6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
50 #include <asm/mmu_context.h>
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags) (0)
58 #ifndef arch_rebalance_pgtables
59 #define arch_rebalance_pgtables(addr, len) (addr)
62 static void unmap_region(struct mm_struct
*mm
,
63 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
64 unsigned long start
, unsigned long end
);
66 /* description of effects of mapping type and prot in current implementation.
67 * this is due to the limited x86 page protection hardware. The expected
68 * behavior is in parens:
71 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
72 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
73 * w: (no) no w: (no) no w: (yes) yes w: (no) no
74 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
76 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
77 * w: (no) no w: (no) no w: (copy) copy w: (no) no
78 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
81 pgprot_t protection_map
[16] = {
82 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
83 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
86 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
88 return __pgprot(pgprot_val(protection_map
[vm_flags
&
89 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
90 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
92 EXPORT_SYMBOL(vm_get_page_prot
);
94 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
96 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
99 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
100 void vma_set_page_prot(struct vm_area_struct
*vma
)
102 unsigned long vm_flags
= vma
->vm_flags
;
104 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
105 if (vma_wants_writenotify(vma
)) {
106 vm_flags
&= ~VM_SHARED
;
107 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
,
113 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
114 int sysctl_overcommit_ratio __read_mostly
= 50; /* default is 50% */
115 unsigned long sysctl_overcommit_kbytes __read_mostly
;
116 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
117 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
118 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
120 * Make sure vm_committed_as in one cacheline and not cacheline shared with
121 * other variables. It can be updated by several CPUs frequently.
123 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
126 * The global memory commitment made in the system can be a metric
127 * that can be used to drive ballooning decisions when Linux is hosted
128 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
129 * balancing memory across competing virtual machines that are hosted.
130 * Several metrics drive this policy engine including the guest reported
133 unsigned long vm_memory_committed(void)
135 return percpu_counter_read_positive(&vm_committed_as
);
137 EXPORT_SYMBOL_GPL(vm_memory_committed
);
140 * Check that a process has enough memory to allocate a new virtual
141 * mapping. 0 means there is enough memory for the allocation to
142 * succeed and -ENOMEM implies there is not.
144 * We currently support three overcommit policies, which are set via the
145 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
147 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
148 * Additional code 2002 Jul 20 by Robert Love.
150 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
152 * Note this is a helper function intended to be used by LSMs which
153 * wish to use this logic.
155 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
157 long free
, allowed
, reserve
;
159 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as
) <
160 -(s64
)vm_committed_as_batch
* num_online_cpus(),
161 "memory commitment underflow");
163 vm_acct_memory(pages
);
166 * Sometimes we want to use more memory than we have
168 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
171 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
172 free
= global_page_state(NR_FREE_PAGES
);
173 free
+= global_page_state(NR_FILE_PAGES
);
176 * shmem pages shouldn't be counted as free in this
177 * case, they can't be purged, only swapped out, and
178 * that won't affect the overall amount of available
179 * memory in the system.
181 free
-= global_page_state(NR_SHMEM
);
183 free
+= get_nr_swap_pages();
186 * Any slabs which are created with the
187 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
188 * which are reclaimable, under pressure. The dentry
189 * cache and most inode caches should fall into this
191 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
194 * Leave reserved pages. The pages are not for anonymous pages.
196 if (free
<= totalreserve_pages
)
199 free
-= totalreserve_pages
;
202 * Reserve some for root
205 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
213 allowed
= vm_commit_limit();
215 * Reserve some for root
218 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
221 * Don't let a single process grow so big a user can't recover
224 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
225 allowed
-= min_t(long, mm
->total_vm
/ 32, reserve
);
228 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
231 vm_unacct_memory(pages
);
237 * Requires inode->i_mapping->i_mmap_rwsem
239 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
240 struct file
*file
, struct address_space
*mapping
)
242 if (vma
->vm_flags
& VM_DENYWRITE
)
243 atomic_inc(&file_inode(file
)->i_writecount
);
244 if (vma
->vm_flags
& VM_SHARED
)
245 mapping_unmap_writable(mapping
);
247 flush_dcache_mmap_lock(mapping
);
248 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
249 flush_dcache_mmap_unlock(mapping
);
253 * Unlink a file-based vm structure from its interval tree, to hide
254 * vma from rmap and vmtruncate before freeing its page tables.
256 void unlink_file_vma(struct vm_area_struct
*vma
)
258 struct file
*file
= vma
->vm_file
;
261 struct address_space
*mapping
= file
->f_mapping
;
262 i_mmap_lock_write(mapping
);
263 __remove_shared_vm_struct(vma
, file
, mapping
);
264 i_mmap_unlock_write(mapping
);
269 * Close a vm structure and free it, returning the next.
271 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
273 struct vm_area_struct
*next
= vma
->vm_next
;
276 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
277 vma
->vm_ops
->close(vma
);
280 mpol_put(vma_policy(vma
));
281 kmem_cache_free(vm_area_cachep
, vma
);
285 static unsigned long do_brk(unsigned long addr
, unsigned long len
);
287 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
289 unsigned long retval
;
290 unsigned long newbrk
, oldbrk
;
291 struct mm_struct
*mm
= current
->mm
;
292 struct vm_area_struct
*next
;
293 unsigned long min_brk
;
296 down_write(&mm
->mmap_sem
);
298 #ifdef CONFIG_COMPAT_BRK
300 * CONFIG_COMPAT_BRK can still be overridden by setting
301 * randomize_va_space to 2, which will still cause mm->start_brk
302 * to be arbitrarily shifted
304 if (current
->brk_randomized
)
305 min_brk
= mm
->start_brk
;
307 min_brk
= mm
->end_data
;
309 min_brk
= mm
->start_brk
;
315 * Check against rlimit here. If this check is done later after the test
316 * of oldbrk with newbrk then it can escape the test and let the data
317 * segment grow beyond its set limit the in case where the limit is
318 * not page aligned -Ram Gupta
320 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
321 mm
->end_data
, mm
->start_data
))
324 newbrk
= PAGE_ALIGN(brk
);
325 oldbrk
= PAGE_ALIGN(mm
->brk
);
326 if (oldbrk
== newbrk
)
329 /* Always allow shrinking brk. */
330 if (brk
<= mm
->brk
) {
331 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
336 /* Check against existing mmap mappings. */
337 next
= find_vma(mm
, oldbrk
);
338 if (next
&& newbrk
+ PAGE_SIZE
> vm_start_gap(next
))
341 /* Ok, looks good - let it rip. */
342 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
347 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
348 up_write(&mm
->mmap_sem
);
350 mm_populate(oldbrk
, newbrk
- oldbrk
);
355 up_write(&mm
->mmap_sem
);
359 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
361 unsigned long max
, prev_end
, subtree_gap
;
364 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
365 * allow two stack_guard_gaps between them here, and when choosing
366 * an unmapped area; whereas when expanding we only require one.
367 * That's a little inconsistent, but keeps the code here simpler.
369 max
= vm_start_gap(vma
);
371 prev_end
= vm_end_gap(vma
->vm_prev
);
377 if (vma
->vm_rb
.rb_left
) {
378 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
379 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
380 if (subtree_gap
> max
)
383 if (vma
->vm_rb
.rb_right
) {
384 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
385 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
386 if (subtree_gap
> max
)
392 #ifdef CONFIG_DEBUG_VM_RB
393 static int browse_rb(struct rb_root
*root
)
395 int i
= 0, j
, bug
= 0;
396 struct rb_node
*nd
, *pn
= NULL
;
397 unsigned long prev
= 0, pend
= 0;
399 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
400 struct vm_area_struct
*vma
;
401 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
402 if (vma
->vm_start
< prev
) {
403 pr_emerg("vm_start %lx < prev %lx\n",
404 vma
->vm_start
, prev
);
407 if (vma
->vm_start
< pend
) {
408 pr_emerg("vm_start %lx < pend %lx\n",
409 vma
->vm_start
, pend
);
412 if (vma
->vm_start
> vma
->vm_end
) {
413 pr_emerg("vm_start %lx > vm_end %lx\n",
414 vma
->vm_start
, vma
->vm_end
);
417 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
418 pr_emerg("free gap %lx, correct %lx\n",
420 vma_compute_subtree_gap(vma
));
425 prev
= vma
->vm_start
;
429 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
432 pr_emerg("backwards %d, forwards %d\n", j
, i
);
438 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
442 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
443 struct vm_area_struct
*vma
;
444 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
445 VM_BUG_ON_VMA(vma
!= ignore
&&
446 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
451 static void validate_mm(struct mm_struct
*mm
)
455 unsigned long highest_address
= 0;
456 struct vm_area_struct
*vma
= mm
->mmap
;
459 struct anon_vma
*anon_vma
= vma
->anon_vma
;
460 struct anon_vma_chain
*avc
;
463 anon_vma_lock_read(anon_vma
);
464 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
465 anon_vma_interval_tree_verify(avc
);
466 anon_vma_unlock_read(anon_vma
);
469 highest_address
= vm_end_gap(vma
);
473 if (i
!= mm
->map_count
) {
474 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
477 if (highest_address
!= mm
->highest_vm_end
) {
478 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
479 mm
->highest_vm_end
, highest_address
);
482 i
= browse_rb(&mm
->mm_rb
);
483 if (i
!= mm
->map_count
) {
485 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
488 VM_BUG_ON_MM(bug
, mm
);
491 #define validate_mm_rb(root, ignore) do { } while (0)
492 #define validate_mm(mm) do { } while (0)
495 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
496 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
499 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
500 * vma->vm_prev->vm_end values changed, without modifying the vma's position
503 static void vma_gap_update(struct vm_area_struct
*vma
)
506 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
507 * function that does exacltly what we want.
509 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
512 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
513 struct rb_root
*root
)
515 /* All rb_subtree_gap values must be consistent prior to insertion */
516 validate_mm_rb(root
, NULL
);
518 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
521 static void vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
524 * All rb_subtree_gap values must be consistent prior to erase,
525 * with the possible exception of the vma being erased.
527 validate_mm_rb(root
, vma
);
530 * Note rb_erase_augmented is a fairly large inline function,
531 * so make sure we instantiate it only once with our desired
532 * augmented rbtree callbacks.
