x86/CPU/AMD: Have smp_num_siblings and cpu_llc_id always be present
[linux/fpc-iii.git] / arch / x86 / kernel / smpboot.c
blobf5d30c68fd09c564c03c6c597007152fac5957ee
1 /*
2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
15 * This code is released under the GNU General Public License version 2 or
16 * later.
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/export.h>
47 #include <linux/sched.h>
48 #include <linux/sched/topology.h>
49 #include <linux/sched/hotplug.h>
50 #include <linux/sched/task_stack.h>
51 #include <linux/percpu.h>
52 #include <linux/bootmem.h>
53 #include <linux/err.h>
54 #include <linux/nmi.h>
55 #include <linux/tboot.h>
56 #include <linux/stackprotector.h>
57 #include <linux/gfp.h>
58 #include <linux/cpuidle.h>
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/pgtable.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/internal.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80 #include <asm/intel-family.h>
81 #include <asm/cpu_device_id.h>
82 #include <asm/spec-ctrl.h>
83 #include <asm/hw_irq.h>
85 /* representing HT siblings of each logical CPU */
86 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
87 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89 /* representing HT and core siblings of each logical CPU */
90 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
95 /* Per CPU bogomips and other parameters */
96 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
97 EXPORT_PER_CPU_SYMBOL(cpu_info);
99 /* Logical package management. We might want to allocate that dynamically */
100 unsigned int __max_logical_packages __read_mostly;
101 EXPORT_SYMBOL(__max_logical_packages);
102 static unsigned int logical_packages __read_mostly;
104 /* Maximum number of SMT threads on any online core */
105 int __read_mostly __max_smt_threads = 1;
107 /* Flag to indicate if a complete sched domain rebuild is required */
108 bool x86_topology_update;
110 int arch_update_cpu_topology(void)
112 int retval = x86_topology_update;
114 x86_topology_update = false;
115 return retval;
118 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
120 unsigned long flags;
122 spin_lock_irqsave(&rtc_lock, flags);
123 CMOS_WRITE(0xa, 0xf);
124 spin_unlock_irqrestore(&rtc_lock, flags);
125 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
126 start_eip >> 4;
127 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
128 start_eip & 0xf;
131 static inline void smpboot_restore_warm_reset_vector(void)
133 unsigned long flags;
136 * Paranoid: Set warm reset code and vector here back
137 * to default values.
139 spin_lock_irqsave(&rtc_lock, flags);
140 CMOS_WRITE(0, 0xf);
141 spin_unlock_irqrestore(&rtc_lock, flags);
143 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
147 * Report back to the Boot Processor during boot time or to the caller processor
148 * during CPU online.
150 static void smp_callin(void)
152 int cpuid, phys_id;
155 * If waken up by an INIT in an 82489DX configuration
156 * cpu_callout_mask guarantees we don't get here before
157 * an INIT_deassert IPI reaches our local APIC, so it is
158 * now safe to touch our local APIC.
160 cpuid = smp_processor_id();
163 * (This works even if the APIC is not enabled.)
165 phys_id = read_apic_id();
168 * the boot CPU has finished the init stage and is spinning
169 * on callin_map until we finish. We are free to set up this
170 * CPU, first the APIC. (this is probably redundant on most
171 * boards)
173 apic_ap_setup();
176 * Save our processor parameters. Note: this information
177 * is needed for clock calibration.
179 smp_store_cpu_info(cpuid);
182 * The topology information must be up to date before
183 * calibrate_delay() and notify_cpu_starting().
185 set_cpu_sibling_map(raw_smp_processor_id());
188 * Get our bogomips.
189 * Update loops_per_jiffy in cpu_data. Previous call to
190 * smp_store_cpu_info() stored a value that is close but not as
191 * accurate as the value just calculated.
193 calibrate_delay();
194 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
195 pr_debug("Stack at about %p\n", &cpuid);
197 wmb();
199 notify_cpu_starting(cpuid);
202 * Allow the master to continue.
204 cpumask_set_cpu(cpuid, cpu_callin_mask);
207 static int cpu0_logical_apicid;
208 static int enable_start_cpu0;
210 * Activate a secondary processor.
212 static void notrace start_secondary(void *unused)
215 * Don't put *anything* except direct CPU state initialization
216 * before cpu_init(), SMP booting is too fragile that we want to
217 * limit the things done here to the most necessary things.
219 if (boot_cpu_has(X86_FEATURE_PCID))
220 __write_cr4(__read_cr4() | X86_CR4_PCIDE);
222 #ifdef CONFIG_X86_32
223 /* switch away from the initial page table */
224 load_cr3(swapper_pg_dir);
225 __flush_tlb_all();
226 #endif
227 load_current_idt();
228 cpu_init();
229 x86_cpuinit.early_percpu_clock_init();
230 preempt_disable();
231 smp_callin();
233 enable_start_cpu0 = 0;
235 /* otherwise gcc will move up smp_processor_id before the cpu_init */
236 barrier();
238 * Check TSC synchronization with the boot CPU:
240 check_tsc_sync_target();
242 speculative_store_bypass_ht_init();
245 * Lock vector_lock, set CPU online and bring the vector
246 * allocator online. Online must be set with vector_lock held
247 * to prevent a concurrent irq setup/teardown from seeing a
248 * half valid vector space.
