1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include <linux/cpu_rmap.h>
25 #include "net_driver.h"
30 #include "workarounds.h"
32 /**************************************************************************
36 **************************************************************************
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int efx_loopback_mode_max
= LOOPBACK_MAX
;
41 const char *efx_loopback_mode_names
[] = {
42 [LOOPBACK_NONE
] = "NONE",
43 [LOOPBACK_DATA
] = "DATAPATH",
44 [LOOPBACK_GMAC
] = "GMAC",
45 [LOOPBACK_XGMII
] = "XGMII",
46 [LOOPBACK_XGXS
] = "XGXS",
47 [LOOPBACK_XAUI
] = "XAUI",
48 [LOOPBACK_GMII
] = "GMII",
49 [LOOPBACK_SGMII
] = "SGMII",
50 [LOOPBACK_XGBR
] = "XGBR",
51 [LOOPBACK_XFI
] = "XFI",
52 [LOOPBACK_XAUI_FAR
] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR
] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR
] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR
] = "XFI_FAR",
56 [LOOPBACK_GPHY
] = "GPHY",
57 [LOOPBACK_PHYXS
] = "PHYXS",
58 [LOOPBACK_PCS
] = "PCS",
59 [LOOPBACK_PMAPMD
] = "PMA/PMD",
60 [LOOPBACK_XPORT
] = "XPORT",
61 [LOOPBACK_XGMII_WS
] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS
] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR
] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR
] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS
] = "GMII_WS",
66 [LOOPBACK_XFI_WS
] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR
] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS
] = "PHYXS_WS",
71 const unsigned int efx_reset_type_max
= RESET_TYPE_MAX
;
72 const char *efx_reset_type_names
[] = {
73 [RESET_TYPE_INVISIBLE
] = "INVISIBLE",
74 [RESET_TYPE_ALL
] = "ALL",
75 [RESET_TYPE_WORLD
] = "WORLD",
76 [RESET_TYPE_DISABLE
] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG
] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR
] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY
] = "RX_RECOVERY",
80 [RESET_TYPE_RX_DESC_FETCH
] = "RX_DESC_FETCH",
81 [RESET_TYPE_TX_DESC_FETCH
] = "TX_DESC_FETCH",
82 [RESET_TYPE_TX_SKIP
] = "TX_SKIP",
83 [RESET_TYPE_MC_FAILURE
] = "MC_FAILURE",
86 #define EFX_MAX_MTU (9 * 1024)
88 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
92 static struct workqueue_struct
*reset_workqueue
;
94 /**************************************************************************
98 *************************************************************************/
101 * Use separate channels for TX and RX events
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
106 * This is only used in MSI-X interrupt mode
108 static unsigned int separate_tx_channels
;
109 module_param(separate_tx_channels
, uint
, 0444);
110 MODULE_PARM_DESC(separate_tx_channels
,
111 "Use separate channels for TX and RX");
113 /* This is the weight assigned to each of the (per-channel) virtual
116 static int napi_weight
= 64;
118 /* This is the time (in jiffies) between invocations of the hardware
119 * monitor. On Falcon-based NICs, this will:
120 * - Check the on-board hardware monitor;
121 * - Poll the link state and reconfigure the hardware as necessary.
123 static unsigned int efx_monitor_interval
= 1 * HZ
;
125 /* This controls whether or not the driver will initialise devices
126 * with invalid MAC addresses stored in the EEPROM or flash. If true,
127 * such devices will be initialised with a random locally-generated
128 * MAC address. This allows for loading the sfc_mtd driver to
129 * reprogram the flash, even if the flash contents (including the MAC
130 * address) have previously been erased.
132 static unsigned int allow_bad_hwaddr
;
134 /* Initial interrupt moderation settings. They can be modified after
135 * module load with ethtool.
137 * The default for RX should strike a balance between increasing the
138 * round-trip latency and reducing overhead.
140 static unsigned int rx_irq_mod_usec
= 60;
142 /* Initial interrupt moderation settings. They can be modified after
143 * module load with ethtool.
145 * This default is chosen to ensure that a 10G link does not go idle
146 * while a TX queue is stopped after it has become full. A queue is
147 * restarted when it drops below half full. The time this takes (assuming
148 * worst case 3 descriptors per packet and 1024 descriptors) is
149 * 512 / 3 * 1.2 = 205 usec.
151 static unsigned int tx_irq_mod_usec
= 150;
153 /* This is the first interrupt mode to try out of:
158 static unsigned int interrupt_mode
;
160 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
161 * i.e. the number of CPUs among which we may distribute simultaneous
162 * interrupt handling.
164 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
165 * The default (0) means to assign an interrupt to each package (level II cache)
167 static unsigned int rss_cpus
;
168 module_param(rss_cpus
, uint
, 0444);
169 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
171 static int phy_flash_cfg
;
172 module_param(phy_flash_cfg
, int, 0644);
173 MODULE_PARM_DESC(phy_flash_cfg
, "Set PHYs into reflash mode initially");
175 static unsigned irq_adapt_low_thresh
= 10000;
176 module_param(irq_adapt_low_thresh
, uint
, 0644);
177 MODULE_PARM_DESC(irq_adapt_low_thresh
,
178 "Threshold score for reducing IRQ moderation");
180 static unsigned irq_adapt_high_thresh
= 20000;
181 module_param(irq_adapt_high_thresh
, uint
, 0644);
182 MODULE_PARM_DESC(irq_adapt_high_thresh
,
183 "Threshold score for increasing IRQ moderation");
185 static unsigned debug
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
186 NETIF_MSG_LINK
| NETIF_MSG_IFDOWN
|
187 NETIF_MSG_IFUP
| NETIF_MSG_RX_ERR
|
188 NETIF_MSG_TX_ERR
| NETIF_MSG_HW
);
189 module_param(debug
, uint
, 0);
190 MODULE_PARM_DESC(debug
, "Bitmapped debugging message enable value");
192 /**************************************************************************
194 * Utility functions and prototypes
196 *************************************************************************/
198 static void efx_remove_channels(struct efx_nic
*efx
);
199 static void efx_remove_port(struct efx_nic
*efx
);
200 static void efx_init_napi(struct efx_nic
*efx
);
201 static void efx_fini_napi(struct efx_nic
*efx
);
202 static void efx_fini_napi_channel(struct efx_channel
*channel
);
203 static void efx_fini_struct(struct efx_nic
*efx
);
204 static void efx_start_all(struct efx_nic
*efx
);
205 static void efx_stop_all(struct efx_nic
*efx
);
207 #define EFX_ASSERT_RESET_SERIALISED(efx) \
209 if ((efx->state == STATE_RUNNING) || \
210 (efx->state == STATE_DISABLED)) \
214 /**************************************************************************
216 * Event queue processing
218 *************************************************************************/
220 /* Process channel's event queue
222 * This function is responsible for processing the event queue of a
223 * single channel. The caller must guarantee that this function will
224 * never be concurrently called more than once on the same channel,
225 * though different channels may be being processed concurrently.
227 static int efx_process_channel(struct efx_channel
*channel
, int budget
)
229 struct efx_nic
*efx
= channel
->efx
;
232 if (unlikely(efx
->reset_pending
|| !channel
->enabled
))
235 spent
= efx_nic_process_eventq(channel
, budget
);
239 /* Deliver last RX packet. */
240 if (channel
->rx_pkt
) {
241 __efx_rx_packet(channel
, channel
->rx_pkt
,
242 channel
->rx_pkt_csummed
);
243 channel
->rx_pkt
= NULL
;
246 efx_rx_strategy(channel
);
248 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel
));
253 /* Mark channel as finished processing
255 * Note that since we will not receive further interrupts for this
256 * channel before we finish processing and call the eventq_read_ack()
257 * method, there is no need to use the interrupt hold-off timers.
259 static inline void efx_channel_processed(struct efx_channel
*channel
)
261 /* The interrupt handler for this channel may set work_pending
262 * as soon as we acknowledge the events we've seen. Make sure
263 * it's cleared before then. */
264 channel
->work_pending
= false;
267 efx_nic_eventq_read_ack(channel
);
272 * NAPI guarantees serialisation of polls of the same device, which
273 * provides the guarantee required by efx_process_channel().
275 static int efx_poll(struct napi_struct
*napi
, int budget
)
277 struct efx_channel
*channel
=
278 container_of(napi
, struct efx_channel
, napi_str
);
279 struct efx_nic
*efx
= channel
->efx
;
282 netif_vdbg(efx
, intr
, efx
->net_dev
,
283 "channel %d NAPI poll executing on CPU %d\n",
284 channel
->channel
, raw_smp_processor_id());
286 spent
= efx_process_channel(channel
, budget
);
288 if (spent
< budget
) {
289 if (channel
->channel
< efx
->n_rx_channels
&&
290 efx
->irq_rx_adaptive
&&
291 unlikely(++channel
->irq_count
== 1000)) {
292 if (unlikely(channel
->irq_mod_score
<
293 irq_adapt_low_thresh
)) {
294 if (channel
->irq_moderation
> 1) {
295 channel
->irq_moderation
-= 1;
296 efx
->type
->push_irq_moderation(channel
);
298 } else if (unlikely(channel
->irq_mod_score
>
299 irq_adapt_high_thresh
)) {
300 if (channel
->irq_moderation
<
301 efx
->irq_rx_moderation
) {
302 channel
->irq_moderation
+= 1;
303 efx
->type
->push_irq_moderation(channel
);
306 channel
->irq_count
= 0;
307 channel
->irq_mod_score
= 0;
310 efx_filter_rfs_expire(channel
);
312 /* There is no race here; although napi_disable() will
313 * only wait for napi_complete(), this isn't a problem
314 * since efx_channel_processed() will have no effect if
315 * interrupts have already been disabled.
318 efx_channel_processed(channel
);
324 /* Process the eventq of the specified channel immediately on this CPU
326 * Disable hardware generated interrupts, wait for any existing
327 * processing to finish, then directly poll (and ack ) the eventq.
328 * Finally reenable NAPI and interrupts.
330 * This is for use only during a loopback self-test. It must not
331 * deliver any packets up the stack as this can result in deadlock.