534 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
538 * vma has some anon_vma assigned, and is already inserted on that
539 * anon_vma's interval trees.
541 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
542 * vma must be removed from the anon_vma's interval trees using
543 * anon_vma_interval_tree_pre_update_vma().
545 * After the update, the vma will be reinserted using
546 * anon_vma_interval_tree_post_update_vma().
548 * The entire update must be protected by exclusive mmap_sem and by
549 * the root anon_vma's mutex.
552 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
554 struct anon_vma_chain
*avc
;
556 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
557 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
561 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
563 struct anon_vma_chain
*avc
;
565 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
566 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
569 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
570 unsigned long end
, struct vm_area_struct
**pprev
,
571 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
573 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
575 __rb_link
= &mm
->mm_rb
.rb_node
;
576 rb_prev
= __rb_parent
= NULL
;
579 struct vm_area_struct
*vma_tmp
;
581 __rb_parent
= *__rb_link
;
582 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
584 if (vma_tmp
->vm_end
> addr
) {
585 /* Fail if an existing vma overlaps the area */
586 if (vma_tmp
->vm_start
< end
)
588 __rb_link
= &__rb_parent
->rb_left
;
590 rb_prev
= __rb_parent
;
591 __rb_link
= &__rb_parent
->rb_right
;
597 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
598 *rb_link
= __rb_link
;
599 *rb_parent
= __rb_parent
;
603 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
604 unsigned long addr
, unsigned long end
)
606 unsigned long nr_pages
= 0;
607 struct vm_area_struct
*vma
;
609 /* Find first overlaping mapping */
610 vma
= find_vma_intersection(mm
, addr
, end
);
614 nr_pages
= (min(end
, vma
->vm_end
) -
615 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
617 /* Iterate over the rest of the overlaps */
618 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
619 unsigned long overlap_len
;
621 if (vma
->vm_start
> end
)
624 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
625 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
631 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
632 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
634 /* Update tracking information for the gap following the new vma. */
636 vma_gap_update(vma
->vm_next
);
638 mm
->highest_vm_end
= vm_end_gap(vma
);
641 * vma->vm_prev wasn't known when we followed the rbtree to find the
642 * correct insertion point for that vma. As a result, we could not
643 * update the vma vm_rb parents rb_subtree_gap values on the way down.
644 * So, we first insert the vma with a zero rb_subtree_gap value
645 * (to be consistent with what we did on the way down), and then
646 * immediately update the gap to the correct value. Finally we
647 * rebalance the rbtree after all augmented values have been set.
649 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
650 vma
->rb_subtree_gap
= 0;
652 vma_rb_insert(vma
, &mm
->mm_rb
);
655 static void __vma_link_file(struct vm_area_struct
*vma
)
661 struct address_space
*mapping
= file
->f_mapping
;
663 if (vma
->vm_flags
& VM_DENYWRITE
)
664 atomic_dec(&file_inode(file
)->i_writecount
);
665 if (vma
->vm_flags
& VM_SHARED
)
666 atomic_inc(&mapping
->i_mmap_writable
);
668 flush_dcache_mmap_lock(mapping
);
669 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
670 flush_dcache_mmap_unlock(mapping
);
675 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
676 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
677 struct rb_node
*rb_parent
)
679 __vma_link_list(mm
, vma
, prev
, rb_parent
);
680 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
683 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
684 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
685 struct rb_node
*rb_parent
)
687 struct address_space
*mapping
= NULL
;
690 mapping
= vma
->vm_file
->f_mapping
;
691 i_mmap_lock_write(mapping
);
694 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
695 __vma_link_file(vma
);
698 i_mmap_unlock_write(mapping
);
705 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
706 * mm's list and rbtree. It has already been inserted into the interval tree.
708 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
710 struct vm_area_struct
*prev
;
711 struct rb_node
**rb_link
, *rb_parent
;
713 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
714 &prev
, &rb_link
, &rb_parent
))
716 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
721 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
722 struct vm_area_struct
*prev
)
724 struct vm_area_struct
*next
;
726 vma_rb_erase(vma
, &mm
->mm_rb
);
727 prev
->vm_next
= next
= vma
->vm_next
;
729 next
->vm_prev
= prev
;
732 vmacache_invalidate(mm
);
736 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
737 * is already present in an i_mmap tree without adjusting the tree.
738 * The following helper function should be used when such adjustments
739 * are necessary. The "insert" vma (if any) is to be inserted
740 * before we drop the necessary locks.
742 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
743 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
745 struct mm_struct
*mm
= vma
->vm_mm
;
746 struct vm_area_struct
*next
= vma
->vm_next
;
747 struct vm_area_struct
*importer
= NULL
;
748 struct address_space
*mapping
= NULL
;
749 struct rb_root
*root
= NULL
;
750 struct anon_vma
*anon_vma
= NULL
;
751 struct file
*file
= vma
->vm_file
;
752 bool start_changed
= false, end_changed
= false;
753 long adjust_next
= 0;
756 if (next
&& !insert
) {
757 struct vm_area_struct
*exporter
= NULL
;
759 if (end
>= next
->vm_end
) {
761 * vma expands, overlapping all the next, and
762 * perhaps the one after too (mprotect case 6).
764 again
: remove_next
= 1 + (end
> next
->vm_end
);
768 } else if (end
> next
->vm_start
) {
770 * vma expands, overlapping part of the next:
771 * mprotect case 5 shifting the boundary up.
773 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
776 } else if (end
< vma
->vm_end
) {
778 * vma shrinks, and !insert tells it's not
779 * split_vma inserting another: so it must be
780 * mprotect case 4 shifting the boundary down.
782 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
788 * Easily overlooked: when mprotect shifts the boundary,
789 * make sure the expanding vma has anon_vma set if the
790 * shrinking vma had, to cover any anon pages imported.
792 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
795 importer
->anon_vma
= exporter
->anon_vma
;
796 error
= anon_vma_clone(importer
, exporter
);
803 mapping
= file
->f_mapping
;
804 root
= &mapping
->i_mmap
;
805 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
808 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
810 i_mmap_lock_write(mapping
);
813 * Put into interval tree now, so instantiated pages
814 * are visible to arm/parisc __flush_dcache_page
815 * throughout; but we cannot insert into address
816 * space until vma start or end is updated.
818 __vma_link_file(insert
);
822 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
824 anon_vma
= vma
->anon_vma
;
825 if (!anon_vma
&& adjust_next
)
826 anon_vma
= next
->anon_vma
;
828 VM_BUG_ON_VMA(adjust_next
&& next
->anon_vma
&&
829 anon_vma
!= next
->anon_vma
, next
);
830 anon_vma_lock_write(anon_vma
);
831 anon_vma_interval_tree_pre_update_vma(vma
);
833 anon_vma_interval_tree_pre_update_vma(next
);
837 flush_dcache_mmap_lock(mapping
);
838 vma_interval_tree_remove(vma
, root
);
840 vma_interval_tree_remove(next
, root
);
843 if (start
!= vma
->vm_start
) {
844 vma
->vm_start
= start
;
845 start_changed
= true;
847 if (end
!= vma
->vm_end
) {
851 vma
->vm_pgoff
= pgoff
;
853 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
854 next
->vm_pgoff
+= adjust_next
;
859 vma_interval_tree_insert(next
, root
);
860 vma_interval_tree_insert(vma
, root
);
861 flush_dcache_mmap_unlock(mapping
);
866 * vma_merge has merged next into vma, and needs
867 * us to remove next before dropping the locks.
869 __vma_unlink(mm
, next
, vma
);
871 __remove_shared_vm_struct(next
, file
, mapping
);
874 * split_vma has split insert from vma, and needs
875 * us to insert it before dropping the locks
876 * (it may either follow vma or precede it).
878 __insert_vm_struct(mm
, insert
);
884 mm
->highest_vm_end
= vm_end_gap(vma
);
885 else if (!adjust_next
)
886 vma_gap_update(next
);
891 anon_vma_interval_tree_post_update_vma(vma
);
893 anon_vma_interval_tree_post_update_vma(next
);
894 anon_vma_unlock_write(anon_vma
);
897 i_mmap_unlock_write(mapping
);
908 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
912 anon_vma_merge(vma
, next
);
914 mpol_put(vma_policy(next
));
915 kmem_cache_free(vm_area_cachep
, next
);
917 * In mprotect's case 6 (see comments on vma_merge),
918 * we must remove another next too. It would clutter
919 * up the code too much to do both in one go.
922 if (remove_next
== 2)
925 vma_gap_update(next
);
927 VM_WARN_ON(mm
->highest_vm_end
!= vm_end_gap(vma
));
938 * If the vma has a ->close operation then the driver probably needs to release
939 * per-vma resources, so we don't attempt to merge those.
941 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
942 struct file
*file
, unsigned long vm_flags
,
943 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
946 * VM_SOFTDIRTY should not prevent from VMA merging, if we
947 * match the flags but dirty bit -- the caller should mark
948 * merged VMA as dirty. If dirty bit won't be excluded from
949 * comparison, we increase pressue on the memory system forcing
950 * the kernel to generate new VMAs when old one could be
953 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
955 if (vma
->vm_file
!= file
)
957 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
959 if (!is_mergeable_vm_userfaultfd_ctx(vma
, vm_userfaultfd_ctx
))
964 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
965 struct anon_vma
*anon_vma2
,
966 struct vm_area_struct
*vma
)
969 * The list_is_singular() test is to avoid merging VMA cloned from
970 * parents. This can improve scalability caused by anon_vma lock.
972 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
973 list_is_singular(&vma
->anon_vma_chain
)))
975 return anon_vma1
== anon_vma2
;
979 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
980 * in front of (at a lower virtual address and file offset than) the vma.
982 * We cannot merge two vmas if they have differently assigned (non-NULL)
983 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
985 * We don't check here for the merged mmap wrapping around the end of pagecache
986 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
987 * wrap, nor mmaps which cover the final page at index -1UL.
990 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
991 struct anon_vma
*anon_vma
, struct file
*file
,
993 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
995 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
996 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
997 if (vma
->vm_pgoff
== vm_pgoff
)
1004 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1005 * beyond (at a higher virtual address and file offset than) the vma.
