2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
39 * far_offset (stored in bit 16 of layout )
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49 * near_copies and far_copies must be at least one, and their product is at most
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
58 * Number of guaranteed r10bios in case of extreme VM load:
60 #define NR_RAID10_BIOS 256
62 /* When there are this many requests queue to be written by
63 * the raid10 thread, we become 'congested' to provide back-pressure
66 static int max_queued_requests
= 1024;
68 static void allow_barrier(struct r10conf
*conf
);
69 static void lower_barrier(struct r10conf
*conf
);
71 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
73 struct r10conf
*conf
= data
;
74 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
76 /* allocate a r10bio with room for raid_disks entries in the bios array */
77 return kzalloc(size
, gfp_flags
);
80 static void r10bio_pool_free(void *r10_bio
, void *data
)
85 /* Maximum size of each resync request */
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
88 /* amount of memory to reserve for resync requests */
89 #define RESYNC_WINDOW (1024*1024)
90 /* maximum number of concurrent requests, memory permitting */
91 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
94 * When performing a resync, we need to read and compare, so
95 * we need as many pages are there are copies.
96 * When performing a recovery, we need 2 bios, one for read,
97 * one for write (we recover only one drive per r10buf)
100 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
102 struct r10conf
*conf
= data
;
104 struct r10bio
*r10_bio
;
109 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
113 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
114 nalloc
= conf
->copies
; /* resync */
116 nalloc
= 2; /* recovery */
121 for (j
= nalloc
; j
-- ; ) {
122 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
125 r10_bio
->devs
[j
].bio
= bio
;
128 * Allocate RESYNC_PAGES data pages and attach them
131 for (j
= 0 ; j
< nalloc
; j
++) {
132 bio
= r10_bio
->devs
[j
].bio
;
133 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
134 if (j
== 1 && !test_bit(MD_RECOVERY_SYNC
,
135 &conf
->mddev
->recovery
)) {
136 /* we can share bv_page's during recovery */
137 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
138 page
= rbio
->bi_io_vec
[i
].bv_page
;
141 page
= alloc_page(gfp_flags
);
145 bio
->bi_io_vec
[i
].bv_page
= page
;
153 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
155 for (i
= 0; i
< RESYNC_PAGES
; i
++)
156 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
159 while ( ++j
< nalloc
)
160 bio_put(r10_bio
->devs
[j
].bio
);
161 r10bio_pool_free(r10_bio
, conf
);
165 static void r10buf_pool_free(void *__r10_bio
, void *data
)
168 struct r10conf
*conf
= data
;
169 struct r10bio
*r10bio
= __r10_bio
;
172 for (j
=0; j
< conf
->copies
; j
++) {
173 struct bio
*bio
= r10bio
->devs
[j
].bio
;
175 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
176 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
177 bio
->bi_io_vec
[i
].bv_page
= NULL
;
182 r10bio_pool_free(r10bio
, conf
);
185 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
189 for (i
= 0; i
< conf
->copies
; i
++) {
190 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
191 if (!BIO_SPECIAL(*bio
))
197 static void free_r10bio(struct r10bio
*r10_bio
)
199 struct r10conf
*conf
= r10_bio
->mddev
->private;
201 put_all_bios(conf
, r10_bio
);
202 mempool_free(r10_bio
, conf
->r10bio_pool
);
205 static void put_buf(struct r10bio
*r10_bio
)
207 struct r10conf
*conf
= r10_bio
->mddev
->private;
209 mempool_free(r10_bio
, conf
->r10buf_pool
);
214 static void reschedule_retry(struct r10bio
*r10_bio
)
217 struct mddev
*mddev
= r10_bio
->mddev
;
218 struct r10conf
*conf
= mddev
->private;
220 spin_lock_irqsave(&conf
->device_lock
, flags
);
221 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
223 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
225 /* wake up frozen array... */
226 wake_up(&conf
->wait_barrier
);
228 md_wakeup_thread(mddev
->thread
);
232 * raid_end_bio_io() is called when we have finished servicing a mirrored
233 * operation and are ready to return a success/failure code to the buffer
236 static void raid_end_bio_io(struct r10bio
*r10_bio
)
238 struct bio
*bio
= r10_bio
->master_bio
;
240 struct r10conf
*conf
= r10_bio
->mddev
->private;
242 if (bio
->bi_phys_segments
) {
244 spin_lock_irqsave(&conf
->device_lock
, flags
);
245 bio
->bi_phys_segments
--;
246 done
= (bio
->bi_phys_segments
== 0);
247 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
250 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
251 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
255 * Wake up any possible resync thread that waits for the device
260 free_r10bio(r10_bio
);
264 * Update disk head position estimator based on IRQ completion info.
266 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
268 struct r10conf
*conf
= r10_bio
->mddev
->private;
270 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
271 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
275 * Find the disk number which triggered given bio
277 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
278 struct bio
*bio
, int *slotp
)
282 for (slot
= 0; slot
< conf
->copies
; slot
++)
283 if (r10_bio
->devs
[slot
].bio
== bio
)
286 BUG_ON(slot
== conf
->copies
);
287 update_head_pos(slot
, r10_bio
);
291 return r10_bio
->devs
[slot
].devnum
;
294 static void raid10_end_read_request(struct bio
*bio
, int error
)
296 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
297 struct r10bio
*r10_bio
= bio
->bi_private
;
299 struct r10conf
*conf
= r10_bio
->mddev
->private;
302 slot
= r10_bio
->read_slot
;
303 dev
= r10_bio
->devs
[slot
].devnum
;
305 * this branch is our 'one mirror IO has finished' event handler:
307 update_head_pos(slot
, r10_bio
);
311 * Set R10BIO_Uptodate in our master bio, so that
312 * we will return a good error code to the higher
313 * levels even if IO on some other mirrored buffer fails.
315 * The 'master' represents the composite IO operation to
316 * user-side. So if something waits for IO, then it will
317 * wait for the 'master' bio.
319 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
320 raid_end_bio_io(r10_bio
);
321 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
324 * oops, read error - keep the refcount on the rdev
326 char b
[BDEVNAME_SIZE
];
327 printk_ratelimited(KERN_ERR
328 "md/raid10:%s: %s: rescheduling sector %llu\n",
330 bdevname(conf
->mirrors
[dev
].rdev
->bdev
, b
),
331 (unsigned long long)r10_bio
->sector
);
332 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
333 reschedule_retry(r10_bio
);
337 static void close_write(struct r10bio
*r10_bio
)
339 /* clear the bitmap if all writes complete successfully */
340 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
342 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
344 md_write_end(r10_bio
->mddev
);
347 static void one_write_done(struct r10bio
*r10_bio
)
349 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
350 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
351 reschedule_retry(r10_bio
);
353 close_write(r10_bio
);
354 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
355 reschedule_retry(r10_bio
);
357 raid_end_bio_io(r10_bio
);
362 static void raid10_end_write_request(struct bio
*bio
, int error
)
364 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
365 struct r10bio
*r10_bio
= bio
->bi_private
;
368 struct r10conf
*conf
= r10_bio
->mddev
->private;
371 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
);
374 * this branch is our 'one mirror IO has finished' event handler:
377 set_bit(WriteErrorSeen
, &conf
->mirrors
[dev
].rdev
->flags
);
378 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
382 * Set R10BIO_Uptodate in our master bio, so that
383 * we will return a good error code for to the higher
384 * levels even if IO on some other mirrored buffer fails.
386 * The 'master' represents the composite IO operation to
387 * user-side. So if something waits for IO, then it will
388 * wait for the 'master' bio.
393 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
395 /* Maybe we can clear some bad blocks. */
396 if (is_badblock(conf
->mirrors
[dev
].rdev
,
397 r10_bio
->devs
[slot
].addr
,
399 &first_bad
, &bad_sectors
)) {
401 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
403 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
409 * Let's see if all mirrored write operations have finished
412 one_write_done(r10_bio
);
414 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
419 * RAID10 layout manager
420 * As well as the chunksize and raid_disks count, there are two
421 * parameters: near_copies and far_copies.
422 * near_copies * far_copies must be <= raid_disks.
423 * Normally one of these will be 1.
424 * If both are 1, we get raid0.
425 * If near_copies == raid_disks, we get raid1.
427 * Chunks are laid out in raid0 style with near_copies copies of the
428 * first chunk, followed by near_copies copies of the next chunk and
430 * If far_copies > 1, then after 1/far_copies of the array has been assigned
431 * as described above, we start again with a device offset of near_copies.
432 * So we effectively have another copy of the whole array further down all
433 * the drives, but with blocks on different drives.
434 * With this layout, and block is never stored twice on the one device.
436 * raid10_find_phys finds the sector offset of a given virtual sector
437 * on each device that it is on.
