2 * Slab allocator functions that are independent of the allocator strategy
4 * (C) 2012 Christoph Lameter <cl@linux.com>
6 #include <linux/slab.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
21 #include <linux/memcontrol.h>
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
28 enum slab_state slab_state
;
29 LIST_HEAD(slab_caches
);
30 DEFINE_MUTEX(slab_mutex
);
31 struct kmem_cache
*kmem_cache
;
34 * Set of flags that will prevent slab merging
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
40 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | SLAB_NOTRACK)
43 * Merge control. If this is set then no merging of slab caches will occur.
44 * (Could be removed. This was introduced to pacify the merge skeptics.)
46 static int slab_nomerge
;
48 static int __init
setup_slab_nomerge(char *str
)
55 __setup_param("slub_nomerge", slub_nomerge
, setup_slab_nomerge
, 0);
58 __setup("slab_nomerge", setup_slab_nomerge
);
61 * Determine the size of a slab object
63 unsigned int kmem_cache_size(struct kmem_cache
*s
)
65 return s
->object_size
;
67 EXPORT_SYMBOL(kmem_cache_size
);
69 #ifdef CONFIG_DEBUG_VM
70 static int kmem_cache_sanity_check(const char *name
, size_t size
)
72 struct kmem_cache
*s
= NULL
;
74 if (!name
|| in_interrupt() || size
< sizeof(void *) ||
75 size
> KMALLOC_MAX_SIZE
) {
76 pr_err("kmem_cache_create(%s) integrity check failed\n", name
);
80 list_for_each_entry(s
, &slab_caches
, list
) {
85 * This happens when the module gets unloaded and doesn't
86 * destroy its slab cache and no-one else reuses the vmalloc
87 * area of the module. Print a warning.
89 res
= probe_kernel_address(s
->name
, tmp
);
91 pr_err("Slab cache with size %d has lost its name\n",
97 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
101 static inline int kmem_cache_sanity_check(const char *name
, size_t size
)
107 void __kmem_cache_free_bulk(struct kmem_cache
*s
, size_t nr
, void **p
)
111 for (i
= 0; i
< nr
; i
++)
112 kmem_cache_free(s
, p
[i
]);
115 int __kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t nr
,
120 for (i
= 0; i
< nr
; i
++) {
121 void *x
= p
[i
] = kmem_cache_alloc(s
, flags
);
123 __kmem_cache_free_bulk(s
, i
, p
);
130 #ifdef CONFIG_MEMCG_KMEM
131 void slab_init_memcg_params(struct kmem_cache
*s
)
133 s
->memcg_params
.is_root_cache
= true;
134 INIT_LIST_HEAD(&s
->memcg_params
.list
);
135 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, NULL
);
138 static int init_memcg_params(struct kmem_cache
*s
,
139 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
141 struct memcg_cache_array
*arr
;
144 s
->memcg_params
.is_root_cache
= false;
145 s
->memcg_params
.memcg
= memcg
;
146 s
->memcg_params
.root_cache
= root_cache
;
150 slab_init_memcg_params(s
);
152 if (!memcg_nr_cache_ids
)
155 arr
= kzalloc(sizeof(struct memcg_cache_array
) +
156 memcg_nr_cache_ids
* sizeof(void *),
161 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, arr
);
165 static void destroy_memcg_params(struct kmem_cache
*s
)
167 if (is_root_cache(s
))
168 kfree(rcu_access_pointer(s
->memcg_params
.memcg_caches
));
171 static int update_memcg_params(struct kmem_cache
*s
, int new_array_size
)
173 struct memcg_cache_array
*old
, *new;
175 if (!is_root_cache(s
))
178 new = kzalloc(sizeof(struct memcg_cache_array
) +
179 new_array_size
* sizeof(void *), GFP_KERNEL
);
183 old
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
184 lockdep_is_held(&slab_mutex
));
186 memcpy(new->entries
, old
->entries
,
187 memcg_nr_cache_ids
* sizeof(void *));
189 rcu_assign_pointer(s
->memcg_params
.memcg_caches
, new);
195 int memcg_update_all_caches(int num_memcgs
)
197 struct kmem_cache
*s
;
200 mutex_lock(&slab_mutex
);
201 list_for_each_entry(s
, &slab_caches
, list
) {
202 ret
= update_memcg_params(s
, num_memcgs
);
204 * Instead of freeing the memory, we'll just leave the caches
205 * up to this point in an updated state.