250 lock_vector_lock();
251 set_cpu_online(smp_processor_id(), true);
252 lapic_online();
253 unlock_vector_lock();
254 cpu_set_state_online(smp_processor_id());
255 x86_platform.nmi_init();
257 /* enable local interrupts */
258 local_irq_enable();
260 /* to prevent fake stack check failure in clock setup */
261 boot_init_stack_canary();
263 x86_cpuinit.setup_percpu_clockev();
265 wmb();
266 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
270 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
271 * @cpu: CPU to check
273 bool topology_is_primary_thread(unsigned int cpu)
275 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
279 * topology_smt_supported - Check whether SMT is supported by the CPUs
281 bool topology_smt_supported(void)
283 return smp_num_siblings > 1;
287 * topology_phys_to_logical_pkg - Map a physical package id to a logical
289 * Returns logical package id or -1 if not found
291 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
293 int cpu;
295 for_each_possible_cpu(cpu) {
296 struct cpuinfo_x86 *c = &cpu_data(cpu);
298 if (c->initialized && c->phys_proc_id == phys_pkg)
299 return c->logical_proc_id;
301 return -1;
303 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
306 * topology_update_package_map - Update the physical to logical package map
307 * @pkg: The physical package id as retrieved via CPUID
308 * @cpu: The cpu for which this is updated
310 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
312 int new;
314 /* Already available somewhere? */
315 new = topology_phys_to_logical_pkg(pkg);
316 if (new >= 0)
317 goto found;
319 new = logical_packages++;
320 if (new != pkg) {
321 pr_info("CPU %u Converting physical %u to logical package %u\n",
322 cpu, pkg, new);
324 found:
325 cpu_data(cpu).logical_proc_id = new;
326 return 0;
329 void __init smp_store_boot_cpu_info(void)
331 int id = 0; /* CPU 0 */
332 struct cpuinfo_x86 *c = &cpu_data(id);
334 *c = boot_cpu_data;
335 c->cpu_index = id;
336 topology_update_package_map(c->phys_proc_id, id);
337 c->initialized = true;
341 * The bootstrap kernel entry code has set these up. Save them for
342 * a given CPU
344 void smp_store_cpu_info(int id)
346 struct cpuinfo_x86 *c = &cpu_data(id);
348 /* Copy boot_cpu_data only on the first bringup */
349 if (!c->initialized)
350 *c = boot_cpu_data;
351 c->cpu_index = id;
353 * During boot time, CPU0 has this setup already. Save the info when
354 * bringing up AP or offlined CPU0.
356 identify_secondary_cpu(c);
357 c->initialized = true;
360 static bool
361 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
363 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
365 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
368 static bool
369 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
371 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
373 return !WARN_ONCE(!topology_same_node(c, o),
374 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
375 "[node: %d != %d]. Ignoring dependency.\n",
376 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
379 #define link_mask(mfunc, c1, c2) \
380 do { \
381 cpumask_set_cpu((c1), mfunc(c2)); \
382 cpumask_set_cpu((c2), mfunc(c1)); \
383 } while (0)
385 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
387 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
388 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
390 if (c->phys_proc_id == o->phys_proc_id &&
391 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
392 if (c->cpu_core_id == o->cpu_core_id)
393 return topology_sane(c, o, "smt");
395 if ((c->cu_id != 0xff) &&
396 (o->cu_id != 0xff) &&
397 (c->cu_id == o->cu_id))
398 return topology_sane(c, o, "smt");
401 } else if (c->phys_proc_id == o->phys_proc_id &&
402 c->cpu_core_id == o->cpu_core_id) {
403 return topology_sane(c, o, "smt");
406 return false;
410 * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
412 * These are Intel CPUs that enumerate an LLC that is shared by
413 * multiple NUMA nodes. The LLC on these systems is shared for
414 * off-package data access but private to the NUMA node (half
415 * of the package) for on-package access.
417 * CPUID (the source of the information about the LLC) can only
418 * enumerate the cache as being shared *or* unshared, but not
419 * this particular configuration. The CPU in this case enumerates
420 * the cache to be shared across the entire package (spanning both
421 * NUMA nodes).
424 static const struct x86_cpu_id snc_cpu[] = {
425 { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X },
429 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
431 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
433 /* Do not match if we do not have a valid APICID for cpu: */
434 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
435 return false;
437 /* Do not match if LLC id does not match: */
438 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
439 return false;
442 * Allow the SNC topology without warning. Return of false
443 * means 'c' does not share the LLC of 'o'. This will be
444 * reflected to userspace.