439 * raid10_find_virt does the reverse mapping, from a device and a
440 * sector offset to a virtual address
443 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
453 /* now calculate first sector/dev */
454 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
455 sector
= r10bio
->sector
& conf
->chunk_mask
;
457 chunk
*= conf
->near_copies
;
459 dev
= sector_div(stripe
, conf
->raid_disks
);
460 if (conf
->far_offset
)
461 stripe
*= conf
->far_copies
;
463 sector
+= stripe
<< conf
->chunk_shift
;
465 /* and calculate all the others */
466 for (n
=0; n
< conf
->near_copies
; n
++) {
469 r10bio
->devs
[slot
].addr
= sector
;
470 r10bio
->devs
[slot
].devnum
= d
;
473 for (f
= 1; f
< conf
->far_copies
; f
++) {
474 d
+= conf
->near_copies
;
475 if (d
>= conf
->raid_disks
)
476 d
-= conf
->raid_disks
;
478 r10bio
->devs
[slot
].devnum
= d
;
479 r10bio
->devs
[slot
].addr
= s
;
483 if (dev
>= conf
->raid_disks
) {
485 sector
+= (conf
->chunk_mask
+ 1);
488 BUG_ON(slot
!= conf
->copies
);
491 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
493 sector_t offset
, chunk
, vchunk
;
495 offset
= sector
& conf
->chunk_mask
;
496 if (conf
->far_offset
) {
498 chunk
= sector
>> conf
->chunk_shift
;
499 fc
= sector_div(chunk
, conf
->far_copies
);
500 dev
-= fc
* conf
->near_copies
;
502 dev
+= conf
->raid_disks
;
504 while (sector
>= conf
->stride
) {
505 sector
-= conf
->stride
;
506 if (dev
< conf
->near_copies
)
507 dev
+= conf
->raid_disks
- conf
->near_copies
;
509 dev
-= conf
->near_copies
;
511 chunk
= sector
>> conf
->chunk_shift
;
513 vchunk
= chunk
* conf
->raid_disks
+ dev
;
514 sector_div(vchunk
, conf
->near_copies
);
515 return (vchunk
<< conf
->chunk_shift
) + offset
;
519 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
521 * @bvm: properties of new bio
522 * @biovec: the request that could be merged to it.
524 * Return amount of bytes we can accept at this offset
525 * If near_copies == raid_disk, there are no striping issues,
526 * but in that case, the function isn't called at all.
528 static int raid10_mergeable_bvec(struct request_queue
*q
,
529 struct bvec_merge_data
*bvm
,
530 struct bio_vec
*biovec
)
532 struct mddev
*mddev
= q
->queuedata
;
533 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
535 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
536 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
538 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
539 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
540 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
541 return biovec
->bv_len
;
547 * This routine returns the disk from which the requested read should
548 * be done. There is a per-array 'next expected sequential IO' sector
549 * number - if this matches on the next IO then we use the last disk.
550 * There is also a per-disk 'last know head position' sector that is
551 * maintained from IRQ contexts, both the normal and the resync IO
552 * completion handlers update this position correctly. If there is no
553 * perfect sequential match then we pick the disk whose head is closest.
555 * If there are 2 mirrors in the same 2 devices, performance degrades
556 * because position is mirror, not device based.
558 * The rdev for the device selected will have nr_pending incremented.
562 * FIXME: possibly should rethink readbalancing and do it differently
563 * depending on near_copies / far_copies geometry.
565 static int read_balance(struct r10conf
*conf
, struct r10bio
*r10_bio
, int *max_sectors
)
567 const sector_t this_sector
= r10_bio
->sector
;
569 int sectors
= r10_bio
->sectors
;
570 int best_good_sectors
;
571 sector_t new_distance
, best_dist
;
572 struct md_rdev
*rdev
;
576 raid10_find_phys(conf
, r10_bio
);
579 sectors
= r10_bio
->sectors
;
581 best_dist
= MaxSector
;
582 best_good_sectors
= 0;
585 * Check if we can balance. We can balance on the whole
586 * device if no resync is going on (recovery is ok), or below
587 * the resync window. We take the first readable disk when
588 * above the resync window.
590 if (conf
->mddev
->recovery_cp
< MaxSector
591 && (this_sector
+ sectors
>= conf
->next_resync
))
594 for (slot
= 0; slot
< conf
->copies
; slot
++) {
599 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
601 disk
= r10_bio
->devs
[slot
].devnum
;
602 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
605 if (!test_bit(In_sync
, &rdev
->flags
))
608 dev_sector
= r10_bio
->devs
[slot
].addr
;
609 if (is_badblock(rdev
, dev_sector
, sectors
,
610 &first_bad
, &bad_sectors
)) {
611 if (best_dist
< MaxSector
)
612 /* Already have a better slot */
614 if (first_bad
<= dev_sector
) {
615 /* Cannot read here. If this is the
616 * 'primary' device, then we must not read
617 * beyond 'bad_sectors' from another device.
619 bad_sectors
-= (dev_sector
- first_bad
);
620 if (!do_balance
&& sectors
> bad_sectors
)
621 sectors
= bad_sectors
;
622 if (best_good_sectors
> sectors
)
623 best_good_sectors
= sectors
;
625 sector_t good_sectors
=
626 first_bad
- dev_sector
;
627 if (good_sectors
> best_good_sectors
) {
628 best_good_sectors
= good_sectors
;
632 /* Must read from here */
637 best_good_sectors
= sectors
;
642 /* This optimisation is debatable, and completely destroys
643 * sequential read speed for 'far copies' arrays. So only
644 * keep it for 'near' arrays, and review those later.
646 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
649 /* for far > 1 always use the lowest address */
650 if (conf
->far_copies
> 1)
651 new_distance
= r10_bio
->devs
[slot
].addr
;
653 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
654 conf
->mirrors
[disk
].head_position
);
655 if (new_distance
< best_dist
) {
656 best_dist
= new_distance
;
660 if (slot
== conf
->copies
)
664 disk
= r10_bio
->devs
[slot
].devnum
;
665 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
668 atomic_inc(&rdev
->nr_pending
);
669 if (test_bit(Faulty
, &rdev
->flags
)) {
670 /* Cannot risk returning a device that failed
671 * before we inc'ed nr_pending
673 rdev_dec_pending(rdev
, conf
->mddev
);
676 r10_bio
->read_slot
= slot
;
680 *max_sectors
= best_good_sectors
;
685 static int raid10_congested(void *data
, int bits
)
687 struct mddev
*mddev
= data
;
688 struct r10conf
*conf
= mddev
->private;
691 if ((bits
& (1 << BDI_async_congested
)) &&
692 conf
->pending_count
>= max_queued_requests
)
695 if (mddev_congested(mddev
, bits
))
698 for (i
= 0; i
< conf
->raid_disks
&& ret
== 0; i
++) {
699 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
700 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
701 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
703 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
710 static void flush_pending_writes(struct r10conf
*conf
)
712 /* Any writes that have been queued but are awaiting
713 * bitmap updates get flushed here.
715 spin_lock_irq(&conf
->device_lock
);
717 if (conf
->pending_bio_list
.head
) {
719 bio
= bio_list_get(&conf
->pending_bio_list
);
720 conf
->pending_count
= 0;
721 spin_unlock_irq(&conf
->device_lock
);
722 /* flush any pending bitmap writes to disk
723 * before proceeding w/ I/O */
724 bitmap_unplug(conf
->mddev
->bitmap
);
725 wake_up(&conf
->wait_barrier
);
727 while (bio
) { /* submit pending writes */
728 struct bio
*next
= bio
->bi_next
;
730 generic_make_request(bio
);
734 spin_unlock_irq(&conf
->device_lock
);
738 * Sometimes we need to suspend IO while we do something else,
739 * either some resync/recovery, or reconfigure the array.
740 * To do this we raise a 'barrier'.
741 * The 'barrier' is a counter that can be raised multiple times
742 * to count how many activities are happening which preclude
744 * We can only raise the barrier if there is no pending IO.
745 * i.e. if nr_pending == 0.
746 * We choose only to raise the barrier if no-one is waiting for the
747 * barrier to go down. This means that as soon as an IO request
748 * is ready, no other operations which require a barrier will start
749 * until the IO request has had a chance.
751 * So: regular IO calls 'wait_barrier'. When that returns there
752 * is no backgroup IO happening, It must arrange to call
753 * allow_barrier when it has finished its IO.
754 * backgroup IO calls must call raise_barrier. Once that returns
755 * there is no normal IO happeing. It must arrange to call
756 * lower_barrier when the particular background IO completes.
759 static void raise_barrier(struct r10conf
*conf
, int force
)
761 BUG_ON(force
&& !conf
->barrier
);
762 spin_lock_irq(&conf
->resync_lock
);
764 /* Wait until no block IO is waiting (unless 'force') */
765 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
766 conf
->resync_lock
, );
768 /* block any new IO from starting */
771 /* Now wait for all pending IO to complete */
772 wait_event_lock_irq(conf
->wait_barrier
,
773 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
774 conf
->resync_lock
, );
776 spin_unlock_irq(&conf
->resync_lock
);
779 static void lower_barrier(struct r10conf
*conf
)
782 spin_lock_irqsave(&conf
->resync_lock
, flags
);
784 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
785 wake_up(&conf
->wait_barrier
);
788 static void wait_barrier(struct r10conf
*conf
)
790 spin_lock_irq(&conf
->resync_lock
);
793 /* Wait for the barrier to drop.
794 * However if there are already pending
795 * requests (preventing the barrier from
796 * rising completely), and the
797 * pre-process bio queue isn't empty,
798 * then don't wait, as we need to empty
799 * that queue to get the nr_pending
802 wait_event_lock_irq(conf
->wait_barrier
,
806 !bio_list_empty(current
->bio_list
)),
812 spin_unlock_irq(&conf
->resync_lock
);
815 static void allow_barrier(struct r10conf
*conf
)
818 spin_lock_irqsave(&conf
->resync_lock
, flags
);
820 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
821 wake_up(&conf
->wait_barrier
);
824 static void freeze_array(struct r10conf
*conf
)
826 /* stop syncio and normal IO and wait for everything to
828 * We increment barrier and nr_waiting, and then
829 * wait until nr_pending match nr_queued+1
830 * This is called in the context of one normal IO request
831 * that has failed. Thus any sync request that might be pending
832 * will be blocked by nr_pending, and we need to wait for
833 * pending IO requests to complete or be queued for re-try.
