HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / sound / usb / endpoint.c
blob66648b4bdd289e2d2cc66686df02c234cabe5d53
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 #include <linux/gfp.h>
19 #include <linux/init.h>
20 #include <linux/ratelimit.h>
21 #include <linux/usb.h>
22 #include <linux/usb/audio.h>
23 #include <linux/slab.h>
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
29 #include "usbaudio.h"
30 #include "helper.h"
31 #include "card.h"
32 #include "endpoint.h"
33 #include "pcm.h"
34 #include "quirks.h"
36 #define EP_FLAG_RUNNING 1
37 #define EP_FLAG_STOPPING 2
40 * snd_usb_endpoint is a model that abstracts everything related to an
41 * USB endpoint and its streaming.
43 * There are functions to activate and deactivate the streaming URBs and
44 * optional callbacks to let the pcm logic handle the actual content of the
45 * packets for playback and record. Thus, the bus streaming and the audio
46 * handlers are fully decoupled.
48 * There are two different types of endpoints in audio applications.
50 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both
51 * inbound and outbound traffic.
53 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and
54 * expect the payload to carry Q10.14 / Q16.16 formatted sync information
55 * (3 or 4 bytes).
57 * Each endpoint has to be configured prior to being used by calling
58 * snd_usb_endpoint_set_params().
60 * The model incorporates a reference counting, so that multiple users
61 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and
62 * only the first user will effectively start the URBs, and only the last
63 * one to stop it will tear the URBs down again.
67 * convert a sampling rate into our full speed format (fs/1000 in Q16.16)
68 * this will overflow at approx 524 kHz
70 static inline unsigned get_usb_full_speed_rate(unsigned int rate)
72 return ((rate << 13) + 62) / 125;
76 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
77 * this will overflow at approx 4 MHz
79 static inline unsigned get_usb_high_speed_rate(unsigned int rate)
81 return ((rate << 10) + 62) / 125;
85 * release a urb data
87 static void release_urb_ctx(struct snd_urb_ctx *u)
89 if (u->buffer_size)
90 usb_free_coherent(u->ep->chip->dev, u->buffer_size,
91 u->urb->transfer_buffer,
92 u->urb->transfer_dma);
93 usb_free_urb(u->urb);
94 u->urb = NULL;
97 static const char *usb_error_string(int err)
99 switch (err) {
100 case -ENODEV:
101 return "no device";
102 case -ENOENT:
103 return "endpoint not enabled";
104 case -EPIPE:
105 return "endpoint stalled";
106 case -ENOSPC:
107 return "not enough bandwidth";
108 case -ESHUTDOWN:
109 return "device disabled";
110 case -EHOSTUNREACH:
111 return "device suspended";
112 case -EINVAL:
113 case -EAGAIN:
114 case -EFBIG:
115 case -EMSGSIZE:
116 return "internal error";
117 default:
118 return "unknown error";
123 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type
125 * @ep: The snd_usb_endpoint
127 * Determine whether an endpoint is driven by an implicit feedback
128 * data endpoint source.
130 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep)
132 return ep->sync_master &&
133 ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA &&
134 ep->type == SND_USB_ENDPOINT_TYPE_DATA &&
135 usb_pipeout(ep->pipe);
139 * For streaming based on information derived from sync endpoints,
140 * prepare_outbound_urb_sizes() will call next_packet_size() to
141 * determine the number of samples to be sent in the next packet.
143 * For implicit feedback, next_packet_size() is unused.