446 if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
447 return false;
449 return topology_sane(c, o, "llc");
453 * Unlike the other levels, we do not enforce keeping a
454 * multicore group inside a NUMA node. If this happens, we will
455 * discard the MC level of the topology later.
457 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
459 if (c->phys_proc_id == o->phys_proc_id)
460 return true;
461 return false;
464 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
465 static inline int x86_sched_itmt_flags(void)
467 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
470 #ifdef CONFIG_SCHED_MC
471 static int x86_core_flags(void)
473 return cpu_core_flags() | x86_sched_itmt_flags();
475 #endif
476 #ifdef CONFIG_SCHED_SMT
477 static int x86_smt_flags(void)
479 return cpu_smt_flags() | x86_sched_itmt_flags();
481 #endif
482 #endif
484 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
485 #ifdef CONFIG_SCHED_SMT
486 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
487 #endif
488 #ifdef CONFIG_SCHED_MC
489 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
490 #endif
491 { NULL, },
494 static struct sched_domain_topology_level x86_topology[] = {
495 #ifdef CONFIG_SCHED_SMT
496 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
497 #endif
498 #ifdef CONFIG_SCHED_MC
499 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
500 #endif
501 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
502 { NULL, },
506 * Set if a package/die has multiple NUMA nodes inside.
507 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
508 * Sub-NUMA Clustering have this.
510 static bool x86_has_numa_in_package;
512 void set_cpu_sibling_map(int cpu)
514 bool has_smt = smp_num_siblings > 1;
515 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
516 struct cpuinfo_x86 *c = &cpu_data(cpu);
517 struct cpuinfo_x86 *o;
518 int i, threads;
520 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
522 if (!has_mp) {
523 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
524 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
525 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
526 c->booted_cores = 1;
527 return;
530 for_each_cpu(i, cpu_sibling_setup_mask) {
531 o = &cpu_data(i);
533 if ((i == cpu) || (has_smt && match_smt(c, o)))
534 link_mask(topology_sibling_cpumask, cpu, i);
536 if ((i == cpu) || (has_mp && match_llc(c, o)))
537 link_mask(cpu_llc_shared_mask, cpu, i);
542 * This needs a separate iteration over the cpus because we rely on all
543 * topology_sibling_cpumask links to be set-up.
545 for_each_cpu(i, cpu_sibling_setup_mask) {
546 o = &cpu_data(i);
548 if ((i == cpu) || (has_mp && match_die(c, o))) {
549 link_mask(topology_core_cpumask, cpu, i);
552 * Does this new cpu bringup a new core?
554 if (cpumask_weight(
555 topology_sibling_cpumask(cpu)) == 1) {
557 * for each core in package, increment
558 * the booted_cores for this new cpu
560 if (cpumask_first(
561 topology_sibling_cpumask(i)) == i)
562 c->booted_cores++;
564 * increment the core count for all
565 * the other cpus in this package
567 if (i != cpu)
568 cpu_data(i).booted_cores++;
569 } else if (i != cpu && !c->booted_cores)
570 c->booted_cores = cpu_data(i).booted_cores;
572 if (match_die(c, o) && !topology_same_node(c, o))
573 x86_has_numa_in_package = true;
576 threads = cpumask_weight(topology_sibling_cpumask(cpu));
577 if (threads > __max_smt_threads)
578 __max_smt_threads = threads;
581 /* maps the cpu to the sched domain representing multi-core */
582 const struct cpumask *cpu_coregroup_mask(int cpu)
584 return cpu_llc_shared_mask(cpu);
587 static void impress_friends(void)
589 int cpu;
590 unsigned long bogosum = 0;
592 * Allow the user to impress friends.
594 pr_debug("Before bogomips\n");
595 for_each_possible_cpu(cpu)
596 if (cpumask_test_cpu(cpu, cpu_callout_mask))
597 bogosum += cpu_data(cpu).loops_per_jiffy;
598 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
599 num_online_cpus(),
600 bogosum/(500000/HZ),
601 (bogosum/(5000/HZ))%100);
603 pr_debug("Before bogocount - setting activated=1\n");
606 void __inquire_remote_apic(int apicid)
608 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
609 const char * const names[] = { "ID", "VERSION", "SPIV" };
610 int timeout;
611 u32 status;
613 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
615 for (i = 0; i < ARRAY_SIZE(regs); i++) {
616 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
619 * Wait for idle.
621 status = safe_apic_wait_icr_idle();
622 if (status)
623 pr_cont("a previous APIC delivery may have failed\n");
625 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
627 timeout = 0;
628 do {
629 udelay(100);
630 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
631 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
633 switch (status) {
634 case APIC_ICR_RR_VALID:
635 status = apic_read(APIC_RRR);
636 pr_cont("%08x\n", status);
637 break;
638 default:
639 pr_cont("failed\n");
645 * The Multiprocessor Specification 1.4 (1997) example code suggests
646 * that there should be a 10ms delay between the BSP asserting INIT
647 * and de-asserting INIT, when starting a remote processor.
648 * But that slows boot and resume on modern processors, which include
649 * many cores and don't require that delay.