834 * Thus the number queued (nr_queued) plus this request (1)
835 * must match the number of pending IOs (nr_pending) before
838 spin_lock_irq(&conf
->resync_lock
);
841 wait_event_lock_irq(conf
->wait_barrier
,
842 conf
->nr_pending
== conf
->nr_queued
+1,
844 flush_pending_writes(conf
));
846 spin_unlock_irq(&conf
->resync_lock
);
849 static void unfreeze_array(struct r10conf
*conf
)
851 /* reverse the effect of the freeze */
852 spin_lock_irq(&conf
->resync_lock
);
855 wake_up(&conf
->wait_barrier
);
856 spin_unlock_irq(&conf
->resync_lock
);
859 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
861 struct r10conf
*conf
= mddev
->private;
862 struct mirror_info
*mirror
;
863 struct r10bio
*r10_bio
;
864 struct bio
*read_bio
;
866 int chunk_sects
= conf
->chunk_mask
+ 1;
867 const int rw
= bio_data_dir(bio
);
868 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
869 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
871 struct md_rdev
*blocked_rdev
;
876 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
877 md_flush_request(mddev
, bio
);
881 /* If this request crosses a chunk boundary, we need to
882 * split it. This will only happen for 1 PAGE (or less) requests.
884 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
886 conf
->near_copies
< conf
->raid_disks
)) {
888 /* Sanity check -- queue functions should prevent this happening */
889 if (bio
->bi_vcnt
!= 1 ||
892 /* This is a one page bio that upper layers
893 * refuse to split for us, so we need to split it.
896 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
898 /* Each of these 'make_request' calls will call 'wait_barrier'.
899 * If the first succeeds but the second blocks due to the resync
900 * thread raising the barrier, we will deadlock because the
901 * IO to the underlying device will be queued in generic_make_request
902 * and will never complete, so will never reduce nr_pending.
903 * So increment nr_waiting here so no new raise_barriers will
904 * succeed, and so the second wait_barrier cannot block.
906 spin_lock_irq(&conf
->resync_lock
);
908 spin_unlock_irq(&conf
->resync_lock
);
910 make_request(mddev
, &bp
->bio1
);
911 make_request(mddev
, &bp
->bio2
);
913 spin_lock_irq(&conf
->resync_lock
);
915 wake_up(&conf
->wait_barrier
);
916 spin_unlock_irq(&conf
->resync_lock
);
918 bio_pair_release(bp
);
921 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
922 " or bigger than %dk %llu %d\n", mdname(mddev
), chunk_sects
/2,
923 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
929 md_write_start(mddev
, bio
);
932 * Register the new request and wait if the reconstruction
933 * thread has put up a bar for new requests.
934 * Continue immediately if no resync is active currently.
938 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
940 r10_bio
->master_bio
= bio
;
941 r10_bio
->sectors
= bio
->bi_size
>> 9;
943 r10_bio
->mddev
= mddev
;
944 r10_bio
->sector
= bio
->bi_sector
;
947 /* We might need to issue multiple reads to different
948 * devices if there are bad blocks around, so we keep
949 * track of the number of reads in bio->bi_phys_segments.
950 * If this is 0, there is only one r10_bio and no locking
951 * will be needed when the request completes. If it is
952 * non-zero, then it is the number of not-completed requests.
954 bio
->bi_phys_segments
= 0;
955 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
959 * read balancing logic:
965 disk
= read_balance(conf
, r10_bio
, &max_sectors
);
966 slot
= r10_bio
->read_slot
;
968 raid_end_bio_io(r10_bio
);
971 mirror
= conf
->mirrors
+ disk
;
973 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
974 md_trim_bio(read_bio
, r10_bio
->sector
- bio
->bi_sector
,
977 r10_bio
->devs
[slot
].bio
= read_bio
;
979 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
980 mirror
->rdev
->data_offset
;
981 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
982 read_bio
->bi_end_io
= raid10_end_read_request
;
983 read_bio
->bi_rw
= READ
| do_sync
;
984 read_bio
->bi_private
= r10_bio
;
986 if (max_sectors
< r10_bio
->sectors
) {
987 /* Could not read all from this device, so we will
988 * need another r10_bio.
990 sectors_handled
= (r10_bio
->sectors
+ max_sectors
992 r10_bio
->sectors
= max_sectors
;
993 spin_lock_irq(&conf
->device_lock
);
994 if (bio
->bi_phys_segments
== 0)
995 bio
->bi_phys_segments
= 2;
997 bio
->bi_phys_segments
++;
998 spin_unlock(&conf
->device_lock
);
999 /* Cannot call generic_make_request directly
1000 * as that will be queued in __generic_make_request
1001 * and subsequent mempool_alloc might block
1002 * waiting for it. so hand bio over to raid10d.
1004 reschedule_retry(r10_bio
);
1006 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1008 r10_bio
->master_bio
= bio
;
1009 r10_bio
->sectors
= ((bio
->bi_size
>> 9)
1012 r10_bio
->mddev
= mddev
;
1013 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1016 generic_make_request(read_bio
);
1023 if (conf
->pending_count
>= max_queued_requests
) {
1024 md_wakeup_thread(mddev
->thread
);
1025 wait_event(conf
->wait_barrier
,
1026 conf
->pending_count
< max_queued_requests
);
1028 /* first select target devices under rcu_lock and
1029 * inc refcount on their rdev. Record them by setting
1031 * If there are known/acknowledged bad blocks on any device
1032 * on which we have seen a write error, we want to avoid
1033 * writing to those blocks. This potentially requires several
1034 * writes to write around the bad blocks. Each set of writes
1035 * gets its own r10_bio with a set of bios attached. The number
1036 * of r10_bios is recored in bio->bi_phys_segments just as with
1039 plugged
= mddev_check_plugged(mddev
);
1041 raid10_find_phys(conf
, r10_bio
);
1043 blocked_rdev
= NULL
;
1045 max_sectors
= r10_bio
->sectors
;
1047 for (i
= 0; i
< conf
->copies
; i
++) {
1048 int d
= r10_bio
->devs
[i
].devnum
;
1049 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1050 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1051 atomic_inc(&rdev
->nr_pending
);
1052 blocked_rdev
= rdev
;
1055 r10_bio
->devs
[i
].bio
= NULL
;
1056 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1057 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1060 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1062 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1066 is_bad
= is_badblock(rdev
, dev_sector
,
1068 &first_bad
, &bad_sectors
);
1070 /* Mustn't write here until the bad block
1073 atomic_inc(&rdev
->nr_pending
);
1074 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1075 blocked_rdev
= rdev
;
1078 if (is_bad
&& first_bad
<= dev_sector
) {
1079 /* Cannot write here at all */
1080 bad_sectors
-= (dev_sector
- first_bad
);
1081 if (bad_sectors
< max_sectors
)
1082 /* Mustn't write more than bad_sectors
1083 * to other devices yet
1085 max_sectors
= bad_sectors
;
1086 /* We don't set R10BIO_Degraded as that
1087 * only applies if the disk is missing,
1088 * so it might be re-added, and we want to
1089 * know to recover this chunk.
1090 * In this case the device is here, and the
1091 * fact that this chunk is not in-sync is
1092 * recorded in the bad block log.
1097 int good_sectors
= first_bad
- dev_sector
;
1098 if (good_sectors
< max_sectors
)
1099 max_sectors
= good_sectors
;
1102 r10_bio
->devs
[i
].bio
= bio
;
1103 atomic_inc(&rdev
->nr_pending
);
1107 if (unlikely(blocked_rdev
)) {
1108 /* Have to wait for this device to get unblocked, then retry */
1112 for (j
= 0; j
< i
; j
++)
1113 if (r10_bio
->devs
[j
].bio
) {
1114 d
= r10_bio
->devs
[j
].devnum
;
1115 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1117 allow_barrier(conf
);
1118 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1123 if (max_sectors
< r10_bio
->sectors
) {
1124 /* We are splitting this into multiple parts, so
1125 * we need to prepare for allocating another r10_bio.
1127 r10_bio
->sectors
= max_sectors
;
1128 spin_lock_irq(&conf
->device_lock
);
1129 if (bio
->bi_phys_segments
== 0)
1130 bio
->bi_phys_segments
= 2;
1132 bio
->bi_phys_segments
++;
1133 spin_unlock_irq(&conf
->device_lock
);
1135 sectors_handled
= r10_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1137 atomic_set(&r10_bio
->remaining
, 1);
1138 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1140 for (i
= 0; i
< conf
->copies
; i
++) {
1142 int d
= r10_bio
->devs
[i
].devnum
;
1143 if (!r10_bio
->devs
[i
].bio
)
1146 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1147 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1149 r10_bio
->devs
[i
].bio
= mbio
;
1151 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1152 conf
->mirrors
[d
].rdev
->data_offset
);
1153 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1154 mbio
->bi_end_io
= raid10_end_write_request
;
1155 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1156 mbio
->bi_private
= r10_bio
;
1158 atomic_inc(&r10_bio
->remaining
);
1159 spin_lock_irqsave(&conf
->device_lock
, flags
);
1160 bio_list_add(&conf
->pending_bio_list
, mbio
);
1161 conf
->pending_count
++;
1162 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1165 /* Don't remove the bias on 'remaining' (one_write_done) until
1166 * after checking if we need to go around again.
1169 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1170 one_write_done(r10_bio
);
1171 /* We need another r10_bio. It has already been counted
1172 * in bio->bi_phys_segments.
