2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
29 #include <asm/pgtable.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
38 int hugepages_treat_as_movable
;
40 int hugetlb_max_hstate __read_mostly
;
41 unsigned int default_hstate_idx
;
42 struct hstate hstates
[HUGE_MAX_HSTATE
];
44 * Minimum page order among possible hugepage sizes, set to a proper value
47 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
49 __initdata
LIST_HEAD(huge_boot_pages
);
51 /* for command line parsing */
52 static struct hstate
* __initdata parsed_hstate
;
53 static unsigned long __initdata default_hstate_max_huge_pages
;
54 static unsigned long __initdata default_hstate_size
;
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
60 DEFINE_SPINLOCK(hugetlb_lock
);
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 static int num_fault_mutexes
;
67 static struct mutex
*htlb_fault_mutex_table ____cacheline_aligned_in_smp
;
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
72 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
74 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
76 spin_unlock(&spool
->lock
);
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
82 if (spool
->min_hpages
!= -1)
83 hugetlb_acct_memory(spool
->hstate
,
89 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
92 struct hugepage_subpool
*spool
;
94 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
98 spin_lock_init(&spool
->lock
);
100 spool
->max_hpages
= max_hpages
;
102 spool
->min_hpages
= min_hpages
;
104 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
108 spool
->rsv_hpages
= min_hpages
;
113 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
115 spin_lock(&spool
->lock
);
116 BUG_ON(!spool
->count
);
118 unlock_or_release_subpool(spool
);
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
129 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
137 spin_lock(&spool
->lock
);
139 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
140 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
141 spool
->used_hpages
+= delta
;
148 if (spool
->min_hpages
!= -1) { /* minimum size accounting */
149 if (delta
> spool
->rsv_hpages
) {
151 * Asking for more reserves than those already taken on
152 * behalf of subpool. Return difference.
154 ret
= delta
- spool
->rsv_hpages
;
155 spool
->rsv_hpages
= 0;
157 ret
= 0; /* reserves already accounted for */
158 spool
->rsv_hpages
-= delta
;
163 spin_unlock(&spool
->lock
);
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
173 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
181 spin_lock(&spool
->lock
);
183 if (spool
->max_hpages
!= -1) /* maximum size accounting */
184 spool
->used_hpages
-= delta
;
186 if (spool
->min_hpages
!= -1) { /* minimum size accounting */
187 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
190 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
192 spool
->rsv_hpages
+= delta
;
193 if (spool
->rsv_hpages
> spool
->min_hpages
)
194 spool
->rsv_hpages
= spool
->min_hpages
;
198 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 * quota reference, free it now.
201 unlock_or_release_subpool(spool
);
206 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
208 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
211 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
213 return subpool_inode(file_inode(vma
->vm_file
));
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 * across the pages in a mapping.
220 * The region data structures are embedded into a resv_map and
221 * protected by a resv_map's lock
224 struct list_head link
;
229 static long region_add(struct resv_map
*resv
, long f
, long t
)
231 struct list_head
*head
= &resv
->regions
;
232 struct file_region
*rg
, *nrg
, *trg
;
234 spin_lock(&resv
->lock
);
235 /* Locate the region we are either in or before. */
236 list_for_each_entry(rg
, head
, link
)
240 /* Round our left edge to the current segment if it encloses us. */
244 /* Check for and consume any regions we now overlap with. */
246 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
247 if (&rg
->link
== head
)
252 /* If this area reaches higher then extend our area to
253 * include it completely. If this is not the first area
254 * which we intend to reuse, free it. */
264 spin_unlock(&resv
->lock
);
268 static long region_chg(struct resv_map
*resv
, long f
, long t
)
270 struct list_head
*head
= &resv
->regions
;
271 struct file_region
*rg
, *nrg
= NULL
;
275 spin_lock(&resv
->lock
);
276 /* Locate the region we are before or in. */
277 list_for_each_entry(rg
, head
, link
)
281 /* If we are below the current region then a new region is required.
282 * Subtle, allocate a new region at the position but make it zero
283 * size such that we can guarantee to record the reservation. */
284 if (&rg
->link
== head
|| t
< rg
->from
) {
286 spin_unlock(&resv
->lock
);
287 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
293 INIT_LIST_HEAD(&nrg
->link
);
297 list_add(&nrg
->link
, rg
->link
.prev
);
302 /* Round our left edge to the current segment if it encloses us. */
307 /* Check for and consume any regions we now overlap with. */
308 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
309 if (&rg
->link
== head
)
314 /* We overlap with this area, if it extends further than
315 * us then we must extend ourselves. Account for its
316 * existing reservation. */
321 chg
-= rg
->to
- rg
->from
;
325 spin_unlock(&resv
->lock
);
326 /* We already know we raced and no longer need the new region */
330 spin_unlock(&resv
->lock
);
334 static long region_truncate(struct resv_map
*resv
, long end
)
336 struct list_head
*head
= &resv
->regions
;
337 struct file_region
*rg
, *trg
;
340 spin_lock(&resv
->lock
);
341 /* Locate the region we are either in or before. */
342 list_for_each_entry(rg
, head
, link
)
345 if (&rg
->link
== head
)
348 /* If we are in the middle of a region then adjust it. */
349 if (end
> rg
->from
) {
352 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
355 /* Drop any remaining regions. */
356 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
357 if (&rg
->link
== head
)
359 chg
+= rg
->to
- rg
->from
;
365 spin_unlock(&resv
->lock
);
369 static long region_count(struct resv_map
*resv
, long f
, long t
)
371 struct list_head
*head
= &resv
->regions
;
372 struct file_region
*rg
;
375 spin_lock(&resv
->lock
);
376 /* Locate each segment we overlap with, and count that overlap. */
377 list_for_each_entry(rg
, head
, link
) {
386 seg_from
= max(rg
->from
, f
);
387 seg_to
= min(rg
->to
, t
);
389 chg
+= seg_to
- seg_from
;
391 spin_unlock(&resv
->lock
);
397 * Convert the address within this vma to the page offset within
398 * the mapping, in pagecache page units; huge pages here.
400 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
401 struct vm_area_struct
*vma
, unsigned long address
)
403 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
404 (vma
->vm_pgoff
>> huge_page_order(h
));
407 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
408 unsigned long address
)
410 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
414 * Return the size of the pages allocated when backing a VMA. In the majority
415 * cases this will be same size as used by the page table entries.
417 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
419 struct hstate
*hstate
;
421 if (!is_vm_hugetlb_page(vma
))
424 hstate
= hstate_vma(vma
);
426 return 1UL << huge_page_shift(hstate
);
428 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
431 * Return the page size being used by the MMU to back a VMA. In the majority
432 * of cases, the page size used by the kernel matches the MMU size. On
433 * architectures where it differs, an architecture-specific version of this
434 * function is required.
436 #ifndef vma_mmu_pagesize
437 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
439 return vma_kernel_pagesize(vma
);
444 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
445 * bits of the reservation map pointer, which are always clear due to
448 #define HPAGE_RESV_OWNER (1UL << 0)
449 #define HPAGE_RESV_UNMAPPED (1UL << 1)
450 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
453 * These helpers are used to track how many pages are reserved for
454 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
455 * is guaranteed to have their future faults succeed.
457 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
458 * the reserve counters are updated with the hugetlb_lock held. It is safe
459 * to reset the VMA at fork() time as it is not in use yet and there is no
460 * chance of the global counters getting corrupted as a result of the values.
462 * The private mapping reservation is represented in a subtly different
463 * manner to a shared mapping. A shared mapping has a region map associated
464 * with the underlying file, this region map represents the backing file
465 * pages which have ever had a reservation assigned which this persists even
466 * after the page is instantiated. A private mapping has a region map
467 * associated with the original mmap which is attached to all VMAs which
468 * reference it, this region map represents those offsets which have consumed
469 * reservation ie. where pages have been instantiated.