145 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep)
147 unsigned long flags;
148 int ret;
150 if (ep->fill_max)
151 return ep->maxframesize;
153 spin_lock_irqsave(&ep->lock, flags);
154 ep->phase = (ep->phase & 0xffff)
155 + (ep->freqm << ep->datainterval);
156 ret = min(ep->phase >> 16, ep->maxframesize);
157 spin_unlock_irqrestore(&ep->lock, flags);
159 return ret;
162 static void retire_outbound_urb(struct snd_usb_endpoint *ep,
163 struct snd_urb_ctx *urb_ctx)
165 if (ep->retire_data_urb)
166 ep->retire_data_urb(ep->data_subs, urb_ctx->urb);
169 static void retire_inbound_urb(struct snd_usb_endpoint *ep,
170 struct snd_urb_ctx *urb_ctx)
172 struct urb *urb = urb_ctx->urb;
174 if (unlikely(ep->skip_packets > 0)) {
175 ep->skip_packets--;
176 return;
179 if (ep->sync_slave)
180 snd_usb_handle_sync_urb(ep->sync_slave, ep, urb);
182 if (ep->retire_data_urb)
183 ep->retire_data_urb(ep->data_subs, urb);
186 static void prepare_silent_urb(struct snd_usb_endpoint *ep,
187 struct snd_urb_ctx *ctx)
189 struct urb *urb = ctx->urb;
190 unsigned int offs = 0;
191 unsigned int extra = 0;
192 __le32 packet_length;
193 int i;
195 /* For tx_length_quirk, put packet length at start of packet */
196 if (ep->chip->tx_length_quirk)
197 extra = sizeof(packet_length);
199 for (i = 0; i < ctx->packets; ++i) {
200 unsigned int offset;
201 unsigned int length;
202 int counts;
204 if (ctx->packet_size[i])
205 counts = ctx->packet_size[i];
206 else
207 counts = snd_usb_endpoint_next_packet_size(ep);
209 length = counts * ep->stride; /* number of silent bytes */
210 offset = offs * ep->stride + extra * i;
211 urb->iso_frame_desc[i].offset = offset;
212 urb->iso_frame_desc[i].length = length + extra;
213 if (extra) {
214 packet_length = cpu_to_le32(length);
215 memcpy(urb->transfer_buffer + offset,
216 &packet_length, sizeof(packet_length));
218 memset(urb->transfer_buffer + offset + extra,
219 ep->silence_value, length);
220 offs += counts;
223 urb->number_of_packets = ctx->packets;
224 urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra;
228 * Prepare a PLAYBACK urb for submission to the bus.
230 static void prepare_outbound_urb(struct snd_usb_endpoint *ep,
231 struct snd_urb_ctx *ctx)
233 struct urb *urb = ctx->urb;
234 unsigned char *cp = urb->transfer_buffer;
236 urb->dev = ep->chip->dev; /* we need to set this at each time */
238 switch (ep->type) {
239 case SND_USB_ENDPOINT_TYPE_DATA:
240 if (ep->prepare_data_urb) {
241 ep->prepare_data_urb(ep->data_subs, urb);
242 } else {
243 /* no data provider, so send silence */
244 prepare_silent_urb(ep, ctx);
246 break;
248 case SND_USB_ENDPOINT_TYPE_SYNC:
249 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) {
251 * fill the length and offset of each urb descriptor.
252 * the fixed 12.13 frequency is passed as 16.16 through the pipe.
254 urb->iso_frame_desc[0].length = 4;
255 urb->iso_frame_desc[0].offset = 0;
256 cp[0] = ep->freqn;
257 cp[1] = ep->freqn >> 8;
258 cp[2] = ep->freqn >> 16;
259 cp[3] = ep->freqn >> 24;
260 } else {
262 * fill the length and offset of each urb descriptor.
263 * the fixed 10.14 frequency is passed through the pipe.
265 urb->iso_frame_desc[0].length = 3;
266 urb->iso_frame_desc[0].offset = 0;
267 cp[0] = ep->freqn >> 2;
268 cp[1] = ep->freqn >> 10;
269 cp[2] = ep->freqn >> 18;
272 break;
277 * Prepare a CAPTURE or SYNC urb for submission to the bus.
279 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep,
280 struct snd_urb_ctx *urb_ctx)
282 int i, offs;
283 struct urb *urb = urb_ctx->urb;
285 urb->dev = ep->chip->dev; /* we need to set this at each time */
287 switch (ep->type) {
288 case SND_USB_ENDPOINT_TYPE_DATA:
289 offs = 0;
290 for (i = 0; i < urb_ctx->packets; i++) {
291 urb->iso_frame_desc[i].offset = offs;
292 urb->iso_frame_desc[i].length = ep->curpacksize;
293 offs += ep->curpacksize;
296 urb->transfer_buffer_length = offs;
297 urb->number_of_packets = urb_ctx->packets;
298 break;
300 case SND_USB_ENDPOINT_TYPE_SYNC:
301 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize);
302 urb->iso_frame_desc[0].offset = 0;
303 break;
308 * Send output urbs that have been prepared previously. URBs are dequeued
309 * from ep->ready_playback_urbs and in case there there aren't any available
310 * or there are no packets that have been prepared, this function does
311 * nothing.
313 * The reason why the functionality of sending and preparing URBs is separated
314 * is that host controllers don't guarantee the order in which they return
315 * inbound and outbound packets to their submitters.
317 * This function is only used for implicit feedback endpoints. For endpoints
318 * driven by dedicated sync endpoints, URBs are immediately re-submitted
319 * from their completion handler.