1174 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1176 r10_bio
->master_bio
= bio
;
1177 r10_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1179 r10_bio
->mddev
= mddev
;
1180 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1184 one_write_done(r10_bio
);
1186 /* In case raid10d snuck in to freeze_array */
1187 wake_up(&conf
->wait_barrier
);
1189 if (do_sync
|| !mddev
->bitmap
|| !plugged
)
1190 md_wakeup_thread(mddev
->thread
);
1193 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1195 struct r10conf
*conf
= mddev
->private;
1198 if (conf
->near_copies
< conf
->raid_disks
)
1199 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1200 if (conf
->near_copies
> 1)
1201 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
1202 if (conf
->far_copies
> 1) {
1203 if (conf
->far_offset
)
1204 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
1206 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
1208 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1209 conf
->raid_disks
- mddev
->degraded
);
1210 for (i
= 0; i
< conf
->raid_disks
; i
++)
1211 seq_printf(seq
, "%s",
1212 conf
->mirrors
[i
].rdev
&&
1213 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1214 seq_printf(seq
, "]");
1217 /* check if there are enough drives for
1218 * every block to appear on atleast one.
1219 * Don't consider the device numbered 'ignore'
1220 * as we might be about to remove it.
1222 static int enough(struct r10conf
*conf
, int ignore
)
1227 int n
= conf
->copies
;
1230 if (conf
->mirrors
[first
].rdev
&&
1233 first
= (first
+1) % conf
->raid_disks
;
1237 } while (first
!= 0);
1241 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1243 char b
[BDEVNAME_SIZE
];
1244 struct r10conf
*conf
= mddev
->private;
1247 * If it is not operational, then we have already marked it as dead
1248 * else if it is the last working disks, ignore the error, let the
1249 * next level up know.
1250 * else mark the drive as failed
1252 if (test_bit(In_sync
, &rdev
->flags
)
1253 && !enough(conf
, rdev
->raid_disk
))
1255 * Don't fail the drive, just return an IO error.
1258 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1259 unsigned long flags
;
1260 spin_lock_irqsave(&conf
->device_lock
, flags
);
1262 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1264 * if recovery is running, make sure it aborts.
1266 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1268 set_bit(Blocked
, &rdev
->flags
);
1269 set_bit(Faulty
, &rdev
->flags
);
1270 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1272 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1273 "md/raid10:%s: Operation continuing on %d devices.\n",
1274 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1275 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1278 static void print_conf(struct r10conf
*conf
)
1281 struct mirror_info
*tmp
;
1283 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1285 printk(KERN_DEBUG
"(!conf)\n");
1288 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1291 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1292 char b
[BDEVNAME_SIZE
];
1293 tmp
= conf
->mirrors
+ i
;
1295 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1296 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1297 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1298 bdevname(tmp
->rdev
->bdev
,b
));
1302 static void close_sync(struct r10conf
*conf
)
1305 allow_barrier(conf
);
1307 mempool_destroy(conf
->r10buf_pool
);
1308 conf
->r10buf_pool
= NULL
;
1311 static int raid10_spare_active(struct mddev
*mddev
)
1314 struct r10conf
*conf
= mddev
->private;
1315 struct mirror_info
*tmp
;
1317 unsigned long flags
;
1320 * Find all non-in_sync disks within the RAID10 configuration
1321 * and mark them in_sync
1323 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1324 tmp
= conf
->mirrors
+ i
;
1326 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1327 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1329 sysfs_notify_dirent(tmp
->rdev
->sysfs_state
);
1332 spin_lock_irqsave(&conf
->device_lock
, flags
);
1333 mddev
->degraded
-= count
;
1334 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1341 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1343 struct r10conf
*conf
= mddev
->private;
1347 int last
= conf
->raid_disks
- 1;
1349 if (mddev
->recovery_cp
< MaxSector
)
1350 /* only hot-add to in-sync arrays, as recovery is
1351 * very different from resync
1354 if (!enough(conf
, -1))
1357 if (rdev
->raid_disk
>= 0)
1358 first
= last
= rdev
->raid_disk
;
1360 if (rdev
->saved_raid_disk
>= first
&&
1361 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1362 mirror
= rdev
->saved_raid_disk
;
1365 for ( ; mirror
<= last
; mirror
++) {
1366 struct mirror_info
*p
= &conf
->mirrors
[mirror
];
1367 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1372 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1373 rdev
->data_offset
<< 9);
1374 /* as we don't honour merge_bvec_fn, we must
1375 * never risk violating it, so limit
1376 * ->max_segments to one lying with a single
1377 * page, as a one page request is never in
1380 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1381 blk_queue_max_segments(mddev
->queue
, 1);
1382 blk_queue_segment_boundary(mddev
->queue
,
1383 PAGE_CACHE_SIZE
- 1);
1386 p
->head_position
= 0;
1387 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1388 rdev
->raid_disk
= mirror
;
1390 if (rdev
->saved_raid_disk
!= mirror
)
1392 rcu_assign_pointer(p
->rdev
, rdev
);
1396 md_integrity_add_rdev(rdev
, mddev
);
1401 static int raid10_remove_disk(struct mddev
*mddev
, int number
)
1403 struct r10conf
*conf
= mddev
->private;
1405 struct md_rdev
*rdev
;
1406 struct mirror_info
*p
= conf
->mirrors
+ number
;
1411 if (test_bit(In_sync
, &rdev
->flags
) ||
1412 atomic_read(&rdev
->nr_pending
)) {
1416 /* Only remove faulty devices in recovery
1419 if (!test_bit(Faulty
, &rdev
->flags
) &&
1420 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1427 if (atomic_read(&rdev
->nr_pending
)) {
1428 /* lost the race, try later */
1433 err
= md_integrity_register(mddev
);
1442 static void end_sync_read(struct bio
*bio
, int error
)
1444 struct r10bio
*r10_bio
= bio
->bi_private
;
1445 struct r10conf
*conf
= r10_bio
->mddev
->private;
1448 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
);
1450 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1451 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1453 /* The write handler will notice the lack of
1454 * R10BIO_Uptodate and record any errors etc
1456 atomic_add(r10_bio
->sectors
,
1457 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1459 /* for reconstruct, we always reschedule after a read.
1460 * for resync, only after all reads
1462 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1463 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1464 atomic_dec_and_test(&r10_bio
->remaining
)) {
1465 /* we have read all the blocks,
1466 * do the comparison in process context in raid10d
1468 reschedule_retry(r10_bio
);
1472 static void end_sync_request(struct r10bio
*r10_bio
)
1474 struct mddev
*mddev
= r10_bio
->mddev
;
1476 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1477 if (r10_bio
->master_bio
== NULL
) {
1478 /* the primary of several recovery bios */
1479 sector_t s
= r10_bio
->sectors
;
1480 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1481 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1482 reschedule_retry(r10_bio
);
1485 md_done_sync(mddev
, s
, 1);
1488 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1489 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1490 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1491 reschedule_retry(r10_bio
);
1499 static void end_sync_write(struct bio
*bio
, int error
)
1501 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1502 struct r10bio
*r10_bio
= bio
->bi_private
;
1503 struct mddev
*mddev
= r10_bio
->mddev
;
1504 struct r10conf
*conf
= mddev
->private;
1510 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
);
1513 set_bit(WriteErrorSeen
, &conf
->mirrors
[d
].rdev
->flags
);
1514 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1515 } else if (is_badblock(conf
->mirrors
[d
].rdev
,
1516 r10_bio
->devs
[slot
].addr
,
1518 &first_bad
, &bad_sectors
))
1519 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1521 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1523 end_sync_request(r10_bio
);
1527 * Note: sync and recover and handled very differently for raid10
1528 * This code is for resync.
1529 * For resync, we read through virtual addresses and read all blocks.
1530 * If there is any error, we schedule a write. The lowest numbered
1531 * drive is authoritative.
1532 * However requests come for physical address, so we need to map.
1533 * For every physical address there are raid_disks/copies virtual addresses,
1534 * which is always are least one, but is not necessarly an integer.
1535 * This means that a physical address can span multiple chunks, so we may
1536 * have to submit multiple io requests for a single sync request.
1539 * We check if all blocks are in-sync and only write to blocks that
1542 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1544 struct r10conf
*conf
= mddev
->private;
1546 struct bio
*tbio
, *fbio
;
1548 atomic_set(&r10_bio
->remaining
, 1);
1550 /* find the first device with a block */
1551 for (i
=0; i
<conf
->copies
; i
++)
1552 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1555 if (i
== conf
->copies
)
1559 fbio
= r10_bio
->devs
[i
].bio
;
1561 /* now find blocks with errors */
1562 for (i
=0 ; i
< conf
->copies
; i
++) {
1564 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1566 tbio
= r10_bio
->devs
[i
].bio
;
1568 if (tbio
->bi_end_io
!= end_sync_read
)
1572 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1573 /* We know that the bi_io_vec layout is the same for
1574 * both 'first' and 'i', so we just compare them.
1575 * All vec entries are PAGE_SIZE;
1577 for (j
= 0; j
< vcnt
; j
++)
1578 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1579 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1584 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1585 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1586 /* Don't fix anything. */
1589 /* Ok, we need to write this bio, either to correct an
1590 * inconsistency or to correct an unreadable block.
1591 * First we need to fixup bv_offset, bv_len and
1592 * bi_vecs, as the read request might have corrupted these
1594 tbio
->bi_vcnt
= vcnt
;
1595 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1597 tbio
->bi_phys_segments
= 0;
1598 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1599 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1600 tbio
->bi_next
= NULL
;
1601 tbio
->bi_rw
= WRITE
;
1602 tbio
->bi_private
= r10_bio
;
1603 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1605 for (j
=0; j
< vcnt
; j
++) {
1606 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1607 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1609 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1610 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1613 tbio
->bi_end_io
= end_sync_write
;
1615 d
= r10_bio
->devs
[i
].devnum
;
1616 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1617 atomic_inc(&r10_bio
->remaining
);
1618 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1620 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1621 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1622 generic_make_request(tbio
);
1626 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1627 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1633 * Now for the recovery code.
1634 * Recovery happens across physical sectors.