471 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
473 return (unsigned long)vma
->vm_private_data
;
476 static void set_vma_private_data(struct vm_area_struct
*vma
,
479 vma
->vm_private_data
= (void *)value
;
482 struct resv_map
*resv_map_alloc(void)
484 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
488 kref_init(&resv_map
->refs
);
489 spin_lock_init(&resv_map
->lock
);
490 INIT_LIST_HEAD(&resv_map
->regions
);
495 void resv_map_release(struct kref
*ref
)
497 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
499 /* Clear out any active regions before we release the map. */
500 region_truncate(resv_map
, 0);
504 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
506 return inode
->i_mapping
->private_data
;
509 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
511 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
512 if (vma
->vm_flags
& VM_MAYSHARE
) {
513 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
514 struct inode
*inode
= mapping
->host
;
516 return inode_resv_map(inode
);
519 return (struct resv_map
*)(get_vma_private_data(vma
) &
524 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
526 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
527 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
529 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
530 HPAGE_RESV_MASK
) | (unsigned long)map
);
533 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
535 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
536 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
538 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
541 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
543 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
545 return (get_vma_private_data(vma
) & flag
) != 0;
548 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
549 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
551 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
552 if (!(vma
->vm_flags
& VM_MAYSHARE
))
553 vma
->vm_private_data
= (void *)0;
556 /* Returns true if the VMA has associated reserve pages */
557 static int vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
559 if (vma
->vm_flags
& VM_NORESERVE
) {
561 * This address is already reserved by other process(chg == 0),
562 * so, we should decrement reserved count. Without decrementing,
563 * reserve count remains after releasing inode, because this
564 * allocated page will go into page cache and is regarded as
565 * coming from reserved pool in releasing step. Currently, we
566 * don't have any other solution to deal with this situation
567 * properly, so add work-around here.
569 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
575 /* Shared mappings always use reserves */
576 if (vma
->vm_flags
& VM_MAYSHARE
)
580 * Only the process that called mmap() has reserves for
583 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
589 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
591 int nid
= page_to_nid(page
);
592 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
593 h
->free_huge_pages
++;
594 h
->free_huge_pages_node
[nid
]++;
597 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
601 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
602 if (!is_migrate_isolate_page(page
))
605 * if 'non-isolated free hugepage' not found on the list,
606 * the allocation fails.
608 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
610 list_move(&page
->lru
, &h
->hugepage_activelist
);
611 set_page_refcounted(page
);
612 h
->free_huge_pages
--;
613 h
->free_huge_pages_node
[nid
]--;
617 /* Movability of hugepages depends on migration support. */
618 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
620 if (hugepages_treat_as_movable
|| hugepage_migration_supported(h
))
621 return GFP_HIGHUSER_MOVABLE
;
626 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
627 struct vm_area_struct
*vma
,
628 unsigned long address
, int avoid_reserve
,
631 struct page
*page
= NULL
;
632 struct mempolicy
*mpol
;
633 nodemask_t
*nodemask
;
634 struct zonelist
*zonelist
;
637 unsigned int cpuset_mems_cookie
;
640 * A child process with MAP_PRIVATE mappings created by their parent
641 * have no page reserves. This check ensures that reservations are
642 * not "stolen". The child may still get SIGKILLed
644 if (!vma_has_reserves(vma
, chg
) &&
645 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
648 /* If reserves cannot be used, ensure enough pages are in the pool */
649 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
653 cpuset_mems_cookie
= read_mems_allowed_begin();
654 zonelist
= huge_zonelist(vma
, address
,
655 htlb_alloc_mask(h
), &mpol
, &nodemask
);
657 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
658 MAX_NR_ZONES
- 1, nodemask
) {
659 if (cpuset_zone_allowed(zone
, htlb_alloc_mask(h
))) {
660 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
664 if (!vma_has_reserves(vma
, chg
))
667 SetPagePrivate(page
);
668 h
->resv_huge_pages
--;
675 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
684 * common helper functions for hstate_next_node_to_{alloc|free}.
685 * We may have allocated or freed a huge page based on a different
686 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
687 * be outside of *nodes_allowed. Ensure that we use an allowed
688 * node for alloc or free.
690 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
692 nid
= next_node(nid
, *nodes_allowed
);
693 if (nid
== MAX_NUMNODES
)
694 nid
= first_node(*nodes_allowed
);
695 VM_BUG_ON(nid
>= MAX_NUMNODES
);
700 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
702 if (!node_isset(nid
, *nodes_allowed
))
703 nid
= next_node_allowed(nid
, nodes_allowed
);
708 * returns the previously saved node ["this node"] from which to
709 * allocate a persistent huge page for the pool and advance the
710 * next node from which to allocate, handling wrap at end of node
713 static int hstate_next_node_to_alloc(struct hstate
*h
,
714 nodemask_t
*nodes_allowed
)
718 VM_BUG_ON(!nodes_allowed
);
720 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
721 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
727 * helper for free_pool_huge_page() - return the previously saved
728 * node ["this node"] from which to free a huge page. Advance the
729 * next node id whether or not we find a free huge page to free so
730 * that the next attempt to free addresses the next node.
732 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
736 VM_BUG_ON(!nodes_allowed
);
738 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
739 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
744 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
745 for (nr_nodes = nodes_weight(*mask); \
747 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
750 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
751 for (nr_nodes = nodes_weight(*mask); \
753 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
756 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
757 static void destroy_compound_gigantic_page(struct page
*page
,
761 int nr_pages
= 1 << order
;
762 struct page
*p
= page
+ 1;
764 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
766 set_page_refcounted(p
);
767 p
->first_page
= NULL
;
770 set_compound_order(page
, 0);
771 __ClearPageHead(page
);
774 static void free_gigantic_page(struct page
*page
, unsigned order
)
776 free_contig_range(page_to_pfn(page
), 1 << order
);
779 static int __alloc_gigantic_page(unsigned long start_pfn
,
780 unsigned long nr_pages
)
782 unsigned long end_pfn
= start_pfn
+ nr_pages
;
783 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
786 static bool pfn_range_valid_gigantic(unsigned long start_pfn
,
787 unsigned long nr_pages
)
789 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
792 for (i
= start_pfn
; i
< end_pfn
; i
++) {
796 page
= pfn_to_page(i
);
798 if (PageReserved(page
))
801 if (page_count(page
) > 0)
811 static bool zone_spans_last_pfn(const struct zone
*zone
,
812 unsigned long start_pfn
, unsigned long nr_pages
)
814 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
815 return zone_spans_pfn(zone
, last_pfn
);
818 static struct page
*alloc_gigantic_page(int nid
, unsigned order
)
820 unsigned long nr_pages
= 1 << order
;
821 unsigned long ret
, pfn
, flags
;
824 z
= NODE_DATA(nid
)->node_zones
;
825 for (; z
- NODE_DATA(nid
)->node_zones
< MAX_NR_ZONES
; z
++) {
826 spin_lock_irqsave(&z
->lock
, flags
);
828 pfn
= ALIGN(z
->zone_start_pfn
, nr_pages
);
829 while (zone_spans_last_pfn(z
, pfn
, nr_pages
)) {
830 if (pfn_range_valid_gigantic(pfn
, nr_pages
)) {
832 * We release the zone lock here because
833 * alloc_contig_range() will also lock the zone
834 * at some point. If there's an allocation
835 * spinning on this lock, it may win the race
836 * and cause alloc_contig_range() to fail...
838 spin_unlock_irqrestore(&z
->lock
, flags
);
839 ret
= __alloc_gigantic_page(pfn
, nr_pages
);
841 return pfn_to_page(pfn
);
842 spin_lock_irqsave(&z
->lock
, flags
);
847 spin_unlock_irqrestore(&z
->lock
, flags
);
853 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
854 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
);
856 static struct page
*alloc_fresh_gigantic_page_node(struct hstate
*h
, int nid
)
860 page
= alloc_gigantic_page(nid
, huge_page_order(h
));
862 prep_compound_gigantic_page(page
, huge_page_order(h
));
863 prep_new_huge_page(h
, page
, nid
);
869 static int alloc_fresh_gigantic_page(struct hstate
*h
,
870 nodemask_t
*nodes_allowed
)
872 struct page
*page
= NULL
;
875 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
876 page
= alloc_fresh_gigantic_page_node(h
, node
);
884 static inline bool gigantic_page_supported(void) { return true; }
886 static inline bool gigantic_page_supported(void) { return false; }
887 static inline void free_gigantic_page(struct page
*page
, unsigned order
) { }
888 static inline void destroy_compound_gigantic_page(struct page
*page
,
889 unsigned long order
) { }
890 static inline int alloc_fresh_gigantic_page(struct hstate
*h
,
891 nodemask_t
*nodes_allowed
) { return 0; }
894 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
898 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
902 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
903 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
904 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
905 1 << PG_referenced
| 1 << PG_dirty
|
906 1 << PG_active
| 1 << PG_private
|
909 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
910 set_compound_page_dtor(page
, NULL
);
911 set_page_refcounted(page
);
912 if (hstate_is_gigantic(h
)) {
913 destroy_compound_gigantic_page(page
, huge_page_order(h
));
914 free_gigantic_page(page
, huge_page_order(h
));
916 arch_release_hugepage(page
);
917 __free_pages(page
, huge_page_order(h
));
921 struct hstate
*size_to_hstate(unsigned long size
)
926 if (huge_page_size(h
) == size
)
933 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
934 * to hstate->hugepage_activelist.)