1007 * We cannot merge two vmas if they have differently assigned (non-NULL)
1008 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1011 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1012 struct anon_vma
*anon_vma
, struct file
*file
,
1014 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1016 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1017 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1019 vm_pglen
= vma_pages(vma
);
1020 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
1027 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1028 * whether that can be merged with its predecessor or its successor.
1029 * Or both (it neatly fills a hole).
1031 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1032 * certain not to be mapped by the time vma_merge is called; but when
1033 * called for mprotect, it is certain to be already mapped (either at
1034 * an offset within prev, or at the start of next), and the flags of
1035 * this area are about to be changed to vm_flags - and the no-change
1036 * case has already been eliminated.
1038 * The following mprotect cases have to be considered, where AAAA is
1039 * the area passed down from mprotect_fixup, never extending beyond one
1040 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1042 * AAAA AAAA AAAA AAAA
1043 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1044 * cannot merge might become might become might become
1045 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1046 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1047 * mremap move: PPPPNNNNNNNN 8
1049 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1050 * might become case 1 below case 2 below case 3 below
1052 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1053 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1055 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
1056 struct vm_area_struct
*prev
, unsigned long addr
,
1057 unsigned long end
, unsigned long vm_flags
,
1058 struct anon_vma
*anon_vma
, struct file
*file
,
1059 pgoff_t pgoff
, struct mempolicy
*policy
,
1060 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1062 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
1063 struct vm_area_struct
*area
, *next
;
1067 * We later require that vma->vm_flags == vm_flags,
1068 * so this tests vma->vm_flags & VM_SPECIAL, too.
1070 if (vm_flags
& VM_SPECIAL
)
1074 next
= prev
->vm_next
;
1078 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
1079 next
= next
->vm_next
;
1082 * Can it merge with the predecessor?
1084 if (prev
&& prev
->vm_end
== addr
&&
1085 mpol_equal(vma_policy(prev
), policy
) &&
1086 can_vma_merge_after(prev
, vm_flags
,
1087 anon_vma
, file
, pgoff
,
1088 vm_userfaultfd_ctx
)) {
1090 * OK, it can. Can we now merge in the successor as well?
1092 if (next
&& end
== next
->vm_start
&&
1093 mpol_equal(policy
, vma_policy(next
)) &&
1094 can_vma_merge_before(next
, vm_flags
,
1097 vm_userfaultfd_ctx
) &&
1098 is_mergeable_anon_vma(prev
->anon_vma
,
1099 next
->anon_vma
, NULL
)) {
1101 err
= vma_adjust(prev
, prev
->vm_start
,
1102 next
->vm_end
, prev
->vm_pgoff
, NULL
);
1103 } else /* cases 2, 5, 7 */
1104 err
= vma_adjust(prev
, prev
->vm_start
,
1105 end
, prev
->vm_pgoff
, NULL
);
1108 khugepaged_enter_vma_merge(prev
, vm_flags
);
1113 * Can this new request be merged in front of next?
1115 if (next
&& end
== next
->vm_start
&&
1116 mpol_equal(policy
, vma_policy(next
)) &&
1117 can_vma_merge_before(next
, vm_flags
,
1118 anon_vma
, file
, pgoff
+pglen
,
1119 vm_userfaultfd_ctx
)) {
1120 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1121 err
= vma_adjust(prev
, prev
->vm_start
,
1122 addr
, prev
->vm_pgoff
, NULL
);
1123 else /* cases 3, 8 */
1124 err
= vma_adjust(area
, addr
, next
->vm_end
,
1125 next
->vm_pgoff
- pglen
, NULL
);
1128 khugepaged_enter_vma_merge(area
, vm_flags
);
1136 * Rough compatbility check to quickly see if it's even worth looking
1137 * at sharing an anon_vma.
1139 * They need to have the same vm_file, and the flags can only differ
1140 * in things that mprotect may change.
1142 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1143 * we can merge the two vma's. For example, we refuse to merge a vma if
1144 * there is a vm_ops->close() function, because that indicates that the
1145 * driver is doing some kind of reference counting. But that doesn't
1146 * really matter for the anon_vma sharing case.
1148 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1150 return a
->vm_end
== b
->vm_start
&&
1151 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1152 a
->vm_file
== b
->vm_file
&&
1153 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1154 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1158 * Do some basic sanity checking to see if we can re-use the anon_vma
1159 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1160 * the same as 'old', the other will be the new one that is trying
1161 * to share the anon_vma.
1163 * NOTE! This runs with mm_sem held for reading, so it is possible that
1164 * the anon_vma of 'old' is concurrently in the process of being set up
1165 * by another page fault trying to merge _that_. But that's ok: if it
1166 * is being set up, that automatically means that it will be a singleton
1167 * acceptable for merging, so we can do all of this optimistically. But
1168 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1170 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1171 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1172 * is to return an anon_vma that is "complex" due to having gone through
1175 * We also make sure that the two vma's are compatible (adjacent,
1176 * and with the same memory policies). That's all stable, even with just
1177 * a read lock on the mm_sem.
1179 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1181 if (anon_vma_compatible(a
, b
)) {
1182 struct anon_vma
*anon_vma
= READ_ONCE(old
->anon_vma
);
1184 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1191 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1192 * neighbouring vmas for a suitable anon_vma, before it goes off
1193 * to allocate a new anon_vma. It checks because a repetitive
1194 * sequence of mprotects and faults may otherwise lead to distinct
1195 * anon_vmas being allocated, preventing vma merge in subsequent
1198 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1200 struct anon_vma
*anon_vma
;
1201 struct vm_area_struct
*near
;
1203 near
= vma
->vm_next
;
1207 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1211 near
= vma
->vm_prev
;
1215 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1220 * There's no absolute need to look only at touching neighbours:
1221 * we could search further afield for "compatible" anon_vmas.
1222 * But it would probably just be a waste of time searching,
1223 * or lead to too many vmas hanging off the same anon_vma.
1224 * We're trying to allow mprotect remerging later on,
1225 * not trying to minimize memory used for anon_vmas.
1230 #ifdef CONFIG_PROC_FS
1231 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
1232 struct file
*file
, long pages
)
1234 const unsigned long stack_flags
1235 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
1237 mm
->total_vm
+= pages
;
1240 mm
->shared_vm
+= pages
;
1241 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
1242 mm
->exec_vm
+= pages
;
1243 } else if (flags
& stack_flags
)
1244 mm
->stack_vm
+= pages
;
1246 #endif /* CONFIG_PROC_FS */
1249 * If a hint addr is less than mmap_min_addr change hint to be as
1250 * low as possible but still greater than mmap_min_addr
1252 static inline unsigned long round_hint_to_min(unsigned long hint
)
1255 if (((void *)hint
!= NULL
) &&
1256 (hint
< mmap_min_addr
))
1257 return PAGE_ALIGN(mmap_min_addr
);
1261 static inline int mlock_future_check(struct mm_struct
*mm
,
1262 unsigned long flags
,
1265 unsigned long locked
, lock_limit
;
1267 /* mlock MCL_FUTURE? */
1268 if (flags
& VM_LOCKED
) {
1269 locked
= len
>> PAGE_SHIFT
;
1270 locked
+= mm
->locked_vm
;
1271 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1272 lock_limit
>>= PAGE_SHIFT
;
1273 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1279 static inline u64
file_mmap_size_max(struct file
*file
, struct inode
*inode
)
1281 if (S_ISREG(inode
->i_mode
))
1282 return MAX_LFS_FILESIZE
;
1284 if (S_ISBLK(inode
->i_mode
))
1285 return MAX_LFS_FILESIZE
;
1287 /* Special "we do even unsigned file positions" case */
1288 if (file
->f_mode
& FMODE_UNSIGNED_OFFSET
)
1291 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1295 static inline bool file_mmap_ok(struct file
*file
, struct inode
*inode
,
1296 unsigned long pgoff
, unsigned long len
)
1298 u64 maxsize
= file_mmap_size_max(file
, inode
);
1300 if (maxsize
&& len
> maxsize
)
1303 if (pgoff
> maxsize
>> PAGE_SHIFT
)
1309 * The caller must hold down_write(¤t->mm->mmap_sem).
1311 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1312 unsigned long len
, unsigned long prot
,
1313 unsigned long flags
, vm_flags_t vm_flags
,
1314 unsigned long pgoff
, unsigned long *populate
)
1316 struct mm_struct
*mm
= current
->mm
;
1324 * Does the application expect PROT_READ to imply PROT_EXEC?
1326 * (the exception is when the underlying filesystem is noexec
1327 * mounted, in which case we dont add PROT_EXEC.)
1329 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1330 if (!(file
&& path_noexec(&file
->f_path
)))
1333 if (!(flags
& MAP_FIXED
))
1334 addr
= round_hint_to_min(addr
);
1336 /* Careful about overflows.. */
1337 len
= PAGE_ALIGN(len
);
1341 /* offset overflow? */
1342 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1345 /* Too many mappings? */
1346 if (mm
->map_count
> sysctl_max_map_count
)
1349 /* Obtain the address to map to. we verify (or select) it and ensure
1350 * that it represents a valid section of the address space.
1352 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1353 if (offset_in_page(addr
))
1356 /* Do simple checking here so the lower-level routines won't have
1357 * to. we assume access permissions have been handled by the open
1358 * of the memory object, so we don't do any here.
1360 vm_flags
|= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
1361 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1363 if (flags
& MAP_LOCKED
)
1364 if (!can_do_mlock())
1367 if (mlock_future_check(mm
, vm_flags
, len
))
1371 struct inode
*inode
= file_inode(file
);
1373 if (!file_mmap_ok(file
, inode
, pgoff
, len
))
1376 switch (flags
& MAP_TYPE
) {
1378 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1382 * Make sure we don't allow writing to an append-only
1385 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1389 * Make sure there are no mandatory locks on the file.
1391 if (locks_verify_locked(file
))
1394 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1395 if (!(file
->f_mode
& FMODE_WRITE
))
1396 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1400 if (!(file
->f_mode
& FMODE_READ
))
1402 if (path_noexec(&file
->f_path
)) {
1403 if (vm_flags
& VM_EXEC
)
1405 vm_flags
&= ~VM_MAYEXEC
;
1408 if (!file
->f_op
->mmap
)
1410 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1418 switch (flags
& MAP_TYPE
) {
1420 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1426 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1430 * Set pgoff according to addr for anon_vma.