651 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
652 * Modern processor families are quirked to remove the delay entirely.
654 #define UDELAY_10MS_DEFAULT 10000
656 static unsigned int init_udelay = UINT_MAX;
658 static int __init cpu_init_udelay(char *str)
660 get_option(&str, &init_udelay);
662 return 0;
664 early_param("cpu_init_udelay", cpu_init_udelay);
666 static void __init smp_quirk_init_udelay(void)
668 /* if cmdline changed it from default, leave it alone */
669 if (init_udelay != UINT_MAX)
670 return;
672 /* if modern processor, use no delay */
673 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
674 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
675 init_udelay = 0;
676 return;
678 /* else, use legacy delay */
679 init_udelay = UDELAY_10MS_DEFAULT;
683 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
684 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
685 * won't ... remember to clear down the APIC, etc later.
688 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
690 unsigned long send_status, accept_status = 0;
691 int maxlvt;
693 /* Target chip */
694 /* Boot on the stack */
695 /* Kick the second */
696 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
698 pr_debug("Waiting for send to finish...\n");
699 send_status = safe_apic_wait_icr_idle();
702 * Give the other CPU some time to accept the IPI.
704 udelay(200);
705 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
706 maxlvt = lapic_get_maxlvt();
707 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
708 apic_write(APIC_ESR, 0);
709 accept_status = (apic_read(APIC_ESR) & 0xEF);
711 pr_debug("NMI sent\n");
713 if (send_status)
714 pr_err("APIC never delivered???\n");
715 if (accept_status)
716 pr_err("APIC delivery error (%lx)\n", accept_status);
718 return (send_status | accept_status);
721 static int
722 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
724 unsigned long send_status = 0, accept_status = 0;
725 int maxlvt, num_starts, j;
727 maxlvt = lapic_get_maxlvt();
730 * Be paranoid about clearing APIC errors.
732 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
733 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
734 apic_write(APIC_ESR, 0);
735 apic_read(APIC_ESR);
738 pr_debug("Asserting INIT\n");
741 * Turn INIT on target chip
744 * Send IPI
746 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
747 phys_apicid);
749 pr_debug("Waiting for send to finish...\n");
750 send_status = safe_apic_wait_icr_idle();
752 udelay(init_udelay);
754 pr_debug("Deasserting INIT\n");
756 /* Target chip */
757 /* Send IPI */
758 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
760 pr_debug("Waiting for send to finish...\n");
761 send_status = safe_apic_wait_icr_idle();
763 mb();
766 * Should we send STARTUP IPIs ?
768 * Determine this based on the APIC version.
769 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
771 if (APIC_INTEGRATED(boot_cpu_apic_version))
772 num_starts = 2;
773 else
774 num_starts = 0;
777 * Run STARTUP IPI loop.
779 pr_debug("#startup loops: %d\n", num_starts);
781 for (j = 1; j <= num_starts; j++) {
782 pr_debug("Sending STARTUP #%d\n", j);
783 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
784 apic_write(APIC_ESR, 0);
785 apic_read(APIC_ESR);
786 pr_debug("After apic_write\n");
789 * STARTUP IPI
792 /* Target chip */
793 /* Boot on the stack */
794 /* Kick the second */
795 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
796 phys_apicid);
799 * Give the other CPU some time to accept the IPI.
801 if (init_udelay == 0)
802 udelay(10);
803 else
804 udelay(300);
806 pr_debug("Startup point 1\n");
808 pr_debug("Waiting for send to finish...\n");
809 send_status = safe_apic_wait_icr_idle();
812 * Give the other CPU some time to accept the IPI.
814 if (init_udelay == 0)
815 udelay(10);
816 else
817 udelay(200);
819 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
820 apic_write(APIC_ESR, 0);
821 accept_status = (apic_read(APIC_ESR) & 0xEF);
822 if (send_status || accept_status)
823 break;
825 pr_debug("After Startup\n");
827 if (send_status)
828 pr_err("APIC never delivered???\n");
829 if (accept_status)
830 pr_err("APIC delivery error (%lx)\n", accept_status);
832 return (send_status | accept_status);
835 /* reduce the number of lines printed when booting a large cpu count system */
836 static void announce_cpu(int cpu, int apicid)
838 static int current_node = -1;
839 int node = early_cpu_to_node(cpu);
840 static int width, node_width;
842 if (!width)
843 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
845 if (!node_width)
846 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
848 if (cpu == 1)
849 printk(KERN_INFO "x86: Booting SMP configuration:\n");
851 if (system_state < SYSTEM_RUNNING) {
852 if (node != current_node) {
853 if (current_node > (-1))
854 pr_cont("\n");
855 current_node = node;
857 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
858 node_width - num_digits(node), " ", node);
861 /* Add padding for the BSP */
862 if (cpu == 1)
863 pr_cont("%*s", width + 1, " ");
865 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
867 } else
868 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
869 node, cpu, apicid);
872 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
874 int cpu;
876 cpu = smp_processor_id();
877 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
878 return NMI_HANDLED;
880 return NMI_DONE;
884 * Wake up AP by INIT, INIT, STARTUP sequence.