210 mutex_unlock(&slab_mutex
);
214 static inline int init_memcg_params(struct kmem_cache
*s
,
215 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
220 static inline void destroy_memcg_params(struct kmem_cache
*s
)
223 #endif /* CONFIG_MEMCG_KMEM */
226 * Find a mergeable slab cache
228 int slab_unmergeable(struct kmem_cache
*s
)
230 if (slab_nomerge
|| (s
->flags
& SLAB_NEVER_MERGE
))
233 if (!is_root_cache(s
))
240 * We may have set a slab to be unmergeable during bootstrap.
248 struct kmem_cache
*find_mergeable(size_t size
, size_t align
,
249 unsigned long flags
, const char *name
, void (*ctor
)(void *))
251 struct kmem_cache
*s
;
259 size
= ALIGN(size
, sizeof(void *));
260 align
= calculate_alignment(flags
, align
, size
);
261 size
= ALIGN(size
, align
);
262 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
264 if (flags
& SLAB_NEVER_MERGE
)
267 list_for_each_entry_reverse(s
, &slab_caches
, list
) {
268 if (slab_unmergeable(s
))
274 if ((flags
& SLAB_MERGE_SAME
) != (s
->flags
& SLAB_MERGE_SAME
))
277 * Check if alignment is compatible.
278 * Courtesy of Adrian Drzewiecki
280 if ((s
->size
& ~(align
- 1)) != s
->size
)
283 if (s
->size
- size
>= sizeof(void *))
286 if (IS_ENABLED(CONFIG_SLAB
) && align
&&
287 (align
> s
->align
|| s
->align
% align
))
296 * Figure out what the alignment of the objects will be given a set of
297 * flags, a user specified alignment and the size of the objects.
299 unsigned long calculate_alignment(unsigned long flags
,
300 unsigned long align
, unsigned long size
)
303 * If the user wants hardware cache aligned objects then follow that
304 * suggestion if the object is sufficiently large.
306 * The hardware cache alignment cannot override the specified
307 * alignment though. If that is greater then use it.
309 if (flags
& SLAB_HWCACHE_ALIGN
) {
310 unsigned long ralign
= cache_line_size();
311 while (size
<= ralign
/ 2)
313 align
= max(align
, ralign
);
316 if (align
< ARCH_SLAB_MINALIGN
)
317 align
= ARCH_SLAB_MINALIGN
;
319 return ALIGN(align
, sizeof(void *));
322 static struct kmem_cache
*create_cache(const char *name
,
323 size_t object_size
, size_t size
, size_t align
,
324 unsigned long flags
, void (*ctor
)(void *),
325 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
327 struct kmem_cache
*s
;
331 s
= kmem_cache_zalloc(kmem_cache
, GFP_KERNEL
);
336 s
->object_size
= object_size
;
341 err
= init_memcg_params(s
, memcg
, root_cache
);
345 err
= __kmem_cache_create(s
, flags
);
350 list_add(&s
->list
, &slab_caches
);
357 destroy_memcg_params(s
);
358 kmem_cache_free(kmem_cache
, s
);
363 * kmem_cache_create - Create a cache.
364 * @name: A string which is used in /proc/slabinfo to identify this cache.
365 * @size: The size of objects to be created in this cache.
366 * @align: The required alignment for the objects.
368 * @ctor: A constructor for the objects.
370 * Returns a ptr to the cache on success, NULL on failure.
371 * Cannot be called within a interrupt, but can be interrupted.
372 * The @ctor is run when new pages are allocated by the cache.
376 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
377 * to catch references to uninitialised memory.
379 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
380 * for buffer overruns.