936 * This function can be called for tail pages, but never returns true for them.
938 bool page_huge_active(struct page
*page
)
940 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
941 return PageHead(page
) && PagePrivate(&page
[1]);
944 /* never called for tail page */
945 static void set_page_huge_active(struct page
*page
)
947 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
948 SetPagePrivate(&page
[1]);
951 static void clear_page_huge_active(struct page
*page
)
953 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
954 ClearPagePrivate(&page
[1]);
957 void free_huge_page(struct page
*page
)
960 * Can't pass hstate in here because it is called from the
961 * compound page destructor.
963 struct hstate
*h
= page_hstate(page
);
964 int nid
= page_to_nid(page
);
965 struct hugepage_subpool
*spool
=
966 (struct hugepage_subpool
*)page_private(page
);
967 bool restore_reserve
;
969 set_page_private(page
, 0);
970 page
->mapping
= NULL
;
971 BUG_ON(page_count(page
));
972 BUG_ON(page_mapcount(page
));
973 restore_reserve
= PagePrivate(page
);
974 ClearPagePrivate(page
);
977 * A return code of zero implies that the subpool will be under its
978 * minimum size if the reservation is not restored after page is free.
979 * Therefore, force restore_reserve operation.
981 if (hugepage_subpool_put_pages(spool
, 1) == 0)
982 restore_reserve
= true;
984 spin_lock(&hugetlb_lock
);
985 clear_page_huge_active(page
);
986 hugetlb_cgroup_uncharge_page(hstate_index(h
),
987 pages_per_huge_page(h
), page
);
989 h
->resv_huge_pages
++;
991 if (h
->surplus_huge_pages_node
[nid
]) {
992 /* remove the page from active list */
993 list_del(&page
->lru
);
994 update_and_free_page(h
, page
);
995 h
->surplus_huge_pages
--;
996 h
->surplus_huge_pages_node
[nid
]--;
998 arch_clear_hugepage_flags(page
);
999 enqueue_huge_page(h
, page
);
1001 spin_unlock(&hugetlb_lock
);
1004 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1006 INIT_LIST_HEAD(&page
->lru
);
1007 set_compound_page_dtor(page
, free_huge_page
);
1008 spin_lock(&hugetlb_lock
);
1009 set_hugetlb_cgroup(page
, NULL
);
1011 h
->nr_huge_pages_node
[nid
]++;
1012 spin_unlock(&hugetlb_lock
);
1013 put_page(page
); /* free it into the hugepage allocator */
1016 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
1019 int nr_pages
= 1 << order
;
1020 struct page
*p
= page
+ 1;
1022 /* we rely on prep_new_huge_page to set the destructor */
1023 set_compound_order(page
, order
);
1024 __SetPageHead(page
);
1025 __ClearPageReserved(page
);
1026 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1028 * For gigantic hugepages allocated through bootmem at
1029 * boot, it's safer to be consistent with the not-gigantic
1030 * hugepages and clear the PG_reserved bit from all tail pages
1031 * too. Otherwse drivers using get_user_pages() to access tail
1032 * pages may get the reference counting wrong if they see
1033 * PG_reserved set on a tail page (despite the head page not
1034 * having PG_reserved set). Enforcing this consistency between
1035 * head and tail pages allows drivers to optimize away a check
1036 * on the head page when they need know if put_page() is needed
1037 * after get_user_pages().
1039 __ClearPageReserved(p
);
1040 set_page_count(p
, 0);
1041 p
->first_page
= page
;
1042 /* Make sure p->first_page is always valid for PageTail() */
1049 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1050 * transparent huge pages. See the PageTransHuge() documentation for more
1053 int PageHuge(struct page
*page
)
1055 if (!PageCompound(page
))
1058 page
= compound_head(page
);
1059 return get_compound_page_dtor(page
) == free_huge_page
;
1061 EXPORT_SYMBOL_GPL(PageHuge
);
1064 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1065 * normal or transparent huge pages.
1067 int PageHeadHuge(struct page
*page_head
)
1069 if (!PageHead(page_head
))
1072 return get_compound_page_dtor(page_head
) == free_huge_page
;
1075 pgoff_t
__basepage_index(struct page
*page
)
1077 struct page
*page_head
= compound_head(page
);
1078 pgoff_t index
= page_index(page_head
);
1079 unsigned long compound_idx
;
1081 if (!PageHuge(page_head
))
1082 return page_index(page
);
1084 if (compound_order(page_head
) >= MAX_ORDER
)
1085 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1087 compound_idx
= page
- page_head
;
1089 return (index
<< compound_order(page_head
)) + compound_idx
;
1092 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
1096 page
= alloc_pages_exact_node(nid
,
1097 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
1098 __GFP_REPEAT
|__GFP_NOWARN
,
1099 huge_page_order(h
));
1101 if (arch_prepare_hugepage(page
)) {
1102 __free_pages(page
, huge_page_order(h
));
1105 prep_new_huge_page(h
, page
, nid
);
1111 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1117 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1118 page
= alloc_fresh_huge_page_node(h
, node
);
1126 count_vm_event(HTLB_BUDDY_PGALLOC
);
1128 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1134 * Free huge page from pool from next node to free.
1135 * Attempt to keep persistent huge pages more or less
1136 * balanced over allowed nodes.
1137 * Called with hugetlb_lock locked.
1139 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1145 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1147 * If we're returning unused surplus pages, only examine
1148 * nodes with surplus pages.
1150 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1151 !list_empty(&h
->hugepage_freelists
[node
])) {
1153 list_entry(h
->hugepage_freelists
[node
].next
,
1155 list_del(&page
->lru
);
1156 h
->free_huge_pages
--;
1157 h
->free_huge_pages_node
[node
]--;
1159 h
->surplus_huge_pages
--;
1160 h
->surplus_huge_pages_node
[node
]--;
1162 update_and_free_page(h
, page
);
1172 * Dissolve a given free hugepage into free buddy pages. This function does
1173 * nothing for in-use (including surplus) hugepages.
1175 static void dissolve_free_huge_page(struct page
*page
)
1177 spin_lock(&hugetlb_lock
);
1178 if (PageHuge(page
) && !page_count(page
)) {
1179 struct hstate
*h
= page_hstate(page
);
1180 int nid
= page_to_nid(page
);
1181 list_del(&page
->lru
);
1182 h
->free_huge_pages
--;
1183 h
->free_huge_pages_node
[nid
]--;
1184 update_and_free_page(h
, page
);
1186 spin_unlock(&hugetlb_lock
);
1190 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1191 * make specified memory blocks removable from the system.
1192 * Note that start_pfn should aligned with (minimum) hugepage size.
1194 void dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1198 if (!hugepages_supported())
1201 VM_BUG_ON(!IS_ALIGNED(start_pfn
, 1 << minimum_order
));
1202 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
)
1203 dissolve_free_huge_page(pfn_to_page(pfn
));
1206 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
1211 if (hstate_is_gigantic(h
))
1215 * Assume we will successfully allocate the surplus page to
1216 * prevent racing processes from causing the surplus to exceed
1219 * This however introduces a different race, where a process B
1220 * tries to grow the static hugepage pool while alloc_pages() is
1221 * called by process A. B will only examine the per-node
1222 * counters in determining if surplus huge pages can be
1223 * converted to normal huge pages in adjust_pool_surplus(). A
1224 * won't be able to increment the per-node counter, until the
1225 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1226 * no more huge pages can be converted from surplus to normal
1227 * state (and doesn't try to convert again). Thus, we have a
1228 * case where a surplus huge page exists, the pool is grown, and
1229 * the surplus huge page still exists after, even though it
1230 * should just have been converted to a normal huge page. This
1231 * does not leak memory, though, as the hugepage will be freed
1232 * once it is out of use. It also does not allow the counters to
1233 * go out of whack in adjust_pool_surplus() as we don't modify
1234 * the node values until we've gotten the hugepage and only the
1235 * per-node value is checked there.