333 void efx_process_channel_now(struct efx_channel
*channel
)
335 struct efx_nic
*efx
= channel
->efx
;
337 BUG_ON(channel
->channel
>= efx
->n_channels
);
338 BUG_ON(!channel
->enabled
);
339 BUG_ON(!efx
->loopback_selftest
);
341 /* Disable interrupts and wait for ISRs to complete */
342 efx_nic_disable_interrupts(efx
);
343 if (efx
->legacy_irq
) {
344 synchronize_irq(efx
->legacy_irq
);
345 efx
->legacy_irq_enabled
= false;
348 synchronize_irq(channel
->irq
);
350 /* Wait for any NAPI processing to complete */
351 napi_disable(&channel
->napi_str
);
353 /* Poll the channel */
354 efx_process_channel(channel
, channel
->eventq_mask
+ 1);
356 /* Ack the eventq. This may cause an interrupt to be generated
357 * when they are reenabled */
358 efx_channel_processed(channel
);
360 napi_enable(&channel
->napi_str
);
362 efx
->legacy_irq_enabled
= true;
363 efx_nic_enable_interrupts(efx
);
366 /* Create event queue
367 * Event queue memory allocations are done only once. If the channel
368 * is reset, the memory buffer will be reused; this guards against
369 * errors during channel reset and also simplifies interrupt handling.
371 static int efx_probe_eventq(struct efx_channel
*channel
)
373 struct efx_nic
*efx
= channel
->efx
;
374 unsigned long entries
;
376 netif_dbg(channel
->efx
, probe
, channel
->efx
->net_dev
,
377 "chan %d create event queue\n", channel
->channel
);
379 /* Build an event queue with room for one event per tx and rx buffer,
380 * plus some extra for link state events and MCDI completions. */
381 entries
= roundup_pow_of_two(efx
->rxq_entries
+ efx
->txq_entries
+ 128);
382 EFX_BUG_ON_PARANOID(entries
> EFX_MAX_EVQ_SIZE
);
383 channel
->eventq_mask
= max(entries
, EFX_MIN_EVQ_SIZE
) - 1;
385 return efx_nic_probe_eventq(channel
);
388 /* Prepare channel's event queue */
389 static void efx_init_eventq(struct efx_channel
*channel
)
391 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
392 "chan %d init event queue\n", channel
->channel
);
394 channel
->eventq_read_ptr
= 0;
396 efx_nic_init_eventq(channel
);
399 static void efx_fini_eventq(struct efx_channel
*channel
)
401 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
402 "chan %d fini event queue\n", channel
->channel
);
404 efx_nic_fini_eventq(channel
);
407 static void efx_remove_eventq(struct efx_channel
*channel
)
409 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
410 "chan %d remove event queue\n", channel
->channel
);
412 efx_nic_remove_eventq(channel
);
415 /**************************************************************************
419 *************************************************************************/
421 /* Allocate and initialise a channel structure, optionally copying
422 * parameters (but not resources) from an old channel structure. */
423 static struct efx_channel
*
424 efx_alloc_channel(struct efx_nic
*efx
, int i
, struct efx_channel
*old_channel
)
426 struct efx_channel
*channel
;
427 struct efx_rx_queue
*rx_queue
;
428 struct efx_tx_queue
*tx_queue
;
432 channel
= kmalloc(sizeof(*channel
), GFP_KERNEL
);
436 *channel
= *old_channel
;
438 channel
->napi_dev
= NULL
;
439 memset(&channel
->eventq
, 0, sizeof(channel
->eventq
));
441 rx_queue
= &channel
->rx_queue
;
442 rx_queue
->buffer
= NULL
;
443 memset(&rx_queue
->rxd
, 0, sizeof(rx_queue
->rxd
));
445 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
446 tx_queue
= &channel
->tx_queue
[j
];
447 if (tx_queue
->channel
)
448 tx_queue
->channel
= channel
;
449 tx_queue
->buffer
= NULL
;
450 memset(&tx_queue
->txd
, 0, sizeof(tx_queue
->txd
));
453 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
458 channel
->channel
= i
;
460 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
461 tx_queue
= &channel
->tx_queue
[j
];
463 tx_queue
->queue
= i
* EFX_TXQ_TYPES
+ j
;
464 tx_queue
->channel
= channel
;
468 rx_queue
= &channel
->rx_queue
;
470 setup_timer(&rx_queue
->slow_fill
, efx_rx_slow_fill
,
471 (unsigned long)rx_queue
);
476 static int efx_probe_channel(struct efx_channel
*channel
)
478 struct efx_tx_queue
*tx_queue
;
479 struct efx_rx_queue
*rx_queue
;
482 netif_dbg(channel
->efx
, probe
, channel
->efx
->net_dev
,
483 "creating channel %d\n", channel
->channel
);
485 rc
= efx_probe_eventq(channel
);
489 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
490 rc
= efx_probe_tx_queue(tx_queue
);
495 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
496 rc
= efx_probe_rx_queue(rx_queue
);
501 channel
->n_rx_frm_trunc
= 0;
506 efx_for_each_channel_rx_queue(rx_queue
, channel
)
507 efx_remove_rx_queue(rx_queue
);
509 efx_for_each_channel_tx_queue(tx_queue
, channel
)
510 efx_remove_tx_queue(tx_queue
);
516 static void efx_set_channel_names(struct efx_nic
*efx
)
518 struct efx_channel
*channel
;
519 const char *type
= "";
522 efx_for_each_channel(channel
, efx
) {
523 number
= channel
->channel
;
524 if (efx
->n_channels
> efx
->n_rx_channels
) {
525 if (channel
->channel
< efx
->n_rx_channels
) {
529 number
-= efx
->n_rx_channels
;
532 snprintf(efx
->channel_name
[channel
->channel
],
533 sizeof(efx
->channel_name
[0]),
534 "%s%s-%d", efx
->name
, type
, number
);
538 static int efx_probe_channels(struct efx_nic
*efx
)
540 struct efx_channel
*channel
;
543 /* Restart special buffer allocation */
544 efx
->next_buffer_table
= 0;
546 efx_for_each_channel(channel
, efx
) {
547 rc
= efx_probe_channel(channel
);
549 netif_err(efx
, probe
, efx
->net_dev
,
550 "failed to create channel %d\n",
555 efx_set_channel_names(efx
);
560 efx_remove_channels(efx
);
564 /* Channels are shutdown and reinitialised whilst the NIC is running
565 * to propagate configuration changes (mtu, checksum offload), or
566 * to clear hardware error conditions
568 static void efx_init_channels(struct efx_nic
*efx
)
570 struct efx_tx_queue
*tx_queue
;
571 struct efx_rx_queue
*rx_queue
;
572 struct efx_channel
*channel
;
574 /* Calculate the rx buffer allocation parameters required to
575 * support the current MTU, including padding for header
576 * alignment and overruns.
578 efx
->rx_buffer_len
= (max(EFX_PAGE_IP_ALIGN
, NET_IP_ALIGN
) +
579 EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
580 efx
->type
->rx_buffer_hash_size
+
581 efx
->type
->rx_buffer_padding
);
582 efx
->rx_buffer_order
= get_order(efx
->rx_buffer_len
+
583 sizeof(struct efx_rx_page_state
));
585 /* Initialise the channels */
586 efx_for_each_channel(channel
, efx
) {
587 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
588 "init chan %d\n", channel
->channel
);
590 efx_init_eventq(channel
);
592 efx_for_each_channel_tx_queue(tx_queue
, channel
)
593 efx_init_tx_queue(tx_queue
);
595 /* The rx buffer allocation strategy is MTU dependent */
596 efx_rx_strategy(channel
);
598 efx_for_each_channel_rx_queue(rx_queue
, channel
)
599 efx_init_rx_queue(rx_queue
);
601 WARN_ON(channel
->rx_pkt
!= NULL
);
602 efx_rx_strategy(channel
);
606 /* This enables event queue processing and packet transmission.
608 * Note that this function is not allowed to fail, since that would
609 * introduce too much complexity into the suspend/resume path.
611 static void efx_start_channel(struct efx_channel
*channel
)
613 struct efx_rx_queue
*rx_queue
;
615 netif_dbg(channel
->efx
, ifup
, channel
->efx
->net_dev
,
616 "starting chan %d\n", channel
->channel
);
618 /* The interrupt handler for this channel may set work_pending
619 * as soon as we enable it. Make sure it's cleared before
620 * then. Similarly, make sure it sees the enabled flag set. */
621 channel
->work_pending
= false;
622 channel
->enabled
= true;
625 /* Fill the queues before enabling NAPI */
626 efx_for_each_channel_rx_queue(rx_queue
, channel
)
627 efx_fast_push_rx_descriptors(rx_queue
);
629 napi_enable(&channel
->napi_str
);
632 /* This disables event queue processing and packet transmission.
633 * This function does not guarantee that all queue processing
634 * (e.g. RX refill) is complete.