886 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
887 * boot-strap code which is not a desired behavior for waking up BSP. To
888 * void the boot-strap code, wake up CPU0 by NMI instead.
890 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
891 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
892 * We'll change this code in the future to wake up hard offlined CPU0 if
893 * real platform and request are available.
895 static int
896 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
897 int *cpu0_nmi_registered)
899 int id;
900 int boot_error;
902 preempt_disable();
905 * Wake up AP by INIT, INIT, STARTUP sequence.
907 if (cpu) {
908 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
909 goto out;
913 * Wake up BSP by nmi.
915 * Register a NMI handler to help wake up CPU0.
917 boot_error = register_nmi_handler(NMI_LOCAL,
918 wakeup_cpu0_nmi, 0, "wake_cpu0");
920 if (!boot_error) {
921 enable_start_cpu0 = 1;
922 *cpu0_nmi_registered = 1;
923 if (apic->dest_logical == APIC_DEST_LOGICAL)
924 id = cpu0_logical_apicid;
925 else
926 id = apicid;
927 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
930 out:
931 preempt_enable();
933 return boot_error;
936 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
938 /* Just in case we booted with a single CPU. */
939 alternatives_enable_smp();
941 per_cpu(current_task, cpu) = idle;
943 #ifdef CONFIG_X86_32
944 /* Stack for startup_32 can be just as for start_secondary onwards */
945 irq_ctx_init(cpu);
946 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
947 #else
948 initial_gs = per_cpu_offset(cpu);
949 #endif
953 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
954 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
955 * Returns zero if CPU booted OK, else error code from
956 * ->wakeup_secondary_cpu.
958 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
959 int *cpu0_nmi_registered)
961 volatile u32 *trampoline_status =
962 (volatile u32 *) __va(real_mode_header->trampoline_status);
963 /* start_ip had better be page-aligned! */
964 unsigned long start_ip = real_mode_header->trampoline_start;
966 unsigned long boot_error = 0;
967 unsigned long timeout;
969 idle->thread.sp = (unsigned long)task_pt_regs(idle);
970 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
971 initial_code = (unsigned long)start_secondary;
972 initial_stack = idle->thread.sp;
974 /* Enable the espfix hack for this CPU */
975 init_espfix_ap(cpu);
977 /* So we see what's up */
978 announce_cpu(cpu, apicid);
981 * This grunge runs the startup process for
982 * the targeted processor.
985 if (x86_platform.legacy.warm_reset) {
987 pr_debug("Setting warm reset code and vector.\n");
989 smpboot_setup_warm_reset_vector(start_ip);
991 * Be paranoid about clearing APIC errors.
993 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
994 apic_write(APIC_ESR, 0);
995 apic_read(APIC_ESR);
1000 * AP might wait on cpu_callout_mask in cpu_init() with
1001 * cpu_initialized_mask set if previous attempt to online
1002 * it timed-out. Clear cpu_initialized_mask so that after
1003 * INIT/SIPI it could start with a clean state.
1005 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1006 smp_mb();
1009 * Wake up a CPU in difference cases:
1010 * - Use the method in the APIC driver if it's defined
1011 * Otherwise,
1012 * - Use an INIT boot APIC message for APs or NMI for BSP.
1014 if (apic->wakeup_secondary_cpu)
1015 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1016 else
1017 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1018 cpu0_nmi_registered);
1020 if (!boot_error) {
1022 * Wait 10s total for first sign of life from AP
1024 boot_error = -1;
1025 timeout = jiffies + 10*HZ;
1026 while (time_before(jiffies, timeout)) {
1027 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1029 * Tell AP to proceed with initialization
1031 cpumask_set_cpu(cpu, cpu_callout_mask);
1032 boot_error = 0;
1033 break;
1035 schedule();
1039 if (!boot_error) {
1041 * Wait till AP completes initial initialization
1043 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1045 * Allow other tasks to run while we wait for the
1046 * AP to come online. This also gives a chance
1047 * for the MTRR work(triggered by the AP coming online)
1048 * to be completed in the stop machine context.
1050 schedule();
1054 /* mark "stuck" area as not stuck */
1055 *trampoline_status = 0;
1057 if (x86_platform.legacy.warm_reset) {
1059 * Cleanup possible dangling ends...
1061 smpboot_restore_warm_reset_vector();
1064 return boot_error;
1067 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1069 int apicid = apic->cpu_present_to_apicid(cpu);
1070 int cpu0_nmi_registered = 0;
1071 unsigned long flags;
1072 int err, ret = 0;
1074 lockdep_assert_irqs_enabled();
1076 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1078 if (apicid == BAD_APICID ||
1079 !physid_isset(apicid, phys_cpu_present_map) ||
1080 !apic->apic_id_valid(apicid)) {
1081 pr_err("%s: bad cpu %d\n", __func__, cpu);
1082 return -EINVAL;
1086 * Already booted CPU?
