,
1118 nodemask_t *nodes_allowed)
1120 struct page *page = NULL;
1121 int nr_nodes, node;
1123 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1124 page = alloc_fresh_gigantic_page_node(h, node);
1125 if (page)
1126 return 1;
1129 return 0;
1132 static inline bool gigantic_page_supported(void) { return true; }
1133 #else
1134 static inline bool gigantic_page_supported(void) { return false; }
1135 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1136 static inline void destroy_compound_gigantic_page(struct page *page,
1137 unsigned int order) { }
1138 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1139 nodemask_t *nodes_allowed) { return 0; }
1140 #endif
1142 static void update_and_free_page(struct hstate *h, struct page *page)
1144 int i;
1146 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1147 return;
1149 h->nr_huge_pages--;
1150 h->nr_huge_pages_node[page_to_nid(page)]--;
1151 for (i = 0; i < pages_per_huge_page(h); i++) {
1152 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1153 1 << PG_referenced | 1 << PG_dirty |
1154 1 << PG_active | 1 << PG_private |
1155 1 << PG_writeback);
1157 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1158 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1159 set_page_refcounted(page);
1160 if (hstate_is_gigantic(h)) {
1161 destroy_compound_gigantic_page(page, huge_page_order(h));
1162 free_gigantic_page(page, huge_page_order(h));
1163 } else {
1164 __free_pages(page, huge_page_order(h));
1168 struct hstate *size_to_hstate(unsigned long size)
1170 struct hstate *h;
1172 for_each_hstate(h) {
1173 if (huge_page_size(h) == size)
1174 return h;
1176 return NULL;
1180 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1181 * to hstate->hugepage_activelist.)
1183 * This function can be called for tail pages, but never returns true for them.
1185 bool page_huge_active(struct page *page)
1187 VM_BUG_ON_PAGE(!PageHuge(page), page);
1188 return PageHead(page) && PagePrivate(&page[1]);
1191 /* never called for tail page */
1192 static void set_page_huge_active(struct page *page)
1194 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1195 SetPagePrivate(&page[1]);
1198 static void clear_page_huge_active(struct page *page)
1200 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1201 ClearPagePrivate(&page[1]);
1204 void free_huge_page(struct page *page)
1207 * Can't pass hstate in here because it is called from the
1208 * compound page destructor.
1210 struct hstate *h = page_hstate(page);
1211 int nid = page_to_nid(page);
1212 struct hugepage_subpool *spool =
1213 (struct hugepage_subpool *)page_private(page);
1214 bool restore_reserve;
1216 set_page_private(page, 0);
1217 page->mapping = NULL;
1218 BUG_ON(page_count(page));
1219 BUG_ON(page_mapcount(page));
1220 restore_reserve = PagePrivate(page);
1221 ClearPagePrivate(page);
1224 * If PagePrivate() was set on page, page allocation consumed a
1225 * reservation. If the page was associated with a subpool, there
1226 * would have been a page reserved in the subpool before allocation
1227 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1228 * reservtion, do not call hugepage_subpool_put_pages() as this will
1229 * remove the reserved page from the subpool.
1231 if (!restore_reserve) {
1233 * A return code of zero implies that the subpool will be
1234 * under its minimum size if the reservation is not restored
1235 * after page is free. Therefore, force restore_reserve
1236 * operation.
1238 if (hugepage_subpool_put_pages(spool, 1) == 0)
1239 restore_reserve = true;
1242 spin_lock(&hugetlb_lock);
1243 clear_page_huge_active(page);
1244 hugetlb_cgroup_uncharge_page(hstate_index(h),
1245 pages_per_huge_page(h), page);
1246 if (restore_reserve)
1247 h->resv_huge_pages++;
1249 if (h->surplus_huge_pages_node[nid]) {
1250 /* remove the page from active list */
1251 list_del(&page->lru);
1252 update_and_free_page(h, page);
1253 h->surplus_huge_pages--;
1254 h->surplus_huge_pages_node[nid]--;
1255 } else {
1256 arch_clear_hugepage_flags(page);
1257 enqueue_huge_page(h, page);
1259 spin_unlock(&hugetlb_lock);
1262 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1264 INIT_LIST_HEAD(&page->lru);
1265 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1266 spin_lock(&hugetlb_lock);
1267 set_hugetlb_cgroup(page, NULL);
1268 h->nr_huge_pages++;
1269 h->nr_huge_pages_node[nid]++;
1270 spin_unlock(&hugetlb_lock);
1271 put_page(page); /* free it into the hugepage allocator */
1274 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1276 int i;
1277 int nr_pages = 1 << order;
1278 struct page *p = page + 1;
1280 /* we rely on prep_new_huge_page to set the destructor */
1281 set_compound_order(page, order);
1282 __SetPageHead(page);
1283 __ClearPageReserved(page);
1284 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1286 * For gigantic hugepages allocated through bootmem at
1287 * boot, it's safer to be consistent with the not-gigantic
1288 * hugepages and clear the PG_reserved bit from all tail pages
1289 * too. Otherwse drivers using get_user_pages() to access tail
1290 * pages may get the reference counting wrong if they see
1291 * PG_reserved set on a tail page (despite the head page not
1292 * having PG_reserved set). Enforcing this consistency between
1293 * head and tail pages allows drivers to optimize away a check
1294 * on the head page when they need know if put_page() is needed
1295 * after get_user_pages().
1297 __ClearPageReserved(p);
1298 set_page_count(p, 0);
1299 set_compound_head(p, page);
1304 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1305 * transparent huge pages. See the PageTransHuge() documentation for more
1306 * details.
1308 int PageHuge(struct page *page)
1310 if (!PageCompound(page))
1311 return 0;
1313 page = compound_head(page);
1314 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1316 EXPORT_SYMBOL_GPL(PageHuge);
1319 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1320 * normal or transparent huge pages.
1322 int PageHeadHuge(struct page *page_head)
1324 if (!PageHead(page_head))
1325 return 0;
1327 return get_compound_page_dtor(page_head) == free_huge_page;
1330 pgoff_t __basepage_index(struct page *page)
1332 struct page *page_head = compound_head(page);
1333 pgoff_t index = page_index(page_head);
1334 unsigned long compound_idx;
1336 if (!PageHuge(page_head))
1337 return page_index(page);
1339 if (compound_order(page_head) >= MAX_ORDER)
1340 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1341 else
1342 compound_idx = page - page_head;
1344 return (index << compound_order(page_head)) + compound_idx;
1347 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1349 struct page *page;
1351 page = __alloc_pages_node(nid,
1352 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1353 __GFP_REPEAT|__GFP_NOWARN,
1354 huge_page_order(h));
1355 if (page) {
1356 prep_new_huge_page(h, page, nid);
1359 return page;
1362 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1364 struct page *page;
1365 int nr_nodes, node;
1366 int ret = 0;
1368 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1369 page = alloc_fresh_huge_page_node(h, node);
1370 if (page) {
1371 ret = 1;
1372 break;
1376 if (ret)
1377 count_vm_event(HTLB_BUDDY_PGALLOC);
1378 else
1379 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1381 return ret;
1385 * Free huge page from pool from next node to free.
1386 * Attempt to keep persistent huge pages more or less
1387 * balanced over allowed nodes.
1388 * Called with hugetlb_lock locked.
1390 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1391 bool acct_surplus)
1393 int nr_nodes, node;
1394 int ret = 0;
1396 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1398 * If we're returning unused surplus pages, only examine
1399 * nodes with surplus pages.
1401 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1402 !list_empty(&h->hugepage_freelists[node])) {
1403 struct page *page =
1404 list_entry(h->hugepage_freelists[node].next,
1405 struct page, lru);
1406 list_del(&page->lru);
1407 h->free_huge_pages--;
1408 h->free_huge_pages_node[node]--;
1409 if (acct_surplus) {
1410 h->surplus_huge_pages--;
1411 h->surplus_huge_pages_node[node]--;
1413 update_and_free_page(h, page);
1414 ret = 1;
1415 break;
1419 return ret;
1423 * Dissolve a given free hugepage into free buddy pages. This function does
1424 * nothing for in-use (including surplus) hugepages.
1426 static void dissolve_free_huge_page(struct page *page)
1428 spin_lock(&hugetlb_lock);
1429 if (PageHuge(page) && !page_count(page)) {
1430 struct page *head = compound_head(page);
1431 struct hstate *h = page_hstate(head);
1432 int nid = page_to_nid(head);
1433 list_del(&head->lru);
1434 h->free_huge_pages--;
1435 h->free_huge_pages_node[nid]--;
1436 update_and_free_page(h, head);
1438 spin_unlock(&hugetlb_lock);
1442 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1443 * make specified memory blocks removable from the system.
1444 * Note that this will dissolve a free gigantic hugepage completely, if any
1445 * part of it lies within the given range.
1447 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1449 unsigned long pfn;
1451 if (!hugepages_supported())
1452 return;
1454 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1455 dissolve_free_huge_page(pfn_to_page(pfn));
1459 * There are 3 ways this can get called:
1460 * 1. With vma+addr: we use the VMA's memory policy
1461 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1462 * page from any node, and let the buddy allocator itself figure
1463 * it out.
1464 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1465 * strictly from 'nid'
1467 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1468 struct vm_area_struct *vma, unsigned long addr, int nid)
1470 int order = huge_page_order(h);
1471 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1472 unsigned int cpuset_mems_cookie;
1475 * We need a VMA to get a memory policy. If we do not
1476 * have one, we use the 'nid' argument.
1478 * The mempolicy stuff below has some non-inlined bits
1479 * and calls ->vm_ops. That makes it hard to optimize at
1480 * compile-time, even when NUMA is off and it does
1481 * nothing. This helps the compiler optimize it out.
1483 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1485 * If a specific node is requested, make sure to
1486 * get memory from there, but only when a node
1487 * is explicitly specified.
1489 if (nid != NUMA_NO_NODE)
1490 gfp |= __GFP_THISNODE;
1492 * Make sure to call something that can handle
1493 * nid=NUMA_NO_NODE
1495 return alloc_pages_node(nid, gfp, order);
1499 * OK, so we have a VMA. Fetch the mempolicy and try to
1500 * allocate a huge page with it. We will only reach this
1501 * when CONFIG_NUMA=y.
1503 do {
1504 struct page *page;
1505 struct mempolicy *mpol;
1506 struct zonelist *zl;
1507 nodemask_t *nodemask;
1509 cpuset_mems_cookie = read_mems_allowed_begin();
1510 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1511 mpol_cond_put(mpol);
1512 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1513 if (page)
1514 return page;
1515 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1517 return NULL;
1521 * There are two ways to allocate a huge page:
1522 * 1. When you have a VMA and an address (like a fault)
1523 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1525 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1526 * this case which signifies that the allocation should be done with
1527 * respect for the VMA's memory policy.
1529 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1530 * implies that memory policies will not be taken in to account.
1532 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1533 struct vm_area_struct *vma, unsigned long addr, int nid)
1535 struct page *page;
1536 unsigned int r_nid;
1538 if (hstate_is_gigantic(h))
1539 return NULL;
1542 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1543 * This makes sure the caller is picking _one_ of the modes with which
1544 * we can call this function, not both.
1546 if (vma || (addr != -1)) {
1547 VM_WARN_ON_ONCE(addr == -1);
1548 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1551 * Assume we will successfully allocate the surplus page to
1552 * prevent racing processes from causing the surplus to exceed
1553 * overcommit
1555 * This however introduces a different race, where a process B
1556 * tries to grow the static hugepage pool while alloc_pages() is
1557 * called by process A. B will only examine the per-node
1558 * counters in determining if surplus huge pages can be
1559 * converted to normal huge pages in adjust_pool_surplus(). A
1560 * won't be able to increment the per-node counter, until the
1561 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1562 * no more huge pages can be converted from surplus to normal
1563 * state (and doesn't try to convert again). Thus, we have a
1564 * case where a surplus huge page exists, the pool is grown, and
1565 * the surplus huge page still exists after, even though it
1566 * should just have been converted to a normal huge page. This
1567 * does not leak memory, though, as the hugepage will be freed
1568 * once it is out of use. It also does not allow the counters to
1569 * go out of whack in adjust_pool_surplus() as we don't modify
1570 * the node values until we've gotten the hugepage and only the
1571 * per-node value is checked there.