382 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
383 * cacheline. This can be beneficial if you're counting cycles as closely
387 kmem_cache_create(const char *name
, size_t size
, size_t align
,
388 unsigned long flags
, void (*ctor
)(void *))
390 struct kmem_cache
*s
= NULL
;
391 const char *cache_name
;
396 memcg_get_cache_ids();
398 mutex_lock(&slab_mutex
);
400 err
= kmem_cache_sanity_check(name
, size
);
406 * Some allocators will constraint the set of valid flags to a subset
407 * of all flags. We expect them to define CACHE_CREATE_MASK in this
408 * case, and we'll just provide them with a sanitized version of the
411 flags
&= CACHE_CREATE_MASK
;
413 s
= __kmem_cache_alias(name
, size
, align
, flags
, ctor
);
417 cache_name
= kstrdup_const(name
, GFP_KERNEL
);
423 s
= create_cache(cache_name
, size
, size
,
424 calculate_alignment(flags
, align
, size
),
425 flags
, ctor
, NULL
, NULL
);
428 kfree_const(cache_name
);
432 mutex_unlock(&slab_mutex
);
434 memcg_put_cache_ids();
439 if (flags
& SLAB_PANIC
)
440 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
443 printk(KERN_WARNING
"kmem_cache_create(%s) failed with error %d",
451 EXPORT_SYMBOL(kmem_cache_create
);
453 static int shutdown_cache(struct kmem_cache
*s
,
454 struct list_head
*release
, bool *need_rcu_barrier
)
456 if (__kmem_cache_shutdown(s
) != 0)
459 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
460 *need_rcu_barrier
= true;
462 list_move(&s
->list
, release
);
466 static void release_caches(struct list_head
*release
, bool need_rcu_barrier
)
468 struct kmem_cache
*s
, *s2
;
470 if (need_rcu_barrier
)
473 list_for_each_entry_safe(s
, s2
, release
, list
) {
474 #ifdef SLAB_SUPPORTS_SYSFS
475 sysfs_slab_remove(s
);
477 slab_kmem_cache_release(s
);
482 #ifdef CONFIG_MEMCG_KMEM
484 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
485 * @memcg: The memory cgroup the new cache is for.
486 * @root_cache: The parent of the new cache.
488 * This function attempts to create a kmem cache that will serve allocation
489 * requests going from @memcg to @root_cache. The new cache inherits properties
492 void memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
493 struct kmem_cache
*root_cache
)
495 static char memcg_name_buf
[NAME_MAX
+ 1]; /* protected by slab_mutex */
496 struct cgroup_subsys_state
*css
= &memcg
->css
;
497 struct memcg_cache_array
*arr
;
498 struct kmem_cache
*s
= NULL
;
505 mutex_lock(&slab_mutex
);
508 * The memory cgroup could have been deactivated while the cache
509 * creation work was pending.
511 if (!memcg_kmem_is_active(memcg
))
514 idx
= memcg_cache_id(memcg
);
515 arr
= rcu_dereference_protected(root_cache
->memcg_params
.memcg_caches
,
516 lockdep_is_held(&slab_mutex
));
519 * Since per-memcg caches are created asynchronously on first
520 * allocation (see memcg_kmem_get_cache()), several threads can try to
521 * create the same cache, but only one of them may succeed.
523 if (arr
->entries
[idx
])
526 cgroup_name(css
->cgroup
, memcg_name_buf
, sizeof(memcg_name_buf
));
527 cache_name
= kasprintf(GFP_KERNEL
, "%s(%llu:%s)", root_cache
->name
,
528 css
->serial_nr
, memcg_name_buf
);
532 s
= create_cache(cache_name
, root_cache
->object_size
,
533 root_cache
->size
, root_cache
->align
,
534 root_cache
->flags
, root_cache
->ctor
,
537 * If we could not create a memcg cache, do not complain, because
538 * that's not critical at all as we can always proceed with the root
546 list_add(&s
->memcg_params
.list
, &root_cache
->memcg_params
.list
);
549 * Since readers won't lock (see cache_from_memcg_idx()), we need a
550 * barrier here to ensure nobody will see the kmem_cache partially
554 arr
->entries
[idx
] = s
;
557 mutex_unlock(&slab_mutex
);
563 void memcg_deactivate_kmem_caches(struct mem_cgroup
*memcg
)
566 struct memcg_cache_array
*arr
;
567 struct kmem_cache
*s
, *c
;
569 idx
= memcg_cache_id(memcg
);
574 mutex_lock(&slab_mutex
);
575 list_for_each_entry(s
, &slab_caches
, list
) {
576 if (!is_root_cache(s
))
579 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
580 lockdep_is_held(&slab_mutex
));
581 c
= arr
->entries
[idx
];
585 __kmem_cache_shrink(c
, true);
586 arr
->entries
[idx
] = NULL
;
588 mutex_unlock(&slab_mutex
);
594 static int __shutdown_memcg_cache(struct kmem_cache
*s
,
595 struct list_head
*release
, bool *need_rcu_barrier
)
597 BUG_ON(is_root_cache(s
));
599 if (shutdown_cache(s
, release
, need_rcu_barrier
))
602 list_del(&s
->memcg_params
.list
);
606 void memcg_destroy_kmem_caches(struct mem_cgroup
*memcg
)
609 bool need_rcu_barrier
= false;
610 struct kmem_cache
*s
, *s2
;
615 mutex_lock(&slab_mutex
);
616 list_for_each_entry_safe(s
, s2
, &slab_caches
, list
) {
617 if (is_root_cache(s
) || s
->memcg_params
.memcg
!= memcg
)
620 * The cgroup is about to be freed and therefore has no charges
621 * left. Hence, all its caches must be empty by now.