321 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep)
323 while (test_bit(EP_FLAG_RUNNING, &ep->flags)) {
325 unsigned long flags;
326 struct snd_usb_packet_info *uninitialized_var(packet);
327 struct snd_urb_ctx *ctx = NULL;
328 struct urb *urb;
329 int err, i;
331 spin_lock_irqsave(&ep->lock, flags);
332 if (ep->next_packet_read_pos != ep->next_packet_write_pos) {
333 packet = ep->next_packet + ep->next_packet_read_pos;
334 ep->next_packet_read_pos++;
335 ep->next_packet_read_pos %= MAX_URBS;
337 /* take URB out of FIFO */
338 if (!list_empty(&ep->ready_playback_urbs))
339 ctx = list_first_entry(&ep->ready_playback_urbs,
340 struct snd_urb_ctx, ready_list);
342 spin_unlock_irqrestore(&ep->lock, flags);
344 if (ctx == NULL)
345 return;
347 list_del_init(&ctx->ready_list);
348 urb = ctx->urb;
350 /* copy over the length information */
351 for (i = 0; i < packet->packets; i++)
352 ctx->packet_size[i] = packet->packet_size[i];
354 /* call the data handler to fill in playback data */
355 prepare_outbound_urb(ep, ctx);
357 err = usb_submit_urb(ctx->urb, GFP_ATOMIC);
358 if (err < 0)
359 usb_audio_err(ep->chip,
360 "Unable to submit urb #%d: %d (urb %p)\n",
361 ctx->index, err, ctx->urb);
362 else
363 set_bit(ctx->index, &ep->active_mask);
368 * complete callback for urbs
370 static void snd_complete_urb(struct urb *urb)
372 struct snd_urb_ctx *ctx = urb->context;
373 struct snd_usb_endpoint *ep = ctx->ep;
374 struct snd_pcm_substream *substream;
375 unsigned long flags;
376 int err;
378 if (unlikely(urb->status == -ENOENT || /* unlinked */
379 urb->status == -ENODEV || /* device removed */
380 urb->status == -ECONNRESET || /* unlinked */
381 urb->status == -ESHUTDOWN)) /* device disabled */
382 goto exit_clear;
383 /* device disconnected */
384 if (unlikely(atomic_read(&ep->chip->shutdown)))
385 goto exit_clear;
387 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
388 goto exit_clear;
390 if (usb_pipeout(ep->pipe)) {
391 retire_outbound_urb(ep, ctx);
392 /* can be stopped during retire callback */
393 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
394 goto exit_clear;
396 if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
397 spin_lock_irqsave(&ep->lock, flags);
398 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
399 spin_unlock_irqrestore(&ep->lock, flags);
400 queue_pending_output_urbs(ep);
402 goto exit_clear;
405 prepare_outbound_urb(ep, ctx);
406 /* can be stopped during prepare callback */
407 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
408 goto exit_clear;
409 } else {
410 retire_inbound_urb(ep, ctx);
411 /* can be stopped during retire callback */
412 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
413 goto exit_clear;
415 prepare_inbound_urb(ep, ctx);
418 err = usb_submit_urb(urb, GFP_ATOMIC);
419 if (err == 0)
420 return;
422 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err);
423 if (ep->data_subs && ep->data_subs->pcm_substream) {
424 substream = ep->data_subs->pcm_substream;
425 snd_pcm_stop_xrun(substream);
428 exit_clear:
429 clear_bit(ctx->index, &ep->active_mask);
433 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip
435 * @chip: The chip
436 * @alts: The USB host interface
437 * @ep_num: The number of the endpoint to use
438 * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE
439 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC
441 * If the requested endpoint has not been added to the given chip before,
442 * a new instance is created. Otherwise, a pointer to the previoulsy
443 * created instance is returned. In case of any error, NULL is returned.
445 * New endpoints will be added to chip->ep_list and must be freed by
446 * calling snd_usb_endpoint_free().
448 * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that
449 * bNumEndpoints > 1 beforehand.