1573 spin_lock(&hugetlb_lock);
1574 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1575 spin_unlock(&hugetlb_lock);
1576 return NULL;
1577 } else {
1578 h->nr_huge_pages++;
1579 h->surplus_huge_pages++;
1581 spin_unlock(&hugetlb_lock);
1583 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1585 spin_lock(&hugetlb_lock);
1586 if (page) {
1587 INIT_LIST_HEAD(&page->lru);
1588 r_nid = page_to_nid(page);
1589 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1590 set_hugetlb_cgroup(page, NULL);
1592 * We incremented the global counters already
1594 h->nr_huge_pages_node[r_nid]++;
1595 h->surplus_huge_pages_node[r_nid]++;
1596 __count_vm_event(HTLB_BUDDY_PGALLOC);
1597 } else {
1598 h->nr_huge_pages--;
1599 h->surplus_huge_pages--;
1600 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1602 spin_unlock(&hugetlb_lock);
1604 return page;
1608 * Allocate a huge page from 'nid'. Note, 'nid' may be
1609 * NUMA_NO_NODE, which means that it may be allocated
1610 * anywhere.
1612 static
1613 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1615 unsigned long addr = -1;
1617 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1621 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1623 static
1624 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1625 struct vm_area_struct *vma, unsigned long addr)
1627 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1631 * This allocation function is useful in the context where vma is irrelevant.
1632 * E.g. soft-offlining uses this function because it only cares physical
1633 * address of error page.
1635 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1637 struct page *page = NULL;
1639 spin_lock(&hugetlb_lock);
1640 if (h->free_huge_pages - h->resv_huge_pages > 0)
1641 page = dequeue_huge_page_node(h, nid);
1642 spin_unlock(&hugetlb_lock);
1644 if (!page)
1645 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1647 return page;
1651 * Increase the hugetlb pool such that it can accommodate a reservation
1652 * of size 'delta'.
1654 static int gather_surplus_pages(struct hstate *h, int delta)
1656 struct list_head surplus_list;
1657 struct page *page, *tmp;
1658 int ret, i;
1659 int needed, allocated;
1660 bool alloc_ok = true;
1662 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1663 if (needed <= 0) {
1664 h->resv_huge_pages += delta;
1665 return 0;
1668 allocated = 0;
1669 INIT_LIST_HEAD(&surplus_list);
1671 ret = -ENOMEM;
1672 retry:
1673 spin_unlock(&hugetlb_lock);
1674 for (i = 0; i < needed; i++) {
1675 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1676 if (!page) {
1677 alloc_ok = false;
1678 break;
1680 list_add(&page->lru, &surplus_list);
1682 allocated += i;
1685 * After retaking hugetlb_lock, we need to recalculate 'needed'
1686 * because either resv_huge_pages or free_huge_pages may have changed.
1688 spin_lock(&hugetlb_lock);
1689 needed = (h->resv_huge_pages + delta) -
1690 (h->free_huge_pages + allocated);
1691 if (needed > 0) {
1692 if (alloc_ok)
1693 goto retry;
1695 * We were not able to allocate enough pages to
1696 * satisfy the entire reservation so we free what
1697 * we've allocated so far.
1699 goto free;
1702 * The surplus_list now contains _at_least_ the number of extra pages
1703 * needed to accommodate the reservation. Add the appropriate number
1704 * of pages to the hugetlb pool and free the extras back to the buddy
1705 * allocator. Commit the entire reservation here to prevent another
1706 * process from stealing the pages as they are added to the pool but
1707 * before they are reserved.
1709 needed += allocated;
1710 h->resv_huge_pages += delta;
1711 ret = 0;
1713 /* Free the needed pages to the hugetlb pool */
1714 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1715 if ((--needed) < 0)
1716 break;
1718 * This page is now managed by the hugetlb allocator and has
1719 * no users -- drop the buddy allocator's reference.
1721 put_page_testzero(page);
1722 VM_BUG_ON_PAGE(page_count(page), page);
1723 enqueue_huge_page(h, page);
1725 free:
1726 spin_unlock(&hugetlb_lock);
1728 /* Free unnecessary surplus pages to the buddy allocator */
1729 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1730 put_page(page);
1731 spin_lock(&hugetlb_lock);
1733 return ret;
1737 * This routine has two main purposes:
1738 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1739 * in unused_resv_pages. This corresponds to the prior adjustments made
1740 * to the associated reservation map.
1741 * 2) Free any unused surplus pages that may have been allocated to satisfy
1742 * the reservation. As many as unused_resv_pages may be freed.
1744 * Called with hugetlb_lock held. However, the lock could be dropped (and
1745 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1746 * we must make sure nobody else can claim pages we are in the process of
1747 * freeing. Do this by ensuring resv_huge_page always is greater than the
1748 * number of huge pages we plan to free when dropping the lock.
1750 static void return_unused_surplus_pages(struct hstate *h,
1751 unsigned long unused_resv_pages)
1753 unsigned long nr_pages;
1755 /* Cannot return gigantic pages currently */
1756 if (hstate_is_gigantic(h))
1757 goto out;
1760 * Part (or even all) of the reservation could have been backed
1761 * by pre-allocated pages. Only free surplus pages.
1763 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1766 * We want to release as many surplus pages as possible, spread
1767 * evenly across all nodes with memory. Iterate across these nodes
1768 * until we can no longer free unreserved surplus pages. This occurs
1769 * when the nodes with surplus pages have no free pages.
1770 * free_pool_huge_page() will balance the the freed pages across the
1771 * on-line nodes with memory and will handle the hstate accounting.
1773 * Note that we decrement resv_huge_pages as we free the pages. If
1774 * we drop the lock, resv_huge_pages will still be sufficiently large
1775 * to cover subsequent pages we may free.
1777 while (nr_pages--) {
1778 h->resv_huge_pages--;
1779 unused_resv_pages--;
1780 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1781 goto out;
1782 cond_resched_lock(&hugetlb_lock);
1785 out:
1786 /* Fully uncommit the reservation */
1787 h->resv_huge_pages -= unused_resv_pages;
1792 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1793 * are used by the huge page allocation routines to manage reservations.
1795 * vma_needs_reservation is called to determine if the huge page at addr
1796 * within the vma has an associated reservation. If a reservation is
1797 * needed, the value 1 is returned. The caller is then responsible for
1798 * managing the global reservation and subpool usage counts. After
1799 * the huge page has been allocated, vma_commit_reservation is called
1800 * to add the page to the reservation map. If the page allocation fails,
1801 * the reservation must be ended instead of committed. vma_end_reservation
1802 * is called in such cases.
1804 * In the normal case, vma_commit_reservation returns the same value
1805 * as the preceding vma_needs_reservation call. The only time this
1806 * is not the case is if a reserve map was changed between calls. It
1807 * is the responsibility of the caller to notice the difference and
1808 * take appropriate action.
1810 enum vma_resv_mode {
1811 VMA_NEEDS_RESV,
1812 VMA_COMMIT_RESV,
1813 VMA_END_RESV,
1815 static long __vma_reservation_common(struct hstate *h,
1816 struct vm_area_struct *vma, unsigned long addr,
1817 enum vma_resv_mode mode)
1819 struct resv_map *resv;
1820 pgoff_t idx;
1821 long ret;
1823 resv = vma_resv_map(vma);
1824 if (!resv)
1825 return 1;
1827 idx = vma_hugecache_offset(h, vma, addr);
1828 switch (mode) {
1829 case VMA_NEEDS_RESV:
1830 ret = region_chg(resv, idx, idx + 1);
1831 break;
1832 case VMA_COMMIT_RESV:
1833 ret = region_add(resv, idx, idx + 1);
1834 break;
1835 case VMA_END_RESV:
1836 region_abort(resv, idx, idx + 1);
1837 ret = 0;
1838 break;
1839 default:
1840 BUG();
1843 if (vma->vm_flags & VM_MAYSHARE)
1844 return ret;
1845 else
1846 return ret < 0 ? ret : 0;
1849 static long vma_needs_reservation(struct hstate *h,
1850 struct vm_area_struct *vma, unsigned long addr)
1852 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1855 static long vma_commit_reservation(struct hstate *h,
1856 struct vm_area_struct *vma, unsigned long addr)
1858 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1861 static void vma_end_reservation(struct hstate *h,
1862 struct vm_area_struct *vma, unsigned long addr)
1864 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1867 struct page *alloc_huge_page(struct vm_area_struct *vma,
1868 unsigned long addr, int avoid_reserve)
1870 struct hugepage_subpool *spool = subpool_vma(vma);
1871 struct hstate *h = hstate_vma(vma);
1872 struct page *page;
1873 long map_chg, map_commit;
1874 long gbl_chg;
1875 int ret, idx;
1876 struct hugetlb_cgroup *h_cg;
1878 idx = hstate_index(h);
1880 * Examine the region/reserve map to determine if the process
1881 * has a reservation for the page to be allocated. A return
1882 * code of zero indicates a reservation exists (no change).
1884 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1885 if (map_chg < 0)
1886 return ERR_PTR(-ENOMEM);
1889 * Processes that did not create the mapping will have no
1890 * reserves as indicated by the region/reserve map. Check
1891 * that the allocation will not exceed the subpool limit.
1892 * Allocations for MAP_NORESERVE mappings also need to be
1893 * checked against any subpool limit.
1895 if (map_chg || avoid_reserve) {
1896 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1897 if (gbl_chg < 0) {
1898 vma_end_reservation(h, vma, addr);
1899 return ERR_PTR(-ENOSPC);
1903 * Even though there was no reservation in the region/reserve
1904 * map, there could be reservations associated with the
1905 * subpool that can be used. This would be indicated if the
1906 * return value of hugepage_subpool_get_pages() is zero.
1907 * However, if avoid_reserve is specified we still avoid even
1908 * the subpool reservations.
1910 if (avoid_reserve)
1911 gbl_chg = 1;
1914 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1915 if (ret)
1916 goto out_subpool_put;
1918 spin_lock(&hugetlb_lock);
1920 * glb_chg is passed to indicate whether or not a page must be taken
1921 * from the global free pool (global change). gbl_chg == 0 indicates
1922 * a reservation exists for the allocation.
1924 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1925 if (!page) {
1926 spin_unlock(&hugetlb_lock);
1927 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1928 if (!page)
1929 goto out_uncharge_cgroup;
1930 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1931 SetPagePrivate(page);
1932 h->resv_huge_pages--;
1934 spin_lock(&hugetlb_lock);
1935 list_move(&page->lru, &h->hugepage_activelist);
1936 /* Fall through */
1938 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1939 spin_unlock(&hugetlb_lock);
1941 set_page_private(page, (unsigned long)spool);
1943 map_commit = vma_commit_reservation(h, vma, addr);
1944 if (unlikely(map_chg > map_commit)) {
1946 * The page was added to the reservation map between
1947 * vma_needs_reservation and vma_commit_reservation.
1948 * This indicates a race with hugetlb_reserve_pages.
1949 * Adjust for the subpool count incremented above AND
1950 * in hugetlb_reserve_pages for the same page. Also,
1951 * the reservation count added in hugetlb_reserve_pages
1952 * no longer applies.
1954 long rsv_adjust;
1956 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1957 hugetlb_acct_memory(h, -rsv_adjust);
1959 return page;
1961 out_uncharge_cgroup:
1962 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1963 out_subpool_put:
1964 if (map_chg || avoid_reserve)
1965 hugepage_subpool_put_pages(spool, 1);
1966 vma_end_reservation(h, vma, addr);
1967 return ERR_PTR(-ENOSPC);
1971 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1972 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1973 * where no ERR_VALUE is expected to be returned.