1432 pgoff
= addr
>> PAGE_SHIFT
;
1440 * Set 'VM_NORESERVE' if we should not account for the
1441 * memory use of this mapping.
1443 if (flags
& MAP_NORESERVE
) {
1444 /* We honor MAP_NORESERVE if allowed to overcommit */
1445 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1446 vm_flags
|= VM_NORESERVE
;
1448 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1449 if (file
&& is_file_hugepages(file
))
1450 vm_flags
|= VM_NORESERVE
;
1453 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
);
1454 if (!IS_ERR_VALUE(addr
) &&
1455 ((vm_flags
& VM_LOCKED
) ||
1456 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1461 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1462 unsigned long, prot
, unsigned long, flags
,
1463 unsigned long, fd
, unsigned long, pgoff
)
1465 struct file
*file
= NULL
;
1466 unsigned long retval
;
1468 if (!(flags
& MAP_ANONYMOUS
)) {
1469 audit_mmap_fd(fd
, flags
);
1473 if (is_file_hugepages(file
))
1474 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1476 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1478 } else if (flags
& MAP_HUGETLB
) {
1479 struct user_struct
*user
= NULL
;
1482 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & SHM_HUGE_MASK
);
1486 len
= ALIGN(len
, huge_page_size(hs
));
1488 * VM_NORESERVE is used because the reservations will be
1489 * taken when vm_ops->mmap() is called
1490 * A dummy user value is used because we are not locking
1491 * memory so no accounting is necessary
1493 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1495 &user
, HUGETLB_ANONHUGE_INODE
,
1496 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1498 return PTR_ERR(file
);
1501 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1503 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1510 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1511 struct mmap_arg_struct
{
1515 unsigned long flags
;
1517 unsigned long offset
;
1520 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1522 struct mmap_arg_struct a
;
1524 if (copy_from_user(&a
, arg
, sizeof(a
)))
1526 if (offset_in_page(a
.offset
))
1529 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1530 a
.offset
>> PAGE_SHIFT
);
1532 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1535 * Some shared mappigns will want the pages marked read-only
1536 * to track write events. If so, we'll downgrade vm_page_prot
1537 * to the private version (using protection_map[] without the
1540 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1542 vm_flags_t vm_flags
= vma
->vm_flags
;
1543 const struct vm_operations_struct
*vm_ops
= vma
->vm_ops
;
1545 /* If it was private or non-writable, the write bit is already clear */
1546 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1549 /* The backer wishes to know when pages are first written to? */
1550 if (vm_ops
&& (vm_ops
->page_mkwrite
|| vm_ops
->pfn_mkwrite
))
1553 /* The open routine did something to the protections that pgprot_modify
1554 * won't preserve? */
1555 if (pgprot_val(vma
->vm_page_prot
) !=
1556 pgprot_val(vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
)))
1559 /* Do we need to track softdirty? */
1560 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1563 /* Specialty mapping? */
1564 if (vm_flags
& VM_PFNMAP
)
1567 /* Can the mapping track the dirty pages? */
1568 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1569 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1573 * We account for memory if it's a private writeable mapping,
1574 * not hugepages and VM_NORESERVE wasn't set.
1576 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1579 * hugetlb has its own accounting separate from the core VM
1580 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1582 if (file
&& is_file_hugepages(file
))
1585 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1588 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1589 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
)
1591 struct mm_struct
*mm
= current
->mm
;
1592 struct vm_area_struct
*vma
, *prev
;
1594 struct rb_node
**rb_link
, *rb_parent
;
1595 unsigned long charged
= 0;
1597 /* Check against address space limit. */
1598 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
)) {
1599 unsigned long nr_pages
;
1602 * MAP_FIXED may remove pages of mappings that intersects with
1603 * requested mapping. Account for the pages it would unmap.
1605 if (!(vm_flags
& MAP_FIXED
))
1608 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1610 if (!may_expand_vm(mm
, (len
>> PAGE_SHIFT
) - nr_pages
))
1614 /* Clear old maps */
1615 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
1617 if (do_munmap(mm
, addr
, len
))
1622 * Private writable mapping: check memory availability
1624 if (accountable_mapping(file
, vm_flags
)) {
1625 charged
= len
>> PAGE_SHIFT
;
1626 if (security_vm_enough_memory_mm(mm
, charged
))
1628 vm_flags
|= VM_ACCOUNT
;
1632 * Can we just expand an old mapping?
1634 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1635 NULL
, file
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
1640 * Determine the object being mapped and call the appropriate
1641 * specific mapper. the address has already been validated, but
1642 * not unmapped, but the maps are removed from the list.
1644 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1651 vma
->vm_start
= addr
;
1652 vma
->vm_end
= addr
+ len
;
1653 vma
->vm_flags
= vm_flags
;
1654 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1655 vma
->vm_pgoff
= pgoff
;
1656 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1659 if (vm_flags
& VM_DENYWRITE
) {
1660 error
= deny_write_access(file
);
1664 if (vm_flags
& VM_SHARED
) {
1665 error
= mapping_map_writable(file
->f_mapping
);
1667 goto allow_write_and_free_vma
;
1670 /* ->mmap() can change vma->vm_file, but must guarantee that
1671 * vma_link() below can deny write-access if VM_DENYWRITE is set
1672 * and map writably if VM_SHARED is set. This usually means the
1673 * new file must not have been exposed to user-space, yet.
1675 vma
->vm_file
= get_file(file
);
1676 error
= file
->f_op
->mmap(file
, vma
);
1678 goto unmap_and_free_vma
;
1680 /* Can addr have changed??
1682 * Answer: Yes, several device drivers can do it in their
1683 * f_op->mmap method. -DaveM
1684 * Bug: If addr is changed, prev, rb_link, rb_parent should
1685 * be updated for vma_link()
1687 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1689 addr
= vma
->vm_start
;
1690 vm_flags
= vma
->vm_flags
;
1691 } else if (vm_flags
& VM_SHARED
) {
1692 error
= shmem_zero_setup(vma
);
1697 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1698 /* Once vma denies write, undo our temporary denial count */
1700 if (vm_flags
& VM_SHARED
)
1701 mapping_unmap_writable(file
->f_mapping
);
1702 if (vm_flags
& VM_DENYWRITE
)
1703 allow_write_access(file
);
1705 file
= vma
->vm_file
;
1707 perf_event_mmap(vma
);
1709 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1710 if (vm_flags
& VM_LOCKED
) {
1711 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1712 vma
== get_gate_vma(current
->mm
)))
1713 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1715 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
1722 * New (or expanded) vma always get soft dirty status.
1723 * Otherwise user-space soft-dirty page tracker won't
1724 * be able to distinguish situation when vma area unmapped,
1725 * then new mapped in-place (which must be aimed as
1726 * a completely new data area).
1728 vma
->vm_flags
|= VM_SOFTDIRTY
;
1730 vma_set_page_prot(vma
);
1735 vma
->vm_file
= NULL
;
1738 /* Undo any partial mapping done by a device driver. */
1739 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1741 if (vm_flags
& VM_SHARED
)
1742 mapping_unmap_writable(file
->f_mapping
);
1743 allow_write_and_free_vma
:
1744 if (vm_flags
& VM_DENYWRITE
)
1745 allow_write_access(file
);
1747 kmem_cache_free(vm_area_cachep
, vma
);
1750 vm_unacct_memory(charged
);
1754 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1757 * We implement the search by looking for an rbtree node that
1758 * immediately follows a suitable gap. That is,
1759 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1760 * - gap_end = vma->vm_start >= info->low_limit + length;
1761 * - gap_end - gap_start >= length
1764 struct mm_struct
*mm
= current
->mm
;
1765 struct vm_area_struct
*vma
;
1766 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1768 /* Adjust search length to account for worst case alignment overhead */
1769 length
= info
->length
+ info
->align_mask
;
1770 if (length
< info
->length
)
1773 /* Adjust search limits by the desired length */
1774 if (info
->high_limit
< length
)
1776 high_limit
= info
->high_limit
- length
;
1778 if (info
->low_limit
> high_limit
)
1780 low_limit
= info
->low_limit
+ length
;
1782 /* Check if rbtree root looks promising */
1783 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1785 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1786 if (vma
->rb_subtree_gap
< length
)
1790 /* Visit left subtree if it looks promising */
1791 gap_end
= vm_start_gap(vma
);
1792 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1793 struct vm_area_struct
*left
=
1794 rb_entry(vma
->vm_rb
.rb_left
,
1795 struct vm_area_struct
, vm_rb
);
1796 if (left
->rb_subtree_gap
>= length
) {
1802 gap_start
= vma
->vm_prev
? vm_end_gap(vma
->vm_prev
) : 0;
1804 /* Check if current node has a suitable gap */
1805 if (gap_start
> high_limit
)
1807 if (gap_end
>= low_limit
&&
1808 gap_end
> gap_start
&& gap_end
- gap_start
>= length
)
1811 /* Visit right subtree if it looks promising */
1812 if (vma
->vm_rb
.rb_right
) {
1813 struct vm_area_struct
*right
=
1814 rb_entry(vma
->vm_rb
.rb_right
,
1815 struct vm_area_struct
, vm_rb
);
1816 if (right
->rb_subtree_gap
>= length
) {
1822 /* Go back up the rbtree to find next candidate node */
1824 struct rb_node
*prev
= &vma
->vm_rb
;
1825 if (!rb_parent(prev
))
1827 vma
= rb_entry(rb_parent(prev
),
1828 struct vm_area_struct
, vm_rb
);
1829 if (prev
== vma
->vm_rb
.rb_left
) {
1830 gap_start
= vm_end_gap(vma
->vm_prev
);
1831 gap_end
= vm_start_gap(vma
);
1838 /* Check highest gap, which does not precede any rbtree node */
1839 gap_start
= mm
->highest_vm_end
;
1840 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1841 if (gap_start
> high_limit
)
1845 /* We found a suitable gap. Clip it with the original low_limit. */
1846 if (gap_start
< info
->low_limit
)
1847 gap_start
= info
->low_limit
;
1849 /* Adjust gap address to the desired alignment */
1850 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1852 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1853 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1857 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1859 struct mm_struct
*mm
= current
->mm
;
1860 struct vm_area_struct
*vma
;
1861 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1863 /* Adjust search length to account for worst case alignment overhead */
1864 length
= info
->length
+ info
->align_mask
;
1865 if (length
< info
->length
)
1869 * Adjust search limits by the desired length.