623 BUG_ON(__shutdown_memcg_cache(s
, &release
, &need_rcu_barrier
));
625 mutex_unlock(&slab_mutex
);
630 release_caches(&release
, need_rcu_barrier
);
633 static int shutdown_memcg_caches(struct kmem_cache
*s
,
634 struct list_head
*release
, bool *need_rcu_barrier
)
636 struct memcg_cache_array
*arr
;
637 struct kmem_cache
*c
, *c2
;
641 BUG_ON(!is_root_cache(s
));
644 * First, shutdown active caches, i.e. caches that belong to online
647 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
648 lockdep_is_held(&slab_mutex
));
649 for_each_memcg_cache_index(i
) {
653 if (__shutdown_memcg_cache(c
, release
, need_rcu_barrier
))
655 * The cache still has objects. Move it to a temporary
656 * list so as not to try to destroy it for a second
657 * time while iterating over inactive caches below.
659 list_move(&c
->memcg_params
.list
, &busy
);
662 * The cache is empty and will be destroyed soon. Clear
663 * the pointer to it in the memcg_caches array so that
664 * it will never be accessed even if the root cache
667 arr
->entries
[i
] = NULL
;
671 * Second, shutdown all caches left from memory cgroups that are now
674 list_for_each_entry_safe(c
, c2
, &s
->memcg_params
.list
,
676 __shutdown_memcg_cache(c
, release
, need_rcu_barrier
);
678 list_splice(&busy
, &s
->memcg_params
.list
);
681 * A cache being destroyed must be empty. In particular, this means
682 * that all per memcg caches attached to it must be empty too.
684 if (!list_empty(&s
->memcg_params
.list
))
689 static inline int shutdown_memcg_caches(struct kmem_cache
*s
,
690 struct list_head
*release
, bool *need_rcu_barrier
)
694 #endif /* CONFIG_MEMCG_KMEM */
696 void slab_kmem_cache_release(struct kmem_cache
*s
)
698 destroy_memcg_params(s
);
699 kfree_const(s
->name
);
700 kmem_cache_free(kmem_cache
, s
);
703 void kmem_cache_destroy(struct kmem_cache
*s
)
706 bool need_rcu_barrier
= false;
715 mutex_lock(&slab_mutex
);
721 err
= shutdown_memcg_caches(s
, &release
, &need_rcu_barrier
);
723 err
= shutdown_cache(s
, &release
, &need_rcu_barrier
);
726 pr_err("kmem_cache_destroy %s: "
727 "Slab cache still has objects\n", s
->name
);
731 mutex_unlock(&slab_mutex
);
736 release_caches(&release
, need_rcu_barrier
);
738 EXPORT_SYMBOL(kmem_cache_destroy
);
741 * kmem_cache_shrink - Shrink a cache.
742 * @cachep: The cache to shrink.
744 * Releases as many slabs as possible for a cache.
745 * To help debugging, a zero exit status indicates all slabs were released.