451 struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip,
452 struct usb_host_interface *alts,
453 int ep_num, int direction, int type)
455 struct snd_usb_endpoint *ep;
456 int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK;
458 if (WARN_ON(!alts))
459 return NULL;
461 mutex_lock(&chip->mutex);
463 list_for_each_entry(ep, &chip->ep_list, list) {
464 if (ep->ep_num == ep_num &&
465 ep->iface == alts->desc.bInterfaceNumber &&
466 ep->altsetting == alts->desc.bAlternateSetting) {
467 usb_audio_dbg(ep->chip,
468 "Re-using EP %x in iface %d,%d @%p\n",
469 ep_num, ep->iface, ep->altsetting, ep);
470 goto __exit_unlock;
474 usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n",
475 is_playback ? "playback" : "capture",
476 type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync",
477 ep_num);
479 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
480 if (!ep)
481 goto __exit_unlock;
483 ep->chip = chip;
484 spin_lock_init(&ep->lock);
485 ep->type = type;
486 ep->ep_num = ep_num;
487 ep->iface = alts->desc.bInterfaceNumber;
488 ep->altsetting = alts->desc.bAlternateSetting;
489 INIT_LIST_HEAD(&ep->ready_playback_urbs);
490 ep_num &= USB_ENDPOINT_NUMBER_MASK;
492 if (is_playback)
493 ep->pipe = usb_sndisocpipe(chip->dev, ep_num);
494 else
495 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num);
497 if (type == SND_USB_ENDPOINT_TYPE_SYNC) {
498 if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
499 get_endpoint(alts, 1)->bRefresh >= 1 &&
500 get_endpoint(alts, 1)->bRefresh <= 9)
501 ep->syncinterval = get_endpoint(alts, 1)->bRefresh;
502 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL)
503 ep->syncinterval = 1;
504 else if (get_endpoint(alts, 1)->bInterval >= 1 &&
505 get_endpoint(alts, 1)->bInterval <= 16)
506 ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1;
507 else
508 ep->syncinterval = 3;
510 ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize);
512 if (chip->usb_id == USB_ID(0x0644, 0x8038) /* TEAC UD-H01 */ &&
513 ep->syncmaxsize == 4)
514 ep->udh01_fb_quirk = 1;
517 list_add_tail(&ep->list, &chip->ep_list);
519 __exit_unlock:
520 mutex_unlock(&chip->mutex);
522 return ep;
526 * wait until all urbs are processed.
528 static int wait_clear_urbs(struct snd_usb_endpoint *ep)
530 unsigned long end_time = jiffies + msecs_to_jiffies(1000);
531 int alive;
533 do {
534 alive = bitmap_weight(&ep->active_mask, ep->nurbs);
535 if (!alive)
536 break;
538 schedule_timeout_uninterruptible(1);
539 } while (time_before(jiffies, end_time));
541 if (alive)
542 usb_audio_err(ep->chip,
543 "timeout: still %d active urbs on EP #%x\n",
544 alive, ep->ep_num);
545 clear_bit(EP_FLAG_STOPPING, &ep->flags);
547 ep->data_subs = NULL;
548 ep->sync_slave = NULL;
549 ep->retire_data_urb = NULL;
550 ep->prepare_data_urb = NULL;
552 return 0;
555 /* sync the pending stop operation;
556 * this function itself doesn't trigger the stop operation
558 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep)
560 if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags))
561 wait_clear_urbs(ep);
565 * unlink active urbs.
567 static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force)
569 unsigned int i;
571 if (!force && atomic_read(&ep->chip->shutdown)) /* to be sure... */
572 return -EBADFD;
574 clear_bit(EP_FLAG_RUNNING, &ep->flags);
576 INIT_LIST_HEAD(&ep->ready_playback_urbs);
577 ep->next_packet_read_pos = 0;
578 ep->next_packet_write_pos = 0;
580 for (i = 0; i < ep->nurbs; i++) {
581 if (test_bit(i, &ep->active_mask)) {
582 if (!test_and_set_bit(i, &ep->unlink_mask)) {
583 struct urb *u = ep->urb[i].urb;
584 usb_unlink_urb(u);
589 return 0;
593 * release an endpoint's urbs
595 static void release_urbs(struct snd_usb_endpoint *ep, int force)
597 int i;
599 /* route incoming urbs to nirvana */
600 ep->retire_data_urb = NULL;
601 ep->prepare_data_urb = NULL;
603 /* stop urbs */
604 deactivate_urbs(ep, force);
605 wait_clear_urbs(ep);
607 for (i = 0; i < ep->nurbs; i++)
608 release_urb_ctx(&ep->urb[i]);
610 if (ep->syncbuf)
611 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4,
612 ep->syncbuf, ep->sync_dma);
614 ep->syncbuf = NULL;
615 ep->nurbs = 0;
619 * configure a data endpoint
621 static int data_ep_set_params(struct snd_usb_endpoint *ep,
622 snd_pcm_format_t pcm_format,
623 unsigned int channels,
624 unsigned int period_bytes,
625 unsigned int frames_per_period,
626 unsigned int periods_per_buffer,
627 struct audioformat *fmt,
628 struct snd_usb_endpoint *sync_ep)
630 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
631 unsigned int max_packs_per_period, urbs_per_period, urb_packs;
632 unsigned int max_urbs, i;
633 int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels;
634 int tx_length_quirk = (ep->chip->tx_length_quirk &&
635 usb_pipeout(ep->pipe));
637 if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
639 * When operating in DSD DOP mode, the size of a sample frame
640 * in hardware differs from the actual physical format width
641 * because we need to make room for the DOP markers.