1870 * See implementation comment at top of unmapped_area().
1872 gap_end
= info
->high_limit
;
1873 if (gap_end
< length
)
1875 high_limit
= gap_end
- length
;
1877 if (info
->low_limit
> high_limit
)
1879 low_limit
= info
->low_limit
+ length
;
1881 /* Check highest gap, which does not precede any rbtree node */
1882 gap_start
= mm
->highest_vm_end
;
1883 if (gap_start
<= high_limit
)
1886 /* Check if rbtree root looks promising */
1887 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1889 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1890 if (vma
->rb_subtree_gap
< length
)
1894 /* Visit right subtree if it looks promising */
1895 gap_start
= vma
->vm_prev
? vm_end_gap(vma
->vm_prev
) : 0;
1896 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1897 struct vm_area_struct
*right
=
1898 rb_entry(vma
->vm_rb
.rb_right
,
1899 struct vm_area_struct
, vm_rb
);
1900 if (right
->rb_subtree_gap
>= length
) {
1907 /* Check if current node has a suitable gap */
1908 gap_end
= vm_start_gap(vma
);
1909 if (gap_end
< low_limit
)
1911 if (gap_start
<= high_limit
&&
1912 gap_end
> gap_start
&& gap_end
- gap_start
>= length
)
1915 /* Visit left subtree if it looks promising */
1916 if (vma
->vm_rb
.rb_left
) {
1917 struct vm_area_struct
*left
=
1918 rb_entry(vma
->vm_rb
.rb_left
,
1919 struct vm_area_struct
, vm_rb
);
1920 if (left
->rb_subtree_gap
>= length
) {
1926 /* Go back up the rbtree to find next candidate node */
1928 struct rb_node
*prev
= &vma
->vm_rb
;
1929 if (!rb_parent(prev
))
1931 vma
= rb_entry(rb_parent(prev
),
1932 struct vm_area_struct
, vm_rb
);
1933 if (prev
== vma
->vm_rb
.rb_right
) {
1934 gap_start
= vma
->vm_prev
?
1935 vm_end_gap(vma
->vm_prev
) : 0;
1942 /* We found a suitable gap. Clip it with the original high_limit. */
1943 if (gap_end
> info
->high_limit
)
1944 gap_end
= info
->high_limit
;
1947 /* Compute highest gap address at the desired alignment */
1948 gap_end
-= info
->length
;
1949 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1951 VM_BUG_ON(gap_end
< info
->low_limit
);
1952 VM_BUG_ON(gap_end
< gap_start
);
1956 /* Get an address range which is currently unmapped.
1957 * For shmat() with addr=0.
1959 * Ugly calling convention alert:
1960 * Return value with the low bits set means error value,
1962 * if (ret & ~PAGE_MASK)
1965 * This function "knows" that -ENOMEM has the bits set.
1967 #ifndef HAVE_ARCH_UNMAPPED_AREA
1969 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1970 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1972 struct mm_struct
*mm
= current
->mm
;
1973 struct vm_area_struct
*vma
, *prev
;
1974 struct vm_unmapped_area_info info
;
1976 if (len
> TASK_SIZE
- mmap_min_addr
)
1979 if (flags
& MAP_FIXED
)
1983 addr
= PAGE_ALIGN(addr
);
1984 vma
= find_vma_prev(mm
, addr
, &prev
);
1985 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1986 (!vma
|| addr
+ len
<= vm_start_gap(vma
)) &&
1987 (!prev
|| addr
>= vm_end_gap(prev
)))
1993 info
.low_limit
= mm
->mmap_base
;
1994 info
.high_limit
= TASK_SIZE
;
1995 info
.align_mask
= 0;
1996 return vm_unmapped_area(&info
);
2001 * This mmap-allocator allocates new areas top-down from below the
2002 * stack's low limit (the base):
2004 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2006 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
2007 const unsigned long len
, const unsigned long pgoff
,
2008 const unsigned long flags
)
2010 struct vm_area_struct
*vma
, *prev
;
2011 struct mm_struct
*mm
= current
->mm
;
2012 unsigned long addr
= addr0
;
2013 struct vm_unmapped_area_info info
;
2015 /* requested length too big for entire address space */
2016 if (len
> TASK_SIZE
- mmap_min_addr
)
2019 if (flags
& MAP_FIXED
)
2022 /* requesting a specific address */
2024 addr
= PAGE_ALIGN(addr
);
2025 vma
= find_vma_prev(mm
, addr
, &prev
);
2026 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
2027 (!vma
|| addr
+ len
<= vm_start_gap(vma
)) &&
2028 (!prev
|| addr
>= vm_end_gap(prev
)))
2032 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
2034 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
2035 info
.high_limit
= mm
->mmap_base
;
2036 info
.align_mask
= 0;
2037 addr
= vm_unmapped_area(&info
);
2040 * A failed mmap() very likely causes application failure,
2041 * so fall back to the bottom-up function here. This scenario
2042 * can happen with large stack limits and large mmap()
2045 if (offset_in_page(addr
)) {
2046 VM_BUG_ON(addr
!= -ENOMEM
);
2048 info
.low_limit
= TASK_UNMAPPED_BASE
;
2049 info
.high_limit
= TASK_SIZE
;
2050 addr
= vm_unmapped_area(&info
);
2058 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
2059 unsigned long pgoff
, unsigned long flags
)
2061 unsigned long (*get_area
)(struct file
*, unsigned long,
2062 unsigned long, unsigned long, unsigned long);
2064 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
2068 /* Careful about overflows.. */
2069 if (len
> TASK_SIZE
)
2072 get_area
= current
->mm
->get_unmapped_area
;
2073 if (file
&& file
->f_op
->get_unmapped_area
)
2074 get_area
= file
->f_op
->get_unmapped_area
;
2075 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
2076 if (IS_ERR_VALUE(addr
))
2079 if (addr
> TASK_SIZE
- len
)
2081 if (offset_in_page(addr
))
2084 addr
= arch_rebalance_pgtables(addr
, len
);
2085 error
= security_mmap_addr(addr
);
2086 return error
? error
: addr
;
2089 EXPORT_SYMBOL(get_unmapped_area
);
2091 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2092 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
2094 struct rb_node
*rb_node
;
2095 struct vm_area_struct
*vma
;
2097 /* Check the cache first. */
2098 vma
= vmacache_find(mm
, addr
);
2102 rb_node
= mm
->mm_rb
.rb_node
;
2105 struct vm_area_struct
*tmp
;
2107 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2109 if (tmp
->vm_end
> addr
) {
2111 if (tmp
->vm_start
<= addr
)
2113 rb_node
= rb_node
->rb_left
;
2115 rb_node
= rb_node
->rb_right
;
2119 vmacache_update(addr
, vma
);
2123 EXPORT_SYMBOL(find_vma
);
2126 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2128 struct vm_area_struct
*
2129 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
2130 struct vm_area_struct
**pprev
)
2132 struct vm_area_struct
*vma
;
2134 vma
= find_vma(mm
, addr
);
2136 *pprev
= vma
->vm_prev
;
2138 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
2141 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2142 rb_node
= rb_node
->rb_right
;
2149 * Verify that the stack growth is acceptable and
2150 * update accounting. This is shared with both the
2151 * grow-up and grow-down cases.
2153 static int acct_stack_growth(struct vm_area_struct
*vma
,
2154 unsigned long size
, unsigned long grow
)
2156 struct mm_struct
*mm
= vma
->vm_mm
;
2157 struct rlimit
*rlim
= current
->signal
->rlim
;
2158 unsigned long new_start
;
2160 /* address space limit tests */
2161 if (!may_expand_vm(mm
, grow
))
2164 /* Stack limit test */
2165 if (size
> READ_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
2168 /* mlock limit tests */
2169 if (vma
->vm_flags
& VM_LOCKED
) {
2170 unsigned long locked
;
2171 unsigned long limit
;
2172 locked
= mm
->locked_vm
+ grow
;
2173 limit
= READ_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
2174 limit
>>= PAGE_SHIFT
;
2175 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2179 /* Check to ensure the stack will not grow into a hugetlb-only region */
2180 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2182 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2186 * Overcommit.. This must be the final test, as it will
2187 * update security statistics.
2189 if (security_vm_enough_memory_mm(mm
, grow
))
2195 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2197 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2198 * vma is the last one with address > vma->vm_end. Have to extend vma.
2200 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2202 struct mm_struct
*mm
= vma
->vm_mm
;
2203 struct vm_area_struct
*next
;
2204 unsigned long gap_addr
;
2207 if (!(vma
->vm_flags
& VM_GROWSUP
))
2210 /* Guard against exceeding limits of the address space. */
2211 address
&= PAGE_MASK
;
2212 if (address
>= (TASK_SIZE
& PAGE_MASK
))
2214 address
+= PAGE_SIZE
;
2216 /* Enforce stack_guard_gap */
2217 gap_addr
= address
+ stack_guard_gap
;
2219 /* Guard against overflow */
2220 if (gap_addr
< address
|| gap_addr
> TASK_SIZE
)
2221 gap_addr
= TASK_SIZE
;
2223 next
= vma
->vm_next
;
2224 if (next
&& next
->vm_start
< gap_addr
&&
2225 (next
->vm_flags
& (VM_WRITE
|VM_READ
|VM_EXEC
))) {
2226 if (!(next
->vm_flags
& VM_GROWSUP
))
2228 /* Check that both stack segments have the same anon_vma? */
2231 /* We must make sure the anon_vma is allocated. */
2232 if (unlikely(anon_vma_prepare(vma
)))
2236 * vma->vm_start/vm_end cannot change under us because the caller
2237 * is required to hold the mmap_sem in read mode. We need the
2238 * anon_vma lock to serialize against concurrent expand_stacks.
2240 anon_vma_lock_write(vma
->anon_vma
);
2242 /* Somebody else might have raced and expanded it already */
2243 if (address
> vma
->vm_end
) {
2244 unsigned long size
, grow
;
2246 size
= address
- vma
->vm_start
;
2247 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2250 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2251 error
= acct_stack_growth(vma
, size
, grow
);
2254 * vma_gap_update() doesn't support concurrent
2255 * updates, but we only hold a shared mmap_sem
2256 * lock here, so we need to protect against
2257 * concurrent vma expansions.