747 int kmem_cache_shrink(struct kmem_cache
*cachep
)
753 ret
= __kmem_cache_shrink(cachep
, false);
758 EXPORT_SYMBOL(kmem_cache_shrink
);
760 bool slab_is_available(void)
762 return slab_state
>= UP
;
766 /* Create a cache during boot when no slab services are available yet */
767 void __init
create_boot_cache(struct kmem_cache
*s
, const char *name
, size_t size
,
773 s
->size
= s
->object_size
= size
;
774 s
->align
= calculate_alignment(flags
, ARCH_KMALLOC_MINALIGN
, size
);
776 slab_init_memcg_params(s
);
778 err
= __kmem_cache_create(s
, flags
);
781 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
784 s
->refcount
= -1; /* Exempt from merging for now */
787 struct kmem_cache
*__init
create_kmalloc_cache(const char *name
, size_t size
,
790 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
793 panic("Out of memory when creating slab %s\n", name
);
795 create_boot_cache(s
, name
, size
, flags
);
796 list_add(&s
->list
, &slab_caches
);
801 struct kmem_cache
*kmalloc_caches
[KMALLOC_SHIFT_HIGH
+ 1];
802 EXPORT_SYMBOL(kmalloc_caches
);
804 #ifdef CONFIG_ZONE_DMA
805 struct kmem_cache
*kmalloc_dma_caches
[KMALLOC_SHIFT_HIGH
+ 1];
806 EXPORT_SYMBOL(kmalloc_dma_caches
);
810 * Conversion table for small slabs sizes / 8 to the index in the
811 * kmalloc array. This is necessary for slabs < 192 since we have non power
812 * of two cache sizes there. The size of larger slabs can be determined using
815 static s8 size_index
[24] = {
842 static inline int size_index_elem(size_t bytes
)
844 return (bytes
- 1) / 8;
848 * Find the kmem_cache structure that serves a given size of
851 struct kmem_cache
*kmalloc_slab(size_t size
, gfp_t flags
)
855 if (unlikely(size
> KMALLOC_MAX_SIZE
)) {
856 WARN_ON_ONCE(!(flags
& __GFP_NOWARN
));
862 return ZERO_SIZE_PTR
;
864 index
= size_index
[size_index_elem(size
)];
866 index
= fls(size
- 1);
868 #ifdef CONFIG_ZONE_DMA
869 if (unlikely((flags
& GFP_DMA
)))
870 return kmalloc_dma_caches
[index
];
873 return kmalloc_caches
[index
];
877 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
878 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
884 } const kmalloc_info
[] __initconst
= {
885 {NULL
, 0}, {"kmalloc-96", 96},
886 {"kmalloc-192", 192}, {"kmalloc-8", 8},
887 {"kmalloc-16", 16}, {"kmalloc-32", 32},
888 {"kmalloc-64", 64}, {"kmalloc-128", 128},
889 {"kmalloc-256", 256}, {"kmalloc-512", 512},
890 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
891 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
892 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
893 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
894 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
895 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
896 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
897 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
898 {"kmalloc-67108864", 67108864}
902 * Patch up the size_index table if we have strange large alignment
903 * requirements for the kmalloc array. This is only the case for
904 * MIPS it seems. The standard arches will not generate any code here.
906 * Largest permitted alignment is 256 bytes due to the way we
907 * handle the index determination for the smaller caches.
909 * Make sure that nothing crazy happens if someone starts tinkering
910 * around with ARCH_KMALLOC_MINALIGN
912 void __init
setup_kmalloc_cache_index_table(void)
916 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
917 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
919 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
920 int elem
= size_index_elem(i
);
922 if (elem
>= ARRAY_SIZE(size_index
))
924 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
927 if (KMALLOC_MIN_SIZE
>= 64) {
929 * The 96 byte size cache is not used if the alignment
932 for (i
= 64 + 8; i
<= 96; i
+= 8)
933 size_index
[size_index_elem(i
)] = 7;
937 if (KMALLOC_MIN_SIZE
>= 128) {
939 * The 192 byte sized cache is not used if the alignment
940 * is 128 byte. Redirect kmalloc to use the 256 byte cache
943 for (i
= 128 + 8; i
<= 192; i
+= 8)
944 size_index
[size_index_elem(i
)] = 8;
948 static void __init
new_kmalloc_cache(int idx
, unsigned long flags
)
950 kmalloc_caches
[idx
] = create_kmalloc_cache(kmalloc_info
[idx
].name
,
951 kmalloc_info
[idx
].size
, flags
);
955 * Create the kmalloc array. Some of the regular kmalloc arrays
956 * may already have been created because they were needed to
957 * enable allocations for slab creation.