1635 * We recover all non-is_sync drives by finding the virtual address of
1636 * each, and then choose a working drive that also has that virt address.
1637 * There is a separate r10_bio for each non-in_sync drive.
1638 * Only the first two slots are in use. The first for reading,
1639 * The second for writing.
1642 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
1644 /* We got a read error during recovery.
1645 * We repeat the read in smaller page-sized sections.
1646 * If a read succeeds, write it to the new device or record
1647 * a bad block if we cannot.
1648 * If a read fails, record a bad block on both old and
1651 struct mddev
*mddev
= r10_bio
->mddev
;
1652 struct r10conf
*conf
= mddev
->private;
1653 struct bio
*bio
= r10_bio
->devs
[0].bio
;
1655 int sectors
= r10_bio
->sectors
;
1657 int dr
= r10_bio
->devs
[0].devnum
;
1658 int dw
= r10_bio
->devs
[1].devnum
;
1662 struct md_rdev
*rdev
;
1666 if (s
> (PAGE_SIZE
>>9))
1669 rdev
= conf
->mirrors
[dr
].rdev
;
1670 addr
= r10_bio
->devs
[0].addr
+ sect
,
1671 ok
= sync_page_io(rdev
,
1674 bio
->bi_io_vec
[idx
].bv_page
,
1677 rdev
= conf
->mirrors
[dw
].rdev
;
1678 addr
= r10_bio
->devs
[1].addr
+ sect
;
1679 ok
= sync_page_io(rdev
,
1682 bio
->bi_io_vec
[idx
].bv_page
,
1685 set_bit(WriteErrorSeen
, &rdev
->flags
);
1688 /* We don't worry if we cannot set a bad block -
1689 * it really is bad so there is no loss in not
1692 rdev_set_badblocks(rdev
, addr
, s
, 0);
1694 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
1695 /* need bad block on destination too */
1696 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
1697 addr
= r10_bio
->devs
[1].addr
+ sect
;
1698 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
1700 /* just abort the recovery */
1702 "md/raid10:%s: recovery aborted"
1703 " due to read error\n",
1706 conf
->mirrors
[dw
].recovery_disabled
1707 = mddev
->recovery_disabled
;
1708 set_bit(MD_RECOVERY_INTR
,
1721 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1723 struct r10conf
*conf
= mddev
->private;
1727 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
1728 fix_recovery_read_error(r10_bio
);
1729 end_sync_request(r10_bio
);
1734 * share the pages with the first bio
1735 * and submit the write request
1737 wbio
= r10_bio
->devs
[1].bio
;
1738 d
= r10_bio
->devs
[1].devnum
;
1740 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1741 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
1742 generic_make_request(wbio
);
1747 * Used by fix_read_error() to decay the per rdev read_errors.
1748 * We halve the read error count for every hour that has elapsed
1749 * since the last recorded read error.
1752 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
1754 struct timespec cur_time_mon
;
1755 unsigned long hours_since_last
;
1756 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
1758 ktime_get_ts(&cur_time_mon
);
1760 if (rdev
->last_read_error
.tv_sec
== 0 &&
1761 rdev
->last_read_error
.tv_nsec
== 0) {
1762 /* first time we've seen a read error */
1763 rdev
->last_read_error
= cur_time_mon
;
1767 hours_since_last
= (cur_time_mon
.tv_sec
-
1768 rdev
->last_read_error
.tv_sec
) / 3600;
1770 rdev
->last_read_error
= cur_time_mon
;
1773 * if hours_since_last is > the number of bits in read_errors
1774 * just set read errors to 0. We do this to avoid
1775 * overflowing the shift of read_errors by hours_since_last.
1777 if (hours_since_last
>= 8 * sizeof(read_errors
))
1778 atomic_set(&rdev
->read_errors
, 0);
1780 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
1783 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1784 int sectors
, struct page
*page
, int rw
)
1789 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
1790 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
1792 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1796 set_bit(WriteErrorSeen
, &rdev
->flags
);
1797 /* need to record an error - either for the block or the device */
1798 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1799 md_error(rdev
->mddev
, rdev
);
1804 * This is a kernel thread which:
1806 * 1. Retries failed read operations on working mirrors.
1807 * 2. Updates the raid superblock when problems encounter.
1808 * 3. Performs writes following reads for array synchronising.
1811 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
1813 int sect
= 0; /* Offset from r10_bio->sector */
1814 int sectors
= r10_bio
->sectors
;
1815 struct md_rdev
*rdev
;
1816 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
1817 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1819 /* still own a reference to this rdev, so it cannot
1820 * have been cleared recently.
1822 rdev
= conf
->mirrors
[d
].rdev
;
1824 if (test_bit(Faulty
, &rdev
->flags
))
1825 /* drive has already been failed, just ignore any
1826 more fix_read_error() attempts */
1829 check_decay_read_errors(mddev
, rdev
);
1830 atomic_inc(&rdev
->read_errors
);
1831 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
1832 char b
[BDEVNAME_SIZE
];
1833 bdevname(rdev
->bdev
, b
);
1836 "md/raid10:%s: %s: Raid device exceeded "
1837 "read_error threshold [cur %d:max %d]\n",
1839 atomic_read(&rdev
->read_errors
), max_read_errors
);
1841 "md/raid10:%s: %s: Failing raid device\n",
1843 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1849 int sl
= r10_bio
->read_slot
;
1853 if (s
> (PAGE_SIZE
>>9))
1861 d
= r10_bio
->devs
[sl
].devnum
;
1862 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1864 test_bit(In_sync
, &rdev
->flags
) &&
1865 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
1866 &first_bad
, &bad_sectors
) == 0) {
1867 atomic_inc(&rdev
->nr_pending
);
1869 success
= sync_page_io(rdev
,
1870 r10_bio
->devs
[sl
].addr
+
1873 conf
->tmppage
, READ
, false);
1874 rdev_dec_pending(rdev
, mddev
);
1880 if (sl
== conf
->copies
)
1882 } while (!success
&& sl
!= r10_bio
->read_slot
);
1886 /* Cannot read from anywhere, just mark the block
1887 * as bad on the first device to discourage future
1890 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1891 rdev
= conf
->mirrors
[dn
].rdev
;
1893 if (!rdev_set_badblocks(
1895 r10_bio
->devs
[r10_bio
->read_slot
].addr
1898 md_error(mddev
, rdev
);
1903 /* write it back and re-read */
1905 while (sl
!= r10_bio
->read_slot
) {
1906 char b
[BDEVNAME_SIZE
];
1911 d
= r10_bio
->devs
[sl
].devnum
;
1912 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1914 !test_bit(In_sync
, &rdev
->flags
))
1917 atomic_inc(&rdev
->nr_pending
);
1919 if (r10_sync_page_io(rdev
,
1920 r10_bio
->devs
[sl
].addr
+
1922 s
, conf
->tmppage
, WRITE
)
1924 /* Well, this device is dead */
1926 "md/raid10:%s: read correction "
1928 " (%d sectors at %llu on %s)\n",
1930 (unsigned long long)(
1931 sect
+ rdev
->data_offset
),
1932 bdevname(rdev
->bdev
, b
));
1933 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
1936 bdevname(rdev
->bdev
, b
));
1938 rdev_dec_pending(rdev
, mddev
);
1942 while (sl
!= r10_bio
->read_slot
) {
1943 char b
[BDEVNAME_SIZE
];
1948 d
= r10_bio
->devs
[sl
].devnum
;
1949 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1951 !test_bit(In_sync
, &rdev
->flags
))
1954 atomic_inc(&rdev
->nr_pending
);
1956 switch (r10_sync_page_io(rdev
,
1957 r10_bio
->devs
[sl
].addr
+
1962 /* Well, this device is dead */
1964 "md/raid10:%s: unable to read back "
1966 " (%d sectors at %llu on %s)\n",
1968 (unsigned long long)(
1969 sect
+ rdev
->data_offset
),
1970 bdevname(rdev
->bdev
, b
));
1971 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
1974 bdevname(rdev
->bdev
, b
));
1978 "md/raid10:%s: read error corrected"
1979 " (%d sectors at %llu on %s)\n",
1981 (unsigned long long)(
1982 sect
+ rdev
->data_offset
),
1983 bdevname(rdev
->bdev
, b
));
1984 atomic_add(s
, &rdev
->corrected_errors
);
1987 rdev_dec_pending(rdev
, mddev
);
1997 static void bi_complete(struct bio
*bio
, int error
)
1999 complete((struct completion
*)bio
->bi_private
);
2002 static int submit_bio_wait(int rw
, struct bio
*bio
)
2004 struct completion event
;
2007 init_completion(&event
);
2008 bio
->bi_private
= &event
;
2009 bio
->bi_end_io
= bi_complete
;
2010 submit_bio(rw
, bio
);
2011 wait_for_completion(&event
);
2013 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2016 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2018 struct bio
*bio
= r10_bio
->master_bio
;
2019 struct mddev
*mddev
= r10_bio
->mddev
;
2020 struct r10conf
*conf
= mddev
->private;
2021 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2022 /* bio has the data to be written to slot 'i' where
2023 * we just recently had a write error.
2024 * We repeatedly clone the bio and trim down to one block,
2025 * then try the write. Where the write fails we record
2027 * It is conceivable that the bio doesn't exactly align with
2028 * blocks. We must handle this.
2030 * We currently own a reference to the rdev.