1975 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1976 unsigned long addr, int avoid_reserve)
1978 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1979 if (IS_ERR(page))
1980 page = NULL;
1981 return page;
1984 int __weak alloc_bootmem_huge_page(struct hstate *h)
1986 struct huge_bootmem_page *m;
1987 int nr_nodes, node;
1989 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1990 void *addr;
1992 addr = memblock_virt_alloc_try_nid_nopanic(
1993 huge_page_size(h), huge_page_size(h),
1994 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1995 if (addr) {
1997 * Use the beginning of the huge page to store the
1998 * huge_bootmem_page struct (until gather_bootmem
1999 * puts them into the mem_map).
2001 m = addr;
2002 goto found;
2005 return 0;
2007 found:
2008 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2009 /* Put them into a private list first because mem_map is not up yet */
2010 list_add(&m->list, &huge_boot_pages);
2011 m->hstate = h;
2012 return 1;
2015 static void __init prep_compound_huge_page(struct page *page,
2016 unsigned int order)
2018 if (unlikely(order > (MAX_ORDER - 1)))
2019 prep_compound_gigantic_page(page, order);
2020 else
2021 prep_compound_page(page, order);
2024 /* Put bootmem huge pages into the standard lists after mem_map is up */
2025 static void __init gather_bootmem_prealloc(void)
2027 struct huge_bootmem_page *m;
2029 list_for_each_entry(m, &huge_boot_pages, list) {
2030 struct hstate *h = m->hstate;
2031 struct page *page;
2033 #ifdef CONFIG_HIGHMEM
2034 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2035 memblock_free_late(__pa(m),
2036 sizeof(struct huge_bootmem_page));
2037 #else
2038 page = virt_to_page(m);
2039 #endif
2040 WARN_ON(page_count(page) != 1);
2041 prep_compound_huge_page(page, h->order);
2042 WARN_ON(PageReserved(page));
2043 prep_new_huge_page(h, page, page_to_nid(page));
2045 * If we had gigantic hugepages allocated at boot time, we need
2046 * to restore the 'stolen' pages to totalram_pages in order to
2047 * fix confusing memory reports from free(1) and another
2048 * side-effects, like CommitLimit going negative.
2050 if (hstate_is_gigantic(h))
2051 adjust_managed_page_count(page, 1 << h->order);
2052 cond_resched();
2056 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2058 unsigned long i;
2060 for (i = 0; i < h->max_huge_pages; ++i) {
2061 if (hstate_is_gigantic(h)) {
2062 if (!alloc_bootmem_huge_page(h))
2063 break;
2064 } else if (!alloc_fresh_huge_page(h,
2065 &node_states[N_MEMORY]))
2066 break;
2068 h->max_huge_pages = i;
2071 static void __init hugetlb_init_hstates(void)
2073 struct hstate *h;
2075 for_each_hstate(h) {
2076 if (minimum_order > huge_page_order(h))
2077 minimum_order = huge_page_order(h);
2079 /* oversize hugepages were init'ed in early boot */
2080 if (!hstate_is_gigantic(h))
2081 hugetlb_hstate_alloc_pages(h);
2083 VM_BUG_ON(minimum_order == UINT_MAX);
2086 static char * __init memfmt(char *buf, unsigned long n)
2088 if (n >= (1UL << 30))
2089 sprintf(buf, "%lu GB", n >> 30);
2090 else if (n >= (1UL << 20))
2091 sprintf(buf, "%lu MB", n >> 20);
2092 else
2093 sprintf(buf, "%lu KB", n >> 10);
2094 return buf;
2097 static void __init report_hugepages(void)
2099 struct hstate *h;
2101 for_each_hstate(h) {
2102 char buf[32];
2103 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2104 memfmt(buf, huge_page_size(h)),
2105 h->free_huge_pages);
2109 #ifdef CONFIG_HIGHMEM
2110 static void try_to_free_low(struct hstate *h, unsigned long count,
2111 nodemask_t *nodes_allowed)
2113 int i;
2115 if (hstate_is_gigantic(h))
2116 return;
2118 for_each_node_mask(i, *nodes_allowed) {
2119 struct page *page, *next;
2120 struct list_head *freel = &h->hugepage_freelists[i];
2121 list_for_each_entry_safe(page, next, freel, lru) {
2122 if (count >= h->nr_huge_pages)
2123 return;
2124 if (PageHighMem(page))
2125 continue;
2126 list_del(&page->lru);
2127 update_and_free_page(h, page);
2128 h->free_huge_pages--;
2129 h->free_huge_pages_node[page_to_nid(page)]--;
2133 #else
2134 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2135 nodemask_t *nodes_allowed)
2138 #endif
2141 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2142 * balanced by operating on them in a round-robin fashion.
2143 * Returns 1 if an adjustment was made.
2145 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2146 int delta)
2148 int nr_nodes, node;
2150 VM_BUG_ON(delta != -1 && delta != 1);
2152 if (delta < 0) {
2153 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2154 if (h->surplus_huge_pages_node[node])
2155 goto found;
2157 } else {
2158 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2159 if (h->surplus_huge_pages_node[node] <
2160 h->nr_huge_pages_node[node])
2161 goto found;
2164 return 0;
2166 found:
2167 h->surplus_huge_pages += delta;
2168 h->surplus_huge_pages_node[node] += delta;
2169 return 1;
2172 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2173 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2174 nodemask_t *nodes_allowed)
2176 unsigned long min_count, ret;
2178 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2179 return h->max_huge_pages;
2182 * Increase the pool size
2183 * First take pages out of surplus state. Then make up the
2184 * remaining difference by allocating fresh huge pages.
2186 * We might race with __alloc_buddy_huge_page() here and be unable
2187 * to convert a surplus huge page to a normal huge page. That is
2188 * not critical, though, it just means the overall size of the
2189 * pool might be one hugepage larger than it needs to be, but
2190 * within all the constraints specified by the sysctls.
2192 spin_lock(&hugetlb_lock);
2193 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2194 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2195 break;
2198 while (count > persistent_huge_pages(h)) {
2200 * If this allocation races such that we no longer need the
2201 * page, free_huge_page will handle it by freeing the page
2202 * and reducing the surplus.
2204 spin_unlock(&hugetlb_lock);
2206 /* yield cpu to avoid soft lockup */
2207 cond_resched();
2209 if (hstate_is_gigantic(h))
2210 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2211 else
2212 ret = alloc_fresh_huge_page(h, nodes_allowed);
2213 spin_lock(&hugetlb_lock);
2214 if (!ret)
2215 goto out;
2217 /* Bail for signals. Probably ctrl-c from user */
2218 if (signal_pending(current))
2219 goto out;
2223 * Decrease the pool size
2224 * First return free pages to the buddy allocator (being careful
2225 * to keep enough around to satisfy reservations). Then place
2226 * pages into surplus state as needed so the pool will shrink
2227 * to the desired size as pages become free.
2229 * By placing pages into the surplus state independent of the
2230 * overcommit value, we are allowing the surplus pool size to
2231 * exceed overcommit. There are few sane options here. Since
2232 * __alloc_buddy_huge_page() is checking the global counter,
2233 * though, we'll note that we're not allowed to exceed surplus
2234 * and won't grow the pool anywhere else. Not until one of the
2235 * sysctls are changed, or the surplus pages go out of use.
2237 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2238 min_count = max(count, min_count);
2239 try_to_free_low(h, min_count, nodes_allowed);
2240 while (min_count < persistent_huge_pages(h)) {
2241 if (!free_pool_huge_page(h, nodes_allowed, 0))
2242 break;
2243 cond_resched_lock(&hugetlb_lock);
2245 while (count < persistent_huge_pages(h)) {
2246 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2247 break;
2249 out:
2250 ret = persistent_huge_pages(h);
2251 spin_unlock(&hugetlb_lock);
2252 return ret;
2255 #define HSTATE_ATTR_RO(_name) \
2256 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2258 #define HSTATE_ATTR(_name) \
2259 static struct kobj_attribute _name##_attr = \
2260 __ATTR(_name, 0644, _name##_show, _name##_store)
2262 static struct kobject *hugepages_kobj;
2263 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2265 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2267 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2269 int i;
2271 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2272 if (hstate_kobjs[i] == kobj) {
2273 if (nidp)
2274 *nidp = NUMA_NO_NODE;
2275 return &hstates[i];
2278 return kobj_to_node_hstate(kobj, nidp);
2281 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2282 struct kobj_attribute *attr, char *buf)
2284 struct hstate *h;
2285 unsigned long nr_huge_pages;
2286 int nid;
2288 h = kobj_to_hstate(kobj, &nid);
2289 if (nid == NUMA_NO_NODE)
2290 nr_huge_pages = h->nr_huge_pages;
2291 else
2292 nr_huge_pages = h->nr_huge_pages_node[nid];
2294 return sprintf(buf, "%lu\n", nr_huge_pages);
2297 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2298 struct hstate *h, int nid,
2299 unsigned long count, size_t len)
2301 int err;
2302 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2304 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2305 err = -EINVAL;
2306 goto out;
2309 if (nid == NUMA_NO_NODE) {
2311 * global hstate attribute
2313 if (!(obey_mempolicy &&
2314 init_nodemask_of_mempolicy(nodes_allowed))) {
2315 NODEMASK_FREE(nodes_allowed);
2316 nodes_allowed = &node_states[N_MEMORY];
2318 } else if (nodes_allowed) {
2320 * per node hstate attribute: adjust count to global,
2321 * but restrict alloc/free to the specified node.
2323 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2324 init_nodemask_of_node(nodes_allowed, nid);
2325 } else
2326 nodes_allowed = &node_states[N_MEMORY];
2328 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2330 if (nodes_allowed != &node_states[N_MEMORY])
2331 NODEMASK_FREE(nodes_allowed);
2333 return len;
2334 out:
2335 NODEMASK_FREE(nodes_allowed);
2336 return err;
2339 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2340 struct kobject *kobj, const char *buf,
2341 size_t len)
2343 struct hstate *h;
2344 unsigned long count;
2345 int nid;
2346 int err;
2348 err = kstrtoul(buf, 10, &count);
2349 if (err)
2350 return err;
2352 h = kobj_to_hstate(kobj, &nid);
2353 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2356 static ssize_t nr_hugepages_show(struct kobject *kobj,
2357 struct kobj_attribute *attr, char *buf)
2359 return nr_hugepages_show_common(kobj, attr, buf);
2362 static ssize_t nr_hugepages_store(struct kobject *kobj,
2363 struct kobj_attribute *attr, const char *buf, size_t len)
2365 return nr_hugepages_store_common(false, kobj, buf, len);
2367 HSTATE_ATTR(nr_hugepages);
2369 #ifdef CONFIG_NUMA
2372 * hstate attribute for optionally mempolicy-based constraint on persistent
2373 * huge page alloc/free.