2258 * anon_vma_lock_write() doesn't help here, as
2259 * we don't guarantee that all growable vmas
2260 * in a mm share the same root anon vma.
2261 * So, we reuse mm->page_table_lock to guard
2262 * against concurrent vma expansions.
2264 spin_lock(&mm
->page_table_lock
);
2265 if (vma
->vm_flags
& VM_LOCKED
)
2266 mm
->locked_vm
+= grow
;
2267 vm_stat_account(mm
, vma
->vm_flags
,
2268 vma
->vm_file
, grow
);
2269 anon_vma_interval_tree_pre_update_vma(vma
);
2270 vma
->vm_end
= address
;
2271 anon_vma_interval_tree_post_update_vma(vma
);
2273 vma_gap_update(vma
->vm_next
);
2275 mm
->highest_vm_end
= vm_end_gap(vma
);
2276 spin_unlock(&mm
->page_table_lock
);
2278 perf_event_mmap(vma
);
2282 anon_vma_unlock_write(vma
->anon_vma
);
2283 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2287 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2290 * vma is the first one with address < vma->vm_start. Have to extend vma.
2292 int expand_downwards(struct vm_area_struct
*vma
,
2293 unsigned long address
)
2295 struct mm_struct
*mm
= vma
->vm_mm
;
2296 struct vm_area_struct
*prev
;
2297 unsigned long gap_addr
;
2300 address
&= PAGE_MASK
;
2301 if (address
< mmap_min_addr
)
2304 /* Enforce stack_guard_gap */
2305 gap_addr
= address
- stack_guard_gap
;
2306 if (gap_addr
> address
)
2308 prev
= vma
->vm_prev
;
2309 if (prev
&& prev
->vm_end
> gap_addr
&&
2310 (prev
->vm_flags
& (VM_WRITE
|VM_READ
|VM_EXEC
))) {
2311 if (!(prev
->vm_flags
& VM_GROWSDOWN
))
2313 /* Check that both stack segments have the same anon_vma? */
2316 /* We must make sure the anon_vma is allocated. */
2317 if (unlikely(anon_vma_prepare(vma
)))
2321 * vma->vm_start/vm_end cannot change under us because the caller
2322 * is required to hold the mmap_sem in read mode. We need the
2323 * anon_vma lock to serialize against concurrent expand_stacks.
2325 anon_vma_lock_write(vma
->anon_vma
);
2327 /* Somebody else might have raced and expanded it already */
2328 if (address
< vma
->vm_start
) {
2329 unsigned long size
, grow
;
2331 size
= vma
->vm_end
- address
;
2332 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2335 if (grow
<= vma
->vm_pgoff
) {
2336 error
= acct_stack_growth(vma
, size
, grow
);
2339 * vma_gap_update() doesn't support concurrent
2340 * updates, but we only hold a shared mmap_sem
2341 * lock here, so we need to protect against
2342 * concurrent vma expansions.
2343 * anon_vma_lock_write() doesn't help here, as
2344 * we don't guarantee that all growable vmas
2345 * in a mm share the same root anon vma.
2346 * So, we reuse mm->page_table_lock to guard
2347 * against concurrent vma expansions.
2349 spin_lock(&mm
->page_table_lock
);
2350 if (vma
->vm_flags
& VM_LOCKED
)
2351 mm
->locked_vm
+= grow
;
2352 vm_stat_account(mm
, vma
->vm_flags
,
2353 vma
->vm_file
, grow
);
2354 anon_vma_interval_tree_pre_update_vma(vma
);
2355 vma
->vm_start
= address
;
2356 vma
->vm_pgoff
-= grow
;
2357 anon_vma_interval_tree_post_update_vma(vma
);
2358 vma_gap_update(vma
);
2359 spin_unlock(&mm
->page_table_lock
);
2361 perf_event_mmap(vma
);
2365 anon_vma_unlock_write(vma
->anon_vma
);
2366 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2371 /* enforced gap between the expanding stack and other mappings. */
2372 unsigned long stack_guard_gap
= 256UL<<PAGE_SHIFT
;
2374 static int __init
cmdline_parse_stack_guard_gap(char *p
)
2379 val
= simple_strtoul(p
, &endptr
, 10);
2381 stack_guard_gap
= val
<< PAGE_SHIFT
;
2385 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap
);
2387 #ifdef CONFIG_STACK_GROWSUP
2388 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2390 return expand_upwards(vma
, address
);
2393 struct vm_area_struct
*
2394 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2396 struct vm_area_struct
*vma
, *prev
;
2399 vma
= find_vma_prev(mm
, addr
, &prev
);
2400 if (vma
&& (vma
->vm_start
<= addr
))
2402 /* don't alter vm_end if the coredump is running */
2403 if (!prev
|| !mmget_still_valid(mm
) || expand_stack(prev
, addr
))
2405 if (prev
->vm_flags
& VM_LOCKED
)
2406 populate_vma_page_range(prev
, addr
, prev
->vm_end
, NULL
);
2410 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2412 return expand_downwards(vma
, address
);
2415 struct vm_area_struct
*
2416 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2418 struct vm_area_struct
*vma
;
2419 unsigned long start
;
2422 vma
= find_vma(mm
, addr
);
2425 if (vma
->vm_start
<= addr
)
2427 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2429 /* don't alter vm_start if the coredump is running */
2430 if (!mmget_still_valid(mm
))
2432 start
= vma
->vm_start
;
2433 if (expand_stack(vma
, addr
))
2435 if (vma
->vm_flags
& VM_LOCKED
)
2436 populate_vma_page_range(vma
, addr
, start
, NULL
);
2441 EXPORT_SYMBOL_GPL(find_extend_vma
);
2444 * Ok - we have the memory areas we should free on the vma list,
2445 * so release them, and do the vma updates.
2447 * Called with the mm semaphore held.
2449 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2451 unsigned long nr_accounted
= 0;
2453 /* Update high watermark before we lower total_vm */
2454 update_hiwater_vm(mm
);
2456 long nrpages
= vma_pages(vma
);
2458 if (vma
->vm_flags
& VM_ACCOUNT
)
2459 nr_accounted
+= nrpages
;
2460 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
2461 vma
= remove_vma(vma
);
2463 vm_unacct_memory(nr_accounted
);
2468 * Get rid of page table information in the indicated region.
2470 * Called with the mm semaphore held.
2472 static void unmap_region(struct mm_struct
*mm
,
2473 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2474 unsigned long start
, unsigned long end
)
2476 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2477 struct mmu_gather tlb
;
2480 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2481 update_hiwater_rss(mm
);
2482 unmap_vmas(&tlb
, vma
, start
, end
);
2483 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2484 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2485 tlb_finish_mmu(&tlb
, start
, end
);
2489 * Create a list of vma's touched by the unmap, removing them from the mm's
2490 * vma list as we go..
2493 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2494 struct vm_area_struct
*prev
, unsigned long end
)
2496 struct vm_area_struct
**insertion_point
;
2497 struct vm_area_struct
*tail_vma
= NULL
;
2499 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2500 vma
->vm_prev
= NULL
;
2502 vma_rb_erase(vma
, &mm
->mm_rb
);
2506 } while (vma
&& vma
->vm_start
< end
);
2507 *insertion_point
= vma
;
2509 vma
->vm_prev
= prev
;
2510 vma_gap_update(vma
);
2512 mm
->highest_vm_end
= prev
? vm_end_gap(prev
) : 0;
2513 tail_vma
->vm_next
= NULL
;
2515 /* Kill the cache */
2516 vmacache_invalidate(mm
);
2520 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2521 * munmap path where it doesn't make sense to fail.
2523 static int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2524 unsigned long addr
, int new_below
)
2526 struct vm_area_struct
*new;
2529 if (is_vm_hugetlb_page(vma
) && (addr
&
2530 ~(huge_page_mask(hstate_vma(vma
)))))
2533 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2537 /* most fields are the same, copy all, and then fixup */
2540 INIT_LIST_HEAD(&new->anon_vma_chain
);
2545 new->vm_start
= addr
;
2546 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2549 err
= vma_dup_policy(vma
, new);
2553 err
= anon_vma_clone(new, vma
);
2558 get_file(new->vm_file
);
2560 if (new->vm_ops
&& new->vm_ops
->open
)
2561 new->vm_ops
->open(new);
2564 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2565 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2567 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2573 /* Clean everything up if vma_adjust failed. */
2574 if (new->vm_ops
&& new->vm_ops
->close
)
2575 new->vm_ops
->close(new);
2578 unlink_anon_vmas(new);
2580 mpol_put(vma_policy(new));
2582 kmem_cache_free(vm_area_cachep
, new);
2587 * Split a vma into two pieces at address 'addr', a new vma is allocated
2588 * either for the first part or the tail.
2590 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2591 unsigned long addr
, int new_below
)
2593 if (mm
->map_count
>= sysctl_max_map_count
)
2596 return __split_vma(mm
, vma
, addr
, new_below
);
2599 /* Munmap is split into 2 main parts -- this part which finds
2600 * what needs doing, and the areas themselves, which do the
2601 * work. This now handles partial unmappings.
2602 * Jeremy Fitzhardinge <jeremy@goop.org>
2604 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2607 struct vm_area_struct
*vma
, *prev
, *last
;
2609 if ((offset_in_page(start
)) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2612 len
= PAGE_ALIGN(len
);
2616 /* Find the first overlapping VMA */
2617 vma
= find_vma(mm
, start
);
2620 prev
= vma
->vm_prev
;
2621 /* we have start < vma->vm_end */
2623 /* if it doesn't overlap, we have nothing.. */
2625 if (vma
->vm_start
>= end
)
2629 * If we need to split any vma, do it now to save pain later.
2631 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2632 * unmapped vm_area_struct will remain in use: so lower split_vma
2633 * places tmp vma above, and higher split_vma places tmp vma below.
2635 if (start
> vma
->vm_start
) {
2639 * Make sure that map_count on return from munmap() will
2640 * not exceed its limit; but let map_count go just above
2641 * its limit temporarily, to help free resources as expected.