2036 int sect_to_write
= r10_bio
->sectors
;
2039 if (rdev
->badblocks
.shift
< 0)
2042 block_sectors
= 1 << rdev
->badblocks
.shift
;
2043 sector
= r10_bio
->sector
;
2044 sectors
= ((r10_bio
->sector
+ block_sectors
)
2045 & ~(sector_t
)(block_sectors
- 1))
2048 while (sect_to_write
) {
2050 if (sectors
> sect_to_write
)
2051 sectors
= sect_to_write
;
2052 /* Write at 'sector' for 'sectors' */
2053 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2054 md_trim_bio(wbio
, sector
- bio
->bi_sector
, sectors
);
2055 wbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
2057 (sector
- r10_bio
->sector
));
2058 wbio
->bi_bdev
= rdev
->bdev
;
2059 if (submit_bio_wait(WRITE
, wbio
) == 0)
2061 ok
= rdev_set_badblocks(rdev
, sector
,
2066 sect_to_write
-= sectors
;
2068 sectors
= block_sectors
;
2073 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2075 int slot
= r10_bio
->read_slot
;
2076 int mirror
= r10_bio
->devs
[slot
].devnum
;
2078 struct r10conf
*conf
= mddev
->private;
2079 struct md_rdev
*rdev
;
2080 char b
[BDEVNAME_SIZE
];
2081 unsigned long do_sync
;
2084 /* we got a read error. Maybe the drive is bad. Maybe just
2085 * the block and we can fix it.
2086 * We freeze all other IO, and try reading the block from
2087 * other devices. When we find one, we re-write
2088 * and check it that fixes the read error.
2089 * This is all done synchronously while the array is
2092 if (mddev
->ro
== 0) {
2094 fix_read_error(conf
, mddev
, r10_bio
);
2095 unfreeze_array(conf
);
2097 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, mddev
);
2099 bio
= r10_bio
->devs
[slot
].bio
;
2100 bdevname(bio
->bi_bdev
, b
);
2101 r10_bio
->devs
[slot
].bio
=
2102 mddev
->ro
? IO_BLOCKED
: NULL
;
2104 mirror
= read_balance(conf
, r10_bio
, &max_sectors
);
2106 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
2107 " read error for block %llu\n",
2109 (unsigned long long)r10_bio
->sector
);
2110 raid_end_bio_io(r10_bio
);
2115 do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
2118 slot
= r10_bio
->read_slot
;
2119 rdev
= conf
->mirrors
[mirror
].rdev
;
2122 "md/raid10:%s: %s: redirecting "
2123 "sector %llu to another mirror\n",
2125 bdevname(rdev
->bdev
, b
),
2126 (unsigned long long)r10_bio
->sector
);
2127 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2130 r10_bio
->sector
- bio
->bi_sector
,
2132 r10_bio
->devs
[slot
].bio
= bio
;
2133 bio
->bi_sector
= r10_bio
->devs
[slot
].addr
2134 + rdev
->data_offset
;
2135 bio
->bi_bdev
= rdev
->bdev
;
2136 bio
->bi_rw
= READ
| do_sync
;
2137 bio
->bi_private
= r10_bio
;
2138 bio
->bi_end_io
= raid10_end_read_request
;
2139 if (max_sectors
< r10_bio
->sectors
) {
2140 /* Drat - have to split this up more */
2141 struct bio
*mbio
= r10_bio
->master_bio
;
2142 int sectors_handled
=
2143 r10_bio
->sector
+ max_sectors
2145 r10_bio
->sectors
= max_sectors
;
2146 spin_lock_irq(&conf
->device_lock
);
2147 if (mbio
->bi_phys_segments
== 0)
2148 mbio
->bi_phys_segments
= 2;
2150 mbio
->bi_phys_segments
++;
2151 spin_unlock_irq(&conf
->device_lock
);
2152 generic_make_request(bio
);
2155 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2157 r10_bio
->master_bio
= mbio
;
2158 r10_bio
->sectors
= (mbio
->bi_size
>> 9)
2161 set_bit(R10BIO_ReadError
,
2163 r10_bio
->mddev
= mddev
;
2164 r10_bio
->sector
= mbio
->bi_sector
2169 generic_make_request(bio
);
2172 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2174 /* Some sort of write request has finished and it
2175 * succeeded in writing where we thought there was a
2176 * bad block. So forget the bad block.
2177 * Or possibly if failed and we need to record
2181 struct md_rdev
*rdev
;
2183 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2184 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2185 for (m
= 0; m
< conf
->copies
; m
++) {
2186 int dev
= r10_bio
->devs
[m
].devnum
;
2187 rdev
= conf
->mirrors
[dev
].rdev
;
2188 if (r10_bio
->devs
[m
].bio
== NULL
)
2190 if (test_bit(BIO_UPTODATE
,
2191 &r10_bio
->devs
[m
].bio
->bi_flags
)) {
2192 rdev_clear_badblocks(
2194 r10_bio
->devs
[m
].addr
,
2197 if (!rdev_set_badblocks(
2199 r10_bio
->devs
[m
].addr
,
2200 r10_bio
->sectors
, 0))
2201 md_error(conf
->mddev
, rdev
);
2206 for (m
= 0; m
< conf
->copies
; m
++) {
2207 int dev
= r10_bio
->devs
[m
].devnum
;
2208 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2209 rdev
= conf
->mirrors
[dev
].rdev
;
2210 if (bio
== IO_MADE_GOOD
) {
2211 rdev_clear_badblocks(
2213 r10_bio
->devs
[m
].addr
,
2215 rdev_dec_pending(rdev
, conf
->mddev
);
2216 } else if (bio
!= NULL
&&
2217 !test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
2218 if (!narrow_write_error(r10_bio
, m
)) {
2219 md_error(conf
->mddev
, rdev
);
2220 set_bit(R10BIO_Degraded
,
2223 rdev_dec_pending(rdev
, conf
->mddev
);
2226 if (test_bit(R10BIO_WriteError
,
2228 close_write(r10_bio
);
2229 raid_end_bio_io(r10_bio
);
2233 static void raid10d(struct mddev
*mddev
)
2235 struct r10bio
*r10_bio
;
2236 unsigned long flags
;
2237 struct r10conf
*conf
= mddev
->private;
2238 struct list_head
*head
= &conf
->retry_list
;
2239 struct blk_plug plug
;
2241 md_check_recovery(mddev
);
2243 blk_start_plug(&plug
);
2246 flush_pending_writes(conf
);
2248 spin_lock_irqsave(&conf
->device_lock
, flags
);
2249 if (list_empty(head
)) {
2250 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2253 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2254 list_del(head
->prev
);
2256 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2258 mddev
= r10_bio
->mddev
;
2259 conf
= mddev
->private;
2260 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2261 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2262 handle_write_completed(conf
, r10_bio
);
2263 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2264 sync_request_write(mddev
, r10_bio
);
2265 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2266 recovery_request_write(mddev
, r10_bio
);
2267 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2268 handle_read_error(mddev
, r10_bio
);
2270 /* just a partial read to be scheduled from a
2273 int slot
= r10_bio
->read_slot
;
2274 generic_make_request(r10_bio
->devs
[slot
].bio
);
2278 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2279 md_check_recovery(mddev
);
2281 blk_finish_plug(&plug
);
2285 static int init_resync(struct r10conf
*conf
)
2289 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2290 BUG_ON(conf
->r10buf_pool
);
2291 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2292 if (!conf
->r10buf_pool
)
2294 conf
->next_resync
= 0;
2299 * perform a "sync" on one "block"
2301 * We need to make sure that no normal I/O request - particularly write
2302 * requests - conflict with active sync requests.
2304 * This is achieved by tracking pending requests and a 'barrier' concept
2305 * that can be installed to exclude normal IO requests.
2307 * Resync and recovery are handled very differently.
2308 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2310 * For resync, we iterate over virtual addresses, read all copies,
2311 * and update if there are differences. If only one copy is live,
2313 * For recovery, we iterate over physical addresses, read a good
2314 * value for each non-in_sync drive, and over-write.
2316 * So, for recovery we may have several outstanding complex requests for a
2317 * given address, one for each out-of-sync device. We model this by allocating
2318 * a number of r10_bio structures, one for each out-of-sync device.
2319 * As we setup these structures, we collect all bio's together into a list
2320 * which we then process collectively to add pages, and then process again
2321 * to pass to generic_make_request.
2323 * The r10_bio structures are linked using a borrowed master_bio pointer.
2324 * This link is counted in ->remaining. When the r10_bio that points to NULL
2325 * has its remaining count decremented to 0, the whole complex operation
2330 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2331 int *skipped
, int go_faster
)
2333 struct r10conf
*conf
= mddev
->private;
2334 struct r10bio
*r10_bio
;
2335 struct bio
*biolist
= NULL
, *bio
;
2336 sector_t max_sector
, nr_sectors
;
2339 sector_t sync_blocks
;
2340 sector_t sectors_skipped
= 0;
2341 int chunks_skipped
= 0;
2343 if (!conf
->r10buf_pool
)
2344 if (init_resync(conf
))
2348 max_sector
= mddev
->dev_sectors
;
2349 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2350 max_sector
= mddev
->resync_max_sectors
;
2351 if (sector_nr
>= max_sector
) {
2352 /* If we aborted, we need to abort the
2353 * sync on the 'current' bitmap chucks (there can
2354 * be several when recovering multiple devices).
2355 * as we may have started syncing it but not finished.
2356 * We can find the current address in
2357 * mddev->curr_resync, but for recovery,
2358 * we need to convert that to several
2359 * virtual addresses.
2361 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2362 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2363 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2365 else for (i
=0; i
<conf
->raid_disks
; i
++) {
2367 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2368 bitmap_end_sync(mddev
->bitmap
, sect
,
2371 } else /* completed sync */
2374 bitmap_close_sync(mddev
->bitmap
);
2377 return sectors_skipped
;
2379 if (chunks_skipped
>= conf
->raid_disks
) {
2380 /* if there has been nothing to do on any drive,
2381 * then there is nothing to do at all..