636 static void efx_stop_channel(struct efx_channel
*channel
)
638 if (!channel
->enabled
)
641 netif_dbg(channel
->efx
, ifdown
, channel
->efx
->net_dev
,
642 "stop chan %d\n", channel
->channel
);
644 channel
->enabled
= false;
645 napi_disable(&channel
->napi_str
);
648 static void efx_fini_channels(struct efx_nic
*efx
)
650 struct efx_channel
*channel
;
651 struct efx_tx_queue
*tx_queue
;
652 struct efx_rx_queue
*rx_queue
;
655 EFX_ASSERT_RESET_SERIALISED(efx
);
656 BUG_ON(efx
->port_enabled
);
658 rc
= efx_nic_flush_queues(efx
);
659 if (rc
&& EFX_WORKAROUND_7803(efx
)) {
660 /* Schedule a reset to recover from the flush failure. The
661 * descriptor caches reference memory we're about to free,
662 * but falcon_reconfigure_mac_wrapper() won't reconnect
663 * the MACs because of the pending reset. */
664 netif_err(efx
, drv
, efx
->net_dev
,
665 "Resetting to recover from flush failure\n");
666 efx_schedule_reset(efx
, RESET_TYPE_ALL
);
668 netif_err(efx
, drv
, efx
->net_dev
, "failed to flush queues\n");
670 netif_dbg(efx
, drv
, efx
->net_dev
,
671 "successfully flushed all queues\n");
674 efx_for_each_channel(channel
, efx
) {
675 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
676 "shut down chan %d\n", channel
->channel
);
678 efx_for_each_channel_rx_queue(rx_queue
, channel
)
679 efx_fini_rx_queue(rx_queue
);
680 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
681 efx_fini_tx_queue(tx_queue
);
682 efx_fini_eventq(channel
);
686 static void efx_remove_channel(struct efx_channel
*channel
)
688 struct efx_tx_queue
*tx_queue
;
689 struct efx_rx_queue
*rx_queue
;
691 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
692 "destroy chan %d\n", channel
->channel
);
694 efx_for_each_channel_rx_queue(rx_queue
, channel
)
695 efx_remove_rx_queue(rx_queue
);
696 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
697 efx_remove_tx_queue(tx_queue
);
698 efx_remove_eventq(channel
);
701 static void efx_remove_channels(struct efx_nic
*efx
)
703 struct efx_channel
*channel
;
705 efx_for_each_channel(channel
, efx
)
706 efx_remove_channel(channel
);
710 efx_realloc_channels(struct efx_nic
*efx
, u32 rxq_entries
, u32 txq_entries
)
712 struct efx_channel
*other_channel
[EFX_MAX_CHANNELS
], *channel
;
713 u32 old_rxq_entries
, old_txq_entries
;
718 efx_fini_channels(efx
);
721 memset(other_channel
, 0, sizeof(other_channel
));
722 for (i
= 0; i
< efx
->n_channels
; i
++) {
723 channel
= efx_alloc_channel(efx
, i
, efx
->channel
[i
]);
728 other_channel
[i
] = channel
;
731 /* Swap entry counts and channel pointers */
732 old_rxq_entries
= efx
->rxq_entries
;
733 old_txq_entries
= efx
->txq_entries
;
734 efx
->rxq_entries
= rxq_entries
;
735 efx
->txq_entries
= txq_entries
;
736 for (i
= 0; i
< efx
->n_channels
; i
++) {
737 channel
= efx
->channel
[i
];
738 efx
->channel
[i
] = other_channel
[i
];
739 other_channel
[i
] = channel
;
742 rc
= efx_probe_channels(efx
);
748 /* Destroy old channels */
749 for (i
= 0; i
< efx
->n_channels
; i
++) {
750 efx_fini_napi_channel(other_channel
[i
]);
751 efx_remove_channel(other_channel
[i
]);
754 /* Free unused channel structures */
755 for (i
= 0; i
< efx
->n_channels
; i
++)
756 kfree(other_channel
[i
]);
758 efx_init_channels(efx
);
764 efx
->rxq_entries
= old_rxq_entries
;
765 efx
->txq_entries
= old_txq_entries
;
766 for (i
= 0; i
< efx
->n_channels
; i
++) {
767 channel
= efx
->channel
[i
];
768 efx
->channel
[i
] = other_channel
[i
];
769 other_channel
[i
] = channel
;
774 void efx_schedule_slow_fill(struct efx_rx_queue
*rx_queue
)
776 mod_timer(&rx_queue
->slow_fill
, jiffies
+ msecs_to_jiffies(100));
779 /**************************************************************************
783 **************************************************************************/
785 /* This ensures that the kernel is kept informed (via
786 * netif_carrier_on/off) of the link status, and also maintains the
787 * link status's stop on the port's TX queue.
789 void efx_link_status_changed(struct efx_nic
*efx
)
791 struct efx_link_state
*link_state
= &efx
->link_state
;
793 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
794 * that no events are triggered between unregister_netdev() and the
795 * driver unloading. A more general condition is that NETDEV_CHANGE
796 * can only be generated between NETDEV_UP and NETDEV_DOWN */
797 if (!netif_running(efx
->net_dev
))
800 if (link_state
->up
!= netif_carrier_ok(efx
->net_dev
)) {
801 efx
->n_link_state_changes
++;
804 netif_carrier_on(efx
->net_dev
);
806 netif_carrier_off(efx
->net_dev
);
809 /* Status message for kernel log */
810 if (link_state
->up
) {
811 netif_info(efx
, link
, efx
->net_dev
,
812 "link up at %uMbps %s-duplex (MTU %d)%s\n",
813 link_state
->speed
, link_state
->fd
? "full" : "half",
815 (efx
->promiscuous
? " [PROMISC]" : ""));
817 netif_info(efx
, link
, efx
->net_dev
, "link down\n");
822 void efx_link_set_advertising(struct efx_nic
*efx
, u32 advertising
)
824 efx
->link_advertising
= advertising
;
826 if (advertising
& ADVERTISED_Pause
)
827 efx
->wanted_fc
|= (EFX_FC_TX
| EFX_FC_RX
);
829 efx
->wanted_fc
&= ~(EFX_FC_TX
| EFX_FC_RX
);
830 if (advertising
& ADVERTISED_Asym_Pause
)
831 efx
->wanted_fc
^= EFX_FC_TX
;
835 void efx_link_set_wanted_fc(struct efx_nic
*efx
, u8 wanted_fc
)
837 efx
->wanted_fc
= wanted_fc
;
838 if (efx
->link_advertising
) {
839 if (wanted_fc
& EFX_FC_RX
)
840 efx
->link_advertising
|= (ADVERTISED_Pause
|
841 ADVERTISED_Asym_Pause
);
843 efx
->link_advertising
&= ~(ADVERTISED_Pause
|
844 ADVERTISED_Asym_Pause
);
845 if (wanted_fc
& EFX_FC_TX
)
846 efx
->link_advertising
^= ADVERTISED_Asym_Pause
;
850 static void efx_fini_port(struct efx_nic
*efx
);
852 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
853 * the MAC appropriately. All other PHY configuration changes are pushed
854 * through phy_op->set_settings(), and pushed asynchronously to the MAC
855 * through efx_monitor().
857 * Callers must hold the mac_lock
859 int __efx_reconfigure_port(struct efx_nic
*efx
)
861 enum efx_phy_mode phy_mode
;
864 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
866 /* Serialise the promiscuous flag with efx_set_multicast_list. */
867 if (efx_dev_registered(efx
)) {
868 netif_addr_lock_bh(efx
->net_dev
);
869 netif_addr_unlock_bh(efx
->net_dev
);
872 /* Disable PHY transmit in mac level loopbacks */
873 phy_mode
= efx
->phy_mode
;
874 if (LOOPBACK_INTERNAL(efx
))
875 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
877 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
879 rc
= efx
->type
->reconfigure_port(efx
);
882 efx
->phy_mode
= phy_mode
;
887 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
889 int efx_reconfigure_port(struct efx_nic
*efx
)
893 EFX_ASSERT_RESET_SERIALISED(efx
);
895 mutex_lock(&efx
->mac_lock
);
896 rc
= __efx_reconfigure_port(efx
);
897 mutex_unlock(&efx
->mac_lock
);
902 /* Asynchronous work item for changing MAC promiscuity and multicast
903 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
905 static void efx_mac_work(struct work_struct
*data
)
907 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, mac_work
);
909 mutex_lock(&efx
->mac_lock
);
910 if (efx
->port_enabled
) {
911 efx
->type
->push_multicast_hash(efx
);
912 efx
->mac_op
->reconfigure(efx
);
914 mutex_unlock(&efx
->mac_lock
);
917 static int efx_probe_port(struct efx_nic
*efx
)
919 unsigned char *perm_addr
;
922 netif_dbg(efx
, probe
, efx
->net_dev
, "create port\n");
925 efx
->phy_mode
= PHY_MODE_SPECIAL
;
927 /* Connect up MAC/PHY operations table */
928 rc
= efx
->type
->probe_port(efx
);
932 /* Sanity check MAC address */
933 perm_addr
= efx
->net_dev
->perm_addr
;
934 if (is_valid_ether_addr(perm_addr
)) {
935 memcpy(efx
->net_dev
->dev_addr
, perm_addr
, ETH_ALEN
);
937 netif_err(efx
, probe
, efx
->net_dev
, "invalid MAC address %pM\n",
939 if (!allow_bad_hwaddr
) {
943 random_ether_addr(efx
->net_dev
->dev_addr
);
944 netif_info(efx
, probe
, efx
->net_dev
,
945 "using locally-generated MAC %pM\n",
946 efx
->net_dev
->dev_addr
);
952 efx
->type
->remove_port(efx
);
956 static int efx_init_port(struct efx_nic
*efx
)
960 netif_dbg(efx
, drv
, efx
->net_dev
, "init port\n");
962 mutex_lock(&efx
->mac_lock
);
964 rc
= efx
->phy_op
->init(efx
);
968 efx
->port_initialized
= true;
970 /* Reconfigure the MAC before creating dma queues (required for
971 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
972 efx
->mac_op
->reconfigure(efx
);
974 /* Ensure the PHY advertises the correct flow control settings */
975 rc
= efx
->phy_op
->reconfigure(efx
);
979 mutex_unlock(&efx
->mac_lock
);
983 efx
->phy_op
->fini(efx
);
985 mutex_unlock(&efx
->mac_lock
);
989 static void efx_start_port(struct efx_nic
*efx
)
991 netif_dbg(efx
, ifup
, efx
->net_dev
, "start port\n");
992 BUG_ON(efx
->port_enabled
);
994 mutex_lock(&efx
->mac_lock
);
995 efx
->port_enabled
= true;
997 /* efx_mac_work() might have been scheduled after efx_stop_port(),
998 * and then cancelled by efx_flush_all() */
999 efx
->type
->push_multicast_hash(efx
);
1000 efx
->mac_op
->reconfigure(efx
);
1002 mutex_unlock(&efx
->mac_lock
);
1005 /* Prevent efx_mac_work() and efx_monitor() from working */
1006 static void efx_stop_port(struct efx_nic
*efx
)
1008 netif_dbg(efx
, ifdown
, efx
->net_dev
, "stop port\n");
1010 mutex_lock(&efx
->mac_lock
);
1011 efx
->port_enabled
= false;
1012 mutex_unlock(&efx
->mac_lock
);
1014 /* Serialise against efx_set_multicast_list() */
1015 if (efx_dev_registered(efx
)) {
1016 netif_addr_lock_bh(efx
->net_dev
);
1017 netif_addr_unlock_bh(efx
->net_dev
);
1021 static void efx_fini_port(struct efx_nic
*efx
)
1023 netif_dbg(efx
, drv
, efx
->net_dev
, "shut down port\n");
1025 if (!efx
->port_initialized
)
1028 efx
->phy_op
->fini(efx
);
1029 efx
->port_initialized
= false;
1031 efx
->link_state
.up
= false;
1032 efx_link_status_changed(efx
);
1035 static void efx_remove_port(struct efx_nic
*efx
)
1037 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying port\n");
1039 efx
->type
->remove_port(efx
);
1042 /**************************************************************************
1046 **************************************************************************/
1048 /* This configures the PCI device to enable I/O and DMA. */
1049 static int efx_init_io(struct efx_nic
*efx
)
1051 struct pci_dev
*pci_dev
= efx
->pci_dev
;
1052 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
1055 netif_dbg(efx
, probe
, efx
->net_dev
, "initialising I/O\n");
1057 rc
= pci_enable_device(pci_dev
);
1059 netif_err(efx
, probe
, efx
->net_dev
,
1060 "failed to enable PCI device\n");
1064 pci_set_master(pci_dev
);
1066 /* Set the PCI DMA mask. Try all possibilities from our
1067 * genuine mask down to 32 bits, because some architectures
1068 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1069 * masks event though they reject 46 bit masks.