2643 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2646 error
= __split_vma(mm
, vma
, start
, 0);
2652 /* Does it split the last one? */
2653 last
= find_vma(mm
, end
);
2654 if (last
&& end
> last
->vm_start
) {
2655 int error
= __split_vma(mm
, last
, end
, 1);
2659 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2662 * unlock any mlock()ed ranges before detaching vmas
2664 if (mm
->locked_vm
) {
2665 struct vm_area_struct
*tmp
= vma
;
2666 while (tmp
&& tmp
->vm_start
< end
) {
2667 if (tmp
->vm_flags
& VM_LOCKED
) {
2668 mm
->locked_vm
-= vma_pages(tmp
);
2669 munlock_vma_pages_all(tmp
);
2676 * Remove the vma's, and unmap the actual pages
2678 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2679 unmap_region(mm
, vma
, prev
, start
, end
);
2681 arch_unmap(mm
, vma
, start
, end
);
2683 /* Fix up all other VM information */
2684 remove_vma_list(mm
, vma
);
2689 int vm_munmap(unsigned long start
, size_t len
)
2692 struct mm_struct
*mm
= current
->mm
;
2694 down_write(&mm
->mmap_sem
);
2695 ret
= do_munmap(mm
, start
, len
);
2696 up_write(&mm
->mmap_sem
);
2699 EXPORT_SYMBOL(vm_munmap
);
2701 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2703 profile_munmap(addr
);
2704 return vm_munmap(addr
, len
);
2709 * Emulation of deprecated remap_file_pages() syscall.
2711 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2712 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2715 struct mm_struct
*mm
= current
->mm
;
2716 struct vm_area_struct
*vma
;
2717 unsigned long populate
= 0;
2718 unsigned long ret
= -EINVAL
;
2721 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2722 "See Documentation/vm/remap_file_pages.txt.\n",
2723 current
->comm
, current
->pid
);
2727 start
= start
& PAGE_MASK
;
2728 size
= size
& PAGE_MASK
;
2730 if (start
+ size
<= start
)
2733 /* Does pgoff wrap? */
2734 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2737 down_write(&mm
->mmap_sem
);
2738 vma
= find_vma(mm
, start
);
2740 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2743 if (start
< vma
->vm_start
)
2746 if (start
+ size
> vma
->vm_end
) {
2747 struct vm_area_struct
*next
;
2749 for (next
= vma
->vm_next
; next
; next
= next
->vm_next
) {
2750 /* hole between vmas ? */
2751 if (next
->vm_start
!= next
->vm_prev
->vm_end
)
2754 if (next
->vm_file
!= vma
->vm_file
)
2757 if (next
->vm_flags
!= vma
->vm_flags
)
2760 if (start
+ size
<= next
->vm_end
)
2768 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2769 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2770 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2772 flags
&= MAP_NONBLOCK
;
2773 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2774 if (vma
->vm_flags
& VM_LOCKED
) {
2775 struct vm_area_struct
*tmp
;
2776 flags
|= MAP_LOCKED
;
2778 /* drop PG_Mlocked flag for over-mapped range */
2779 for (tmp
= vma
; tmp
->vm_start
>= start
+ size
;
2780 tmp
= tmp
->vm_next
) {
2781 munlock_vma_pages_range(tmp
,
2782 max(tmp
->vm_start
, start
),
2783 min(tmp
->vm_end
, start
+ size
));
2787 file
= get_file(vma
->vm_file
);
2788 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2789 prot
, flags
, pgoff
, &populate
);
2792 up_write(&mm
->mmap_sem
);
2794 mm_populate(ret
, populate
);
2795 if (!IS_ERR_VALUE(ret
))
2800 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2802 #ifdef CONFIG_DEBUG_VM
2803 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2805 up_read(&mm
->mmap_sem
);
2811 * this is really a simplified "do_mmap". it only handles
2812 * anonymous maps. eventually we may be able to do some
2813 * brk-specific accounting here.
2815 static unsigned long do_brk(unsigned long addr
, unsigned long len
)
2817 struct mm_struct
*mm
= current
->mm
;
2818 struct vm_area_struct
*vma
, *prev
;
2819 unsigned long flags
;
2820 struct rb_node
**rb_link
, *rb_parent
;
2821 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2824 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2826 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2827 if (offset_in_page(error
))
2830 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
2835 * mm->mmap_sem is required to protect against another thread
2836 * changing the mappings in case we sleep.
2838 verify_mm_writelocked(mm
);
2841 * Clear old maps. this also does some error checking for us
2843 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
2845 if (do_munmap(mm
, addr
, len
))
2849 /* Check against address space limits *after* clearing old maps... */
2850 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2853 if (mm
->map_count
> sysctl_max_map_count
)
2856 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2859 /* Can we just expand an old private anonymous mapping? */
2860 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2861 NULL
, NULL
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
2866 * create a vma struct for an anonymous mapping
2868 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2870 vm_unacct_memory(len
>> PAGE_SHIFT
);
2874 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2876 vma
->vm_start
= addr
;
2877 vma
->vm_end
= addr
+ len
;
2878 vma
->vm_pgoff
= pgoff
;
2879 vma
->vm_flags
= flags
;
2880 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2881 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2883 perf_event_mmap(vma
);
2884 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2885 if (flags
& VM_LOCKED
)
2886 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2887 vma
->vm_flags
|= VM_SOFTDIRTY
;
2891 unsigned long vm_brk(unsigned long addr
, unsigned long request
)
2893 struct mm_struct
*mm
= current
->mm
;
2898 len
= PAGE_ALIGN(request
);
2904 down_write(&mm
->mmap_sem
);
2905 ret
= do_brk(addr
, len
);
2906 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2907 up_write(&mm
->mmap_sem
);
2909 mm_populate(addr
, len
);
2912 EXPORT_SYMBOL(vm_brk
);
2914 /* Release all mmaps. */
2915 void exit_mmap(struct mm_struct
*mm
)
2917 struct mmu_gather tlb
;
2918 struct vm_area_struct
*vma
;
2919 unsigned long nr_accounted
= 0;
2921 /* mm's last user has gone, and its about to be pulled down */
2922 mmu_notifier_release(mm
);
2924 if (mm
->locked_vm
) {
2927 if (vma
->vm_flags
& VM_LOCKED
)
2928 munlock_vma_pages_all(vma
);
2936 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2941 tlb_gather_mmu(&tlb
, mm
, 0, -1);
2942 /* update_hiwater_rss(mm) here? but nobody should be looking */
2943 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2944 unmap_vmas(&tlb
, vma
, 0, -1);
2946 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
2947 tlb_finish_mmu(&tlb
, 0, -1);
2950 * Walk the list again, actually closing and freeing it,
2951 * with preemption enabled, without holding any MM locks.
2954 if (vma
->vm_flags
& VM_ACCOUNT
)
2955 nr_accounted
+= vma_pages(vma
);
2956 vma
= remove_vma(vma
);
2959 vm_unacct_memory(nr_accounted
);
2962 /* Insert vm structure into process list sorted by address
2963 * and into the inode's i_mmap tree. If vm_file is non-NULL
2964 * then i_mmap_rwsem is taken here.
2966 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2968 struct vm_area_struct
*prev
;
2969 struct rb_node
**rb_link
, *rb_parent
;
2971 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
2972 &prev
, &rb_link
, &rb_parent
))
2974 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2975 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2979 * The vm_pgoff of a purely anonymous vma should be irrelevant
2980 * until its first write fault, when page's anon_vma and index
2981 * are set. But now set the vm_pgoff it will almost certainly
2982 * end up with (unless mremap moves it elsewhere before that
2983 * first wfault), so /proc/pid/maps tells a consistent story.
2985 * By setting it to reflect the virtual start address of the
2986 * vma, merges and splits can happen in a seamless way, just
2987 * using the existing file pgoff checks and manipulations.
2988 * Similarly in do_mmap_pgoff and in do_brk.
2990 if (vma_is_anonymous(vma
)) {
2991 BUG_ON(vma
->anon_vma
);
2992 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2995 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
3000 * Copy the vma structure to a new location in the same mm,
3001 * prior to moving page table entries, to effect an mremap move.
3003 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
3004 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
3005 bool *need_rmap_locks
)
3007 struct vm_area_struct
*vma
= *vmap
;
3008 unsigned long vma_start
= vma
->vm_start
;
3009 struct mm_struct
*mm
= vma
->vm_mm
;
3010 struct vm_area_struct
*new_vma
, *prev
;
3011 struct rb_node
**rb_link
, *rb_parent
;
3012 bool faulted_in_anon_vma
= true;
3015 * If anonymous vma has not yet been faulted, update new pgoff
3016 * to match new location, to increase its chance of merging.
3018 if (unlikely(vma_is_anonymous(vma
) && !vma
->anon_vma
)) {
3019 pgoff
= addr
>> PAGE_SHIFT
;
3020 faulted_in_anon_vma
= false;
3023 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
3024 return NULL
; /* should never get here */
3025 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
3026 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
),
3027 vma
->vm_userfaultfd_ctx
);
3030 * Source vma may have been merged into new_vma
3032 if (unlikely(vma_start
>= new_vma
->vm_start
&&
3033 vma_start
< new_vma
->vm_end
)) {
3035 * The only way we can get a vma_merge with
3036 * self during an mremap is if the vma hasn't
3037 * been faulted in yet and we were allowed to
3038 * reset the dst vma->vm_pgoff to the
3039 * destination address of the mremap to allow
3040 * the merge to happen. mremap must change the
3041 * vm_pgoff linearity between src and dst vmas
3042 * (in turn preventing a vma_merge) to be
3043 * safe. It is only safe to keep the vm_pgoff
3044 * linear if there are no pages mapped yet.