2384 return (max_sector
- sector_nr
) + sectors_skipped
;
2387 if (max_sector
> mddev
->resync_max
)
2388 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2390 /* make sure whole request will fit in a chunk - if chunks
2393 if (conf
->near_copies
< conf
->raid_disks
&&
2394 max_sector
> (sector_nr
| conf
->chunk_mask
))
2395 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
2397 * If there is non-resync activity waiting for us then
2398 * put in a delay to throttle resync.
2400 if (!go_faster
&& conf
->nr_waiting
)
2401 msleep_interruptible(1000);
2403 /* Again, very different code for resync and recovery.
2404 * Both must result in an r10bio with a list of bios that
2405 * have bi_end_io, bi_sector, bi_bdev set,
2406 * and bi_private set to the r10bio.
2407 * For recovery, we may actually create several r10bios
2408 * with 2 bios in each, that correspond to the bios in the main one.
2409 * In this case, the subordinate r10bios link back through a
2410 * borrowed master_bio pointer, and the counter in the master
2411 * includes a ref from each subordinate.
2413 /* First, we decide what to do and set ->bi_end_io
2414 * To end_sync_read if we want to read, and
2415 * end_sync_write if we will want to write.
2418 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
2419 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2420 /* recovery... the complicated one */
2424 for (i
=0 ; i
<conf
->raid_disks
; i
++) {
2431 if (conf
->mirrors
[i
].rdev
== NULL
||
2432 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
))
2436 /* want to reconstruct this device */
2438 sect
= raid10_find_virt(conf
, sector_nr
, i
);
2439 if (sect
>= mddev
->resync_max_sectors
) {
2440 /* last stripe is not complete - don't
2441 * try to recover this sector.
2445 /* Unless we are doing a full sync, we only need
2446 * to recover the block if it is set in the bitmap
2448 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2450 if (sync_blocks
< max_sync
)
2451 max_sync
= sync_blocks
;
2454 /* yep, skip the sync_blocks here, but don't assume
2455 * that there will never be anything to do here
2457 chunks_skipped
= -1;
2461 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2462 raise_barrier(conf
, rb2
!= NULL
);
2463 atomic_set(&r10_bio
->remaining
, 0);
2465 r10_bio
->master_bio
= (struct bio
*)rb2
;
2467 atomic_inc(&rb2
->remaining
);
2468 r10_bio
->mddev
= mddev
;
2469 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
2470 r10_bio
->sector
= sect
;
2472 raid10_find_phys(conf
, r10_bio
);
2474 /* Need to check if the array will still be
2477 for (j
=0; j
<conf
->raid_disks
; j
++)
2478 if (conf
->mirrors
[j
].rdev
== NULL
||
2479 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
2484 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2485 &sync_blocks
, still_degraded
);
2488 for (j
=0; j
<conf
->copies
;j
++) {
2490 int d
= r10_bio
->devs
[j
].devnum
;
2491 sector_t from_addr
, to_addr
;
2492 struct md_rdev
*rdev
;
2493 sector_t sector
, first_bad
;
2495 if (!conf
->mirrors
[d
].rdev
||
2496 !test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
))
2498 /* This is where we read from */
2500 rdev
= conf
->mirrors
[d
].rdev
;
2501 sector
= r10_bio
->devs
[j
].addr
;
2503 if (is_badblock(rdev
, sector
, max_sync
,
2504 &first_bad
, &bad_sectors
)) {
2505 if (first_bad
> sector
)
2506 max_sync
= first_bad
- sector
;
2508 bad_sectors
-= (sector
2510 if (max_sync
> bad_sectors
)
2511 max_sync
= bad_sectors
;
2515 bio
= r10_bio
->devs
[0].bio
;
2516 bio
->bi_next
= biolist
;
2518 bio
->bi_private
= r10_bio
;
2519 bio
->bi_end_io
= end_sync_read
;
2521 from_addr
= r10_bio
->devs
[j
].addr
;
2522 bio
->bi_sector
= from_addr
+
2523 conf
->mirrors
[d
].rdev
->data_offset
;
2524 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2525 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2526 atomic_inc(&r10_bio
->remaining
);
2527 /* and we write to 'i' */
2529 for (k
=0; k
<conf
->copies
; k
++)
2530 if (r10_bio
->devs
[k
].devnum
== i
)
2532 BUG_ON(k
== conf
->copies
);
2533 bio
= r10_bio
->devs
[1].bio
;
2534 bio
->bi_next
= biolist
;
2536 bio
->bi_private
= r10_bio
;
2537 bio
->bi_end_io
= end_sync_write
;
2539 to_addr
= r10_bio
->devs
[k
].addr
;
2540 bio
->bi_sector
= to_addr
+
2541 conf
->mirrors
[i
].rdev
->data_offset
;
2542 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
2544 r10_bio
->devs
[0].devnum
= d
;
2545 r10_bio
->devs
[0].addr
= from_addr
;
2546 r10_bio
->devs
[1].devnum
= i
;
2547 r10_bio
->devs
[1].addr
= to_addr
;
2551 if (j
== conf
->copies
) {
2552 /* Cannot recover, so abort the recovery or
2553 * record a bad block */
2556 atomic_dec(&rb2
->remaining
);
2559 /* problem is that there are bad blocks
2560 * on other device(s)
2563 for (k
= 0; k
< conf
->copies
; k
++)
2564 if (r10_bio
->devs
[k
].devnum
== i
)
2566 if (!rdev_set_badblocks(
2567 conf
->mirrors
[i
].rdev
,
2568 r10_bio
->devs
[k
].addr
,
2573 if (!test_and_set_bit(MD_RECOVERY_INTR
,
2575 printk(KERN_INFO
"md/raid10:%s: insufficient "
2576 "working devices for recovery.\n",
2578 conf
->mirrors
[i
].recovery_disabled
2579 = mddev
->recovery_disabled
;
2584 if (biolist
== NULL
) {
2586 struct r10bio
*rb2
= r10_bio
;
2587 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
2588 rb2
->master_bio
= NULL
;
2594 /* resync. Schedule a read for every block at this virt offset */
2597 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2599 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2600 &sync_blocks
, mddev
->degraded
) &&
2601 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
2602 &mddev
->recovery
)) {
2603 /* We can skip this block */
2605 return sync_blocks
+ sectors_skipped
;
2607 if (sync_blocks
< max_sync
)
2608 max_sync
= sync_blocks
;
2609 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2611 r10_bio
->mddev
= mddev
;
2612 atomic_set(&r10_bio
->remaining
, 0);
2613 raise_barrier(conf
, 0);
2614 conf
->next_resync
= sector_nr
;
2616 r10_bio
->master_bio
= NULL
;
2617 r10_bio
->sector
= sector_nr
;
2618 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
2619 raid10_find_phys(conf
, r10_bio
);
2620 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
2622 for (i
=0; i
<conf
->copies
; i
++) {
2623 int d
= r10_bio
->devs
[i
].devnum
;
2624 sector_t first_bad
, sector
;
2627 bio
= r10_bio
->devs
[i
].bio
;
2628 bio
->bi_end_io
= NULL
;
2629 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2630 if (conf
->mirrors
[d
].rdev
== NULL
||
2631 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
2633 sector
= r10_bio
->devs
[i
].addr
;
2634 if (is_badblock(conf
->mirrors
[d
].rdev
,
2636 &first_bad
, &bad_sectors
)) {
2637 if (first_bad
> sector
)
2638 max_sync
= first_bad
- sector
;
2640 bad_sectors
-= (sector
- first_bad
);
2641 if (max_sync
> bad_sectors
)
2642 max_sync
= max_sync
;
2646 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2647 atomic_inc(&r10_bio
->remaining
);
2648 bio
->bi_next
= biolist
;
2650 bio
->bi_private
= r10_bio
;
2651 bio
->bi_end_io
= end_sync_read
;
2653 bio
->bi_sector
= sector
+
2654 conf
->mirrors
[d
].rdev
->data_offset
;
2655 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2660 for (i
=0; i
<conf
->copies
; i
++) {
2661 int d
= r10_bio
->devs
[i
].devnum
;
2662 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
2663 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
2672 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
2674 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
2676 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
2679 bio
->bi_phys_segments
= 0;
2684 if (sector_nr
+ max_sync
< max_sector
)
2685 max_sector
= sector_nr
+ max_sync
;
2688 int len
= PAGE_SIZE
;
2689 if (sector_nr
+ (len
>>9) > max_sector
)
2690 len
= (max_sector
- sector_nr
) << 9;
2693 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
2695 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2696 if (bio_add_page(bio
, page
, len
, 0))
2700 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2701 for (bio2
= biolist
;
2702 bio2
&& bio2
!= bio
;
2703 bio2
= bio2
->bi_next
) {
2704 /* remove last page from this bio */
2706 bio2
->bi_size
-= len
;
2707 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2711 nr_sectors
+= len
>>9;
2712 sector_nr
+= len
>>9;
2713 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
2715 r10_bio
->sectors
= nr_sectors
;
2719 biolist
= biolist
->bi_next
;
2721 bio
->bi_next
= NULL
;
2722 r10_bio
= bio
->bi_private
;
2723 r10_bio
->sectors
= nr_sectors
;
2725 if (bio
->bi_end_io
== end_sync_read
) {
2726 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2727 generic_make_request(bio
);
2731 if (sectors_skipped
)
2732 /* pretend they weren't skipped, it makes
2733 * no important difference in this case
2735 md_done_sync(mddev
, sectors_skipped
, 1);
2737 return sectors_skipped
+ nr_sectors
;
2739 /* There is nowhere to write, so all non-sync
2740 * drives must be failed or in resync, all drives
2741 * have a bad block, so try the next chunk...