959 void __init
create_kmalloc_caches(unsigned long flags
)
963 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
964 if (!kmalloc_caches
[i
])
965 new_kmalloc_cache(i
, flags
);
968 * Caches that are not of the two-to-the-power-of size.
969 * These have to be created immediately after the
970 * earlier power of two caches
972 if (KMALLOC_MIN_SIZE
<= 32 && !kmalloc_caches
[1] && i
== 6)
973 new_kmalloc_cache(1, flags
);
974 if (KMALLOC_MIN_SIZE
<= 64 && !kmalloc_caches
[2] && i
== 7)
975 new_kmalloc_cache(2, flags
);
978 /* Kmalloc array is now usable */
981 #ifdef CONFIG_ZONE_DMA
982 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
983 struct kmem_cache
*s
= kmalloc_caches
[i
];
986 int size
= kmalloc_size(i
);
987 char *n
= kasprintf(GFP_NOWAIT
,
988 "dma-kmalloc-%d", size
);
991 kmalloc_dma_caches
[i
] = create_kmalloc_cache(n
,
992 size
, SLAB_CACHE_DMA
| flags
);
997 #endif /* !CONFIG_SLOB */
1000 * To avoid unnecessary overhead, we pass through large allocation requests
1001 * directly to the page allocator. We use __GFP_COMP, because we will need to
1002 * know the allocation order to free the pages properly in kfree.
1004 void *kmalloc_order(size_t size
, gfp_t flags
, unsigned int order
)
1009 flags
|= __GFP_COMP
;
1010 page
= alloc_kmem_pages(flags
, order
);
1011 ret
= page
? page_address(page
) : NULL
;
1012 kmemleak_alloc(ret
, size
, 1, flags
);
1013 kasan_kmalloc_large(ret
, size
);
1016 EXPORT_SYMBOL(kmalloc_order
);
1018 #ifdef CONFIG_TRACING
1019 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
1021 void *ret
= kmalloc_order(size
, flags
, order
);
1022 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
1025 EXPORT_SYMBOL(kmalloc_order_trace
);
1028 #ifdef CONFIG_SLABINFO
1031 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1033 #define SLABINFO_RIGHTS S_IRUSR
1036 static void print_slabinfo_header(struct seq_file
*m
)
1039 * Output format version, so at least we can change it
1040 * without _too_ many complaints.
1042 #ifdef CONFIG_DEBUG_SLAB
1043 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
1045 seq_puts(m
, "slabinfo - version: 2.1\n");
1047 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
1048 "<objperslab> <pagesperslab>");
1049 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
1050 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1051 #ifdef CONFIG_DEBUG_SLAB
1052 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
1053 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1054 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1059 void *slab_start(struct seq_file
*m
, loff_t
*pos
)
1061 mutex_lock(&slab_mutex
);
1062 return seq_list_start(&slab_caches
, *pos
);
1065 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1067 return seq_list_next(p
, &slab_caches
, pos
);
1070 void slab_stop(struct seq_file
*m
, void *p
)
1072 mutex_unlock(&slab_mutex
);
1076 memcg_accumulate_slabinfo(struct kmem_cache
*s
, struct slabinfo
*info
)
1078 struct kmem_cache
*c
;
1079 struct slabinfo sinfo
;
1081 if (!is_root_cache(s
))
1084 for_each_memcg_cache(c
, s
) {
1085 memset(&sinfo
, 0, sizeof(sinfo
));
1086 get_slabinfo(c
, &sinfo
);
1088 info
->active_slabs
+= sinfo
.active_slabs
;
1089 info
->num_slabs
+= sinfo
.num_slabs
;
1090 info
->shared_avail
+= sinfo
.shared_avail
;
1091 info
->active_objs
+= sinfo
.active_objs
;
1092 info
->num_objs
+= sinfo
.num_objs
;
1096 static void cache_show(struct kmem_cache
*s
, struct seq_file
*m
)
1098 struct slabinfo sinfo
;
1100 memset(&sinfo
, 0, sizeof(sinfo
));
1101 get_slabinfo(s
, &sinfo
);
1103 memcg_accumulate_slabinfo(s
, &sinfo
);
1105 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
1106 cache_name(s
), sinfo
.active_objs
, sinfo
.num_objs
, s
->size
,
1107 sinfo
.objects_per_slab
, (1 << sinfo
.cache_order
));
1109 seq_printf(m
, " : tunables %4u %4u %4u",
1110 sinfo
.limit
, sinfo
.batchcount
, sinfo
.shared
);