2375 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2376 struct kobj_attribute *attr, char *buf)
2378 return nr_hugepages_show_common(kobj, attr, buf);
2381 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2382 struct kobj_attribute *attr, const char *buf, size_t len)
2384 return nr_hugepages_store_common(true, kobj, buf, len);
2386 HSTATE_ATTR(nr_hugepages_mempolicy);
2387 #endif
2390 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2391 struct kobj_attribute *attr, char *buf)
2393 struct hstate *h = kobj_to_hstate(kobj, NULL);
2394 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2397 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2398 struct kobj_attribute *attr, const char *buf, size_t count)
2400 int err;
2401 unsigned long input;
2402 struct hstate *h = kobj_to_hstate(kobj, NULL);
2404 if (hstate_is_gigantic(h))
2405 return -EINVAL;
2407 err = kstrtoul(buf, 10, &input);
2408 if (err)
2409 return err;
2411 spin_lock(&hugetlb_lock);
2412 h->nr_overcommit_huge_pages = input;
2413 spin_unlock(&hugetlb_lock);
2415 return count;
2417 HSTATE_ATTR(nr_overcommit_hugepages);
2419 static ssize_t free_hugepages_show(struct kobject *kobj,
2420 struct kobj_attribute *attr, char *buf)
2422 struct hstate *h;
2423 unsigned long free_huge_pages;
2424 int nid;
2426 h = kobj_to_hstate(kobj, &nid);
2427 if (nid == NUMA_NO_NODE)
2428 free_huge_pages = h->free_huge_pages;
2429 else
2430 free_huge_pages = h->free_huge_pages_node[nid];
2432 return sprintf(buf, "%lu\n", free_huge_pages);
2434 HSTATE_ATTR_RO(free_hugepages);
2436 static ssize_t resv_hugepages_show(struct kobject *kobj,
2437 struct kobj_attribute *attr, char *buf)
2439 struct hstate *h = kobj_to_hstate(kobj, NULL);
2440 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2442 HSTATE_ATTR_RO(resv_hugepages);
2444 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2445 struct kobj_attribute *attr, char *buf)
2447 struct hstate *h;
2448 unsigned long surplus_huge_pages;
2449 int nid;
2451 h = kobj_to_hstate(kobj, &nid);
2452 if (nid == NUMA_NO_NODE)
2453 surplus_huge_pages = h->surplus_huge_pages;
2454 else
2455 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2457 return sprintf(buf, "%lu\n", surplus_huge_pages);
2459 HSTATE_ATTR_RO(surplus_hugepages);
2461 static struct attribute *hstate_attrs[] = {
2462 &nr_hugepages_attr.attr,
2463 &nr_overcommit_hugepages_attr.attr,
2464 &free_hugepages_attr.attr,
2465 &resv_hugepages_attr.attr,
2466 &surplus_hugepages_attr.attr,
2467 #ifdef CONFIG_NUMA
2468 &nr_hugepages_mempolicy_attr.attr,
2469 #endif
2470 NULL,
2473 static struct attribute_group hstate_attr_group = {
2474 .attrs = hstate_attrs,
2477 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2478 struct kobject **hstate_kobjs,
2479 struct attribute_group *hstate_attr_group)
2481 int retval;
2482 int hi = hstate_index(h);
2484 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2485 if (!hstate_kobjs[hi])
2486 return -ENOMEM;
2488 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2489 if (retval)
2490 kobject_put(hstate_kobjs[hi]);
2492 return retval;
2495 static void __init hugetlb_sysfs_init(void)
2497 struct hstate *h;
2498 int err;
2500 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2501 if (!hugepages_kobj)
2502 return;
2504 for_each_hstate(h) {
2505 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2506 hstate_kobjs, &hstate_attr_group);
2507 if (err)
2508 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2512 #ifdef CONFIG_NUMA
2515 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2516 * with node devices in node_devices[] using a parallel array. The array
2517 * index of a node device or _hstate == node id.
2518 * This is here to avoid any static dependency of the node device driver, in
2519 * the base kernel, on the hugetlb module.
2521 struct node_hstate {
2522 struct kobject *hugepages_kobj;
2523 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2525 static struct node_hstate node_hstates[MAX_NUMNODES];
2528 * A subset of global hstate attributes for node devices
2530 static struct attribute *per_node_hstate_attrs[] = {
2531 &nr_hugepages_attr.attr,
2532 &free_hugepages_attr.attr,
2533 &surplus_hugepages_attr.attr,
2534 NULL,
2537 static struct attribute_group per_node_hstate_attr_group = {
2538 .attrs = per_node_hstate_attrs,
2542 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2543 * Returns node id via non-NULL nidp.
2545 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2547 int nid;
2549 for (nid = 0; nid < nr_node_ids; nid++) {
2550 struct node_hstate *nhs = &node_hstates[nid];
2551 int i;
2552 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2553 if (nhs->hstate_kobjs[i] == kobj) {
2554 if (nidp)
2555 *nidp = nid;
2556 return &hstates[i];
2560 BUG();
2561 return NULL;
2565 * Unregister hstate attributes from a single node device.
2566 * No-op if no hstate attributes attached.
2568 static void hugetlb_unregister_node(struct node *node)
2570 struct hstate *h;
2571 struct node_hstate *nhs = &node_hstates[node->dev.id];
2573 if (!nhs->hugepages_kobj)
2574 return; /* no hstate attributes */
2576 for_each_hstate(h) {
2577 int idx = hstate_index(h);
2578 if (nhs->hstate_kobjs[idx]) {
2579 kobject_put(nhs->hstate_kobjs[idx]);
2580 nhs->hstate_kobjs[idx] = NULL;
2584 kobject_put(nhs->hugepages_kobj);
2585 nhs->hugepages_kobj = NULL;
2589 * hugetlb module exit: unregister hstate attributes from node devices
2590 * that have them.
2592 static void hugetlb_unregister_all_nodes(void)
2594 int nid;
2597 * disable node device registrations.
2599 register_hugetlbfs_with_node(NULL, NULL);
2602 * remove hstate attributes from any nodes that have them.
2604 for (nid = 0; nid < nr_node_ids; nid++)
2605 hugetlb_unregister_node(node_devices[nid]);
2609 * Register hstate attributes for a single node device.
2610 * No-op if attributes already registered.
2612 static void hugetlb_register_node(struct node *node)
2614 struct hstate *h;
2615 struct node_hstate *nhs = &node_hstates[node->dev.id];
2616 int err;
2618 if (nhs->hugepages_kobj)
2619 return; /* already allocated */
2621 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2622 &node->dev.kobj);
2623 if (!nhs->hugepages_kobj)
2624 return;
2626 for_each_hstate(h) {
2627 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2628 nhs->hstate_kobjs,
2629 &per_node_hstate_attr_group);
2630 if (err) {
2631 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2632 h->name, node->dev.id);
2633 hugetlb_unregister_node(node);
2634 break;
2640 * hugetlb init time: register hstate attributes for all registered node
2641 * devices of nodes that have memory. All on-line nodes should have
2642 * registered their associated device by this time.
2644 static void __init hugetlb_register_all_nodes(void)
2646 int nid;
2648 for_each_node_state(nid, N_MEMORY) {
2649 struct node *node = node_devices[nid];
2650 if (node->dev.id == nid)
2651 hugetlb_register_node(node);
2655 * Let the node device driver know we're here so it can
2656 * [un]register hstate attributes on node hotplug.
2658 register_hugetlbfs_with_node(hugetlb_register_node,
2659 hugetlb_unregister_node);
2661 #else /* !CONFIG_NUMA */
2663 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2665 BUG();
2666 if (nidp)
2667 *nidp = -1;
2668 return NULL;
2671 static void hugetlb_unregister_all_nodes(void) { }
2673 static void hugetlb_register_all_nodes(void) { }
2675 #endif
2677 static void __exit hugetlb_exit(void)
2679 struct hstate *h;
2681 hugetlb_unregister_all_nodes();
2683 for_each_hstate(h) {
2684 kobject_put(hstate_kobjs[hstate_index(h)]);
2687 kobject_put(hugepages_kobj);
2688 kfree(hugetlb_fault_mutex_table);
2690 module_exit(hugetlb_exit);
2692 static int __init hugetlb_init(void)
2694 int i;
2696 if (!hugepages_supported())
2697 return 0;
2699 if (!size_to_hstate(default_hstate_size)) {
2700 default_hstate_size = HPAGE_SIZE;
2701 if (!size_to_hstate(default_hstate_size))
2702 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2704 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2705 if (default_hstate_max_huge_pages)
2706 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2708 hugetlb_init_hstates();
2709 gather_bootmem_prealloc();
2710 report_hugepages();
2712 hugetlb_sysfs_init();
2713 hugetlb_register_all_nodes();
2714 hugetlb_cgroup_file_init();
2716 #ifdef CONFIG_SMP
2717 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2718 #else
2719 num_fault_mutexes = 1;
2720 #endif
2721 hugetlb_fault_mutex_table =
2722 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2723 BUG_ON(!hugetlb_fault_mutex_table);
2725 for (i = 0; i < num_fault_mutexes; i++)
2726 mutex_init(&hugetlb_fault_mutex_table[i]);
2727 return 0;
2729 module_init(hugetlb_init);
2731 /* Should be called on processing a hugepagesz=... option */
2732 void __init hugetlb_add_hstate(unsigned int order)
2734 struct hstate *h;
2735 unsigned long i;
2737 if (size_to_hstate(PAGE_SIZE << order)) {
2738 pr_warning("hugepagesz= specified twice, ignoring\n");
2739 return;
2741 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2742 BUG_ON(order == 0);
2743 h = &hstates[hugetlb_max_hstate++];
2744 h->order = order;
2745 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2746 h->nr_huge_pages = 0;
2747 h->free_huge_pages = 0;
2748 for (i = 0; i < MAX_NUMNODES; ++i)
2749 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2750 INIT_LIST_HEAD(&h->hugepage_activelist);
2751 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2752 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2753 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2754 huge_page_size(h)/1024);
2756 parsed_hstate = h;
2759 static int __init hugetlb_nrpages_setup(char *s)
2761 unsigned long *mhp;
2762 static unsigned long *last_mhp;
2765 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2766 * so this hugepages= parameter goes to the "default hstate".
2768 if (!hugetlb_max_hstate)
2769 mhp = &default_hstate_max_huge_pages;
2770 else
2771 mhp = &parsed_hstate->max_huge_pages;
2773 if (mhp == last_mhp) {
2774 pr_warning("hugepages= specified twice without "
2775 "interleaving hugepagesz=, ignoring\n");
2776 return 1;
2779 if (sscanf(s, "%lu", mhp) <= 0)
2780 *mhp = 0;
2783 * Global state is always initialized later in hugetlb_init.
2784 * But we need to allocate >= MAX_ORDER hstates here early to still
2785 * use the bootmem allocator.