1071 while (dma_mask
> 0x7fffffffUL
) {
1072 if (pci_dma_supported(pci_dev
, dma_mask
) &&
1073 ((rc
= pci_set_dma_mask(pci_dev
, dma_mask
)) == 0))
1078 netif_err(efx
, probe
, efx
->net_dev
,
1079 "could not find a suitable DMA mask\n");
1082 netif_dbg(efx
, probe
, efx
->net_dev
,
1083 "using DMA mask %llx\n", (unsigned long long) dma_mask
);
1084 rc
= pci_set_consistent_dma_mask(pci_dev
, dma_mask
);
1086 /* pci_set_consistent_dma_mask() is not *allowed* to
1087 * fail with a mask that pci_set_dma_mask() accepted,
1088 * but just in case...
1090 netif_err(efx
, probe
, efx
->net_dev
,
1091 "failed to set consistent DMA mask\n");
1095 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, EFX_MEM_BAR
);
1096 rc
= pci_request_region(pci_dev
, EFX_MEM_BAR
, "sfc");
1098 netif_err(efx
, probe
, efx
->net_dev
,
1099 "request for memory BAR failed\n");
1103 efx
->membase
= ioremap_nocache(efx
->membase_phys
,
1104 efx
->type
->mem_map_size
);
1105 if (!efx
->membase
) {
1106 netif_err(efx
, probe
, efx
->net_dev
,
1107 "could not map memory BAR at %llx+%x\n",
1108 (unsigned long long)efx
->membase_phys
,
1109 efx
->type
->mem_map_size
);
1113 netif_dbg(efx
, probe
, efx
->net_dev
,
1114 "memory BAR at %llx+%x (virtual %p)\n",
1115 (unsigned long long)efx
->membase_phys
,
1116 efx
->type
->mem_map_size
, efx
->membase
);
1121 pci_release_region(efx
->pci_dev
, EFX_MEM_BAR
);
1123 efx
->membase_phys
= 0;
1125 pci_disable_device(efx
->pci_dev
);
1130 static void efx_fini_io(struct efx_nic
*efx
)
1132 netif_dbg(efx
, drv
, efx
->net_dev
, "shutting down I/O\n");
1135 iounmap(efx
->membase
);
1136 efx
->membase
= NULL
;
1139 if (efx
->membase_phys
) {
1140 pci_release_region(efx
->pci_dev
, EFX_MEM_BAR
);
1141 efx
->membase_phys
= 0;
1144 pci_disable_device(efx
->pci_dev
);
1147 /* Get number of channels wanted. Each channel will have its own IRQ,
1148 * 1 RX queue and/or 2 TX queues. */
1149 static int efx_wanted_channels(void)
1151 cpumask_var_t core_mask
;
1158 if (unlikely(!zalloc_cpumask_var(&core_mask
, GFP_KERNEL
))) {
1160 "sfc: RSS disabled due to allocation failure\n");
1165 for_each_online_cpu(cpu
) {
1166 if (!cpumask_test_cpu(cpu
, core_mask
)) {
1168 cpumask_or(core_mask
, core_mask
,
1169 topology_core_cpumask(cpu
));
1173 free_cpumask_var(core_mask
);
1178 efx_init_rx_cpu_rmap(struct efx_nic
*efx
, struct msix_entry
*xentries
)
1180 #ifdef CONFIG_RFS_ACCEL
1183 efx
->net_dev
->rx_cpu_rmap
= alloc_irq_cpu_rmap(efx
->n_rx_channels
);
1184 if (!efx
->net_dev
->rx_cpu_rmap
)
1186 for (i
= 0; i
< efx
->n_rx_channels
; i
++) {
1187 rc
= irq_cpu_rmap_add(efx
->net_dev
->rx_cpu_rmap
,
1188 xentries
[i
].vector
);
1190 free_irq_cpu_rmap(efx
->net_dev
->rx_cpu_rmap
);
1191 efx
->net_dev
->rx_cpu_rmap
= NULL
;
1199 /* Probe the number and type of interrupts we are able to obtain, and
1200 * the resulting numbers of channels and RX queues.
1202 static int efx_probe_interrupts(struct efx_nic
*efx
)
1205 min_t(int, efx
->type
->phys_addr_channels
, EFX_MAX_CHANNELS
);
1208 if (efx
->interrupt_mode
== EFX_INT_MODE_MSIX
) {
1209 struct msix_entry xentries
[EFX_MAX_CHANNELS
];
1212 n_channels
= efx_wanted_channels();
1213 if (separate_tx_channels
)
1215 n_channels
= min(n_channels
, max_channels
);
1217 for (i
= 0; i
< n_channels
; i
++)
1218 xentries
[i
].entry
= i
;
1219 rc
= pci_enable_msix(efx
->pci_dev
, xentries
, n_channels
);
1221 netif_err(efx
, drv
, efx
->net_dev
,
1222 "WARNING: Insufficient MSI-X vectors"
1223 " available (%d < %d).\n", rc
, n_channels
);
1224 netif_err(efx
, drv
, efx
->net_dev
,
1225 "WARNING: Performance may be reduced.\n");
1226 EFX_BUG_ON_PARANOID(rc
>= n_channels
);
1228 rc
= pci_enable_msix(efx
->pci_dev
, xentries
,
1233 efx
->n_channels
= n_channels
;
1234 if (separate_tx_channels
) {
1235 efx
->n_tx_channels
=
1236 max(efx
->n_channels
/ 2, 1U);
1237 efx
->n_rx_channels
=
1238 max(efx
->n_channels
-
1239 efx
->n_tx_channels
, 1U);
1241 efx
->n_tx_channels
= efx
->n_channels
;
1242 efx
->n_rx_channels
= efx
->n_channels
;
1244 rc
= efx_init_rx_cpu_rmap(efx
, xentries
);
1246 pci_disable_msix(efx
->pci_dev
);
1249 for (i
= 0; i
< n_channels
; i
++)
1250 efx_get_channel(efx
, i
)->irq
=
1253 /* Fall back to single channel MSI */
1254 efx
->interrupt_mode
= EFX_INT_MODE_MSI
;
1255 netif_err(efx
, drv
, efx
->net_dev
,
1256 "could not enable MSI-X\n");
1260 /* Try single interrupt MSI */
1261 if (efx
->interrupt_mode
== EFX_INT_MODE_MSI
) {
1262 efx
->n_channels
= 1;
1263 efx
->n_rx_channels
= 1;
1264 efx
->n_tx_channels
= 1;
1265 rc
= pci_enable_msi(efx
->pci_dev
);
1267 efx_get_channel(efx
, 0)->irq
= efx
->pci_dev
->irq
;
1269 netif_err(efx
, drv
, efx
->net_dev
,
1270 "could not enable MSI\n");
1271 efx
->interrupt_mode
= EFX_INT_MODE_LEGACY
;
1275 /* Assume legacy interrupts */
1276 if (efx
->interrupt_mode
== EFX_INT_MODE_LEGACY
) {
1277 efx
->n_channels
= 1 + (separate_tx_channels
? 1 : 0);
1278 efx
->n_rx_channels
= 1;
1279 efx
->n_tx_channels
= 1;
1280 efx
->legacy_irq
= efx
->pci_dev
->irq
;
1286 static void efx_remove_interrupts(struct efx_nic
*efx
)
1288 struct efx_channel
*channel
;
1290 /* Remove MSI/MSI-X interrupts */
1291 efx_for_each_channel(channel
, efx
)
1293 pci_disable_msi(efx
->pci_dev
);
1294 pci_disable_msix(efx
->pci_dev
);
1296 /* Remove legacy interrupt */
1297 efx
->legacy_irq
= 0;
1300 static void efx_set_channels(struct efx_nic
*efx
)
1302 struct efx_channel
*channel
;
1303 struct efx_tx_queue
*tx_queue
;
1305 efx
->tx_channel_offset
=
1306 separate_tx_channels
? efx
->n_channels
- efx
->n_tx_channels
: 0;
1308 /* We need to adjust the TX queue numbers if we have separate
1309 * RX-only and TX-only channels.
1311 efx_for_each_channel(channel
, efx
) {
1312 efx_for_each_channel_tx_queue(tx_queue
, channel
)
1313 tx_queue
->queue
-= (efx
->tx_channel_offset
*
1318 static int efx_probe_nic(struct efx_nic
*efx
)
1323 netif_dbg(efx
, probe
, efx
->net_dev
, "creating NIC\n");
1325 /* Carry out hardware-type specific initialisation */
1326 rc
= efx
->type
->probe(efx
);
1330 /* Determine the number of channels and queues by trying to hook
1331 * in MSI-X interrupts. */
1332 rc
= efx_probe_interrupts(efx
);
1336 if (efx
->n_channels
> 1)
1337 get_random_bytes(&efx
->rx_hash_key
, sizeof(efx
->rx_hash_key
));
1338 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
); i
++)
1339 efx
->rx_indir_table
[i
] = i
% efx
->n_rx_channels
;
1341 efx_set_channels(efx
);
1342 netif_set_real_num_tx_queues(efx
->net_dev
, efx
->n_tx_channels
);
1343 netif_set_real_num_rx_queues(efx
->net_dev
, efx
->n_rx_channels
);
1345 /* Initialise the interrupt moderation settings */
1346 efx_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
, true,
1352 efx
->type
->remove(efx
);
1356 static void efx_remove_nic(struct efx_nic
*efx
)
1358 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying NIC\n");
1360 efx_remove_interrupts(efx
);
1361 efx
->type
->remove(efx
);
1364 /**************************************************************************
1366 * NIC startup/shutdown
1368 *************************************************************************/
1370 static int efx_probe_all(struct efx_nic
*efx
)
1374 rc
= efx_probe_nic(efx
);
1376 netif_err(efx
, probe
, efx
->net_dev
, "failed to create NIC\n");
1380 rc
= efx_probe_port(efx
);
1382 netif_err(efx
, probe
, efx
->net_dev
, "failed to create port\n");
1386 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE
< EFX_RXQ_MIN_ENT
);
1387 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE
< EFX_TXQ_MIN_ENT(efx
))) {
1391 efx
->rxq_entries
= efx
->txq_entries
= EFX_DEFAULT_DMAQ_SIZE
;
1392 rc
= efx_probe_channels(efx
);
1396 rc
= efx_probe_filters(efx
);
1398 netif_err(efx
, probe
, efx
->net_dev
,
1399 "failed to create filter tables\n");
1406 efx_remove_channels(efx
);
1408 efx_remove_port(efx
);
1410 efx_remove_nic(efx
);
1415 /* Called after previous invocation(s) of efx_stop_all, restarts the
1416 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1417 * and ensures that the port is scheduled to be reconfigured.