1237 spin_lock(&hugetlb_lock
);
1238 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1239 spin_unlock(&hugetlb_lock
);
1243 h
->surplus_huge_pages
++;
1245 spin_unlock(&hugetlb_lock
);
1247 if (nid
== NUMA_NO_NODE
)
1248 page
= alloc_pages(htlb_alloc_mask(h
)|__GFP_COMP
|
1249 __GFP_REPEAT
|__GFP_NOWARN
,
1250 huge_page_order(h
));
1252 page
= alloc_pages_exact_node(nid
,
1253 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
1254 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
1256 if (page
&& arch_prepare_hugepage(page
)) {
1257 __free_pages(page
, huge_page_order(h
));
1261 spin_lock(&hugetlb_lock
);
1263 INIT_LIST_HEAD(&page
->lru
);
1264 r_nid
= page_to_nid(page
);
1265 set_compound_page_dtor(page
, free_huge_page
);
1266 set_hugetlb_cgroup(page
, NULL
);
1268 * We incremented the global counters already
1270 h
->nr_huge_pages_node
[r_nid
]++;
1271 h
->surplus_huge_pages_node
[r_nid
]++;
1272 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1275 h
->surplus_huge_pages
--;
1276 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1278 spin_unlock(&hugetlb_lock
);
1284 * This allocation function is useful in the context where vma is irrelevant.
1285 * E.g. soft-offlining uses this function because it only cares physical
1286 * address of error page.
1288 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1290 struct page
*page
= NULL
;
1292 spin_lock(&hugetlb_lock
);
1293 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1294 page
= dequeue_huge_page_node(h
, nid
);
1295 spin_unlock(&hugetlb_lock
);
1298 page
= alloc_buddy_huge_page(h
, nid
);
1304 * Increase the hugetlb pool such that it can accommodate a reservation
1307 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1309 struct list_head surplus_list
;
1310 struct page
*page
, *tmp
;
1312 int needed
, allocated
;
1313 bool alloc_ok
= true;
1315 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1317 h
->resv_huge_pages
+= delta
;
1322 INIT_LIST_HEAD(&surplus_list
);
1326 spin_unlock(&hugetlb_lock
);
1327 for (i
= 0; i
< needed
; i
++) {
1328 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1333 list_add(&page
->lru
, &surplus_list
);
1338 * After retaking hugetlb_lock, we need to recalculate 'needed'
1339 * because either resv_huge_pages or free_huge_pages may have changed.
1341 spin_lock(&hugetlb_lock
);
1342 needed
= (h
->resv_huge_pages
+ delta
) -
1343 (h
->free_huge_pages
+ allocated
);
1348 * We were not able to allocate enough pages to
1349 * satisfy the entire reservation so we free what
1350 * we've allocated so far.
1355 * The surplus_list now contains _at_least_ the number of extra pages
1356 * needed to accommodate the reservation. Add the appropriate number
1357 * of pages to the hugetlb pool and free the extras back to the buddy
1358 * allocator. Commit the entire reservation here to prevent another
1359 * process from stealing the pages as they are added to the pool but
1360 * before they are reserved.
1362 needed
+= allocated
;
1363 h
->resv_huge_pages
+= delta
;
1366 /* Free the needed pages to the hugetlb pool */
1367 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1371 * This page is now managed by the hugetlb allocator and has
1372 * no users -- drop the buddy allocator's reference.
1374 put_page_testzero(page
);
1375 VM_BUG_ON_PAGE(page_count(page
), page
);
1376 enqueue_huge_page(h
, page
);
1379 spin_unlock(&hugetlb_lock
);
1381 /* Free unnecessary surplus pages to the buddy allocator */
1382 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1384 spin_lock(&hugetlb_lock
);
1390 * When releasing a hugetlb pool reservation, any surplus pages that were
1391 * allocated to satisfy the reservation must be explicitly freed if they were
1393 * Called with hugetlb_lock held.
1395 static void return_unused_surplus_pages(struct hstate
*h
,
1396 unsigned long unused_resv_pages
)
1398 unsigned long nr_pages
;
1400 /* Uncommit the reservation */
1401 h
->resv_huge_pages
-= unused_resv_pages
;
1403 /* Cannot return gigantic pages currently */
1404 if (hstate_is_gigantic(h
))
1407 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1410 * We want to release as many surplus pages as possible, spread
1411 * evenly across all nodes with memory. Iterate across these nodes
1412 * until we can no longer free unreserved surplus pages. This occurs
1413 * when the nodes with surplus pages have no free pages.
1414 * free_pool_huge_page() will balance the the freed pages across the
1415 * on-line nodes with memory and will handle the hstate accounting.
1417 while (nr_pages
--) {
1418 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1420 cond_resched_lock(&hugetlb_lock
);
1425 * Determine if the huge page at addr within the vma has an associated
1426 * reservation. Where it does not we will need to logically increase
1427 * reservation and actually increase subpool usage before an allocation
1428 * can occur. Where any new reservation would be required the
1429 * reservation change is prepared, but not committed. Once the page
1430 * has been allocated from the subpool and instantiated the change should
1431 * be committed via vma_commit_reservation. No action is required on
1434 static long vma_needs_reservation(struct hstate
*h
,
1435 struct vm_area_struct
*vma
, unsigned long addr
)
1437 struct resv_map
*resv
;
1441 resv
= vma_resv_map(vma
);
1445 idx
= vma_hugecache_offset(h
, vma
, addr
);
1446 chg
= region_chg(resv
, idx
, idx
+ 1);
1448 if (vma
->vm_flags
& VM_MAYSHARE
)
1451 return chg
< 0 ? chg
: 0;
1453 static void vma_commit_reservation(struct hstate
*h
,
1454 struct vm_area_struct
*vma
, unsigned long addr
)
1456 struct resv_map
*resv
;
1459 resv
= vma_resv_map(vma
);
1463 idx
= vma_hugecache_offset(h
, vma
, addr
);
1464 region_add(resv
, idx
, idx
+ 1);
1467 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1468 unsigned long addr
, int avoid_reserve
)
1470 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1471 struct hstate
*h
= hstate_vma(vma
);
1475 struct hugetlb_cgroup
*h_cg
;
1477 idx
= hstate_index(h
);
1479 * Processes that did not create the mapping will have no
1480 * reserves and will not have accounted against subpool
1481 * limit. Check that the subpool limit can be made before
1482 * satisfying the allocation MAP_NORESERVE mappings may also
1483 * need pages and subpool limit allocated allocated if no reserve
1486 chg
= vma_needs_reservation(h
, vma
, addr
);
1488 return ERR_PTR(-ENOMEM
);
1489 if (chg
|| avoid_reserve
)
1490 if (hugepage_subpool_get_pages(spool
, 1) < 0)
1491 return ERR_PTR(-ENOSPC
);
1493 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1495 goto out_subpool_put
;
1497 spin_lock(&hugetlb_lock
);
1498 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, chg
);
1500 spin_unlock(&hugetlb_lock
);
1501 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1503 goto out_uncharge_cgroup
;
1505 spin_lock(&hugetlb_lock
);
1506 list_move(&page
->lru
, &h
->hugepage_activelist
);
1509 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
1510 spin_unlock(&hugetlb_lock
);
1512 set_page_private(page
, (unsigned long)spool
);
1514 vma_commit_reservation(h
, vma
, addr
);
1517 out_uncharge_cgroup
:
1518 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
1520 if (chg
|| avoid_reserve
)
1521 hugepage_subpool_put_pages(spool
, 1);
1522 return ERR_PTR(-ENOSPC
);
1526 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1527 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1528 * where no ERR_VALUE is expected to be returned.
1530 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
1531 unsigned long addr
, int avoid_reserve
)
1533 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
1539 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1541 struct huge_bootmem_page
*m
;
1544 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
1547 addr
= memblock_virt_alloc_try_nid_nopanic(
1548 huge_page_size(h
), huge_page_size(h
),
1549 0, BOOTMEM_ALLOC_ACCESSIBLE
, node
);
1552 * Use the beginning of the huge page to store the
1553 * huge_bootmem_page struct (until gather_bootmem
1554 * puts them into the mem_map).