643 frame_bits += channels << 3;
646 ep->datainterval = fmt->datainterval;
647 ep->stride = frame_bits >> 3;
648 ep->silence_value = pcm_format == SNDRV_PCM_FORMAT_U8 ? 0x80 : 0;
650 /* assume max. frequency is 25% higher than nominal */
651 ep->freqmax = ep->freqn + (ep->freqn >> 2);
652 /* Round up freqmax to nearest integer in order to calculate maximum
653 * packet size, which must represent a whole number of frames.
654 * This is accomplished by adding 0x0.ffff before converting the
655 * Q16.16 format into integer.
656 * In order to accurately calculate the maximum packet size when
657 * the data interval is more than 1 (i.e. ep->datainterval > 0),
658 * multiply by the data interval prior to rounding. For instance,
659 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125)
660 * frames with a data interval of 1, but 11 (10.25) frames with a
661 * data interval of 2.
662 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the
663 * maximum datainterval value of 3, at USB full speed, higher for
664 * USB high speed, noting that ep->freqmax is in units of
665 * frames per packet in Q16.16 format.)
667 maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) *
668 (frame_bits >> 3);
669 if (tx_length_quirk)
670 maxsize += sizeof(__le32); /* Space for length descriptor */
671 /* but wMaxPacketSize might reduce this */
672 if (ep->maxpacksize && ep->maxpacksize < maxsize) {
673 /* whatever fits into a max. size packet */
674 unsigned int data_maxsize = maxsize = ep->maxpacksize;
676 if (tx_length_quirk)
677 /* Need to remove the length descriptor to calc freq */
678 data_maxsize -= sizeof(__le32);
679 ep->freqmax = (data_maxsize / (frame_bits >> 3))
680 << (16 - ep->datainterval);
683 if (ep->fill_max)
684 ep->curpacksize = ep->maxpacksize;
685 else
686 ep->curpacksize = maxsize;
688 if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) {
689 packs_per_ms = 8 >> ep->datainterval;
690 max_packs_per_urb = MAX_PACKS_HS;
691 } else {
692 packs_per_ms = 1;
693 max_packs_per_urb = MAX_PACKS;
695 if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep))
696 max_packs_per_urb = min(max_packs_per_urb,
697 1U << sync_ep->syncinterval);
698 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);
701 * Capture endpoints need to use small URBs because there's no way
702 * to tell in advance where the next period will end, and we don't
703 * want the next URB to complete much after the period ends.
705 * Playback endpoints with implicit sync much use the same parameters
706 * as their corresponding capture endpoint.
708 if (usb_pipein(ep->pipe) ||
709 snd_usb_endpoint_implicit_feedback_sink(ep)) {
711 urb_packs = packs_per_ms;
713 * Wireless devices can poll at a max rate of once per 4ms.
714 * For dataintervals less than 5, increase the packet count to
715 * allow the host controller to use bursting to fill in the
716 * gaps.
718 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) {
719 int interval = ep->datainterval;
720 while (interval < 5) {
721 urb_packs <<= 1;
722 ++interval;
725 /* make capture URBs <= 1 ms and smaller than a period */
726 urb_packs = min(max_packs_per_urb, urb_packs);
727 while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
728 urb_packs >>= 1;
729 ep->nurbs = MAX_URBS;
732 * Playback endpoints without implicit sync are adjusted so that
733 * a period fits as evenly as possible in the smallest number of
734 * URBs. The total number of URBs is adjusted to the size of the
735 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
737 } else {
738 /* determine how small a packet can be */
739 minsize = (ep->freqn >> (16 - ep->datainterval)) *
740 (frame_bits >> 3);
741 /* with sync from device, assume it can be 12% lower */
742 if (sync_ep)
743 minsize -= minsize >> 3;
744 minsize = max(minsize, 1u);
746 /* how many packets will contain an entire ALSA period? */
747 max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize);
749 /* how many URBs will contain a period? */
750 urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
751 max_packs_per_urb);
752 /* how many packets are needed in each URB? */
753 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);
755 /* limit the number of frames in a single URB */
756 ep->max_urb_frames = DIV_ROUND_UP(frames_per_period,
757 urbs_per_period);