1418 * This function is safe to call multiple times when the NIC is in any
1420 static void efx_start_all(struct efx_nic
*efx
)
1422 struct efx_channel
*channel
;
1424 EFX_ASSERT_RESET_SERIALISED(efx
);
1426 /* Check that it is appropriate to restart the interface. All
1427 * of these flags are safe to read under just the rtnl lock */
1428 if (efx
->port_enabled
)
1430 if ((efx
->state
!= STATE_RUNNING
) && (efx
->state
!= STATE_INIT
))
1432 if (efx_dev_registered(efx
) && !netif_running(efx
->net_dev
))
1435 /* Mark the port as enabled so port reconfigurations can start, then
1436 * restart the transmit interface early so the watchdog timer stops */
1437 efx_start_port(efx
);
1439 if (efx_dev_registered(efx
) && netif_device_present(efx
->net_dev
))
1440 netif_tx_wake_all_queues(efx
->net_dev
);
1442 efx_for_each_channel(channel
, efx
)
1443 efx_start_channel(channel
);
1445 if (efx
->legacy_irq
)
1446 efx
->legacy_irq_enabled
= true;
1447 efx_nic_enable_interrupts(efx
);
1449 /* Switch to event based MCDI completions after enabling interrupts.
1450 * If a reset has been scheduled, then we need to stay in polled mode.
1451 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1452 * reset_pending [modified from an atomic context], we instead guarantee
1453 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1454 efx_mcdi_mode_event(efx
);
1455 if (efx
->reset_pending
)
1456 efx_mcdi_mode_poll(efx
);
1458 /* Start the hardware monitor if there is one. Otherwise (we're link
1459 * event driven), we have to poll the PHY because after an event queue
1460 * flush, we could have a missed a link state change */
1461 if (efx
->type
->monitor
!= NULL
) {
1462 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1463 efx_monitor_interval
);
1465 mutex_lock(&efx
->mac_lock
);
1466 if (efx
->phy_op
->poll(efx
))
1467 efx_link_status_changed(efx
);
1468 mutex_unlock(&efx
->mac_lock
);
1471 efx
->type
->start_stats(efx
);
1474 /* Flush all delayed work. Should only be called when no more delayed work
1475 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1476 * since we're holding the rtnl_lock at this point. */
1477 static void efx_flush_all(struct efx_nic
*efx
)
1479 /* Make sure the hardware monitor is stopped */
1480 cancel_delayed_work_sync(&efx
->monitor_work
);
1481 /* Stop scheduled port reconfigurations */
1482 cancel_work_sync(&efx
->mac_work
);
1485 /* Quiesce hardware and software without bringing the link down.
1486 * Safe to call multiple times, when the nic and interface is in any
1487 * state. The caller is guaranteed to subsequently be in a position
1488 * to modify any hardware and software state they see fit without
1490 static void efx_stop_all(struct efx_nic
*efx
)
1492 struct efx_channel
*channel
;
1494 EFX_ASSERT_RESET_SERIALISED(efx
);
1496 /* port_enabled can be read safely under the rtnl lock */
1497 if (!efx
->port_enabled
)
1500 efx
->type
->stop_stats(efx
);
1502 /* Switch to MCDI polling on Siena before disabling interrupts */
1503 efx_mcdi_mode_poll(efx
);
1505 /* Disable interrupts and wait for ISR to complete */
1506 efx_nic_disable_interrupts(efx
);
1507 if (efx
->legacy_irq
) {
1508 synchronize_irq(efx
->legacy_irq
);
1509 efx
->legacy_irq_enabled
= false;
1511 efx_for_each_channel(channel
, efx
) {
1513 synchronize_irq(channel
->irq
);
1516 /* Stop all NAPI processing and synchronous rx refills */
1517 efx_for_each_channel(channel
, efx
)
1518 efx_stop_channel(channel
);
1520 /* Stop all asynchronous port reconfigurations. Since all
1521 * event processing has already been stopped, there is no
1522 * window to loose phy events */
1525 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1528 /* Stop the kernel transmit interface late, so the watchdog
1529 * timer isn't ticking over the flush */
1530 if (efx_dev_registered(efx
)) {
1531 netif_tx_stop_all_queues(efx
->net_dev
);
1532 netif_tx_lock_bh(efx
->net_dev
);
1533 netif_tx_unlock_bh(efx
->net_dev
);
1537 static void efx_remove_all(struct efx_nic
*efx
)
1539 efx_remove_filters(efx
);
1540 efx_remove_channels(efx
);
1541 efx_remove_port(efx
);
1542 efx_remove_nic(efx
);
1545 /**************************************************************************
1547 * Interrupt moderation
1549 **************************************************************************/
1551 static unsigned int irq_mod_ticks(unsigned int usecs
, unsigned int resolution
)
1555 if (usecs
< resolution
)
1556 return 1; /* never round down to 0 */
1557 return usecs
/ resolution
;
1560 /* Set interrupt moderation parameters */
1561 int efx_init_irq_moderation(struct efx_nic
*efx
, unsigned int tx_usecs
,
1562 unsigned int rx_usecs
, bool rx_adaptive
,
1563 bool rx_may_override_tx
)
1565 struct efx_channel
*channel
;
1566 unsigned tx_ticks
= irq_mod_ticks(tx_usecs
, EFX_IRQ_MOD_RESOLUTION
);
1567 unsigned rx_ticks
= irq_mod_ticks(rx_usecs
, EFX_IRQ_MOD_RESOLUTION
);
1569 EFX_ASSERT_RESET_SERIALISED(efx
);
1571 if (tx_ticks
> EFX_IRQ_MOD_MAX
|| rx_ticks
> EFX_IRQ_MOD_MAX
)
1574 if (tx_ticks
!= rx_ticks
&& efx
->tx_channel_offset
== 0 &&
1575 !rx_may_override_tx
) {
1576 netif_err(efx
, drv
, efx
->net_dev
, "Channels are shared. "
1577 "RX and TX IRQ moderation must be equal\n");
1581 efx
->irq_rx_adaptive
= rx_adaptive
;
1582 efx
->irq_rx_moderation
= rx_ticks
;
1583 efx_for_each_channel(channel
, efx
) {
1584 if (efx_channel_has_rx_queue(channel
))
1585 channel
->irq_moderation
= rx_ticks
;
1586 else if (efx_channel_has_tx_queues(channel
))
1587 channel
->irq_moderation
= tx_ticks
;
1593 void efx_get_irq_moderation(struct efx_nic
*efx
, unsigned int *tx_usecs
,
1594 unsigned int *rx_usecs
, bool *rx_adaptive
)
1596 *rx_adaptive
= efx
->irq_rx_adaptive
;
1597 *rx_usecs
= efx
->irq_rx_moderation
* EFX_IRQ_MOD_RESOLUTION
;
1599 /* If channels are shared between RX and TX, so is IRQ
1600 * moderation. Otherwise, IRQ moderation is the same for all
1601 * TX channels and is not adaptive.
1603 if (efx
->tx_channel_offset
== 0)
1604 *tx_usecs
= *rx_usecs
;
1607 efx
->channel
[efx
->tx_channel_offset
]->irq_moderation
*
1608 EFX_IRQ_MOD_RESOLUTION
;
1611 /**************************************************************************
1615 **************************************************************************/
1617 /* Run periodically off the general workqueue */
1618 static void efx_monitor(struct work_struct
*data
)
1620 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
1623 netif_vdbg(efx
, timer
, efx
->net_dev
,
1624 "hardware monitor executing on CPU %d\n",
1625 raw_smp_processor_id());
1626 BUG_ON(efx
->type
->monitor
== NULL
);
1628 /* If the mac_lock is already held then it is likely a port
1629 * reconfiguration is already in place, which will likely do
1630 * most of the work of monitor() anyway. */
1631 if (mutex_trylock(&efx
->mac_lock
)) {
1632 if (efx
->port_enabled
)
1633 efx
->type
->monitor(efx
);
1634 mutex_unlock(&efx
->mac_lock
);
1637 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1638 efx_monitor_interval
);
1641 /**************************************************************************
1645 *************************************************************************/
1648 * Context: process, rtnl_lock() held.
1650 static int efx_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
1652 struct efx_nic
*efx
= netdev_priv(net_dev
);
1653 struct mii_ioctl_data
*data
= if_mii(ifr
);
1655 EFX_ASSERT_RESET_SERIALISED(efx
);
1657 /* Convert phy_id from older PRTAD/DEVAD format */
1658 if ((cmd
== SIOCGMIIREG
|| cmd
== SIOCSMIIREG
) &&
1659 (data
->phy_id
& 0xfc00) == 0x0400)
1660 data
->phy_id
^= MDIO_PHY_ID_C45
| 0x0400;
1662 return mdio_mii_ioctl(&efx
->mdio
, data
, cmd
);
1665 /**************************************************************************
1669 **************************************************************************/
1671 static void efx_init_napi(struct efx_nic
*efx
)
1673 struct efx_channel
*channel
;
1675 efx_for_each_channel(channel
, efx
) {
1676 channel
->napi_dev
= efx
->net_dev
;
1677 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
1678 efx_poll
, napi_weight
);
1682 static void efx_fini_napi_channel(struct efx_channel
*channel
)
1684 if (channel
->napi_dev
)
1685 netif_napi_del(&channel
->napi_str
);
1686 channel
->napi_dev
= NULL
;
1689 static void efx_fini_napi(struct efx_nic
*efx
)
1691 struct efx_channel
*channel
;
1693 efx_for_each_channel(channel
, efx
)
1694 efx_fini_napi_channel(channel
);
1697 /**************************************************************************
1699 * Kernel netpoll interface
1701 *************************************************************************/
1703 #ifdef CONFIG_NET_POLL_CONTROLLER
1705 /* Although in the common case interrupts will be disabled, this is not
1706 * guaranteed. However, all our work happens inside the NAPI callback,
1707 * so no locking is required.