1563 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
1564 /* Put them into a private list first because mem_map is not up yet */
1565 list_add(&m
->list
, &huge_boot_pages
);
1570 static void __init
prep_compound_huge_page(struct page
*page
, int order
)
1572 if (unlikely(order
> (MAX_ORDER
- 1)))
1573 prep_compound_gigantic_page(page
, order
);
1575 prep_compound_page(page
, order
);
1578 /* Put bootmem huge pages into the standard lists after mem_map is up */
1579 static void __init
gather_bootmem_prealloc(void)
1581 struct huge_bootmem_page
*m
;
1583 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1584 struct hstate
*h
= m
->hstate
;
1587 #ifdef CONFIG_HIGHMEM
1588 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
1589 memblock_free_late(__pa(m
),
1590 sizeof(struct huge_bootmem_page
));
1592 page
= virt_to_page(m
);
1594 WARN_ON(page_count(page
) != 1);
1595 prep_compound_huge_page(page
, h
->order
);
1596 WARN_ON(PageReserved(page
));
1597 prep_new_huge_page(h
, page
, page_to_nid(page
));
1599 * If we had gigantic hugepages allocated at boot time, we need
1600 * to restore the 'stolen' pages to totalram_pages in order to
1601 * fix confusing memory reports from free(1) and another
1602 * side-effects, like CommitLimit going negative.
1604 if (hstate_is_gigantic(h
))
1605 adjust_managed_page_count(page
, 1 << h
->order
);
1609 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1613 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1614 if (hstate_is_gigantic(h
)) {
1615 if (!alloc_bootmem_huge_page(h
))
1617 } else if (!alloc_fresh_huge_page(h
,
1618 &node_states
[N_MEMORY
]))
1621 h
->max_huge_pages
= i
;
1624 static void __init
hugetlb_init_hstates(void)
1628 for_each_hstate(h
) {
1629 if (minimum_order
> huge_page_order(h
))
1630 minimum_order
= huge_page_order(h
);
1632 /* oversize hugepages were init'ed in early boot */
1633 if (!hstate_is_gigantic(h
))
1634 hugetlb_hstate_alloc_pages(h
);
1636 VM_BUG_ON(minimum_order
== UINT_MAX
);
1639 static char * __init
memfmt(char *buf
, unsigned long n
)
1641 if (n
>= (1UL << 30))
1642 sprintf(buf
, "%lu GB", n
>> 30);
1643 else if (n
>= (1UL << 20))
1644 sprintf(buf
, "%lu MB", n
>> 20);
1646 sprintf(buf
, "%lu KB", n
>> 10);
1650 static void __init
report_hugepages(void)
1654 for_each_hstate(h
) {
1656 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1657 memfmt(buf
, huge_page_size(h
)),
1658 h
->free_huge_pages
);
1662 #ifdef CONFIG_HIGHMEM
1663 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1664 nodemask_t
*nodes_allowed
)
1668 if (hstate_is_gigantic(h
))
1671 for_each_node_mask(i
, *nodes_allowed
) {
1672 struct page
*page
, *next
;
1673 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1674 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1675 if (count
>= h
->nr_huge_pages
)
1677 if (PageHighMem(page
))
1679 list_del(&page
->lru
);
1680 update_and_free_page(h
, page
);
1681 h
->free_huge_pages
--;
1682 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1687 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1688 nodemask_t
*nodes_allowed
)
1694 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1695 * balanced by operating on them in a round-robin fashion.
1696 * Returns 1 if an adjustment was made.
1698 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1703 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1706 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1707 if (h
->surplus_huge_pages_node
[node
])
1711 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1712 if (h
->surplus_huge_pages_node
[node
] <
1713 h
->nr_huge_pages_node
[node
])
1720 h
->surplus_huge_pages
+= delta
;
1721 h
->surplus_huge_pages_node
[node
] += delta
;
1725 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1726 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1727 nodemask_t
*nodes_allowed
)
1729 unsigned long min_count
, ret
;
1731 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1732 return h
->max_huge_pages
;
1735 * Increase the pool size
1736 * First take pages out of surplus state. Then make up the
1737 * remaining difference by allocating fresh huge pages.
1739 * We might race with alloc_buddy_huge_page() here and be unable
1740 * to convert a surplus huge page to a normal huge page. That is
1741 * not critical, though, it just means the overall size of the
1742 * pool might be one hugepage larger than it needs to be, but
1743 * within all the constraints specified by the sysctls.
1745 spin_lock(&hugetlb_lock
);
1746 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1747 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1751 while (count
> persistent_huge_pages(h
)) {
1753 * If this allocation races such that we no longer need the
1754 * page, free_huge_page will handle it by freeing the page
1755 * and reducing the surplus.
1757 spin_unlock(&hugetlb_lock
);
1758 if (hstate_is_gigantic(h
))
1759 ret
= alloc_fresh_gigantic_page(h
, nodes_allowed
);
1761 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1762 spin_lock(&hugetlb_lock
);
1766 /* Bail for signals. Probably ctrl-c from user */
1767 if (signal_pending(current
))
1772 * Decrease the pool size
1773 * First return free pages to the buddy allocator (being careful
1774 * to keep enough around to satisfy reservations). Then place
1775 * pages into surplus state as needed so the pool will shrink
1776 * to the desired size as pages become free.
1778 * By placing pages into the surplus state independent of the
1779 * overcommit value, we are allowing the surplus pool size to
1780 * exceed overcommit. There are few sane options here. Since
1781 * alloc_buddy_huge_page() is checking the global counter,
1782 * though, we'll note that we're not allowed to exceed surplus
1783 * and won't grow the pool anywhere else. Not until one of the
1784 * sysctls are changed, or the surplus pages go out of use.
1786 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1787 min_count
= max(count
, min_count
);
1788 try_to_free_low(h
, min_count
, nodes_allowed
);
1789 while (min_count
< persistent_huge_pages(h
)) {
1790 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1792 cond_resched_lock(&hugetlb_lock
);
1794 while (count
< persistent_huge_pages(h
)) {
1795 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1799 ret
= persistent_huge_pages(h
);
1800 spin_unlock(&hugetlb_lock
);
1804 #define HSTATE_ATTR_RO(_name) \
1805 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1807 #define HSTATE_ATTR(_name) \
1808 static struct kobj_attribute _name##_attr = \
1809 __ATTR(_name, 0644, _name##_show, _name##_store)
1811 static struct kobject
*hugepages_kobj
;
1812 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1814 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1816 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1820 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1821 if (hstate_kobjs
[i
] == kobj
) {
1823 *nidp
= NUMA_NO_NODE
;
1827 return kobj_to_node_hstate(kobj
, nidp
);
1830 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1831 struct kobj_attribute
*attr
, char *buf
)
1834 unsigned long nr_huge_pages
;
1837 h
= kobj_to_hstate(kobj
, &nid
);
1838 if (nid
== NUMA_NO_NODE
)
1839 nr_huge_pages
= h
->nr_huge_pages
;
1841 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1843 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1846 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
1847 struct hstate
*h
, int nid
,
1848 unsigned long count
, size_t len
)
1851 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1853 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
1858 if (nid
== NUMA_NO_NODE
) {
1860 * global hstate attribute
1862 if (!(obey_mempolicy
&&
1863 init_nodemask_of_mempolicy(nodes_allowed
))) {
1864 NODEMASK_FREE(nodes_allowed
);
1865 nodes_allowed
= &node_states
[N_MEMORY
];
1867 } else if (nodes_allowed
) {
1869 * per node hstate attribute: adjust count to global,
1870 * but restrict alloc/free to the specified node.
1872 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1873 init_nodemask_of_node(nodes_allowed
, nid
);
1875 nodes_allowed
= &node_states
[N_MEMORY
];
1877 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1879 if (nodes_allowed
!= &node_states
[N_MEMORY
])
1880 NODEMASK_FREE(nodes_allowed
);
1884 NODEMASK_FREE(nodes_allowed
);
1888 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1889 struct kobject
*kobj
, const char *buf
,
1893 unsigned long count
;
1897 err
= kstrtoul(buf
, 10, &count
);
1901 h
= kobj_to_hstate(kobj
, &nid
);
1902 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
1905 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1906 struct kobj_attribute
*attr
, char *buf
)
1908 return nr_hugepages_show_common(kobj
, attr
, buf
);
1911 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1912 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1914 return nr_hugepages_store_common(false, kobj
, buf
, len
);
1916 HSTATE_ATTR(nr_hugepages
);
1921 * hstate attribute for optionally mempolicy-based constraint on persistent
1922 * huge page alloc/free.