759 /* try to use enough URBs to contain an entire ALSA buffer */
760 max_urbs = min((unsigned) MAX_URBS,
761 MAX_QUEUE * packs_per_ms / urb_packs);
762 ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer);
765 /* allocate and initialize data urbs */
766 for (i = 0; i < ep->nurbs; i++) {
767 struct snd_urb_ctx *u = &ep->urb[i];
768 u->index = i;
769 u->ep = ep;
770 u->packets = urb_packs;
771 u->buffer_size = maxsize * u->packets;
773 if (fmt->fmt_type == UAC_FORMAT_TYPE_II)
774 u->packets++; /* for transfer delimiter */
775 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
776 if (!u->urb)
777 goto out_of_memory;
779 u->urb->transfer_buffer =
780 usb_alloc_coherent(ep->chip->dev, u->buffer_size,
781 GFP_KERNEL, &u->urb->transfer_dma);
782 if (!u->urb->transfer_buffer)
783 goto out_of_memory;
784 u->urb->pipe = ep->pipe;
785 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
786 u->urb->interval = 1 << ep->datainterval;
787 u->urb->context = u;
788 u->urb->complete = snd_complete_urb;
789 INIT_LIST_HEAD(&u->ready_list);
792 return 0;
794 out_of_memory:
795 release_urbs(ep, 0);
796 return -ENOMEM;
800 * configure a sync endpoint
802 static int sync_ep_set_params(struct snd_usb_endpoint *ep)
804 int i;
806 ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4,
807 GFP_KERNEL, &ep->sync_dma);
808 if (!ep->syncbuf)
809 return -ENOMEM;
811 for (i = 0; i < SYNC_URBS; i++) {
812 struct snd_urb_ctx *u = &ep->urb[i];
813 u->index = i;
814 u->ep = ep;
815 u->packets = 1;
816 u->urb = usb_alloc_urb(1, GFP_KERNEL);
817 if (!u->urb)
818 goto out_of_memory;
819 u->urb->transfer_buffer = ep->syncbuf + i * 4;
820 u->urb->transfer_dma = ep->sync_dma + i * 4;
821 u->urb->transfer_buffer_length = 4;
822 u->urb->pipe = ep->pipe;
823 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
824 u->urb->number_of_packets = 1;
825 u->urb->interval = 1 << ep->syncinterval;
826 u->urb->context = u;
827 u->urb->complete = snd_complete_urb;
830 ep->nurbs = SYNC_URBS;
832 return 0;
834 out_of_memory:
835 release_urbs(ep, 0);
836 return -ENOMEM;
840 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint
842 * @ep: the snd_usb_endpoint to configure
843 * @pcm_format: the audio fomat.
844 * @channels: the number of audio channels.
845 * @period_bytes: the number of bytes in one alsa period.
846 * @period_frames: the number of frames in one alsa period.
847 * @buffer_periods: the number of periods in one alsa buffer.
848 * @rate: the frame rate.
849 * @fmt: the USB audio format information
850 * @sync_ep: the sync endpoint to use, if any
852 * Determine the number of URBs to be used on this endpoint.
853 * An endpoint must be configured before it can be started.
854 * An endpoint that is already running can not be reconfigured.
856 int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep,
857 snd_pcm_format_t pcm_format,
858 unsigned int channels,
859 unsigned int period_bytes,
860 unsigned int period_frames,
861 unsigned int buffer_periods,
862 unsigned int rate,
863 struct audioformat *fmt,
864 struct snd_usb_endpoint *sync_ep)
866 int err;
868 if (ep->use_count != 0) {
869 usb_audio_warn(ep->chip,
870 "Unable to change format on ep #%x: already in use\n",
871 ep->ep_num);
872 return -EBUSY;
875 /* release old buffers, if any */
876 release_urbs(ep, 0);
878 ep->datainterval = fmt->datainterval;
879 ep->maxpacksize = fmt->maxpacksize;
880 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX);
882 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL)
883 ep->freqn = get_usb_full_speed_rate(rate);
884 else
885 ep->freqn = get_usb_high_speed_rate(rate);
887 /* calculate the frequency in 16.16 format */
888 ep->freqm = ep->freqn;
889 ep->freqshift = INT_MIN;
891 ep->phase = 0;
893 switch (ep->type) {
894 case SND_USB_ENDPOINT_TYPE_DATA:
895 err = data_ep_set_params(ep, pcm_format, channels,
896 period_bytes, period_frames,
897 buffer_periods, fmt, sync_ep);
898 break;
899 case SND_USB_ENDPOINT_TYPE_SYNC:
900 err = sync_ep_set_params(ep);
901 break;
902 default:
903 err = -EINVAL;
906 usb_audio_dbg(ep->chip,
907 "Setting params for ep #%x (type %d, %d urbs), ret=%d\n",
908 ep->ep_num, ep->type, ep->nurbs, err);
910 return err;
914 * snd_usb_endpoint_start: start an snd_usb_endpoint
916 * @ep: the endpoint to start
918 * A call to this function will increment the use count of the endpoint.