2787 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2788 hugetlb_hstate_alloc_pages(parsed_hstate);
2790 last_mhp = mhp;
2792 return 1;
2794 __setup("hugepages=", hugetlb_nrpages_setup);
2796 static int __init hugetlb_default_setup(char *s)
2798 default_hstate_size = memparse(s, &s);
2799 return 1;
2801 __setup("default_hugepagesz=", hugetlb_default_setup);
2803 static unsigned int cpuset_mems_nr(unsigned int *array)
2805 int node;
2806 unsigned int nr = 0;
2808 for_each_node_mask(node, cpuset_current_mems_allowed)
2809 nr += array[node];
2811 return nr;
2814 #ifdef CONFIG_SYSCTL
2815 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2816 struct ctl_table *table, int write,
2817 void __user *buffer, size_t *length, loff_t *ppos)
2819 struct hstate *h = &default_hstate;
2820 unsigned long tmp = h->max_huge_pages;
2821 int ret;
2823 if (!hugepages_supported())
2824 return -ENOTSUPP;
2826 table->data = &tmp;
2827 table->maxlen = sizeof(unsigned long);
2828 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2829 if (ret)
2830 goto out;
2832 if (write)
2833 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2834 NUMA_NO_NODE, tmp, *length);
2835 out:
2836 return ret;
2839 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2840 void __user *buffer, size_t *length, loff_t *ppos)
2843 return hugetlb_sysctl_handler_common(false, table, write,
2844 buffer, length, ppos);
2847 #ifdef CONFIG_NUMA
2848 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2849 void __user *buffer, size_t *length, loff_t *ppos)
2851 return hugetlb_sysctl_handler_common(true, table, write,
2852 buffer, length, ppos);
2854 #endif /* CONFIG_NUMA */
2856 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2857 void __user *buffer,
2858 size_t *length, loff_t *ppos)
2860 struct hstate *h = &default_hstate;
2861 unsigned long tmp;
2862 int ret;
2864 if (!hugepages_supported())
2865 return -ENOTSUPP;
2867 tmp = h->nr_overcommit_huge_pages;
2869 if (write && hstate_is_gigantic(h))
2870 return -EINVAL;
2872 table->data = &tmp;
2873 table->maxlen = sizeof(unsigned long);
2874 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2875 if (ret)
2876 goto out;
2878 if (write) {
2879 spin_lock(&hugetlb_lock);
2880 h->nr_overcommit_huge_pages = tmp;
2881 spin_unlock(&hugetlb_lock);
2883 out:
2884 return ret;
2887 #endif /* CONFIG_SYSCTL */
2889 void hugetlb_report_meminfo(struct seq_file *m)
2891 struct hstate *h = &default_hstate;
2892 if (!hugepages_supported())
2893 return;
2894 seq_printf(m,
2895 "HugePages_Total: %5lu\n"
2896 "HugePages_Free: %5lu\n"
2897 "HugePages_Rsvd: %5lu\n"
2898 "HugePages_Surp: %5lu\n"
2899 "Hugepagesize: %8lu kB\n",
2900 h->nr_huge_pages,
2901 h->free_huge_pages,
2902 h->resv_huge_pages,
2903 h->surplus_huge_pages,
2904 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2907 int hugetlb_report_node_meminfo(int nid, char *buf)
2909 struct hstate *h = &default_hstate;
2910 if (!hugepages_supported())
2911 return 0;
2912 return sprintf(buf,
2913 "Node %d HugePages_Total: %5u\n"
2914 "Node %d HugePages_Free: %5u\n"
2915 "Node %d HugePages_Surp: %5u\n",
2916 nid, h->nr_huge_pages_node[nid],
2917 nid, h->free_huge_pages_node[nid],
2918 nid, h->surplus_huge_pages_node[nid]);
2921 void hugetlb_show_meminfo(void)
2923 struct hstate *h;
2924 int nid;
2926 if (!hugepages_supported())
2927 return;
2929 for_each_node_state(nid, N_MEMORY)
2930 for_each_hstate(h)
2931 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2932 nid,
2933 h->nr_huge_pages_node[nid],
2934 h->free_huge_pages_node[nid],
2935 h->surplus_huge_pages_node[nid],
2936 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2939 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2941 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2942 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2945 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2946 unsigned long hugetlb_total_pages(void)
2948 struct hstate *h;
2949 unsigned long nr_total_pages = 0;
2951 for_each_hstate(h)
2952 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2953 return nr_total_pages;
2956 static int hugetlb_acct_memory(struct hstate *h, long delta)
2958 int ret = -ENOMEM;
2960 spin_lock(&hugetlb_lock);
2962 * When cpuset is configured, it breaks the strict hugetlb page
2963 * reservation as the accounting is done on a global variable. Such
2964 * reservation is completely rubbish in the presence of cpuset because
2965 * the reservation is not checked against page availability for the
2966 * current cpuset. Application can still potentially OOM'ed by kernel
2967 * with lack of free htlb page in cpuset that the task is in.
2968 * Attempt to enforce strict accounting with cpuset is almost
2969 * impossible (or too ugly) because cpuset is too fluid that
2970 * task or memory node can be dynamically moved between cpusets.
2972 * The change of semantics for shared hugetlb mapping with cpuset is
2973 * undesirable. However, in order to preserve some of the semantics,
2974 * we fall back to check against current free page availability as
2975 * a best attempt and hopefully to minimize the impact of changing
2976 * semantics that cpuset has.
2978 if (delta > 0) {
2979 if (gather_surplus_pages(h, delta) < 0)
2980 goto out;
2982 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2983 return_unused_surplus_pages(h, delta);
2984 goto out;
2988 ret = 0;
2989 if (delta < 0)
2990 return_unused_surplus_pages(h, (unsigned long) -delta);
2992 out:
2993 spin_unlock(&hugetlb_lock);
2994 return ret;
2997 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2999 struct resv_map *resv = vma_resv_map(vma);
3002 * This new VMA should share its siblings reservation map if present.
3003 * The VMA will only ever have a valid reservation map pointer where
3004 * it is being copied for another still existing VMA. As that VMA
3005 * has a reference to the reservation map it cannot disappear until
3006 * after this open call completes. It is therefore safe to take a
3007 * new reference here without additional locking.
3009 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3010 kref_get(&resv->refs);
3013 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3015 struct hstate *h = hstate_vma(vma);
3016 struct resv_map *resv = vma_resv_map(vma);
3017 struct hugepage_subpool *spool = subpool_vma(vma);
3018 unsigned long reserve, start, end;
3019 long gbl_reserve;
3021 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3022 return;
3024 start = vma_hugecache_offset(h, vma, vma->vm_start);
3025 end = vma_hugecache_offset(h, vma, vma->vm_end);
3027 reserve = (end - start) - region_count(resv, start, end);
3029 kref_put(&resv->refs, resv_map_release);
3031 if (reserve) {
3033 * Decrement reserve counts. The global reserve count may be
3034 * adjusted if the subpool has a minimum size.
3036 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3037 hugetlb_acct_memory(h, -gbl_reserve);
3042 * We cannot handle pagefaults against hugetlb pages at all. They cause
3043 * handle_mm_fault() to try to instantiate regular-sized pages in the
3044 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3045 * this far.
3047 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3049 BUG();
3050 return 0;
3053 const struct vm_operations_struct hugetlb_vm_ops = {
3054 .fault = hugetlb_vm_op_fault,
3055 .open = hugetlb_vm_op_open,
3056 .close = hugetlb_vm_op_close,
3059 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3060 int writable)
3062 pte_t entry;
3064 if (writable) {
3065 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3066 vma->vm_page_prot)));
3067 } else {
3068 entry = huge_pte_wrprotect(mk_huge_pte(page,
3069 vma->vm_page_prot));
3071 entry = pte_mkyoung(entry);
3072 entry = pte_mkhuge(entry);
3073 entry = arch_make_huge_pte(entry, vma, page, writable);
3075 return entry;
3078 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3079 unsigned long address, pte_t *ptep)
3081 pte_t entry;
3083 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3084 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3085 update_mmu_cache(vma, address, ptep);
3088 static int is_hugetlb_entry_migration(pte_t pte)
3090 swp_entry_t swp;
3092 if (huge_pte_none(pte) || pte_present(pte))
3093 return 0;
3094 swp = pte_to_swp_entry(pte);
3095 if (non_swap_entry(swp) && is_migration_entry(swp))
3096 return 1;
3097 else
3098 return 0;
3101 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3103 swp_entry_t swp;
3105 if (huge_pte_none(pte) || pte_present(pte))
3106 return 0;
3107 swp = pte_to_swp_entry(pte);
3108 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3109 return 1;
3110 else
3111 return 0;
3114 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3115 struct vm_area_struct *vma)
3117 pte_t *src_pte, *dst_pte, entry, dst_entry;
3118 struct page *ptepage;
3119 unsigned long addr;
3120 int cow;
3121 struct hstate *h = hstate_vma(vma);
3122 unsigned long sz = huge_page_size(h);
3123 unsigned long mmun_start; /* For mmu_notifiers */
3124 unsigned long mmun_end; /* For mmu_notifiers */
3125 int ret = 0;
3127 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3129 mmun_start = vma->vm_start;
3130 mmun_end = vma->vm_end;
3131 if (cow)
3132 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3134 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3135 spinlock_t *src_ptl, *dst_ptl;
3136 src_pte = huge_pte_offset(src, addr);
3137 if (!src_pte)
3138 continue;
3139 dst_pte = huge_pte_alloc(dst, addr, sz);
3140 if (!dst_pte) {
3141 ret = -ENOMEM;
3142 break;
3146 * If the pagetables are shared don't copy or take references.
3147 * dst_pte == src_pte is the common case of src/dest sharing.
3149 * However, src could have 'unshared' and dst shares with
3150 * another vma. If dst_pte !none, this implies sharing.
3151 * Check here before taking page table lock, and once again
3152 * after taking the lock below.
3154 dst_entry = huge_ptep_get(dst_pte);
3155 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3156 continue;
3158 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3159 src_ptl = huge_pte_lockptr(h, src, src_pte);
3160 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3161 entry = huge_ptep_get(src_pte);
3162 dst_entry = huge_ptep_get(dst_pte);
3163 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3165 * Skip if src entry none. Also, skip in the
3166 * unlikely case dst entry !none as this implies
3167 * sharing with another vma.
3170 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3171 is_hugetlb_entry_hwpoisoned(entry))) {
3172 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3174 if (is_write_migration_entry(swp_entry) && cow) {
3176 * COW mappings require pages in both
3177 * parent and child to be set to read.
3179 make_migration_entry_read(&swp_entry);
3180 entry = swp_entry_to_pte(swp_entry);
3181 set_huge_pte_at(src, addr, src_pte, entry);
3183 set_huge_pte_at(dst, addr, dst_pte, entry);
3184 } else {
3185 if (cow) {
3186 huge_ptep_set_wrprotect(src, addr, src_pte);
3187 mmu_notifier_invalidate_range(src, mmun_start,
3188 mmun_end);
3190 entry = huge_ptep_get(src_pte);
3191 ptepage = pte_page(entry);
3192 get_page(ptepage);
3193 page_dup_rmap(ptepage);
3194 set_huge_pte_at(dst, addr, dst_pte, entry);
3195 hugetlb_count_add(pages_per_huge_page(h), dst);
3197 spin_unlock(src_ptl);
3198 spin_unlock(dst_ptl);
3201 if (cow)
3202 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3204 return ret;
3207 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3208 unsigned long start, unsigned long end,
3209 struct page *ref_page)
3211 int force_flush = 0;
3212 struct mm_struct *mm = vma->vm_mm;
3213 unsigned long address;
3214 pte_t *ptep;
3215 pte_t pte;
3216 spinlock_t *ptl;
3217 struct page *page;
3218 struct hstate *h = hstate_vma(vma);
3219 unsigned long sz = huge_page_size(h);
3220 const unsigned long mmun_start = start; /* For mmu_notifiers */
3221 const unsigned long mmun_end = end; /* For mmu_notifiers */
3223 WARN_ON(!is_vm_hugetlb_page(vma));
3224 BUG_ON(start & ~huge_page_mask(h));
3225 BUG_ON(end & ~huge_page_mask(h));
3227 tlb_start_vma(tlb, vma);
3228 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3229 address = start;
3230 again:
3231 for (; address < end; address += sz) {
3232 ptep = huge_pte_offset(mm, address);
3233 if (!ptep)
3234 continue;
3236 ptl = huge_pte_lock(h, mm, ptep);
3237 if (huge_pmd_unshare(mm, &address, ptep))
3238 goto unlock;
3240 pte = huge_ptep_get(ptep);
3241 if (huge_pte_none(pte))
3242 goto unlock;
3245 * Migrating hugepage or HWPoisoned hugepage is already
3246 * unmapped and its refcount is dropped, so just clear pte here.
3248 if (unlikely(!pte_present(pte))) {
3249 huge_pte_clear(mm, address, ptep);
3250 goto unlock;
3253 page = pte_page(pte);
3255 * If a reference page is supplied, it is because a specific
3256 * page is being unmapped, not a range. Ensure the page we
3257 * are about to unmap is the actual page of interest.
3259 if (ref_page) {
3260 if (page != ref_page)
3261 goto unlock;
3264 * Mark the VMA as having unmapped its page so that
3265 * future faults in this VMA will fail rather than
3266 * looking like data was lost
3268 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3271 pte = huge_ptep_get_and_clear(mm, address, ptep);
3272 tlb_remove_tlb_entry(tlb, ptep, address);
3273 if (huge_pte_dirty(pte))
3274 set_page_dirty(page);
3276 hugetlb_count_sub(pages_per_huge_page(h), mm);
3277 page_remove_rmap(page);
3278 force_flush = !__tlb_remove_page(tlb, page);
3279 if (force_flush) {
3280 address += sz;
3281 spin_unlock(ptl);
3282 break;
3284 /* Bail out after unmapping reference page if supplied */
3285 if (ref_page) {
3286 spin_unlock(ptl);
3287 break;
3289 unlock:
3290 spin_unlock(ptl);
3293 * mmu_gather ran out of room to batch pages, we break out of
3294 * the PTE lock to avoid doing the potential expensive TLB invalidate
3295 * and page-free while holding it.