1111 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
1112 sinfo
.active_slabs
, sinfo
.num_slabs
, sinfo
.shared_avail
);
1113 slabinfo_show_stats(m
, s
);
1117 static int slab_show(struct seq_file
*m
, void *p
)
1119 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, list
);
1121 if (p
== slab_caches
.next
)
1122 print_slabinfo_header(m
);
1123 if (is_root_cache(s
))
1128 #ifdef CONFIG_MEMCG_KMEM
1129 int memcg_slab_show(struct seq_file
*m
, void *p
)
1131 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, list
);
1132 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1134 if (p
== slab_caches
.next
)
1135 print_slabinfo_header(m
);
1136 if (!is_root_cache(s
) && s
->memcg_params
.memcg
== memcg
)
1143 * slabinfo_op - iterator that generates /proc/slabinfo
1152 * num-pages-per-slab
1153 * + further values on SMP and with statistics enabled
1155 static const struct seq_operations slabinfo_op
= {
1156 .start
= slab_start
,
1162 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
1164 return seq_open(file
, &slabinfo_op
);
1167 static const struct file_operations proc_slabinfo_operations
= {
1168 .open
= slabinfo_open
,
1170 .write
= slabinfo_write
,
1171 .llseek
= seq_lseek
,
1172 .release
= seq_release
,
1175 static int __init
slab_proc_init(void)
1177 proc_create("slabinfo", SLABINFO_RIGHTS
, NULL
,
1178 &proc_slabinfo_operations
);
1181 module_init(slab_proc_init
);
1182 #endif /* CONFIG_SLABINFO */
1184 static __always_inline
void *__do_krealloc(const void *p
, size_t new_size
,
1193 if (ks
>= new_size
) {
1194 kasan_krealloc((void *)p
, new_size
);
1198 ret
= kmalloc_track_caller(new_size
, flags
);
1206 * __krealloc - like krealloc() but don't free @p.
1207 * @p: object to reallocate memory for.
1208 * @new_size: how many bytes of memory are required.
1209 * @flags: the type of memory to allocate.
1211 * This function is like krealloc() except it never frees the originally
1212 * allocated buffer. Use this if you don't want to free the buffer immediately
1213 * like, for example, with RCU.
1215 void *__krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1217 if (unlikely(!new_size
))
1218 return ZERO_SIZE_PTR
;
1220 return __do_krealloc(p
, new_size
, flags
);
1223 EXPORT_SYMBOL(__krealloc
);
1226 * krealloc - reallocate memory. The contents will remain unchanged.
1227 * @p: object to reallocate memory for.
1228 * @new_size: how many bytes of memory are required.
1229 * @flags: the type of memory to allocate.
1231 * The contents of the object pointed to are preserved up to the
1232 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1233 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1234 * %NULL pointer, the object pointed to is freed.
1236 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1240 if (unlikely(!new_size
)) {
1242 return ZERO_SIZE_PTR
;
1245 ret
= __do_krealloc(p
, new_size
, flags
);
1246 if (ret
&& p
!= ret
)
1251 EXPORT_SYMBOL(krealloc
);
1254 * kzfree - like kfree but zero memory
1255 * @p: object to free memory of
1257 * The memory of the object @p points to is zeroed before freed.
1258 * If @p is %NULL, kzfree() does nothing.
1260 * Note: this function zeroes the whole allocated buffer which can be a good
1261 * deal bigger than the requested buffer size passed to kmalloc(). So be
1262 * careful when using this function in performance sensitive code.
1264 void kzfree(const void *p
)
1267 void *mem
= (void *)p
;
1269 if (unlikely(ZERO_OR_NULL_PTR(mem
)))
1272 memzero_explicit(mem
, ks
);
1275 EXPORT_SYMBOL(kzfree
);
1277 /* Tracepoints definitions. */
1278 EXPORT_TRACEPOINT_SYMBOL(kmalloc
);
1279 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc
);
1280 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node
);
1281 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node
);
1282 EXPORT_TRACEPOINT_SYMBOL(kfree
);
1283 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free
);