919 * In case it is not already running, the URBs for this endpoint will be
920 * submitted. Otherwise, this function does nothing.
922 * Must be balanced to calls of snd_usb_endpoint_stop().
924 * Returns an error if the URB submission failed, 0 in all other cases.
926 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep)
928 int err;
929 unsigned int i;
931 if (atomic_read(&ep->chip->shutdown))
932 return -EBADFD;
934 /* already running? */
935 if (++ep->use_count != 1)
936 return 0;
938 /* just to be sure */
939 deactivate_urbs(ep, false);
941 ep->active_mask = 0;
942 ep->unlink_mask = 0;
943 ep->phase = 0;
945 snd_usb_endpoint_start_quirk(ep);
948 * If this endpoint has a data endpoint as implicit feedback source,
949 * don't start the urbs here. Instead, mark them all as available,
950 * wait for the record urbs to return and queue the playback urbs
951 * from that context.
954 set_bit(EP_FLAG_RUNNING, &ep->flags);
956 if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
957 for (i = 0; i < ep->nurbs; i++) {
958 struct snd_urb_ctx *ctx = ep->urb + i;
959 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
962 return 0;
965 for (i = 0; i < ep->nurbs; i++) {
966 struct urb *urb = ep->urb[i].urb;
968 if (snd_BUG_ON(!urb))
969 goto __error;
971 if (usb_pipeout(ep->pipe)) {
972 prepare_outbound_urb(ep, urb->context);
973 } else {
974 prepare_inbound_urb(ep, urb->context);
977 err = usb_submit_urb(urb, GFP_ATOMIC);
978 if (err < 0) {
979 usb_audio_err(ep->chip,
980 "cannot submit urb %d, error %d: %s\n",
981 i, err, usb_error_string(err));
982 goto __error;
984 set_bit(i, &ep->active_mask);
987 return 0;
989 __error:
990 clear_bit(EP_FLAG_RUNNING, &ep->flags);
991 ep->use_count--;
992 deactivate_urbs(ep, false);
993 return -EPIPE;
997 * snd_usb_endpoint_stop: stop an snd_usb_endpoint
999 * @ep: the endpoint to stop (may be NULL)
1001 * A call to this function will decrement the use count of the endpoint.
1002 * In case the last user has requested the endpoint stop, the URBs will
1003 * actually be deactivated.
1005 * Must be balanced to calls of snd_usb_endpoint_start().
1007 * The caller needs to synchronize the pending stop operation via
1008 * snd_usb_endpoint_sync_pending_stop().
1010 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep)
1012 if (!ep)
1013 return;
1015 if (snd_BUG_ON(ep->use_count == 0))
1016 return;
1018 if (--ep->use_count == 0) {
1019 deactivate_urbs(ep, false);
1020 set_bit(EP_FLAG_STOPPING, &ep->flags);
1025 * snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint
1027 * @ep: the endpoint to deactivate
1029 * If the endpoint is not currently in use, this functions will
1030 * deactivate its associated URBs.
1032 * In case of any active users, this functions does nothing.
1034 void snd_usb_endpoint_deactivate(struct snd_usb_endpoint *ep)
1036 if (!ep)
1037 return;
1039 if (ep->use_count != 0)
1040 return;
1042 deactivate_urbs(ep, true);
1043 wait_clear_urbs(ep);
1047 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint
1049 * @ep: the endpoint to release
1051 * This function does not care for the endpoint's use count but will tear
1052 * down all the streaming URBs immediately.
1054 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep)
1056 release_urbs(ep, 1);
1060 * snd_usb_endpoint_free: Free the resources of an snd_usb_endpoint
1062 * @ep: the endpoint to free
1064 * This free all resources of the given ep.
1066 void snd_usb_endpoint_free(struct snd_usb_endpoint *ep)
1068 kfree(ep);
1072 * snd_usb_handle_sync_urb: parse an USB sync packet
1074 * @ep: the endpoint to handle the packet
1075 * @sender: the sending endpoint
1076 * @urb: the received packet
1078 * This function is called from the context of an endpoint that received
1079 * the packet and is used to let another endpoint object handle the payload.