3297 if (force_flush) {
3298 force_flush = 0;
3299 tlb_flush_mmu(tlb);
3300 if (address < end && !ref_page)
3301 goto again;
3303 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3304 tlb_end_vma(tlb, vma);
3307 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3308 struct vm_area_struct *vma, unsigned long start,
3309 unsigned long end, struct page *ref_page)
3311 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3314 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3315 * test will fail on a vma being torn down, and not grab a page table
3316 * on its way out. We're lucky that the flag has such an appropriate
3317 * name, and can in fact be safely cleared here. We could clear it
3318 * before the __unmap_hugepage_range above, but all that's necessary
3319 * is to clear it before releasing the i_mmap_rwsem. This works
3320 * because in the context this is called, the VMA is about to be
3321 * destroyed and the i_mmap_rwsem is held.
3323 vma->vm_flags &= ~VM_MAYSHARE;
3326 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3327 unsigned long end, struct page *ref_page)
3329 struct mm_struct *mm;
3330 struct mmu_gather tlb;
3332 mm = vma->vm_mm;
3334 tlb_gather_mmu(&tlb, mm, start, end);
3335 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3336 tlb_finish_mmu(&tlb, start, end);
3340 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3341 * mappping it owns the reserve page for. The intention is to unmap the page
3342 * from other VMAs and let the children be SIGKILLed if they are faulting the
3343 * same region.
3345 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3346 struct page *page, unsigned long address)
3348 struct hstate *h = hstate_vma(vma);
3349 struct vm_area_struct *iter_vma;
3350 struct address_space *mapping;
3351 pgoff_t pgoff;
3354 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3355 * from page cache lookup which is in HPAGE_SIZE units.
3357 address = address & huge_page_mask(h);
3358 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3359 vma->vm_pgoff;
3360 mapping = file_inode(vma->vm_file)->i_mapping;
3363 * Take the mapping lock for the duration of the table walk. As
3364 * this mapping should be shared between all the VMAs,
3365 * __unmap_hugepage_range() is called as the lock is already held
3367 i_mmap_lock_write(mapping);
3368 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3369 /* Do not unmap the current VMA */
3370 if (iter_vma == vma)
3371 continue;
3374 * Shared VMAs have their own reserves and do not affect
3375 * MAP_PRIVATE accounting but it is possible that a shared
3376 * VMA is using the same page so check and skip such VMAs.
3378 if (iter_vma->vm_flags & VM_MAYSHARE)
3379 continue;
3382 * Unmap the page from other VMAs without their own reserves.
3383 * They get marked to be SIGKILLed if they fault in these
3384 * areas. This is because a future no-page fault on this VMA
3385 * could insert a zeroed page instead of the data existing
3386 * from the time of fork. This would look like data corruption
3388 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3389 unmap_hugepage_range(iter_vma, address,
3390 address + huge_page_size(h), page);
3392 i_mmap_unlock_write(mapping);
3396 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3397 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3398 * cannot race with other handlers or page migration.
3399 * Keep the pte_same checks anyway to make transition from the mutex easier.
3401 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3402 unsigned long address, pte_t *ptep, pte_t pte,
3403 struct page *pagecache_page, spinlock_t *ptl)
3405 struct hstate *h = hstate_vma(vma);
3406 struct page *old_page, *new_page;
3407 int ret = 0, outside_reserve = 0;
3408 unsigned long mmun_start; /* For mmu_notifiers */
3409 unsigned long mmun_end; /* For mmu_notifiers */
3411 old_page = pte_page(pte);
3413 retry_avoidcopy:
3414 /* If no-one else is actually using this page, avoid the copy
3415 * and just make the page writable */
3416 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3417 page_move_anon_rmap(old_page, vma, address);
3418 set_huge_ptep_writable(vma, address, ptep);
3419 return 0;
3423 * If the process that created a MAP_PRIVATE mapping is about to
3424 * perform a COW due to a shared page count, attempt to satisfy
3425 * the allocation without using the existing reserves. The pagecache
3426 * page is used to determine if the reserve at this address was
3427 * consumed or not. If reserves were used, a partial faulted mapping
3428 * at the time of fork() could consume its reserves on COW instead
3429 * of the full address range.
3431 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3432 old_page != pagecache_page)
3433 outside_reserve = 1;
3435 page_cache_get(old_page);
3438 * Drop page table lock as buddy allocator may be called. It will
3439 * be acquired again before returning to the caller, as expected.
3441 spin_unlock(ptl);
3442 new_page = alloc_huge_page(vma, address, outside_reserve);
3444 if (IS_ERR(new_page)) {
3446 * If a process owning a MAP_PRIVATE mapping fails to COW,
3447 * it is due to references held by a child and an insufficient
3448 * huge page pool. To guarantee the original mappers
3449 * reliability, unmap the page from child processes. The child
3450 * may get SIGKILLed if it later faults.
3452 if (outside_reserve) {
3453 page_cache_release(old_page);
3454 BUG_ON(huge_pte_none(pte));
3455 unmap_ref_private(mm, vma, old_page, address);
3456 BUG_ON(huge_pte_none(pte));
3457 spin_lock(ptl);
3458 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3459 if (likely(ptep &&
3460 pte_same(huge_ptep_get(ptep), pte)))
3461 goto retry_avoidcopy;
3463 * race occurs while re-acquiring page table
3464 * lock, and our job is done.
3466 return 0;
3469 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3470 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3471 goto out_release_old;
3475 * When the original hugepage is shared one, it does not have
3476 * anon_vma prepared.
3478 if (unlikely(anon_vma_prepare(vma))) {
3479 ret = VM_FAULT_OOM;
3480 goto out_release_all;
3483 copy_user_huge_page(new_page, old_page, address, vma,
3484 pages_per_huge_page(h));
3485 __SetPageUptodate(new_page);
3487 mmun_start = address & huge_page_mask(h);
3488 mmun_end = mmun_start + huge_page_size(h);
3489 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3492 * Retake the page table lock to check for racing updates
3493 * before the page tables are altered
3495 spin_lock(ptl);
3496 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3497 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3498 ClearPagePrivate(new_page);
3500 /* Break COW */
3501 huge_ptep_clear_flush(vma, address, ptep);
3502 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3503 set_huge_pte_at(mm, address, ptep,
3504 make_huge_pte(vma, new_page, 1));
3505 page_remove_rmap(old_page);
3506 hugepage_add_new_anon_rmap(new_page, vma, address);
3507 set_page_huge_active(new_page);
3508 /* Make the old page be freed below */
3509 new_page = old_page;
3511 spin_unlock(ptl);
3512 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3513 out_release_all:
3514 page_cache_release(new_page);
3515 out_release_old:
3516 page_cache_release(old_page);
3518 spin_lock(ptl); /* Caller expects lock to be held */
3519 return ret;
3522 /* Return the pagecache page at a given address within a VMA */
3523 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3524 struct vm_area_struct *vma, unsigned long address)
3526 struct address_space *mapping;
3527 pgoff_t idx;
3529 mapping = vma->vm_file->f_mapping;
3530 idx = vma_hugecache_offset(h, vma, address);
3532 return find_lock_page(mapping, idx);
3536 * Return whether there is a pagecache page to back given address within VMA.
3537 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3539 static bool hugetlbfs_pagecache_present(struct hstate *h,
3540 struct vm_area_struct *vma, unsigned long address)
3542 struct address_space *mapping;
3543 pgoff_t idx;
3544 struct page *page;
3546 mapping = vma->vm_file->f_mapping;
3547 idx = vma_hugecache_offset(h, vma, address);
3549 page = find_get_page(mapping, idx);
3550 if (page)
3551 put_page(page);
3552 return page != NULL;
3555 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3556 pgoff_t idx)
3558 struct inode *inode = mapping->host;
3559 struct hstate *h = hstate_inode(inode);
3560 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3562 if (err)
3563 return err;
3564 ClearPagePrivate(page);
3567 * set page dirty so that it will not be removed from cache/file
3568 * by non-hugetlbfs specific code paths.
3570 set_page_dirty(page);
3572 spin_lock(&inode->i_lock);
3573 inode->i_blocks += blocks_per_huge_page(h);
3574 spin_unlock(&inode->i_lock);
3575 return 0;
3578 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3579 struct address_space *mapping, pgoff_t idx,
3580 unsigned long address, pte_t *ptep, unsigned int flags)
3582 struct hstate *h = hstate_vma(vma);
3583 int ret = VM_FAULT_SIGBUS;
3584 int anon_rmap = 0;
3585 unsigned long size;
3586 struct page *page;
3587 pte_t new_pte;
3588 spinlock_t *ptl;
3589 bool new_page = false;
3592 * Currently, we are forced to kill the process in the event the
3593 * original mapper has unmapped pages from the child due to a failed
3594 * COW. Warn that such a situation has occurred as it may not be obvious
3596 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3597 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3598 current->pid);
3599 return ret;
3603 * Use page lock to guard against racing truncation
3604 * before we get page_table_lock.
3606 retry:
3607 page = find_lock_page(mapping, idx);
3608 if (!page) {
3609 size = i_size_read(mapping->host) >> huge_page_shift(h);
3610 if (idx >= size)
3611 goto out;
3612 page = alloc_huge_page(vma, address, 0);
3613 if (IS_ERR(page)) {
3614 ret = PTR_ERR(page);
3615 if (ret == -ENOMEM)
3616 ret = VM_FAULT_OOM;
3617 else
3618 ret = VM_FAULT_SIGBUS;
3619 goto out;
3621 clear_huge_page(page, address, pages_per_huge_page(h));
3622 __SetPageUptodate(page);
3623 new_page = true;
3625 if (vma->vm_flags & VM_MAYSHARE) {
3626 int err = huge_add_to_page_cache(page, mapping, idx);
3627 if (err) {
3628 put_page(page);
3629 if (err == -EEXIST)
3630 goto retry;
3631 goto out;
3633 } else {
3634 lock_page(page);
3635 if (unlikely(anon_vma_prepare(vma))) {
3636 ret = VM_FAULT_OOM;
3637 goto backout_unlocked;
3639 anon_rmap = 1;
3641 } else {
3643 * If memory error occurs between mmap() and fault, some process
3644 * don't have hwpoisoned swap entry for errored virtual address.
3645 * So we need to block hugepage fault by PG_hwpoison bit check.
3647 if (unlikely(PageHWPoison(page))) {
3648 ret = VM_FAULT_HWPOISON |
3649 VM_FAULT_SET_HINDEX(hstate_index(h));
3650 goto backout_unlocked;
3655 * If we are going to COW a private mapping later, we examine the
3656 * pending reservations for this page now. This will ensure that
3657 * any allocations necessary to record that reservation occur outside
3658 * the spinlock.
3660 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3661 if (vma_needs_reservation(h, vma, address) < 0) {
3662 ret = VM_FAULT_OOM;
3663 goto backout_unlocked;
3665 /* Just decrements count, does not deallocate */
3666 vma_end_reservation(h, vma, address);
3669 ptl = huge_pte_lockptr(h, mm, ptep);
3670 spin_lock(ptl);
3671 size = i_size_read(mapping->host) >> huge_page_shift(h);
3672 if (idx >= size)
3673 goto backout;
3675 ret = 0;
3676 if (!huge_pte_none(huge_ptep_get(ptep)))
3677 goto backout;
3679 if (anon_rmap) {
3680 ClearPagePrivate(page);
3681 hugepage_add_new_anon_rmap(page, vma, address);
3682 } else
3683 page_dup_rmap(page);
3684 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3685 && (vma->vm_flags & VM_SHARED)));
3686 set_huge_pte_at(mm, address, ptep, new_pte);
3688 hugetlb_count_add(pages_per_huge_page(h), mm);
3689 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3690 /* Optimization, do the COW without a second fault */
3691 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3694 spin_unlock(ptl);
3697 * Only make newly allocated pages active. Existing pages found
3698 * in the pagecache could be !page_huge_active() if they have been
3699 * isolated for migration.