1709 static void efx_netpoll(struct net_device
*net_dev
)
1711 struct efx_nic
*efx
= netdev_priv(net_dev
);
1712 struct efx_channel
*channel
;
1714 efx_for_each_channel(channel
, efx
)
1715 efx_schedule_channel(channel
);
1720 /**************************************************************************
1722 * Kernel net device interface
1724 *************************************************************************/
1726 /* Context: process, rtnl_lock() held. */
1727 static int efx_net_open(struct net_device
*net_dev
)
1729 struct efx_nic
*efx
= netdev_priv(net_dev
);
1730 EFX_ASSERT_RESET_SERIALISED(efx
);
1732 netif_dbg(efx
, ifup
, efx
->net_dev
, "opening device on CPU %d\n",
1733 raw_smp_processor_id());
1735 if (efx
->state
== STATE_DISABLED
)
1737 if (efx
->phy_mode
& PHY_MODE_SPECIAL
)
1739 if (efx_mcdi_poll_reboot(efx
) && efx_reset(efx
, RESET_TYPE_ALL
))
1742 /* Notify the kernel of the link state polled during driver load,
1743 * before the monitor starts running */
1744 efx_link_status_changed(efx
);
1750 /* Context: process, rtnl_lock() held.
1751 * Note that the kernel will ignore our return code; this method
1752 * should really be a void.
1754 static int efx_net_stop(struct net_device
*net_dev
)
1756 struct efx_nic
*efx
= netdev_priv(net_dev
);
1758 netif_dbg(efx
, ifdown
, efx
->net_dev
, "closing on CPU %d\n",
1759 raw_smp_processor_id());
1761 if (efx
->state
!= STATE_DISABLED
) {
1762 /* Stop the device and flush all the channels */
1764 efx_fini_channels(efx
);
1765 efx_init_channels(efx
);
1771 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1772 static struct rtnl_link_stats64
*efx_net_stats(struct net_device
*net_dev
, struct rtnl_link_stats64
*stats
)
1774 struct efx_nic
*efx
= netdev_priv(net_dev
);
1775 struct efx_mac_stats
*mac_stats
= &efx
->mac_stats
;
1777 spin_lock_bh(&efx
->stats_lock
);
1778 efx
->type
->update_stats(efx
);
1779 spin_unlock_bh(&efx
->stats_lock
);
1781 stats
->rx_packets
= mac_stats
->rx_packets
;
1782 stats
->tx_packets
= mac_stats
->tx_packets
;
1783 stats
->rx_bytes
= mac_stats
->rx_bytes
;
1784 stats
->tx_bytes
= mac_stats
->tx_bytes
;
1785 stats
->rx_dropped
= efx
->n_rx_nodesc_drop_cnt
;
1786 stats
->multicast
= mac_stats
->rx_multicast
;
1787 stats
->collisions
= mac_stats
->tx_collision
;
1788 stats
->rx_length_errors
= (mac_stats
->rx_gtjumbo
+
1789 mac_stats
->rx_length_error
);
1790 stats
->rx_crc_errors
= mac_stats
->rx_bad
;
1791 stats
->rx_frame_errors
= mac_stats
->rx_align_error
;
1792 stats
->rx_fifo_errors
= mac_stats
->rx_overflow
;
1793 stats
->rx_missed_errors
= mac_stats
->rx_missed
;
1794 stats
->tx_window_errors
= mac_stats
->tx_late_collision
;
1796 stats
->rx_errors
= (stats
->rx_length_errors
+
1797 stats
->rx_crc_errors
+
1798 stats
->rx_frame_errors
+
1799 mac_stats
->rx_symbol_error
);
1800 stats
->tx_errors
= (stats
->tx_window_errors
+
1806 /* Context: netif_tx_lock held, BHs disabled. */
1807 static void efx_watchdog(struct net_device
*net_dev
)
1809 struct efx_nic
*efx
= netdev_priv(net_dev
);
1811 netif_err(efx
, tx_err
, efx
->net_dev
,
1812 "TX stuck with port_enabled=%d: resetting channels\n",
1815 efx_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
1819 /* Context: process, rtnl_lock() held. */
1820 static int efx_change_mtu(struct net_device
*net_dev
, int new_mtu
)
1822 struct efx_nic
*efx
= netdev_priv(net_dev
);
1825 EFX_ASSERT_RESET_SERIALISED(efx
);
1827 if (new_mtu
> EFX_MAX_MTU
)
1832 netif_dbg(efx
, drv
, efx
->net_dev
, "changing MTU to %d\n", new_mtu
);
1834 efx_fini_channels(efx
);
1836 mutex_lock(&efx
->mac_lock
);
1837 /* Reconfigure the MAC before enabling the dma queues so that
1838 * the RX buffers don't overflow */
1839 net_dev
->mtu
= new_mtu
;
1840 efx
->mac_op
->reconfigure(efx
);
1841 mutex_unlock(&efx
->mac_lock
);
1843 efx_init_channels(efx
);
1849 static int efx_set_mac_address(struct net_device
*net_dev
, void *data
)
1851 struct efx_nic
*efx
= netdev_priv(net_dev
);
1852 struct sockaddr
*addr
= data
;
1853 char *new_addr
= addr
->sa_data
;
1855 EFX_ASSERT_RESET_SERIALISED(efx
);
1857 if (!is_valid_ether_addr(new_addr
)) {
1858 netif_err(efx
, drv
, efx
->net_dev
,
1859 "invalid ethernet MAC address requested: %pM\n",
1864 memcpy(net_dev
->dev_addr
, new_addr
, net_dev
->addr_len
);
1866 /* Reconfigure the MAC */
1867 mutex_lock(&efx
->mac_lock
);
1868 efx
->mac_op
->reconfigure(efx
);
1869 mutex_unlock(&efx
->mac_lock
);
1874 /* Context: netif_addr_lock held, BHs disabled. */
1875 static void efx_set_multicast_list(struct net_device
*net_dev
)
1877 struct efx_nic
*efx
= netdev_priv(net_dev
);
1878 struct netdev_hw_addr
*ha
;
1879 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
1883 efx
->promiscuous
= !!(net_dev
->flags
& IFF_PROMISC
);
1885 /* Build multicast hash table */
1886 if (efx
->promiscuous
|| (net_dev
->flags
& IFF_ALLMULTI
)) {
1887 memset(mc_hash
, 0xff, sizeof(*mc_hash
));
1889 memset(mc_hash
, 0x00, sizeof(*mc_hash
));
1890 netdev_for_each_mc_addr(ha
, net_dev
) {
1891 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
1892 bit
= crc
& (EFX_MCAST_HASH_ENTRIES
- 1);
1893 set_bit_le(bit
, mc_hash
->byte
);
1896 /* Broadcast packets go through the multicast hash filter.
1897 * ether_crc_le() of the broadcast address is 0xbe2612ff
1898 * so we always add bit 0xff to the mask.