1088 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1089 pr_debug("do_boot_cpu %d Already started\n", cpu);
1090 return -ENOSYS;
1094 * Save current MTRR state in case it was changed since early boot
1095 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1097 mtrr_save_state();
1099 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1100 err = cpu_check_up_prepare(cpu);
1101 if (err && err != -EBUSY)
1102 return err;
1104 /* the FPU context is blank, nobody can own it */
1105 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1107 common_cpu_up(cpu, tidle);
1109 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1110 if (err) {
1111 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1112 ret = -EIO;
1113 goto unreg_nmi;
1117 * Check TSC synchronization with the AP (keep irqs disabled
1118 * while doing so):
1120 local_irq_save(flags);
1121 check_tsc_sync_source(cpu);
1122 local_irq_restore(flags);
1124 while (!cpu_online(cpu)) {
1125 cpu_relax();
1126 touch_nmi_watchdog();
1129 unreg_nmi:
1131 * Clean up the nmi handler. Do this after the callin and callout sync
1132 * to avoid impact of possible long unregister time.
1134 if (cpu0_nmi_registered)
1135 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1137 return ret;
1141 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1143 void arch_disable_smp_support(void)
1145 disable_ioapic_support();
1149 * Fall back to non SMP mode after errors.
1151 * RED-PEN audit/test this more. I bet there is more state messed up here.
1153 static __init void disable_smp(void)
1155 pr_info("SMP disabled\n");
1157 disable_ioapic_support();
1159 init_cpu_present(cpumask_of(0));
1160 init_cpu_possible(cpumask_of(0));
1162 if (smp_found_config)
1163 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1164 else
1165 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1166 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1167 cpumask_set_cpu(0, topology_core_cpumask(0));
1171 * Various sanity checks.
1173 static void __init smp_sanity_check(void)
1175 preempt_disable();
1177 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1178 if (def_to_bigsmp && nr_cpu_ids > 8) {
1179 unsigned int cpu;
1180 unsigned nr;
1182 pr_warn("More than 8 CPUs detected - skipping them\n"
1183 "Use CONFIG_X86_BIGSMP\n");
1185 nr = 0;
1186 for_each_present_cpu(cpu) {
1187 if (nr >= 8)
1188 set_cpu_present(cpu, false);
1189 nr++;
1192 nr = 0;
1193 for_each_possible_cpu(cpu) {
1194 if (nr >= 8)
1195 set_cpu_possible(cpu, false);
1196 nr++;
1199 nr_cpu_ids = 8;
1201 #endif
1203 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1204 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1205 hard_smp_processor_id());
1207 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1211 * Should not be necessary because the MP table should list the boot
1212 * CPU too, but we do it for the sake of robustness anyway.
1214 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1215 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1216 boot_cpu_physical_apicid);
1217 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1219 preempt_enable();
1222 static void __init smp_cpu_index_default(void)
1224 int i;
1225 struct cpuinfo_x86 *c;
1227 for_each_possible_cpu(i) {
1228 c = &cpu_data(i);
1229 /* mark all to hotplug */
1230 c->cpu_index = nr_cpu_ids;
1234 static void __init smp_get_logical_apicid(void)
1236 if (x2apic_mode)
1237 cpu0_logical_apicid = apic_read(APIC_LDR);
1238 else
1239 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1243 * Prepare for SMP bootup.
1244 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1245 * for common interface support.
1247 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1249 unsigned int i;
1251 smp_cpu_index_default();
1254 * Setup boot CPU information
1256 smp_store_boot_cpu_info(); /* Final full version of the data */
1257 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1258 mb();
1260 for_each_possible_cpu(i) {
1261 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1262 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1263 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1267 * Set 'default' x86 topology, this matches default_topology() in that
1268 * it has NUMA nodes as a topology level. See also
1269 * native_smp_cpus_done().
1271 * Must be done before set_cpus_sibling_map() is ran.
1273 set_sched_topology(x86_topology);
1275 set_cpu_sibling_map(0);
1277 smp_sanity_check();
1279 switch (apic_intr_mode) {
1280 case APIC_PIC:
1281 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1282 disable_smp();
1283 return;
1284 case APIC_SYMMETRIC_IO_NO_ROUTING:
1285 disable_smp();
1286 /* Setup local timer */
1287 x86_init.timers.setup_percpu_clockev();
1288 return;
1289 case APIC_VIRTUAL_WIRE:
1290 case APIC_SYMMETRIC_IO:
1291 break;
1294 /* Setup local timer */
1295 x86_init.timers.setup_percpu_clockev();
1297 smp_get_logical_apicid();
1299 pr_info("CPU0: ");
1300 print_cpu_info(&cpu_data(0));
1302 native_pv_lock_init();
1304 uv_system_init();
1306 set_mtrr_aps_delayed_init();
1308 smp_quirk_init_udelay();
1310 speculative_store_bypass_ht_init();
1313 void arch_enable_nonboot_cpus_begin(void)
1315 set_mtrr_aps_delayed_init();
1318 void arch_enable_nonboot_cpus_end(void)
1320 mtrr_aps_init();
1324 * Early setup to make printk work.