3701 if (new_page)
3702 set_page_huge_active(page);
3704 unlock_page(page);
3705 out:
3706 return ret;
3708 backout:
3709 spin_unlock(ptl);
3710 backout_unlocked:
3711 unlock_page(page);
3712 put_page(page);
3713 goto out;
3716 #ifdef CONFIG_SMP
3717 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3718 pgoff_t idx, unsigned long address)
3720 unsigned long key[2];
3721 u32 hash;
3723 key[0] = (unsigned long) mapping;
3724 key[1] = idx;
3726 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3728 return hash & (num_fault_mutexes - 1);
3730 #else
3732 * For uniprocesor systems we always use a single mutex, so just
3733 * return 0 and avoid the hashing overhead.
3735 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3736 pgoff_t idx, unsigned long address)
3738 return 0;
3740 #endif
3742 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3743 unsigned long address, unsigned int flags)
3745 pte_t *ptep, entry;
3746 spinlock_t *ptl;
3747 int ret;
3748 u32 hash;
3749 pgoff_t idx;
3750 struct page *page = NULL;
3751 struct page *pagecache_page = NULL;
3752 struct hstate *h = hstate_vma(vma);
3753 struct address_space *mapping;
3754 int need_wait_lock = 0;
3756 address &= huge_page_mask(h);
3758 ptep = huge_pte_offset(mm, address);
3759 if (ptep) {
3760 entry = huge_ptep_get(ptep);
3761 if (unlikely(is_hugetlb_entry_migration(entry))) {
3762 migration_entry_wait_huge(vma, mm, ptep);
3763 return 0;
3764 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3765 return VM_FAULT_HWPOISON_LARGE |
3766 VM_FAULT_SET_HINDEX(hstate_index(h));
3767 } else {
3768 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3769 if (!ptep)
3770 return VM_FAULT_OOM;
3773 mapping = vma->vm_file->f_mapping;
3774 idx = vma_hugecache_offset(h, vma, address);
3777 * Serialize hugepage allocation and instantiation, so that we don't
3778 * get spurious allocation failures if two CPUs race to instantiate
3779 * the same page in the page cache.
3781 hash = hugetlb_fault_mutex_hash(h, mapping, idx, address);
3782 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3784 entry = huge_ptep_get(ptep);
3785 if (huge_pte_none(entry)) {
3786 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3787 goto out_mutex;
3790 ret = 0;
3793 * entry could be a migration/hwpoison entry at this point, so this
3794 * check prevents the kernel from going below assuming that we have
3795 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3796 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3797 * handle it.
3799 if (!pte_present(entry))
3800 goto out_mutex;
3803 * If we are going to COW the mapping later, we examine the pending
3804 * reservations for this page now. This will ensure that any
3805 * allocations necessary to record that reservation occur outside the
3806 * spinlock. For private mappings, we also lookup the pagecache
3807 * page now as it is used to determine if a reservation has been
3808 * consumed.
3810 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3811 if (vma_needs_reservation(h, vma, address) < 0) {
3812 ret = VM_FAULT_OOM;
3813 goto out_mutex;
3815 /* Just decrements count, does not deallocate */
3816 vma_end_reservation(h, vma, address);
3818 if (!(vma->vm_flags & VM_MAYSHARE))
3819 pagecache_page = hugetlbfs_pagecache_page(h,
3820 vma, address);
3823 ptl = huge_pte_lock(h, mm, ptep);
3825 /* Check for a racing update before calling hugetlb_cow */
3826 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3827 goto out_ptl;
3830 * hugetlb_cow() requires page locks of pte_page(entry) and
3831 * pagecache_page, so here we need take the former one
3832 * when page != pagecache_page or !pagecache_page.
3834 page = pte_page(entry);
3835 if (page != pagecache_page)
3836 if (!trylock_page(page)) {
3837 need_wait_lock = 1;
3838 goto out_ptl;
3841 get_page(page);
3843 if (flags & FAULT_FLAG_WRITE) {
3844 if (!huge_pte_write(entry)) {
3845 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3846 pagecache_page, ptl);
3847 goto out_put_page;
3849 entry = huge_pte_mkdirty(entry);
3851 entry = pte_mkyoung(entry);
3852 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3853 flags & FAULT_FLAG_WRITE))
3854 update_mmu_cache(vma, address, ptep);
3855 out_put_page:
3856 if (page != pagecache_page)
3857 unlock_page(page);
3858 put_page(page);
3859 out_ptl:
3860 spin_unlock(ptl);
3862 if (pagecache_page) {
3863 unlock_page(pagecache_page);
3864 put_page(pagecache_page);
3866 out_mutex:
3867 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3869 * Generally it's safe to hold refcount during waiting page lock. But
3870 * here we just wait to defer the next page fault to avoid busy loop and
3871 * the page is not used after unlocked before returning from the current
3872 * page fault. So we are safe from accessing freed page, even if we wait
3873 * here without taking refcount.
3875 if (need_wait_lock)
3876 wait_on_page_locked(page);
3877 return ret;
3880 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3881 struct page **pages, struct vm_area_struct **vmas,
3882 unsigned long *position, unsigned long *nr_pages,
3883 long i, unsigned int flags)
3885 unsigned long pfn_offset;
3886 unsigned long vaddr = *position;
3887 unsigned long remainder = *nr_pages;
3888 struct hstate *h = hstate_vma(vma);
3889 int err = -EFAULT;
3891 while (vaddr < vma->vm_end && remainder) {
3892 pte_t *pte;
3893 spinlock_t *ptl = NULL;
3894 int absent;
3895 struct page *page;
3898 * If we have a pending SIGKILL, don't keep faulting pages and
3899 * potentially allocating memory.
3901 if (unlikely(fatal_signal_pending(current))) {
3902 remainder = 0;
3903 break;
3907 * Some archs (sparc64, sh*) have multiple pte_ts to
3908 * each hugepage. We have to make sure we get the
3909 * first, for the page indexing below to work.
3911 * Note that page table lock is not held when pte is null.
3913 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3914 if (pte)
3915 ptl = huge_pte_lock(h, mm, pte);
3916 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3919 * When coredumping, it suits get_dump_page if we just return
3920 * an error where there's an empty slot with no huge pagecache
3921 * to back it. This way, we avoid allocating a hugepage, and
3922 * the sparse dumpfile avoids allocating disk blocks, but its
3923 * huge holes still show up with zeroes where they need to be.
3925 if (absent && (flags & FOLL_DUMP) &&
3926 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3927 if (pte)
3928 spin_unlock(ptl);
3929 remainder = 0;
3930 break;
3934 * We need call hugetlb_fault for both hugepages under migration
3935 * (in which case hugetlb_fault waits for the migration,) and
3936 * hwpoisoned hugepages (in which case we need to prevent the
3937 * caller from accessing to them.) In order to do this, we use
3938 * here is_swap_pte instead of is_hugetlb_entry_migration and
3939 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3940 * both cases, and because we can't follow correct pages
3941 * directly from any kind of swap entries.
3943 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3944 ((flags & FOLL_WRITE) &&
3945 !huge_pte_write(huge_ptep_get(pte)))) {
3946 int ret;
3948 if (pte)
3949 spin_unlock(ptl);
3950 ret = hugetlb_fault(mm, vma, vaddr,
3951 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3952 if (!(ret & VM_FAULT_ERROR))
3953 continue;
3955 remainder = 0;
3956 break;
3959 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3960 page = pte_page(huge_ptep_get(pte));
3963 * Instead of doing 'try_get_page_foll()' below in the same_page
3964 * loop, just check the count once here.
3966 if (unlikely(page_count(page) <= 0)) {
3967 if (pages) {
3968 spin_unlock(ptl);
3969 remainder = 0;
3970 err = -ENOMEM;
3971 break;
3974 same_page:
3975 if (pages) {
3976 pages[i] = mem_map_offset(page, pfn_offset);
3977 get_page_foll(pages[i]);
3980 if (vmas)
3981 vmas[i] = vma;
3983 vaddr += PAGE_SIZE;
3984 ++pfn_offset;
3985 --remainder;
3986 ++i;
3987 if (vaddr < vma->vm_end && remainder &&
3988 pfn_offset < pages_per_huge_page(h)) {
3990 * We use pfn_offset to avoid touching the pageframes
3991 * of this compound page.
3993 goto same_page;
3995 spin_unlock(ptl);
3997 *nr_pages = remainder;
3998 *position = vaddr;
4000 return i ? i : err;
4003 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4004 unsigned long address, unsigned long end, pgprot_t newprot)
4006 struct mm_struct *mm = vma->vm_mm;
4007 unsigned long start = address;
4008 pte_t *ptep;
4009 pte_t pte;
4010 struct hstate *h = hstate_vma(vma);
4011 unsigned long pages = 0;
4013 BUG_ON(address >= end);
4014 flush_cache_range(vma, address, end);
4016 mmu_notifier_invalidate_range_start(mm, start, end);
4017 i_mmap_lock_write(vma->vm_file->f_mapping);
4018 for (; address < end; address += huge_page_size(h)) {
4019 spinlock_t *ptl;
4020 ptep = huge_pte_offset(mm, address);
4021 if (!ptep)
4022 continue;
4023 ptl = huge_pte_lock(h, mm, ptep);
4024 if (huge_pmd_unshare(mm, &address, ptep)) {
4025 pages++;
4026 spin_unlock(ptl);
4027 continue;
4029 pte = huge_ptep_get(ptep);
4030 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4031 spin_unlock(ptl);
4032 continue;
4034 if (unlikely(is_hugetlb_entry_migration(pte))) {
4035 swp_entry_t entry = pte_to_swp_entry(pte);
4037 if (is_write_migration_entry(entry)) {
4038 pte_t newpte;
4040 make_migration_entry_read(&entry);
4041 newpte = swp_entry_to_pte(entry);
4042 set_huge_pte_at(mm, address, ptep, newpte);
4043 pages++;
4045 spin_unlock(ptl);
4046 continue;
4048 if (!huge_pte_none(pte)) {
4049 pte = huge_ptep_get_and_clear(mm, address, ptep);
4050 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4051 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4052 set_huge_pte_at(mm, address, ptep, pte);
4053 pages++;
4055 spin_unlock(ptl);
4058 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4059 * may have cleared our pud entry and done put_page on the page table:
4060 * once we release i_mmap_rwsem, another task can do the final put_page
4061 * and that page table be reused and filled with junk.
4063 flush_tlb_range(vma, start, end);
4064 mmu_notifier_invalidate_range(mm, start, end);
4065 i_mmap_unlock_write(vma->vm_file->f_mapping);
4066 mmu_notifier_invalidate_range_end(mm, start, end);
4068 return pages << h->order;
4071 int hugetlb_reserve_pages(struct inode *inode,
4072 long from, long to,
4073 struct vm_area_struct *vma,
4074 vm_flags_t vm_flags)
4076 long ret, chg;
4077 struct hstate *h = hstate_inode(inode);
4078 struct hugepage_subpool *spool = subpool_inode(inode);
4079 struct resv_map *resv_map;
4080 long gbl_reserve;
4082 /* This should never happen */
4083 if (from > to) {
4084 #ifdef CONFIG_DEBUG_VM
4085 WARN(1, "%s called with a negative range\n", __func__);
4086 #endif
4087 return -EINVAL;
4091 * Only apply hugepage reservation if asked. At fault time, an
4092 * attempt will be made for VM_NORESERVE to allocate a page
4093 * without using reserves
4095 if (vm_flags & VM_NORESERVE)
4096 return 0;
4099 * Shared mappings base their reservation on the number of pages that
4100 * are already allocated on behalf of the file. Private mappings need
4101 * to reserve the full area even if read-only as mprotect() may be
4102 * called to make the mapping read-write. Assume !vma is a shm mapping
4104 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4105 resv_map = inode_resv_map(inode);
4107 chg = region_chg(resv_map, from, to);
4109 } else {
4110 resv_map = resv_map_alloc();
4111 if (!resv_map)
4112 return -ENOMEM;
4114 chg = to - from;
4116 set_vma_resv_map(vma, resv_map);
4117 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4120 if (chg < 0) {
4121 ret = chg;
4122 goto out_err;
4126 * There must be enough pages in the subpool for the mapping. If
4127 * the subpool has a minimum size, there may be some global
4128 * reservations already in place (gbl_reserve).