1900 set_bit_le(0xff, mc_hash
->byte
);
1903 if (efx
->port_enabled
)
1904 queue_work(efx
->workqueue
, &efx
->mac_work
);
1905 /* Otherwise efx_start_port() will do this */
1908 static int efx_set_features(struct net_device
*net_dev
, u32 data
)
1910 struct efx_nic
*efx
= netdev_priv(net_dev
);
1912 /* If disabling RX n-tuple filtering, clear existing filters */
1913 if (net_dev
->features
& ~data
& NETIF_F_NTUPLE
)
1914 efx_filter_clear_rx(efx
, EFX_FILTER_PRI_MANUAL
);
1919 static const struct net_device_ops efx_netdev_ops
= {
1920 .ndo_open
= efx_net_open
,
1921 .ndo_stop
= efx_net_stop
,
1922 .ndo_get_stats64
= efx_net_stats
,
1923 .ndo_tx_timeout
= efx_watchdog
,
1924 .ndo_start_xmit
= efx_hard_start_xmit
,
1925 .ndo_validate_addr
= eth_validate_addr
,
1926 .ndo_do_ioctl
= efx_ioctl
,
1927 .ndo_change_mtu
= efx_change_mtu
,
1928 .ndo_set_mac_address
= efx_set_mac_address
,
1929 .ndo_set_rx_mode
= efx_set_multicast_list
,
1930 .ndo_set_features
= efx_set_features
,
1931 #ifdef CONFIG_NET_POLL_CONTROLLER
1932 .ndo_poll_controller
= efx_netpoll
,
1934 .ndo_setup_tc
= efx_setup_tc
,
1935 #ifdef CONFIG_RFS_ACCEL
1936 .ndo_rx_flow_steer
= efx_filter_rfs
,
1940 static void efx_update_name(struct efx_nic
*efx
)
1942 strcpy(efx
->name
, efx
->net_dev
->name
);
1943 efx_mtd_rename(efx
);
1944 efx_set_channel_names(efx
);
1947 static int efx_netdev_event(struct notifier_block
*this,
1948 unsigned long event
, void *ptr
)
1950 struct net_device
*net_dev
= ptr
;
1952 if (net_dev
->netdev_ops
== &efx_netdev_ops
&&
1953 event
== NETDEV_CHANGENAME
)
1954 efx_update_name(netdev_priv(net_dev
));
1959 static struct notifier_block efx_netdev_notifier
= {
1960 .notifier_call
= efx_netdev_event
,
1964 show_phy_type(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
1966 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
1967 return sprintf(buf
, "%d\n", efx
->phy_type
);
1969 static DEVICE_ATTR(phy_type
, 0644, show_phy_type
, NULL
);
1971 static int efx_register_netdev(struct efx_nic
*efx
)
1973 struct net_device
*net_dev
= efx
->net_dev
;
1974 struct efx_channel
*channel
;
1977 net_dev
->watchdog_timeo
= 5 * HZ
;
1978 net_dev
->irq
= efx
->pci_dev
->irq
;
1979 net_dev
->netdev_ops
= &efx_netdev_ops
;
1980 SET_ETHTOOL_OPS(net_dev
, &efx_ethtool_ops
);
1981 net_dev
->gso_max_segs
= EFX_TSO_MAX_SEGS
;
1983 /* Clear MAC statistics */
1984 efx
->mac_op
->update_stats(efx
);
1985 memset(&efx
->mac_stats
, 0, sizeof(efx
->mac_stats
));
1989 rc
= dev_alloc_name(net_dev
, net_dev
->name
);
1992 efx_update_name(efx
);
1994 rc
= register_netdevice(net_dev
);
1998 efx_for_each_channel(channel
, efx
) {
1999 struct efx_tx_queue
*tx_queue
;
2000 efx_for_each_channel_tx_queue(tx_queue
, channel
)
2001 efx_init_tx_queue_core_txq(tx_queue
);
2004 /* Always start with carrier off; PHY events will detect the link */
2005 netif_carrier_off(efx
->net_dev
);
2009 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2011 netif_err(efx
, drv
, efx
->net_dev
,
2012 "failed to init net dev attributes\n");
2013 goto fail_registered
;
2020 netif_err(efx
, drv
, efx
->net_dev
, "could not register net dev\n");
2024 unregister_netdev(net_dev
);
2028 static void efx_unregister_netdev(struct efx_nic
*efx
)
2030 struct efx_channel
*channel
;
2031 struct efx_tx_queue
*tx_queue
;
2036 BUG_ON(netdev_priv(efx
->net_dev
) != efx
);
2038 /* Free up any skbs still remaining. This has to happen before
2039 * we try to unregister the netdev as running their destructors
2040 * may be needed to get the device ref. count to 0. */
2041 efx_for_each_channel(channel
, efx
) {
2042 efx_for_each_channel_tx_queue(tx_queue
, channel
)
2043 efx_release_tx_buffers(tx_queue
);
2046 if (efx_dev_registered(efx
)) {
2047 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
2048 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2049 unregister_netdev(efx
->net_dev
);
2053 /**************************************************************************
2055 * Device reset and suspend
2057 **************************************************************************/
2059 /* Tears down the entire software state and most of the hardware state
2061 void efx_reset_down(struct efx_nic
*efx
, enum reset_type method
)
2063 EFX_ASSERT_RESET_SERIALISED(efx
);
2066 mutex_lock(&efx
->mac_lock
);
2068 efx_fini_channels(efx
);
2069 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
)
2070 efx
->phy_op
->fini(efx
);
2071 efx
->type
->fini(efx
);
2074 /* This function will always ensure that the locks acquired in
2075 * efx_reset_down() are released. A failure return code indicates
2076 * that we were unable to reinitialise the hardware, and the
2077 * driver should be disabled. If ok is false, then the rx and tx
2078 * engines are not restarted, pending a RESET_DISABLE. */
2079 int efx_reset_up(struct efx_nic
*efx
, enum reset_type method
, bool ok
)
2083 EFX_ASSERT_RESET_SERIALISED(efx
);
2085 rc
= efx
->type
->init(efx
);
2087 netif_err(efx
, drv
, efx
->net_dev
, "failed to initialise NIC\n");
2094 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
) {
2095 rc
= efx
->phy_op
->init(efx
);
2098 if (efx
->phy_op
->reconfigure(efx
))
2099 netif_err(efx
, drv
, efx
->net_dev
,
2100 "could not restore PHY settings\n");
2103 efx
->mac_op
->reconfigure(efx
);
2105 efx_init_channels(efx
);
2106 efx_restore_filters(efx
);
2108 mutex_unlock(&efx
->mac_lock
);
2115 efx
->port_initialized
= false;
2117 mutex_unlock(&efx
->mac_lock
);
2122 /* Reset the NIC using the specified method. Note that the reset may
2123 * fail, in which case the card will be left in an unusable state.
2125 * Caller must hold the rtnl_lock.
2127 int efx_reset(struct efx_nic
*efx
, enum reset_type method
)
2132 netif_info(efx
, drv
, efx
->net_dev
, "resetting (%s)\n",
2133 RESET_TYPE(method
));
2135 netif_device_detach(efx
->net_dev
);
2136 efx_reset_down(efx
, method
);
2138 rc
= efx
->type
->reset(efx
, method
);
2140 netif_err(efx
, drv
, efx
->net_dev
, "failed to reset hardware\n");
2144 /* Clear flags for the scopes we covered. We assume the NIC and
2145 * driver are now quiescent so that there is no race here.
2147 efx
->reset_pending
&= -(1 << (method
+ 1));
2149 /* Reinitialise bus-mastering, which may have been turned off before
2150 * the reset was scheduled. This is still appropriate, even in the
2151 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2152 * can respond to requests. */
2153 pci_set_master(efx
->pci_dev
);
2156 /* Leave device stopped if necessary */
2157 disabled
= rc
|| method
== RESET_TYPE_DISABLE
;
2158 rc2
= efx_reset_up(efx
, method
, !disabled
);
2166 dev_close(efx
->net_dev
);
2167 netif_err(efx
, drv
, efx
->net_dev
, "has been disabled\n");
2168 efx
->state
= STATE_DISABLED
;
2170 netif_dbg(efx
, drv
, efx
->net_dev
, "reset complete\n");
2171 netif_device_attach(efx
->net_dev
);
2176 /* The worker thread exists so that code that cannot sleep can
2177 * schedule a reset for later.
2179 static void efx_reset_work(struct work_struct
*data
)
2181 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, reset_work
);
2182 unsigned long pending
= ACCESS_ONCE(efx
->reset_pending
);
2187 /* If we're not RUNNING then don't reset. Leave the reset_pending
2188 * flags set so that efx_pci_probe_main will be retried */
2189 if (efx
->state
!= STATE_RUNNING
) {
2190 netif_info(efx
, drv
, efx
->net_dev
,
2191 "scheduled reset quenched. NIC not RUNNING\n");
2196 (void)efx_reset(efx
, fls(pending
) - 1);
2200 void efx_schedule_reset(struct efx_nic
*efx
, enum reset_type type
)
2202 enum reset_type method
;
2205 case RESET_TYPE_INVISIBLE
:
2206 case RESET_TYPE_ALL
:
2207 case RESET_TYPE_WORLD
:
2208 case RESET_TYPE_DISABLE
:
2210 netif_dbg(efx
, drv
, efx
->net_dev
, "scheduling %s reset\n",
2211 RESET_TYPE(method
));
2214 method
= efx
->type
->map_reset_reason(type
);
2215 netif_dbg(efx
, drv
, efx
->net_dev
,
2216 "scheduling %s reset for %s\n",
2217 RESET_TYPE(method
), RESET_TYPE(type
));
2221 set_bit(method
, &efx
->reset_pending
);
2223 /* efx_process_channel() will no longer read events once a
2224 * reset is scheduled. So switch back to poll'd MCDI completions. */
2225 efx_mcdi_mode_poll(efx
);
2227 queue_work(reset_workqueue
, &efx
->reset_work
);
2230 /**************************************************************************
2232 * List of NICs we support
2234 **************************************************************************/
2236 /* PCI device ID table */
2237 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table
) = {
2238 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2239 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0
),
2240 .driver_data
= (unsigned long) &falcon_a1_nic_type
},
2241 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2242 PCI_DEVICE_ID_SOLARFLARE_SFC4000B
),
2243 .driver_data
= (unsigned long) &falcon_b0_nic_type
},
2244 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, BETHPAGE_A_P_DEVID
),
2245 .driver_data
= (unsigned long) &siena_a0_nic_type
},
2246 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, SIENA_A_P_DEVID
),
2247 .driver_data
= (unsigned long) &siena_a0_nic_type
},
2248 {0} /* end of list */
2251 /**************************************************************************
2253 * Dummy PHY/MAC operations
2255 * Can be used for some unimplemented operations
2256 * Needed so all function pointers are valid and do not have to be tested
2259 **************************************************************************/
2260 int efx_port_dummy_op_int(struct efx_nic
*efx
)
2264 void efx_port_dummy_op_void(struct efx_nic
*efx
) {}
2266 static bool efx_port_dummy_op_poll(struct efx_nic
*efx
)
2271 static const struct efx_phy_operations efx_dummy_phy_operations
= {
2272 .init
= efx_port_dummy_op_int
,
2273 .reconfigure
= efx_port_dummy_op_int
,
2274 .poll
= efx_port_dummy_op_poll
,
2275 .fini
= efx_port_dummy_op_void
,
2278 /**************************************************************************
2282 **************************************************************************/
2284 /* This zeroes out and then fills in the invariants in a struct
2285 * efx_nic (including all sub-structures).
2287 static int efx_init_struct(struct efx_nic
*efx
, const struct efx_nic_type
*type
,
2288 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
2292 /* Initialise common structures */
2293 memset(efx
, 0, sizeof(*efx
));
2294 spin_lock_init(&efx
->biu_lock
);
2295 #ifdef CONFIG_SFC_MTD
2296 INIT_LIST_HEAD(&efx
->mtd_list
);
2298 INIT_WORK(&efx
->reset_work
, efx_reset_work
);
2299 INIT_DELAYED_WORK(&efx
->monitor_work
, efx_monitor
);
2300 efx
->pci_dev
= pci_dev
;
2301 efx
->msg_enable
= debug
;
2302 efx
->state
= STATE_INIT
;
2303 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
2305 efx
->net_dev
= net_dev
;
2306 spin_lock_init(&efx
->stats_lock
);
2307 mutex_init(&efx
->mac_lock
);
2308 efx
->mac_op
= type
->default_mac_ops
;
2309 efx
->phy_op
= &efx_dummy_phy_operations
;
2310 efx
->mdio
.dev
= net_dev
;
2311 INIT_WORK(&efx
->mac_work
, efx_mac_work
);
2313 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++) {
2314 efx
->channel
[i
] = efx_alloc_channel(efx
, i
, NULL
);
2315 if (!efx
->channel
[i
])
2321 EFX_BUG_ON_PARANOID(efx
->type
->phys_addr_channels
> EFX_MAX_CHANNELS
);
2323 /* Higher numbered interrupt modes are less capable! */
2324 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
2327 /* Would be good to use the net_dev name, but we're too early */
2328 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
2330 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
2331 if (!efx
->workqueue
)
2337 efx_fini_struct(efx
);
2341 static void efx_fini_struct(struct efx_nic
*efx
)
2345 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++)
2346 kfree(efx
->channel
[i
]);
2348 if (efx
->workqueue
) {
2349 destroy_workqueue(efx
->workqueue
);
2350 efx
->workqueue
= NULL
;
2354 /**************************************************************************
2358 **************************************************************************/
2360 /* Main body of final NIC shutdown code
2361 * This is called only at module unload (or hotplug removal).