3046 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
3047 *vmap
= vma
= new_vma
;
3049 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
3051 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
3055 new_vma
->vm_start
= addr
;
3056 new_vma
->vm_end
= addr
+ len
;
3057 new_vma
->vm_pgoff
= pgoff
;
3058 if (vma_dup_policy(vma
, new_vma
))
3060 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
3061 if (anon_vma_clone(new_vma
, vma
))
3062 goto out_free_mempol
;
3063 if (new_vma
->vm_file
)
3064 get_file(new_vma
->vm_file
);
3065 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
3066 new_vma
->vm_ops
->open(new_vma
);
3067 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
3068 *need_rmap_locks
= false;
3073 mpol_put(vma_policy(new_vma
));
3075 kmem_cache_free(vm_area_cachep
, new_vma
);
3081 * Return true if the calling process may expand its vm space by the passed
3084 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
3086 unsigned long cur
= mm
->total_vm
; /* pages */
3089 lim
= rlimit(RLIMIT_AS
) >> PAGE_SHIFT
;
3091 if (cur
+ npages
> lim
)
3096 static int special_mapping_fault(struct vm_area_struct
*vma
,
3097 struct vm_fault
*vmf
);
3100 * Having a close hook prevents vma merging regardless of flags.
3102 static void special_mapping_close(struct vm_area_struct
*vma
)
3106 static const char *special_mapping_name(struct vm_area_struct
*vma
)
3108 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
3111 static const struct vm_operations_struct special_mapping_vmops
= {
3112 .close
= special_mapping_close
,
3113 .fault
= special_mapping_fault
,
3114 .name
= special_mapping_name
,
3117 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
3118 .close
= special_mapping_close
,
3119 .fault
= special_mapping_fault
,
3122 static int special_mapping_fault(struct vm_area_struct
*vma
,
3123 struct vm_fault
*vmf
)
3126 struct page
**pages
;
3128 if (vma
->vm_ops
== &legacy_special_mapping_vmops
)
3129 pages
= vma
->vm_private_data
;
3131 pages
= ((struct vm_special_mapping
*)vma
->vm_private_data
)->
3134 for (pgoff
= vmf
->pgoff
; pgoff
&& *pages
; ++pages
)
3138 struct page
*page
= *pages
;
3144 return VM_FAULT_SIGBUS
;
3147 static struct vm_area_struct
*__install_special_mapping(
3148 struct mm_struct
*mm
,
3149 unsigned long addr
, unsigned long len
,
3150 unsigned long vm_flags
, void *priv
,
3151 const struct vm_operations_struct
*ops
)
3154 struct vm_area_struct
*vma
;
3156 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
3157 if (unlikely(vma
== NULL
))
3158 return ERR_PTR(-ENOMEM
);
3160 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
3162 vma
->vm_start
= addr
;
3163 vma
->vm_end
= addr
+ len
;
3165 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
3166 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
3169 vma
->vm_private_data
= priv
;
3171 ret
= insert_vm_struct(mm
, vma
);
3175 mm
->total_vm
+= len
>> PAGE_SHIFT
;
3177 perf_event_mmap(vma
);
3182 kmem_cache_free(vm_area_cachep
, vma
);
3183 return ERR_PTR(ret
);
3187 * Called with mm->mmap_sem held for writing.
3188 * Insert a new vma covering the given region, with the given flags.
3189 * Its pages are supplied by the given array of struct page *.
3190 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3191 * The region past the last page supplied will always produce SIGBUS.
3192 * The array pointer and the pages it points to are assumed to stay alive
3193 * for as long as this mapping might exist.
3195 struct vm_area_struct
*_install_special_mapping(
3196 struct mm_struct
*mm
,
3197 unsigned long addr
, unsigned long len
,
3198 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3200 return __install_special_mapping(mm
, addr
, len
, vm_flags
, (void *)spec
,
3201 &special_mapping_vmops
);
3204 int install_special_mapping(struct mm_struct
*mm
,
3205 unsigned long addr
, unsigned long len
,
3206 unsigned long vm_flags
, struct page
**pages
)
3208 struct vm_area_struct
*vma
= __install_special_mapping(
3209 mm
, addr
, len
, vm_flags
, (void *)pages
,
3210 &legacy_special_mapping_vmops
);
3212 return PTR_ERR_OR_ZERO(vma
);
3215 static DEFINE_MUTEX(mm_all_locks_mutex
);
3217 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3219 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3221 * The LSB of head.next can't change from under us
3222 * because we hold the mm_all_locks_mutex.
3224 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3226 * We can safely modify head.next after taking the
3227 * anon_vma->root->rwsem. If some other vma in this mm shares
3228 * the same anon_vma we won't take it again.
3230 * No need of atomic instructions here, head.next
3231 * can't change from under us thanks to the
3232 * anon_vma->root->rwsem.
3234 if (__test_and_set_bit(0, (unsigned long *)
3235 &anon_vma
->root
->rb_root
.rb_node
))
3240 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3242 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3244 * AS_MM_ALL_LOCKS can't change from under us because
3245 * we hold the mm_all_locks_mutex.
3247 * Operations on ->flags have to be atomic because
3248 * even if AS_MM_ALL_LOCKS is stable thanks to the
3249 * mm_all_locks_mutex, there may be other cpus
3250 * changing other bitflags in parallel to us.
3252 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3254 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3259 * This operation locks against the VM for all pte/vma/mm related
3260 * operations that could ever happen on a certain mm. This includes
3261 * vmtruncate, try_to_unmap, and all page faults.
3263 * The caller must take the mmap_sem in write mode before calling
3264 * mm_take_all_locks(). The caller isn't allowed to release the
3265 * mmap_sem until mm_drop_all_locks() returns.
3267 * mmap_sem in write mode is required in order to block all operations
3268 * that could modify pagetables and free pages without need of
3269 * altering the vma layout. It's also needed in write mode to avoid new
3270 * anon_vmas to be associated with existing vmas.
3272 * A single task can't take more than one mm_take_all_locks() in a row
3273 * or it would deadlock.
3275 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3276 * mapping->flags avoid to take the same lock twice, if more than one
3277 * vma in this mm is backed by the same anon_vma or address_space.
3279 * We can take all the locks in random order because the VM code
3280 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3281 * takes more than one of them in a row. Secondly we're protected
3282 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3284 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3285 * that may have to take thousand of locks.
3287 * mm_take_all_locks() can fail if it's interrupted by signals.
3289 int mm_take_all_locks(struct mm_struct
*mm
)
3291 struct vm_area_struct
*vma
;
3292 struct anon_vma_chain
*avc
;
3294 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3296 mutex_lock(&mm_all_locks_mutex
);
3298 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3299 if (signal_pending(current
))
3301 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3302 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3305 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3306 if (signal_pending(current
))
3309 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3310 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3316 mm_drop_all_locks(mm
);
3320 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3322 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3324 * The LSB of head.next can't change to 0 from under
3325 * us because we hold the mm_all_locks_mutex.
3327 * We must however clear the bitflag before unlocking
3328 * the vma so the users using the anon_vma->rb_root will
3329 * never see our bitflag.
3331 * No need of atomic instructions here, head.next
3332 * can't change from under us until we release the
3333 * anon_vma->root->rwsem.
3335 if (!__test_and_clear_bit(0, (unsigned long *)
3336 &anon_vma
->root
->rb_root
.rb_node
))
3338 anon_vma_unlock_write(anon_vma
);
3342 static void vm_unlock_mapping(struct address_space
*mapping
)
3344 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3346 * AS_MM_ALL_LOCKS can't change to 0 from under us
3347 * because we hold the mm_all_locks_mutex.
3349 i_mmap_unlock_write(mapping
);
3350 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3357 * The mmap_sem cannot be released by the caller until
3358 * mm_drop_all_locks() returns.
3360 void mm_drop_all_locks(struct mm_struct
*mm
)
3362 struct vm_area_struct
*vma
;
3363 struct anon_vma_chain
*avc
;
3365 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3366 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3368 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3370 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3371 vm_unlock_anon_vma(avc
->anon_vma
);
3372 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3373 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3376 mutex_unlock(&mm_all_locks_mutex
);
3380 * initialise the VMA slab
3382 void __init
mmap_init(void)
3386 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3391 * Initialise sysctl_user_reserve_kbytes.
3393 * This is intended to prevent a user from starting a single memory hogging
3394 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3397 * The default value is min(3% of free memory, 128MB)
3398 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3400 static int init_user_reserve(void)
3402 unsigned long free_kbytes
;
3404 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3406 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3409 subsys_initcall(init_user_reserve
);
3412 * Initialise sysctl_admin_reserve_kbytes.
3414 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3415 * to log in and kill a memory hogging process.
3417 * Systems with more than 256MB will reserve 8MB, enough to recover
3418 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3419 * only reserve 3% of free pages by default.
3421 static int init_admin_reserve(void)
3423 unsigned long free_kbytes
;
3425 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3427 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3430 subsys_initcall(init_admin_reserve
);
3433 * Reinititalise user and admin reserves if memory is added or removed.
3435 * The default user reserve max is 128MB, and the default max for the
3436 * admin reserve is 8MB. These are usually, but not always, enough to
3437 * enable recovery from a memory hogging process using login/sshd, a shell,
3438 * and tools like top. It may make sense to increase or even disable the
3439 * reserve depending on the existence of swap or variations in the recovery
3440 * tools. So, the admin may have changed them.
3442 * If memory is added and the reserves have been eliminated or increased above
3443 * the default max, then we'll trust the admin.
3445 * If memory is removed and there isn't enough free memory, then we
3446 * need to reset the reserves.
3448 * Otherwise keep the reserve set by the admin.
3450 static int reserve_mem_notifier(struct notifier_block
*nb
,
3451 unsigned long action
, void *data
)
3453 unsigned long tmp
, free_kbytes
;
3457 /* Default max is 128MB. Leave alone if modified by operator. */
3458 tmp
= sysctl_user_reserve_kbytes
;
3459 if (0 < tmp
&& tmp
< (1UL << 17))
3460 init_user_reserve();
3462 /* Default max is 8MB. Leave alone if modified by operator. */
3463 tmp
= sysctl_admin_reserve_kbytes
;
3464 if (0 < tmp
&& tmp
< (1UL << 13))
3465 init_admin_reserve();
3469 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3471 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3472 init_user_reserve();
3473 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3474 sysctl_user_reserve_kbytes
);
3477 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3478 init_admin_reserve();
3479 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3480 sysctl_admin_reserve_kbytes
);
3489 static struct notifier_block reserve_mem_nb
= {
3490 .notifier_call
= reserve_mem_notifier
,
3493 static int __meminit
init_reserve_notifier(void)
3495 if (register_hotmemory_notifier(&reserve_mem_nb
))
3496 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3500 subsys_initcall(init_reserve_notifier
);