1081 void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep,
1082 struct snd_usb_endpoint *sender,
1083 const struct urb *urb)
1085 int shift;
1086 unsigned int f;
1087 unsigned long flags;
1089 snd_BUG_ON(ep == sender);
1092 * In case the endpoint is operating in implicit feedback mode, prepare
1093 * a new outbound URB that has the same layout as the received packet
1094 * and add it to the list of pending urbs. queue_pending_output_urbs()
1095 * will take care of them later.
1097 if (snd_usb_endpoint_implicit_feedback_sink(ep) &&
1098 ep->use_count != 0) {
1100 /* implicit feedback case */
1101 int i, bytes = 0;
1102 struct snd_urb_ctx *in_ctx;
1103 struct snd_usb_packet_info *out_packet;
1105 in_ctx = urb->context;
1107 /* Count overall packet size */
1108 for (i = 0; i < in_ctx->packets; i++)
1109 if (urb->iso_frame_desc[i].status == 0)
1110 bytes += urb->iso_frame_desc[i].actual_length;
1113 * skip empty packets. At least M-Audio's Fast Track Ultra stops
1114 * streaming once it received a 0-byte OUT URB
1116 if (bytes == 0)
1117 return;
1119 spin_lock_irqsave(&ep->lock, flags);
1120 out_packet = ep->next_packet + ep->next_packet_write_pos;
1123 * Iterate through the inbound packet and prepare the lengths
1124 * for the output packet. The OUT packet we are about to send
1125 * will have the same amount of payload bytes per stride as the
1126 * IN packet we just received. Since the actual size is scaled
1127 * by the stride, use the sender stride to calculate the length
1128 * in case the number of channels differ between the implicitly
1129 * fed-back endpoint and the synchronizing endpoint.
1132 out_packet->packets = in_ctx->packets;
1133 for (i = 0; i < in_ctx->packets; i++) {
1134 if (urb->iso_frame_desc[i].status == 0)
1135 out_packet->packet_size[i] =
1136 urb->iso_frame_desc[i].actual_length / sender->stride;
1137 else
1138 out_packet->packet_size[i] = 0;
1141 ep->next_packet_write_pos++;
1142 ep->next_packet_write_pos %= MAX_URBS;
1143 spin_unlock_irqrestore(&ep->lock, flags);
1144 queue_pending_output_urbs(ep);
1146 return;
1150 * process after playback sync complete
1152 * Full speed devices report feedback values in 10.14 format as samples
1153 * per frame, high speed devices in 16.16 format as samples per
1154 * microframe.
1156 * Because the Audio Class 1 spec was written before USB 2.0, many high
1157 * speed devices use a wrong interpretation, some others use an
1158 * entirely different format.
1160 * Therefore, we cannot predict what format any particular device uses
1161 * and must detect it automatically.
1164 if (urb->iso_frame_desc[0].status != 0 ||
1165 urb->iso_frame_desc[0].actual_length < 3)
1166 return;
1168 f = le32_to_cpup(urb->transfer_buffer);
1169 if (urb->iso_frame_desc[0].actual_length == 3)
1170 f &= 0x00ffffff;
1171 else
1172 f &= 0x0fffffff;
1174 if (f == 0)
1175 return;
1177 if (unlikely(sender->udh01_fb_quirk)) {
1179 * The TEAC UD-H01 firmware sometimes changes the feedback value
1180 * by +/- 0x1.0000.
1182 if (f < ep->freqn - 0x8000)
1183 f += 0x10000;
1184 else if (f > ep->freqn + 0x8000)
1185 f -= 0x10000;
1186 } else if (unlikely(ep->freqshift == INT_MIN)) {
1188 * The first time we see a feedback value, determine its format
1189 * by shifting it left or right until it matches the nominal
1190 * frequency value. This assumes that the feedback does not
1191 * differ from the nominal value more than +50% or -25%.
1193 shift = 0;
1194 while (f < ep->freqn - ep->freqn / 4) {
1195 f <<= 1;
1196 shift++;
1198 while (f > ep->freqn + ep->freqn / 2) {
1199 f >>= 1;
1200 shift--;
1202 ep->freqshift = shift;
1203 } else if (ep->freqshift >= 0)
1204 f <<= ep->freqshift;
1205 else
1206 f >>= -ep->freqshift;
1208 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) {
1210 * If the frequency looks valid, set it.
1211 * This value is referred to in prepare_playback_urb().
1213 spin_lock_irqsave(&ep->lock, flags);
1214 ep->freqm = f;
1215 spin_unlock_irqrestore(&ep->lock, flags);
1216 } else {
1218 * Out of range; maybe the shift value is wrong.
1219 * Reset it so that we autodetect again the next time.
1221 ep->freqshift = INT_MIN;