1326 void __init native_smp_prepare_boot_cpu(void)
1328 int me = smp_processor_id();
1329 switch_to_new_gdt(me);
1330 /* already set me in cpu_online_mask in boot_cpu_init() */
1331 cpumask_set_cpu(me, cpu_callout_mask);
1332 cpu_set_state_online(me);
1335 void __init calculate_max_logical_packages(void)
1337 int ncpus;
1340 * Today neither Intel nor AMD support heterogenous systems so
1341 * extrapolate the boot cpu's data to all packages.
1343 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1344 __max_logical_packages = DIV_ROUND_UP(nr_cpu_ids, ncpus);
1345 pr_info("Max logical packages: %u\n", __max_logical_packages);
1348 void __init native_smp_cpus_done(unsigned int max_cpus)
1350 pr_debug("Boot done\n");
1352 calculate_max_logical_packages();
1354 if (x86_has_numa_in_package)
1355 set_sched_topology(x86_numa_in_package_topology);
1357 nmi_selftest();
1358 impress_friends();
1359 mtrr_aps_init();
1362 static int __initdata setup_possible_cpus = -1;
1363 static int __init _setup_possible_cpus(char *str)
1365 get_option(&str, &setup_possible_cpus);
1366 return 0;
1368 early_param("possible_cpus", _setup_possible_cpus);
1372 * cpu_possible_mask should be static, it cannot change as cpu's
1373 * are onlined, or offlined. The reason is per-cpu data-structures
1374 * are allocated by some modules at init time, and dont expect to
1375 * do this dynamically on cpu arrival/departure.
1376 * cpu_present_mask on the other hand can change dynamically.
1377 * In case when cpu_hotplug is not compiled, then we resort to current
1378 * behaviour, which is cpu_possible == cpu_present.
1379 * - Ashok Raj
1381 * Three ways to find out the number of additional hotplug CPUs:
1382 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1383 * - The user can overwrite it with possible_cpus=NUM
1384 * - Otherwise don't reserve additional CPUs.
1385 * We do this because additional CPUs waste a lot of memory.
1386 * -AK
1388 __init void prefill_possible_map(void)
1390 int i, possible;
1392 /* No boot processor was found in mptable or ACPI MADT */
1393 if (!num_processors) {
1394 if (boot_cpu_has(X86_FEATURE_APIC)) {
1395 int apicid = boot_cpu_physical_apicid;
1396 int cpu = hard_smp_processor_id();
1398 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1400 /* Make sure boot cpu is enumerated */
1401 if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1402 apic->apic_id_valid(apicid))
1403 generic_processor_info(apicid, boot_cpu_apic_version);
1406 if (!num_processors)
1407 num_processors = 1;
1410 i = setup_max_cpus ?: 1;
1411 if (setup_possible_cpus == -1) {
1412 possible = num_processors;
1413 #ifdef CONFIG_HOTPLUG_CPU
1414 if (setup_max_cpus)
1415 possible += disabled_cpus;
1416 #else
1417 if (possible > i)
1418 possible = i;
1419 #endif
1420 } else
1421 possible = setup_possible_cpus;
1423 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1425 /* nr_cpu_ids could be reduced via nr_cpus= */
1426 if (possible > nr_cpu_ids) {
1427 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1428 possible, nr_cpu_ids);
1429 possible = nr_cpu_ids;
1432 #ifdef CONFIG_HOTPLUG_CPU
1433 if (!setup_max_cpus)
1434 #endif
1435 if (possible > i) {
1436 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1437 possible, setup_max_cpus);
1438 possible = i;
1441 nr_cpu_ids = possible;
1443 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1444 possible, max_t(int, possible - num_processors, 0));
1446 reset_cpu_possible_mask();
1448 for (i = 0; i < possible; i++)
1449 set_cpu_possible(i, true);
1452 #ifdef CONFIG_HOTPLUG_CPU
1454 /* Recompute SMT state for all CPUs on offline */
1455 static void recompute_smt_state(void)
1457 int max_threads, cpu;
1459 max_threads = 0;
1460 for_each_online_cpu (cpu) {
1461 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1463 if (threads > max_threads)
1464 max_threads = threads;
1466 __max_smt_threads = max_threads;
1469 static void remove_siblinginfo(int cpu)
1471 int sibling;
1472 struct cpuinfo_x86 *c = &cpu_data(cpu);
1474 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1475 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1477 * last thread sibling in this cpu core going down
1479 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1480 cpu_data(sibling).booted_cores--;
1483 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1484 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1485 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1486 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1487 cpumask_clear(cpu_llc_shared_mask(cpu));