1924 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1925 struct kobj_attribute
*attr
, char *buf
)
1927 return nr_hugepages_show_common(kobj
, attr
, buf
);
1930 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1931 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1933 return nr_hugepages_store_common(true, kobj
, buf
, len
);
1935 HSTATE_ATTR(nr_hugepages_mempolicy
);
1939 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1940 struct kobj_attribute
*attr
, char *buf
)
1942 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1943 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1946 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1947 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1950 unsigned long input
;
1951 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1953 if (hstate_is_gigantic(h
))
1956 err
= kstrtoul(buf
, 10, &input
);
1960 spin_lock(&hugetlb_lock
);
1961 h
->nr_overcommit_huge_pages
= input
;
1962 spin_unlock(&hugetlb_lock
);
1966 HSTATE_ATTR(nr_overcommit_hugepages
);
1968 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1969 struct kobj_attribute
*attr
, char *buf
)
1972 unsigned long free_huge_pages
;
1975 h
= kobj_to_hstate(kobj
, &nid
);
1976 if (nid
== NUMA_NO_NODE
)
1977 free_huge_pages
= h
->free_huge_pages
;
1979 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1981 return sprintf(buf
, "%lu\n", free_huge_pages
);
1983 HSTATE_ATTR_RO(free_hugepages
);
1985 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1986 struct kobj_attribute
*attr
, char *buf
)
1988 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1989 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1991 HSTATE_ATTR_RO(resv_hugepages
);
1993 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1994 struct kobj_attribute
*attr
, char *buf
)
1997 unsigned long surplus_huge_pages
;
2000 h
= kobj_to_hstate(kobj
, &nid
);
2001 if (nid
== NUMA_NO_NODE
)
2002 surplus_huge_pages
= h
->surplus_huge_pages
;
2004 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2006 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2008 HSTATE_ATTR_RO(surplus_hugepages
);
2010 static struct attribute
*hstate_attrs
[] = {
2011 &nr_hugepages_attr
.attr
,
2012 &nr_overcommit_hugepages_attr
.attr
,
2013 &free_hugepages_attr
.attr
,
2014 &resv_hugepages_attr
.attr
,
2015 &surplus_hugepages_attr
.attr
,
2017 &nr_hugepages_mempolicy_attr
.attr
,
2022 static struct attribute_group hstate_attr_group
= {
2023 .attrs
= hstate_attrs
,
2026 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2027 struct kobject
**hstate_kobjs
,
2028 struct attribute_group
*hstate_attr_group
)
2031 int hi
= hstate_index(h
);
2033 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2034 if (!hstate_kobjs
[hi
])
2037 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2039 kobject_put(hstate_kobjs
[hi
]);
2044 static void __init
hugetlb_sysfs_init(void)
2049 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2050 if (!hugepages_kobj
)
2053 for_each_hstate(h
) {
2054 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2055 hstate_kobjs
, &hstate_attr_group
);
2057 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2064 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2065 * with node devices in node_devices[] using a parallel array. The array
2066 * index of a node device or _hstate == node id.
2067 * This is here to avoid any static dependency of the node device driver, in
2068 * the base kernel, on the hugetlb module.
2070 struct node_hstate
{
2071 struct kobject
*hugepages_kobj
;
2072 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2074 struct node_hstate node_hstates
[MAX_NUMNODES
];
2077 * A subset of global hstate attributes for node devices
2079 static struct attribute
*per_node_hstate_attrs
[] = {
2080 &nr_hugepages_attr
.attr
,
2081 &free_hugepages_attr
.attr
,
2082 &surplus_hugepages_attr
.attr
,
2086 static struct attribute_group per_node_hstate_attr_group
= {
2087 .attrs
= per_node_hstate_attrs
,
2091 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2092 * Returns node id via non-NULL nidp.
2094 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2098 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2099 struct node_hstate
*nhs
= &node_hstates
[nid
];
2101 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2102 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2114 * Unregister hstate attributes from a single node device.
2115 * No-op if no hstate attributes attached.
2117 static void hugetlb_unregister_node(struct node
*node
)
2120 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2122 if (!nhs
->hugepages_kobj
)
2123 return; /* no hstate attributes */
2125 for_each_hstate(h
) {
2126 int idx
= hstate_index(h
);
2127 if (nhs
->hstate_kobjs
[idx
]) {
2128 kobject_put(nhs
->hstate_kobjs
[idx
]);
2129 nhs
->hstate_kobjs
[idx
] = NULL
;
2133 kobject_put(nhs
->hugepages_kobj
);
2134 nhs
->hugepages_kobj
= NULL
;
2138 * hugetlb module exit: unregister hstate attributes from node devices
2141 static void hugetlb_unregister_all_nodes(void)
2146 * disable node device registrations.
2148 register_hugetlbfs_with_node(NULL
, NULL
);
2151 * remove hstate attributes from any nodes that have them.
2153 for (nid
= 0; nid
< nr_node_ids
; nid
++)
2154 hugetlb_unregister_node(node_devices
[nid
]);
2158 * Register hstate attributes for a single node device.
2159 * No-op if attributes already registered.
2161 static void hugetlb_register_node(struct node
*node
)
2164 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2167 if (nhs
->hugepages_kobj
)
2168 return; /* already allocated */
2170 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2172 if (!nhs
->hugepages_kobj
)
2175 for_each_hstate(h
) {
2176 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2178 &per_node_hstate_attr_group
);
2180 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2181 h
->name
, node
->dev
.id
);
2182 hugetlb_unregister_node(node
);
2189 * hugetlb init time: register hstate attributes for all registered node
2190 * devices of nodes that have memory. All on-line nodes should have
2191 * registered their associated device by this time.
2193 static void __init
hugetlb_register_all_nodes(void)
2197 for_each_node_state(nid
, N_MEMORY
) {
2198 struct node
*node
= node_devices
[nid
];
2199 if (node
->dev
.id
== nid
)
2200 hugetlb_register_node(node
);
2204 * Let the node device driver know we're here so it can
2205 * [un]register hstate attributes on node hotplug.
2207 register_hugetlbfs_with_node(hugetlb_register_node
,
2208 hugetlb_unregister_node
);
2210 #else /* !CONFIG_NUMA */
2212 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2220 static void hugetlb_unregister_all_nodes(void) { }
2222 static void hugetlb_register_all_nodes(void) { }
2226 static void __exit
hugetlb_exit(void)
2230 hugetlb_unregister_all_nodes();
2232 for_each_hstate(h
) {
2233 kobject_put(hstate_kobjs
[hstate_index(h
)]);
2236 kobject_put(hugepages_kobj
);
2237 kfree(htlb_fault_mutex_table
);
2239 module_exit(hugetlb_exit
);
2241 static int __init
hugetlb_init(void)
2245 if (!hugepages_supported())
2248 if (!size_to_hstate(default_hstate_size
)) {
2249 default_hstate_size
= HPAGE_SIZE
;
2250 if (!size_to_hstate(default_hstate_size
))
2251 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2253 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2254 if (default_hstate_max_huge_pages
)
2255 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2257 hugetlb_init_hstates();
2258 gather_bootmem_prealloc();
2261 hugetlb_sysfs_init();
2262 hugetlb_register_all_nodes();
2263 hugetlb_cgroup_file_init();
2266 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2268 num_fault_mutexes
= 1;
2270 htlb_fault_mutex_table
=
2271 kmalloc(sizeof(struct mutex
) * num_fault_mutexes
, GFP_KERNEL
);
2272 BUG_ON(!htlb_fault_mutex_table
);
2274 for (i
= 0; i
< num_fault_mutexes
; i
++)
2275 mutex_init(&htlb_fault_mutex_table
[i
]);
2278 module_init(hugetlb_init
);
2280 /* Should be called on processing a hugepagesz=... option */
2281 void __init
hugetlb_add_hstate(unsigned order
)
2286 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2287 pr_warning("hugepagesz= specified twice, ignoring\n");
2290 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2292 h
= &hstates
[hugetlb_max_hstate
++];
2294 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2295 h
->nr_huge_pages
= 0;
2296 h
->free_huge_pages
= 0;
2297 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2298 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2299 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2300 h
->next_nid_to_alloc
= first_node(node_states
[N_MEMORY
]);
2301 h
->next_nid_to_free
= first_node(node_states
[N_MEMORY
]);
2302 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2303 huge_page_size(h
)/1024);
2308 static int __init
hugetlb_nrpages_setup(char *s
)
2311 static unsigned long *last_mhp
;
2314 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2315 * so this hugepages= parameter goes to the "default hstate".