4130 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4131 if (gbl_reserve < 0) {
4132 ret = -ENOSPC;
4133 goto out_err;
4137 * Check enough hugepages are available for the reservation.
4138 * Hand the pages back to the subpool if there are not
4140 ret = hugetlb_acct_memory(h, gbl_reserve);
4141 if (ret < 0) {
4142 /* put back original number of pages, chg */
4143 (void)hugepage_subpool_put_pages(spool, chg);
4144 goto out_err;
4148 * Account for the reservations made. Shared mappings record regions
4149 * that have reservations as they are shared by multiple VMAs.
4150 * When the last VMA disappears, the region map says how much
4151 * the reservation was and the page cache tells how much of
4152 * the reservation was consumed. Private mappings are per-VMA and
4153 * only the consumed reservations are tracked. When the VMA
4154 * disappears, the original reservation is the VMA size and the
4155 * consumed reservations are stored in the map. Hence, nothing
4156 * else has to be done for private mappings here
4158 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4159 long add = region_add(resv_map, from, to);
4161 if (unlikely(chg > add)) {
4163 * pages in this range were added to the reserve
4164 * map between region_chg and region_add. This
4165 * indicates a race with alloc_huge_page. Adjust
4166 * the subpool and reserve counts modified above
4167 * based on the difference.
4169 long rsv_adjust;
4171 rsv_adjust = hugepage_subpool_put_pages(spool,
4172 chg - add);
4173 hugetlb_acct_memory(h, -rsv_adjust);
4176 return 0;
4177 out_err:
4178 if (!vma || vma->vm_flags & VM_MAYSHARE)
4179 /* Don't call region_abort if region_chg failed */
4180 if (chg >= 0)
4181 region_abort(resv_map, from, to);
4182 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4183 kref_put(&resv_map->refs, resv_map_release);
4184 return ret;
4187 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4188 long freed)
4190 struct hstate *h = hstate_inode(inode);
4191 struct resv_map *resv_map = inode_resv_map(inode);
4192 long chg = 0;
4193 struct hugepage_subpool *spool = subpool_inode(inode);
4194 long gbl_reserve;
4196 if (resv_map) {
4197 chg = region_del(resv_map, start, end);
4199 * region_del() can fail in the rare case where a region
4200 * must be split and another region descriptor can not be
4201 * allocated. If end == LONG_MAX, it will not fail.
4203 if (chg < 0)
4204 return chg;
4207 spin_lock(&inode->i_lock);
4208 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4209 spin_unlock(&inode->i_lock);
4212 * If the subpool has a minimum size, the number of global
4213 * reservations to be released may be adjusted.
4215 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4216 hugetlb_acct_memory(h, -gbl_reserve);
4218 return 0;
4221 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4222 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4223 struct vm_area_struct *vma,
4224 unsigned long addr, pgoff_t idx)
4226 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4227 svma->vm_start;
4228 unsigned long sbase = saddr & PUD_MASK;
4229 unsigned long s_end = sbase + PUD_SIZE;
4231 /* Allow segments to share if only one is marked locked */
4232 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4233 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4236 * match the virtual addresses, permission and the alignment of the
4237 * page table page.
4239 if (pmd_index(addr) != pmd_index(saddr) ||
4240 vm_flags != svm_flags ||
4241 sbase < svma->vm_start || svma->vm_end < s_end)
4242 return 0;
4244 return saddr;
4247 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4249 unsigned long base = addr & PUD_MASK;
4250 unsigned long end = base + PUD_SIZE;
4253 * check on proper vm_flags and page table alignment
4255 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4256 return true;
4257 return false;
4260 #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
4262 * Determine if start,end range within vma could be mapped by shared pmd.
4263 * If yes, adjust start and end to cover range associated with possible
4264 * shared pmd mappings.
4266 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4267 unsigned long *start, unsigned long *end)
4269 unsigned long a_start, a_end;
4271 if (!(vma->vm_flags & VM_MAYSHARE))
4272 return;
4274 /* Extend the range to be PUD aligned for a worst case scenario */
4275 a_start = ALIGN_DOWN(*start, PUD_SIZE);
4276 a_end = ALIGN(*end, PUD_SIZE);
4279 * Intersect the range with the vma range, since pmd sharing won't be
4280 * across vma after all
4282 *start = max(vma->vm_start, a_start);
4283 *end = min(vma->vm_end, a_end);
4287 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4288 * and returns the corresponding pte. While this is not necessary for the
4289 * !shared pmd case because we can allocate the pmd later as well, it makes the
4290 * code much cleaner. pmd allocation is essential for the shared case because
4291 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4292 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4293 * bad pmd for sharing.
4295 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4297 struct vm_area_struct *vma = find_vma(mm, addr);
4298 struct address_space *mapping = vma->vm_file->f_mapping;
4299 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4300 vma->vm_pgoff;
4301 struct vm_area_struct *svma;
4302 unsigned long saddr;
4303 pte_t *spte = NULL;
4304 pte_t *pte;
4305 spinlock_t *ptl;
4307 if (!vma_shareable(vma, addr))
4308 return (pte_t *)pmd_alloc(mm, pud, addr);
4310 i_mmap_lock_write(mapping);
4311 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4312 if (svma == vma)
4313 continue;
4315 saddr = page_table_shareable(svma, vma, addr, idx);
4316 if (saddr) {
4317 spte = huge_pte_offset(svma->vm_mm, saddr);
4318 if (spte) {
4319 get_page(virt_to_page(spte));
4320 break;
4325 if (!spte)
4326 goto out;
4328 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4329 spin_lock(ptl);
4330 if (pud_none(*pud)) {
4331 pud_populate(mm, pud,
4332 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4333 mm_inc_nr_pmds(mm);
4334 } else {
4335 put_page(virt_to_page(spte));
4337 spin_unlock(ptl);
4338 out:
4339 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4340 i_mmap_unlock_write(mapping);
4341 return pte;
4345 * unmap huge page backed by shared pte.
4347 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4348 * indicated by page_count > 1, unmap is achieved by clearing pud and
4349 * decrementing the ref count. If count == 1, the pte page is not shared.
4351 * called with page table lock held.
4353 * returns: 1 successfully unmapped a shared pte page
4354 * 0 the underlying pte page is not shared, or it is the last user
4356 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4358 pgd_t *pgd = pgd_offset(mm, *addr);
4359 pud_t *pud = pud_offset(pgd, *addr);
4361 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4362 if (page_count(virt_to_page(ptep)) == 1)
4363 return 0;
4365 pud_clear(pud);
4366 put_page(virt_to_page(ptep));
4367 mm_dec_nr_pmds(mm);
4368 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4369 return 1;
4371 #define want_pmd_share() (1)
4372 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4373 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4375 return NULL;
4378 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4380 return 0;
4383 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4384 unsigned long *start, unsigned long *end)
4387 #define want_pmd_share() (0)
4388 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4390 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4391 pte_t *huge_pte_alloc(struct mm_struct *mm,
4392 unsigned long addr, unsigned long sz)
4394 pgd_t *pgd;
4395 pud_t *pud;
4396 pte_t *pte = NULL;
4398 pgd = pgd_offset(mm, addr);
4399 pud = pud_alloc(mm, pgd, addr);
4400 if (pud) {
4401 if (sz == PUD_SIZE) {
4402 pte = (pte_t *)pud;
4403 } else {
4404 BUG_ON(sz != PMD_SIZE);
4405 if (want_pmd_share() && pud_none(*pud))
4406 pte = huge_pmd_share(mm, addr, pud);
4407 else
4408 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4411 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4413 return pte;
4416 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4418 pgd_t *pgd;
4419 pud_t *pud;
4420 pmd_t *pmd = NULL;
4422 pgd = pgd_offset(mm, addr);
4423 if (pgd_present(*pgd)) {
4424 pud = pud_offset(pgd, addr);
4425 if (pud_present(*pud)) {
4426 if (pud_huge(*pud))
4427 return (pte_t *)pud;
4428 pmd = pmd_offset(pud, addr);
4431 return (pte_t *) pmd;
4434 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4437 * These functions are overwritable if your architecture needs its own
4438 * behavior.
4440 struct page * __weak
4441 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4442 int write)
4444 return ERR_PTR(-EINVAL);
4447 struct page * __weak
4448 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4449 pmd_t *pmd, int flags)
4451 struct page *page = NULL;
4452 spinlock_t *ptl;
4453 pte_t pte;
4454 retry:
4455 ptl = pmd_lockptr(mm, pmd);
4456 spin_lock(ptl);
4458 * make sure that the address range covered by this pmd is not
4459 * unmapped from other threads.
4461 if (!pmd_huge(*pmd))
4462 goto out;
4463 pte = huge_ptep_get((pte_t *)pmd);
4464 if (pte_present(pte)) {
4465 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4466 if (flags & FOLL_GET)
4467 get_page(page);
4468 } else {
4469 if (is_hugetlb_entry_migration(pte)) {
4470 spin_unlock(ptl);
4471 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4472 goto retry;
4475 * hwpoisoned entry is treated as no_page_table in
4476 * follow_page_mask().
4479 out:
4480 spin_unlock(ptl);
4481 return page;
4484 struct page * __weak
4485 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4486 pud_t *pud, int flags)
4488 if (flags & FOLL_GET)
4489 return NULL;
4491 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4494 #ifdef CONFIG_MEMORY_FAILURE
4497 * This function is called from memory failure code.
4498 * Assume the caller holds page lock of the head page.
4500 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4502 struct hstate *h = page_hstate(hpage);
4503 int nid = page_to_nid(hpage);
4504 int ret = -EBUSY;
4506 spin_lock(&hugetlb_lock);
4508 * Just checking !page_huge_active is not enough, because that could be
4509 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4511 if (!page_huge_active(hpage) && !page_count(hpage)) {
4513 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4514 * but dangling hpage->lru can trigger list-debug warnings
4515 * (this happens when we call unpoison_memory() on it),
4516 * so let it point to itself with list_del_init().
4518 list_del_init(&hpage->lru);
4519 set_page_refcounted(hpage);
4520 h->free_huge_pages--;
4521 h->free_huge_pages_node[nid]--;
4522 ret = 0;
4524 spin_unlock(&hugetlb_lock);
4525 return ret;
4527 #endif
4529 bool isolate_huge_page(struct page *page, struct list_head *list)
4531 bool ret = true;
4533 VM_BUG_ON_PAGE(!PageHead(page), page);
4534 spin_lock(&hugetlb_lock);
4535 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4536 ret = false;
4537 goto unlock;
4539 clear_page_huge_active(page);
4540 list_move_tail(&page->lru, list);
4541 unlock:
4542 spin_unlock(&hugetlb_lock);
4543 return ret;
4546 void putback_active_hugepage(struct page *page)
4548 VM_BUG_ON_PAGE(!PageHead(page), page);
4549 spin_lock(&hugetlb_lock);
4550 set_page_huge_active(page);
4551 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4552 spin_unlock(&hugetlb_lock);
4553 put_page(page);