2363 static void efx_pci_remove_main(struct efx_nic
*efx
)
2365 #ifdef CONFIG_RFS_ACCEL
2366 free_irq_cpu_rmap(efx
->net_dev
->rx_cpu_rmap
);
2367 efx
->net_dev
->rx_cpu_rmap
= NULL
;
2369 efx_nic_fini_interrupt(efx
);
2370 efx_fini_channels(efx
);
2372 efx
->type
->fini(efx
);
2374 efx_remove_all(efx
);
2377 /* Final NIC shutdown
2378 * This is called only at module unload (or hotplug removal).
2380 static void efx_pci_remove(struct pci_dev
*pci_dev
)
2382 struct efx_nic
*efx
;
2384 efx
= pci_get_drvdata(pci_dev
);
2388 /* Mark the NIC as fini, then stop the interface */
2390 efx
->state
= STATE_FINI
;
2391 dev_close(efx
->net_dev
);
2393 /* Allow any queued efx_resets() to complete */
2396 efx_unregister_netdev(efx
);
2398 efx_mtd_remove(efx
);
2400 /* Wait for any scheduled resets to complete. No more will be
2401 * scheduled from this point because efx_stop_all() has been
2402 * called, we are no longer registered with driverlink, and
2403 * the net_device's have been removed. */
2404 cancel_work_sync(&efx
->reset_work
);
2406 efx_pci_remove_main(efx
);
2409 netif_dbg(efx
, drv
, efx
->net_dev
, "shutdown successful\n");
2411 pci_set_drvdata(pci_dev
, NULL
);
2412 efx_fini_struct(efx
);
2413 free_netdev(efx
->net_dev
);
2416 /* Main body of NIC initialisation
2417 * This is called at module load (or hotplug insertion, theoretically).
2419 static int efx_pci_probe_main(struct efx_nic
*efx
)
2423 /* Do start-of-day initialisation */
2424 rc
= efx_probe_all(efx
);
2430 rc
= efx
->type
->init(efx
);
2432 netif_err(efx
, probe
, efx
->net_dev
,
2433 "failed to initialise NIC\n");
2437 rc
= efx_init_port(efx
);
2439 netif_err(efx
, probe
, efx
->net_dev
,
2440 "failed to initialise port\n");
2444 efx_init_channels(efx
);
2446 rc
= efx_nic_init_interrupt(efx
);
2453 efx_fini_channels(efx
);
2456 efx
->type
->fini(efx
);
2459 efx_remove_all(efx
);
2464 /* NIC initialisation
2466 * This is called at module load (or hotplug insertion,
2467 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2468 * sets up and registers the network devices with the kernel and hooks
2469 * the interrupt service routine. It does not prepare the device for
2470 * transmission; this is left to the first time one of the network
2471 * interfaces is brought up (i.e. efx_net_open).
2473 static int __devinit
efx_pci_probe(struct pci_dev
*pci_dev
,
2474 const struct pci_device_id
*entry
)
2476 const struct efx_nic_type
*type
= (const struct efx_nic_type
*) entry
->driver_data
;
2477 struct net_device
*net_dev
;
2478 struct efx_nic
*efx
;
2481 /* Allocate and initialise a struct net_device and struct efx_nic */
2482 net_dev
= alloc_etherdev_mqs(sizeof(*efx
), EFX_MAX_CORE_TX_QUEUES
,
2486 net_dev
->features
|= (type
->offload_features
| NETIF_F_SG
|
2487 NETIF_F_HIGHDMA
| NETIF_F_TSO
|
2489 if (type
->offload_features
& NETIF_F_V6_CSUM
)
2490 net_dev
->features
|= NETIF_F_TSO6
;
2491 /* Mask for features that also apply to VLAN devices */
2492 net_dev
->vlan_features
|= (NETIF_F_ALL_CSUM
| NETIF_F_SG
|
2493 NETIF_F_HIGHDMA
| NETIF_F_ALL_TSO
|
2495 /* All offloads can be toggled */
2496 net_dev
->hw_features
= net_dev
->features
& ~NETIF_F_HIGHDMA
;
2497 efx
= netdev_priv(net_dev
);
2498 pci_set_drvdata(pci_dev
, efx
);
2499 SET_NETDEV_DEV(net_dev
, &pci_dev
->dev
);
2500 rc
= efx_init_struct(efx
, type
, pci_dev
, net_dev
);
2504 netif_info(efx
, probe
, efx
->net_dev
,
2505 "Solarflare NIC detected\n");
2507 /* Set up basic I/O (BAR mappings etc) */
2508 rc
= efx_init_io(efx
);
2512 /* No serialisation is required with the reset path because
2513 * we're in STATE_INIT. */
2514 for (i
= 0; i
< 5; i
++) {
2515 rc
= efx_pci_probe_main(efx
);
2517 /* Serialise against efx_reset(). No more resets will be
2518 * scheduled since efx_stop_all() has been called, and we
2519 * have not and never have been registered with either
2520 * the rtnetlink or driverlink layers. */
2521 cancel_work_sync(&efx
->reset_work
);
2524 if (efx
->reset_pending
) {
2525 /* If there was a scheduled reset during
2526 * probe, the NIC is probably hosed anyway */
2527 efx_pci_remove_main(efx
);
2534 /* Retry if a recoverably reset event has been scheduled */
2535 if (efx
->reset_pending
&
2536 ~(1 << RESET_TYPE_INVISIBLE
| 1 << RESET_TYPE_ALL
) ||
2537 !efx
->reset_pending
)
2540 efx
->reset_pending
= 0;
2544 netif_err(efx
, probe
, efx
->net_dev
, "Could not reset NIC\n");
2548 /* Switch to the running state before we expose the device to the OS,
2549 * so that dev_open()|efx_start_all() will actually start the device */
2550 efx
->state
= STATE_RUNNING
;
2552 rc
= efx_register_netdev(efx
);
2556 netif_dbg(efx
, probe
, efx
->net_dev
, "initialisation successful\n");
2559 efx_mtd_probe(efx
); /* allowed to fail */
2564 efx_pci_remove_main(efx
);
2569 efx_fini_struct(efx
);
2572 netif_dbg(efx
, drv
, efx
->net_dev
, "initialisation failed. rc=%d\n", rc
);
2573 free_netdev(net_dev
);
2577 static int efx_pm_freeze(struct device
*dev
)
2579 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2581 efx
->state
= STATE_FINI
;
2583 netif_device_detach(efx
->net_dev
);
2586 efx_fini_channels(efx
);
2591 static int efx_pm_thaw(struct device
*dev
)
2593 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2595 efx
->state
= STATE_INIT
;
2597 efx_init_channels(efx
);
2599 mutex_lock(&efx
->mac_lock
);
2600 efx
->phy_op
->reconfigure(efx
);
2601 mutex_unlock(&efx
->mac_lock
);
2605 netif_device_attach(efx
->net_dev
);
2607 efx
->state
= STATE_RUNNING
;
2609 efx
->type
->resume_wol(efx
);
2611 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2612 queue_work(reset_workqueue
, &efx
->reset_work
);
2617 static int efx_pm_poweroff(struct device
*dev
)
2619 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
2620 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
2622 efx
->type
->fini(efx
);
2624 efx
->reset_pending
= 0;
2626 pci_save_state(pci_dev
);
2627 return pci_set_power_state(pci_dev
, PCI_D3hot
);
2630 /* Used for both resume and restore */
2631 static int efx_pm_resume(struct device
*dev
)
2633 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
2634 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
2637 rc
= pci_set_power_state(pci_dev
, PCI_D0
);
2640 pci_restore_state(pci_dev
);
2641 rc
= pci_enable_device(pci_dev
);
2644 pci_set_master(efx
->pci_dev
);
2645 rc
= efx
->type
->reset(efx
, RESET_TYPE_ALL
);
2648 rc
= efx
->type
->init(efx
);
2655 static int efx_pm_suspend(struct device
*dev
)
2660 rc
= efx_pm_poweroff(dev
);
2666 static struct dev_pm_ops efx_pm_ops
= {
2667 .suspend
= efx_pm_suspend
,
2668 .resume
= efx_pm_resume
,
2669 .freeze
= efx_pm_freeze
,
2670 .thaw
= efx_pm_thaw
,
2671 .poweroff
= efx_pm_poweroff
,
2672 .restore
= efx_pm_resume
,
2675 static struct pci_driver efx_pci_driver
= {
2676 .name
= KBUILD_MODNAME
,
2677 .id_table
= efx_pci_table
,
2678 .probe
= efx_pci_probe
,
2679 .remove
= efx_pci_remove
,
2680 .driver
.pm
= &efx_pm_ops
,
2683 /**************************************************************************
2685 * Kernel module interface
2687 *************************************************************************/
2689 module_param(interrupt_mode
, uint
, 0444);
2690 MODULE_PARM_DESC(interrupt_mode
,
2691 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2693 static int __init
efx_init_module(void)
2697 printk(KERN_INFO
"Solarflare NET driver v" EFX_DRIVER_VERSION
"\n");
2699 rc
= register_netdevice_notifier(&efx_netdev_notifier
);
2703 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
2704 if (!reset_workqueue
) {
2709 rc
= pci_register_driver(&efx_pci_driver
);
2716 destroy_workqueue(reset_workqueue
);
2718 unregister_netdevice_notifier(&efx_netdev_notifier
);
2723 static void __exit
efx_exit_module(void)
2725 printk(KERN_INFO
"Solarflare NET driver unloading\n");
2727 pci_unregister_driver(&efx_pci_driver
);
2728 destroy_workqueue(reset_workqueue
);
2729 unregister_netdevice_notifier(&efx_netdev_notifier
);
2733 module_init(efx_init_module
);
2734 module_exit(efx_exit_module
);
2736 MODULE_AUTHOR("Solarflare Communications and "
2737 "Michael Brown <mbrown@fensystems.co.uk>");
2738 MODULE_DESCRIPTION("Solarflare Communications network driver");
2739 MODULE_LICENSE("GPL");
2740 MODULE_DEVICE_TABLE(pci
, efx_pci_table
);