2317 if (!hugetlb_max_hstate
)
2318 mhp
= &default_hstate_max_huge_pages
;
2320 mhp
= &parsed_hstate
->max_huge_pages
;
2322 if (mhp
== last_mhp
) {
2323 pr_warning("hugepages= specified twice without "
2324 "interleaving hugepagesz=, ignoring\n");
2328 if (sscanf(s
, "%lu", mhp
) <= 0)
2332 * Global state is always initialized later in hugetlb_init.
2333 * But we need to allocate >= MAX_ORDER hstates here early to still
2334 * use the bootmem allocator.
2336 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2337 hugetlb_hstate_alloc_pages(parsed_hstate
);
2343 __setup("hugepages=", hugetlb_nrpages_setup
);
2345 static int __init
hugetlb_default_setup(char *s
)
2347 default_hstate_size
= memparse(s
, &s
);
2350 __setup("default_hugepagesz=", hugetlb_default_setup
);
2352 static unsigned int cpuset_mems_nr(unsigned int *array
)
2355 unsigned int nr
= 0;
2357 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2363 #ifdef CONFIG_SYSCTL
2364 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2365 struct ctl_table
*table
, int write
,
2366 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2368 struct hstate
*h
= &default_hstate
;
2369 unsigned long tmp
= h
->max_huge_pages
;
2372 if (!hugepages_supported())
2376 table
->maxlen
= sizeof(unsigned long);
2377 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2382 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2383 NUMA_NO_NODE
, tmp
, *length
);
2388 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2389 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2392 return hugetlb_sysctl_handler_common(false, table
, write
,
2393 buffer
, length
, ppos
);
2397 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2398 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2400 return hugetlb_sysctl_handler_common(true, table
, write
,
2401 buffer
, length
, ppos
);
2403 #endif /* CONFIG_NUMA */
2405 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2406 void __user
*buffer
,
2407 size_t *length
, loff_t
*ppos
)
2409 struct hstate
*h
= &default_hstate
;
2413 if (!hugepages_supported())
2416 tmp
= h
->nr_overcommit_huge_pages
;
2418 if (write
&& hstate_is_gigantic(h
))
2422 table
->maxlen
= sizeof(unsigned long);
2423 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2428 spin_lock(&hugetlb_lock
);
2429 h
->nr_overcommit_huge_pages
= tmp
;
2430 spin_unlock(&hugetlb_lock
);
2436 #endif /* CONFIG_SYSCTL */
2438 void hugetlb_report_meminfo(struct seq_file
*m
)
2440 struct hstate
*h
= &default_hstate
;
2441 if (!hugepages_supported())
2444 "HugePages_Total: %5lu\n"
2445 "HugePages_Free: %5lu\n"
2446 "HugePages_Rsvd: %5lu\n"
2447 "HugePages_Surp: %5lu\n"
2448 "Hugepagesize: %8lu kB\n",
2452 h
->surplus_huge_pages
,
2453 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2456 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2458 struct hstate
*h
= &default_hstate
;
2459 if (!hugepages_supported())
2462 "Node %d HugePages_Total: %5u\n"
2463 "Node %d HugePages_Free: %5u\n"
2464 "Node %d HugePages_Surp: %5u\n",
2465 nid
, h
->nr_huge_pages_node
[nid
],
2466 nid
, h
->free_huge_pages_node
[nid
],
2467 nid
, h
->surplus_huge_pages_node
[nid
]);
2470 void hugetlb_show_meminfo(void)
2475 if (!hugepages_supported())
2478 for_each_node_state(nid
, N_MEMORY
)
2480 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2482 h
->nr_huge_pages_node
[nid
],
2483 h
->free_huge_pages_node
[nid
],
2484 h
->surplus_huge_pages_node
[nid
],
2485 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2488 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2489 unsigned long hugetlb_total_pages(void)
2492 unsigned long nr_total_pages
= 0;
2495 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
2496 return nr_total_pages
;
2499 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2503 spin_lock(&hugetlb_lock
);
2505 * When cpuset is configured, it breaks the strict hugetlb page
2506 * reservation as the accounting is done on a global variable. Such
2507 * reservation is completely rubbish in the presence of cpuset because
2508 * the reservation is not checked against page availability for the
2509 * current cpuset. Application can still potentially OOM'ed by kernel
2510 * with lack of free htlb page in cpuset that the task is in.
2511 * Attempt to enforce strict accounting with cpuset is almost
2512 * impossible (or too ugly) because cpuset is too fluid that
2513 * task or memory node can be dynamically moved between cpusets.
2515 * The change of semantics for shared hugetlb mapping with cpuset is
2516 * undesirable. However, in order to preserve some of the semantics,
2517 * we fall back to check against current free page availability as
2518 * a best attempt and hopefully to minimize the impact of changing
2519 * semantics that cpuset has.
2522 if (gather_surplus_pages(h
, delta
) < 0)
2525 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2526 return_unused_surplus_pages(h
, delta
);
2533 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2536 spin_unlock(&hugetlb_lock
);
2540 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2542 struct resv_map
*resv
= vma_resv_map(vma
);
2545 * This new VMA should share its siblings reservation map if present.
2546 * The VMA will only ever have a valid reservation map pointer where
2547 * it is being copied for another still existing VMA. As that VMA
2548 * has a reference to the reservation map it cannot disappear until
2549 * after this open call completes. It is therefore safe to take a
2550 * new reference here without additional locking.
2552 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2553 kref_get(&resv
->refs
);
2556 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2558 struct hstate
*h
= hstate_vma(vma
);
2559 struct resv_map
*resv
= vma_resv_map(vma
);
2560 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2561 unsigned long reserve
, start
, end
;
2564 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2567 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2568 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2570 reserve
= (end
- start
) - region_count(resv
, start
, end
);
2572 kref_put(&resv
->refs
, resv_map_release
);
2576 * Decrement reserve counts. The global reserve count may be
2577 * adjusted if the subpool has a minimum size.
2579 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
2580 hugetlb_acct_memory(h
, -gbl_reserve
);
2585 * We cannot handle pagefaults against hugetlb pages at all. They cause
2586 * handle_mm_fault() to try to instantiate regular-sized pages in the
2587 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2590 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2596 const struct vm_operations_struct hugetlb_vm_ops
= {
2597 .fault
= hugetlb_vm_op_fault
,
2598 .open
= hugetlb_vm_op_open
,
2599 .close
= hugetlb_vm_op_close
,
2602 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2608 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
2609 vma
->vm_page_prot
)));
2611 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
2612 vma
->vm_page_prot
));
2614 entry
= pte_mkyoung(entry
);
2615 entry
= pte_mkhuge(entry
);
2616 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
2621 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2622 unsigned long address
, pte_t
*ptep
)
2626 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
2627 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
2628 update_mmu_cache(vma
, address
, ptep
);
2631 static int is_hugetlb_entry_migration(pte_t pte
)
2635 if (huge_pte_none(pte
) || pte_present(pte
))
2637 swp
= pte_to_swp_entry(pte
);
2638 if (non_swap_entry(swp
) && is_migration_entry(swp
))
2644 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2648 if (huge_pte_none(pte
) || pte_present(pte
))
2650 swp
= pte_to_swp_entry(pte
);
2651 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
2657 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2658 struct vm_area_struct
*vma
)
2660 pte_t
*src_pte
, *dst_pte
, entry
;
2661 struct page
*ptepage
;
2664 struct hstate
*h
= hstate_vma(vma
);
2665 unsigned long sz
= huge_page_size(h
);
2666 unsigned long mmun_start
; /* For mmu_notifiers */
2667 unsigned long mmun_end
; /* For mmu_notifiers */
2670 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2672 mmun_start
= vma
->vm_start
;
2673 mmun_end
= vma
->vm_end
;
2675 mmu_notifier_invalidate_range_start(src
, mmun_start
, mmun_end
);
2677 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2678 spinlock_t
*src_ptl
, *dst_ptl
;
2679 src_pte
= huge_pte_offset(src
, addr
);
2682 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2688 /* If the pagetables are shared don't copy or take references */
2689 if (dst_pte
== src_pte
)
2692 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
2693 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
2694 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
2695 entry
= huge_ptep_get(src_pte
);
2696 if (huge_pte_none(entry
)) { /* skip none entry */
2698 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
2699 is_hugetlb_entry_hwpoisoned(entry
))) {
2700 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
2702 if (is_write_migration_entry(swp_entry
) && cow
) {
2704 * COW mappings require pages in both
2705 * parent and child to be set to read.