1488 cpumask_clear(topology_sibling_cpumask(cpu));
1489 cpumask_clear(topology_core_cpumask(cpu));
1490 c->cpu_core_id = 0;
1491 c->booted_cores = 0;
1492 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1493 recompute_smt_state();
1496 static void remove_cpu_from_maps(int cpu)
1498 set_cpu_online(cpu, false);
1499 cpumask_clear_cpu(cpu, cpu_callout_mask);
1500 cpumask_clear_cpu(cpu, cpu_callin_mask);
1501 /* was set by cpu_init() */
1502 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1503 numa_remove_cpu(cpu);
1506 void cpu_disable_common(void)
1508 int cpu = smp_processor_id();
1510 remove_siblinginfo(cpu);
1512 /* It's now safe to remove this processor from the online map */
1513 lock_vector_lock();
1514 remove_cpu_from_maps(cpu);
1515 unlock_vector_lock();
1516 fixup_irqs();
1517 lapic_offline();
1520 int native_cpu_disable(void)
1522 int ret;
1524 ret = lapic_can_unplug_cpu();
1525 if (ret)
1526 return ret;
1528 clear_local_APIC();
1529 cpu_disable_common();
1531 return 0;
1534 int common_cpu_die(unsigned int cpu)
1536 int ret = 0;
1538 /* We don't do anything here: idle task is faking death itself. */
1540 /* They ack this in play_dead() by setting CPU_DEAD */
1541 if (cpu_wait_death(cpu, 5)) {
1542 if (system_state == SYSTEM_RUNNING)
1543 pr_info("CPU %u is now offline\n", cpu);
1544 } else {
1545 pr_err("CPU %u didn't die...\n", cpu);
1546 ret = -1;
1549 return ret;
1552 void native_cpu_die(unsigned int cpu)
1554 common_cpu_die(cpu);
1557 void play_dead_common(void)
1559 idle_task_exit();
1561 /* Ack it */
1562 (void)cpu_report_death();
1565 * With physical CPU hotplug, we should halt the cpu
1567 local_irq_disable();
1570 static bool wakeup_cpu0(void)
1572 if (smp_processor_id() == 0 && enable_start_cpu0)
1573 return true;
1575 return false;
1579 * We need to flush the caches before going to sleep, lest we have
1580 * dirty data in our caches when we come back up.
1582 static inline void mwait_play_dead(void)
1584 unsigned int eax, ebx, ecx, edx;
1585 unsigned int highest_cstate = 0;
1586 unsigned int highest_subcstate = 0;
1587 void *mwait_ptr;
1588 int i;
1590 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1591 return;
1592 if (!this_cpu_has(X86_FEATURE_MWAIT))
1593 return;
1594 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1595 return;
1596 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1597 return;
1599 eax = CPUID_MWAIT_LEAF;
1600 ecx = 0;
1601 native_cpuid(&eax, &ebx, &ecx, &edx);
1604 * eax will be 0 if EDX enumeration is not valid.
1605 * Initialized below to cstate, sub_cstate value when EDX is valid.
1607 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1608 eax = 0;
1609 } else {
1610 edx >>= MWAIT_SUBSTATE_SIZE;
1611 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1612 if (edx & MWAIT_SUBSTATE_MASK) {
1613 highest_cstate = i;
1614 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1617 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1618 (highest_subcstate - 1);
1622 * This should be a memory location in a cache line which is
1623 * unlikely to be touched by other processors. The actual
1624 * content is immaterial as it is not actually modified in any way.
1626 mwait_ptr = &current_thread_info()->flags;
1628 wbinvd();
1630 while (1) {
1632 * The CLFLUSH is a workaround for erratum AAI65 for
1633 * the Xeon 7400 series. It's not clear it is actually
1634 * needed, but it should be harmless in either case.
1635 * The WBINVD is insufficient due to the spurious-wakeup
1636 * case where we return around the loop.
1638 mb();
1639 clflush(mwait_ptr);
1640 mb();
1641 __monitor(mwait_ptr, 0, 0);
1642 mb();
1643 __mwait(eax, 0);
1645 * If NMI wants to wake up CPU0, start CPU0.
1647 if (wakeup_cpu0())
1648 start_cpu0();
1652 void hlt_play_dead(void)
1654 if (__this_cpu_read(cpu_info.x86) >= 4)
1655 wbinvd();
1657 while (1) {
1658 native_halt();
1660 * If NMI wants to wake up CPU0, start CPU0.
1662 if (wakeup_cpu0())
1663 start_cpu0();
1667 void native_play_dead(void)
1669 play_dead_common();
1670 tboot_shutdown(TB_SHUTDOWN_WFS);
1672 mwait_play_dead(); /* Only returns on failure */
1673 if (cpuidle_play_dead())
1674 hlt_play_dead();
1677 #else /* ... !CONFIG_HOTPLUG_CPU */
1678 int native_cpu_disable(void)
1680 return -ENOSYS;
1683 void native_cpu_die(unsigned int cpu)
1685 /* We said "no" in __cpu_disable */
1686 BUG();
1689 void native_play_dead(void)
1691 BUG();
1694 #endif