2743 if (sector_nr
+ max_sync
< max_sector
)
2744 max_sector
= sector_nr
+ max_sync
;
2746 sectors_skipped
+= (max_sector
- sector_nr
);
2748 sector_nr
= max_sector
;
2753 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2756 struct r10conf
*conf
= mddev
->private;
2759 raid_disks
= conf
->raid_disks
;
2761 sectors
= conf
->dev_sectors
;
2763 size
= sectors
>> conf
->chunk_shift
;
2764 sector_div(size
, conf
->far_copies
);
2765 size
= size
* raid_disks
;
2766 sector_div(size
, conf
->near_copies
);
2768 return size
<< conf
->chunk_shift
;
2772 static struct r10conf
*setup_conf(struct mddev
*mddev
)
2774 struct r10conf
*conf
= NULL
;
2776 sector_t stride
, size
;
2779 if (mddev
->new_chunk_sectors
< (PAGE_SIZE
>> 9) ||
2780 !is_power_of_2(mddev
->new_chunk_sectors
)) {
2781 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
2782 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2783 mdname(mddev
), PAGE_SIZE
);
2787 nc
= mddev
->new_layout
& 255;
2788 fc
= (mddev
->new_layout
>> 8) & 255;
2789 fo
= mddev
->new_layout
& (1<<16);
2791 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
2792 (mddev
->new_layout
>> 17)) {
2793 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2794 mdname(mddev
), mddev
->new_layout
);
2799 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
2803 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
2808 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2813 conf
->raid_disks
= mddev
->raid_disks
;
2814 conf
->near_copies
= nc
;
2815 conf
->far_copies
= fc
;
2816 conf
->copies
= nc
*fc
;
2817 conf
->far_offset
= fo
;
2818 conf
->chunk_mask
= mddev
->new_chunk_sectors
- 1;
2819 conf
->chunk_shift
= ffz(~mddev
->new_chunk_sectors
);
2821 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
2822 r10bio_pool_free
, conf
);
2823 if (!conf
->r10bio_pool
)
2826 size
= mddev
->dev_sectors
>> conf
->chunk_shift
;
2827 sector_div(size
, fc
);
2828 size
= size
* conf
->raid_disks
;
2829 sector_div(size
, nc
);
2830 /* 'size' is now the number of chunks in the array */
2831 /* calculate "used chunks per device" in 'stride' */
2832 stride
= size
* conf
->copies
;
2834 /* We need to round up when dividing by raid_disks to
2835 * get the stride size.
2837 stride
+= conf
->raid_disks
- 1;
2838 sector_div(stride
, conf
->raid_disks
);
2840 conf
->dev_sectors
= stride
<< conf
->chunk_shift
;
2845 sector_div(stride
, fc
);
2846 conf
->stride
= stride
<< conf
->chunk_shift
;
2849 spin_lock_init(&conf
->device_lock
);
2850 INIT_LIST_HEAD(&conf
->retry_list
);
2852 spin_lock_init(&conf
->resync_lock
);
2853 init_waitqueue_head(&conf
->wait_barrier
);
2855 conf
->thread
= md_register_thread(raid10d
, mddev
, NULL
);
2859 conf
->mddev
= mddev
;
2863 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
2866 if (conf
->r10bio_pool
)
2867 mempool_destroy(conf
->r10bio_pool
);
2868 kfree(conf
->mirrors
);
2869 safe_put_page(conf
->tmppage
);
2872 return ERR_PTR(err
);
2875 static int run(struct mddev
*mddev
)
2877 struct r10conf
*conf
;
2878 int i
, disk_idx
, chunk_size
;
2879 struct mirror_info
*disk
;
2880 struct md_rdev
*rdev
;
2884 * copy the already verified devices into our private RAID10
2885 * bookkeeping area. [whatever we allocate in run(),
2886 * should be freed in stop()]
2889 if (mddev
->private == NULL
) {
2890 conf
= setup_conf(mddev
);
2892 return PTR_ERR(conf
);
2893 mddev
->private = conf
;
2895 conf
= mddev
->private;
2899 mddev
->thread
= conf
->thread
;
2900 conf
->thread
= NULL
;
2902 chunk_size
= mddev
->chunk_sectors
<< 9;
2903 blk_queue_io_min(mddev
->queue
, chunk_size
);
2904 if (conf
->raid_disks
% conf
->near_copies
)
2905 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->raid_disks
);
2907 blk_queue_io_opt(mddev
->queue
, chunk_size
*
2908 (conf
->raid_disks
/ conf
->near_copies
));
2910 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2912 disk_idx
= rdev
->raid_disk
;
2913 if (disk_idx
>= conf
->raid_disks
2916 disk
= conf
->mirrors
+ disk_idx
;
2919 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2920 rdev
->data_offset
<< 9);
2921 /* as we don't honour merge_bvec_fn, we must never risk
2922 * violating it, so limit max_segments to 1 lying
2923 * within a single page.
2925 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
2926 blk_queue_max_segments(mddev
->queue
, 1);
2927 blk_queue_segment_boundary(mddev
->queue
,
2928 PAGE_CACHE_SIZE
- 1);
2931 disk
->head_position
= 0;
2933 /* need to check that every block has at least one working mirror */
2934 if (!enough(conf
, -1)) {
2935 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
2940 mddev
->degraded
= 0;
2941 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2943 disk
= conf
->mirrors
+ i
;
2946 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2947 disk
->head_position
= 0;
2952 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2955 if (mddev
->recovery_cp
!= MaxSector
)
2956 printk(KERN_NOTICE
"md/raid10:%s: not clean"
2957 " -- starting background reconstruction\n",
2960 "md/raid10:%s: active with %d out of %d devices\n",
2961 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
,
2964 * Ok, everything is just fine now
2966 mddev
->dev_sectors
= conf
->dev_sectors
;
2967 size
= raid10_size(mddev
, 0, 0);
2968 md_set_array_sectors(mddev
, size
);
2969 mddev
->resync_max_sectors
= size
;
2971 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
2972 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2974 /* Calculate max read-ahead size.
2975 * We need to readahead at least twice a whole stripe....
2979 int stripe
= conf
->raid_disks
*
2980 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
2981 stripe
/= conf
->near_copies
;
2982 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
2983 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
2986 if (conf
->near_copies
< conf
->raid_disks
)
2987 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
2989 if (md_integrity_register(mddev
))
2995 md_unregister_thread(&mddev
->thread
);
2996 if (conf
->r10bio_pool
)
2997 mempool_destroy(conf
->r10bio_pool
);
2998 safe_put_page(conf
->tmppage
);
2999 kfree(conf
->mirrors
);
3001 mddev
->private = NULL
;
3006 static int stop(struct mddev
*mddev
)
3008 struct r10conf
*conf
= mddev
->private;
3010 raise_barrier(conf
, 0);
3011 lower_barrier(conf
);
3013 md_unregister_thread(&mddev
->thread
);
3014 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
3015 if (conf
->r10bio_pool
)
3016 mempool_destroy(conf
->r10bio_pool
);
3017 kfree(conf
->mirrors
);
3019 mddev
->private = NULL
;
3023 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3025 struct r10conf
*conf
= mddev
->private;
3029 raise_barrier(conf
, 0);
3032 lower_barrier(conf
);
3037 static void *raid10_takeover_raid0(struct mddev
*mddev
)
3039 struct md_rdev
*rdev
;
3040 struct r10conf
*conf
;
3042 if (mddev
->degraded
> 0) {
3043 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
3045 return ERR_PTR(-EINVAL
);
3048 /* Set new parameters */
3049 mddev
->new_level
= 10;
3050 /* new layout: far_copies = 1, near_copies = 2 */
3051 mddev
->new_layout
= (1<<8) + 2;
3052 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3053 mddev
->delta_disks
= mddev
->raid_disks
;
3054 mddev
->raid_disks
*= 2;
3055 /* make sure it will be not marked as dirty */
3056 mddev
->recovery_cp
= MaxSector
;
3058 conf
= setup_conf(mddev
);
3059 if (!IS_ERR(conf
)) {
3060 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
3061 if (rdev
->raid_disk
>= 0)
3062 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3069 static void *raid10_takeover(struct mddev
*mddev
)
3071 struct r0conf
*raid0_conf
;
3073 /* raid10 can take over:
3074 * raid0 - providing it has only two drives
3076 if (mddev
->level
== 0) {
3077 /* for raid0 takeover only one zone is supported */
3078 raid0_conf
= mddev
->private;
3079 if (raid0_conf
->nr_strip_zones
> 1) {
3080 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
3081 " with more than one zone.\n",
3083 return ERR_PTR(-EINVAL
);
3085 return raid10_takeover_raid0(mddev
);
3087 return ERR_PTR(-EINVAL
);
3090 static struct md_personality raid10_personality
=
3094 .owner
= THIS_MODULE
,
3095 .make_request
= make_request
,
3099 .error_handler
= error
,
3100 .hot_add_disk
= raid10_add_disk
,
3101 .hot_remove_disk
= raid10_remove_disk
,
3102 .spare_active
= raid10_spare_active
,
3103 .sync_request
= sync_request
,
3104 .quiesce
= raid10_quiesce
,
3105 .size
= raid10_size
,
3106 .takeover
= raid10_takeover
,
3109 static int __init
raid_init(void)
3111 return register_md_personality(&raid10_personality
);
3114 static void raid_exit(void)
3116 unregister_md_personality(&raid10_personality
);
3119 module_init(raid_init
);
3120 module_exit(raid_exit
);
3121 MODULE_LICENSE("GPL");
3122 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3123 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3124 MODULE_ALIAS("md-raid10");
3125 MODULE_ALIAS("md-level-10");
3127 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);