2707 make_migration_entry_read(&swp_entry
);
2708 entry
= swp_entry_to_pte(swp_entry
);
2709 set_huge_pte_at(src
, addr
, src_pte
, entry
);
2711 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2714 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2715 mmu_notifier_invalidate_range(src
, mmun_start
,
2718 entry
= huge_ptep_get(src_pte
);
2719 ptepage
= pte_page(entry
);
2721 page_dup_rmap(ptepage
);
2722 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2724 spin_unlock(src_ptl
);
2725 spin_unlock(dst_ptl
);
2729 mmu_notifier_invalidate_range_end(src
, mmun_start
, mmun_end
);
2734 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2735 unsigned long start
, unsigned long end
,
2736 struct page
*ref_page
)
2738 int force_flush
= 0;
2739 struct mm_struct
*mm
= vma
->vm_mm
;
2740 unsigned long address
;
2745 struct hstate
*h
= hstate_vma(vma
);
2746 unsigned long sz
= huge_page_size(h
);
2747 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
2748 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
2750 WARN_ON(!is_vm_hugetlb_page(vma
));
2751 BUG_ON(start
& ~huge_page_mask(h
));
2752 BUG_ON(end
& ~huge_page_mask(h
));
2754 tlb_start_vma(tlb
, vma
);
2755 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2758 for (; address
< end
; address
+= sz
) {
2759 ptep
= huge_pte_offset(mm
, address
);
2763 ptl
= huge_pte_lock(h
, mm
, ptep
);
2764 if (huge_pmd_unshare(mm
, &address
, ptep
))
2767 pte
= huge_ptep_get(ptep
);
2768 if (huge_pte_none(pte
))
2772 * Migrating hugepage or HWPoisoned hugepage is already
2773 * unmapped and its refcount is dropped, so just clear pte here.
2775 if (unlikely(!pte_present(pte
))) {
2776 huge_pte_clear(mm
, address
, ptep
);
2780 page
= pte_page(pte
);
2782 * If a reference page is supplied, it is because a specific
2783 * page is being unmapped, not a range. Ensure the page we
2784 * are about to unmap is the actual page of interest.
2787 if (page
!= ref_page
)
2791 * Mark the VMA as having unmapped its page so that
2792 * future faults in this VMA will fail rather than
2793 * looking like data was lost
2795 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2798 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2799 tlb_remove_tlb_entry(tlb
, ptep
, address
);
2800 if (huge_pte_dirty(pte
))
2801 set_page_dirty(page
);
2803 page_remove_rmap(page
);
2804 force_flush
= !__tlb_remove_page(tlb
, page
);
2810 /* Bail out after unmapping reference page if supplied */
2819 * mmu_gather ran out of room to batch pages, we break out of
2820 * the PTE lock to avoid doing the potential expensive TLB invalidate
2821 * and page-free while holding it.
2826 if (address
< end
&& !ref_page
)
2829 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2830 tlb_end_vma(tlb
, vma
);
2833 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
2834 struct vm_area_struct
*vma
, unsigned long start
,
2835 unsigned long end
, struct page
*ref_page
)
2837 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
2840 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2841 * test will fail on a vma being torn down, and not grab a page table
2842 * on its way out. We're lucky that the flag has such an appropriate
2843 * name, and can in fact be safely cleared here. We could clear it
2844 * before the __unmap_hugepage_range above, but all that's necessary
2845 * is to clear it before releasing the i_mmap_rwsem. This works
2846 * because in the context this is called, the VMA is about to be
2847 * destroyed and the i_mmap_rwsem is held.
2849 vma
->vm_flags
&= ~VM_MAYSHARE
;
2852 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2853 unsigned long end
, struct page
*ref_page
)
2855 struct mm_struct
*mm
;
2856 struct mmu_gather tlb
;
2860 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2861 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
2862 tlb_finish_mmu(&tlb
, start
, end
);
2866 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2867 * mappping it owns the reserve page for. The intention is to unmap the page
2868 * from other VMAs and let the children be SIGKILLed if they are faulting the
2871 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2872 struct page
*page
, unsigned long address
)
2874 struct hstate
*h
= hstate_vma(vma
);
2875 struct vm_area_struct
*iter_vma
;
2876 struct address_space
*mapping
;
2880 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2881 * from page cache lookup which is in HPAGE_SIZE units.
2883 address
= address
& huge_page_mask(h
);
2884 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
2886 mapping
= file_inode(vma
->vm_file
)->i_mapping
;
2889 * Take the mapping lock for the duration of the table walk. As
2890 * this mapping should be shared between all the VMAs,
2891 * __unmap_hugepage_range() is called as the lock is already held
2893 i_mmap_lock_write(mapping
);
2894 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2895 /* Do not unmap the current VMA */
2896 if (iter_vma
== vma
)
2900 * Shared VMAs have their own reserves and do not affect
2901 * MAP_PRIVATE accounting but it is possible that a shared
2902 * VMA is using the same page so check and skip such VMAs.
2904 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
2908 * Unmap the page from other VMAs without their own reserves.
2909 * They get marked to be SIGKILLed if they fault in these
2910 * areas. This is because a future no-page fault on this VMA
2911 * could insert a zeroed page instead of the data existing
2912 * from the time of fork. This would look like data corruption
2914 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2915 unmap_hugepage_range(iter_vma
, address
,
2916 address
+ huge_page_size(h
), page
);
2918 i_mmap_unlock_write(mapping
);
2922 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2923 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2924 * cannot race with other handlers or page migration.
2925 * Keep the pte_same checks anyway to make transition from the mutex easier.
2927 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2928 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2929 struct page
*pagecache_page
, spinlock_t
*ptl
)
2931 struct hstate
*h
= hstate_vma(vma
);
2932 struct page
*old_page
, *new_page
;
2933 int ret
= 0, outside_reserve
= 0;
2934 unsigned long mmun_start
; /* For mmu_notifiers */
2935 unsigned long mmun_end
; /* For mmu_notifiers */
2937 old_page
= pte_page(pte
);
2940 /* If no-one else is actually using this page, avoid the copy
2941 * and just make the page writable */
2942 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
2943 page_move_anon_rmap(old_page
, vma
, address
);
2944 set_huge_ptep_writable(vma
, address
, ptep
);
2949 * If the process that created a MAP_PRIVATE mapping is about to
2950 * perform a COW due to a shared page count, attempt to satisfy
2951 * the allocation without using the existing reserves. The pagecache
2952 * page is used to determine if the reserve at this address was
2953 * consumed or not. If reserves were used, a partial faulted mapping
2954 * at the time of fork() could consume its reserves on COW instead
2955 * of the full address range.
2957 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2958 old_page
!= pagecache_page
)
2959 outside_reserve
= 1;
2961 page_cache_get(old_page
);
2964 * Drop page table lock as buddy allocator may be called. It will
2965 * be acquired again before returning to the caller, as expected.
2968 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2970 if (IS_ERR(new_page
)) {
2972 * If a process owning a MAP_PRIVATE mapping fails to COW,
2973 * it is due to references held by a child and an insufficient
2974 * huge page pool. To guarantee the original mappers
2975 * reliability, unmap the page from child processes. The child
2976 * may get SIGKILLed if it later faults.
2978 if (outside_reserve
) {
2979 page_cache_release(old_page
);
2980 BUG_ON(huge_pte_none(pte
));
2981 unmap_ref_private(mm
, vma
, old_page
, address
);
2982 BUG_ON(huge_pte_none(pte
));
2984 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2986 pte_same(huge_ptep_get(ptep
), pte
)))
2987 goto retry_avoidcopy
;
2989 * race occurs while re-acquiring page table
2990 * lock, and our job is done.
2995 ret
= (PTR_ERR(new_page
) == -ENOMEM
) ?
2996 VM_FAULT_OOM
: VM_FAULT_SIGBUS
;
2997 goto out_release_old
;
3001 * When the original hugepage is shared one, it does not have
3002 * anon_vma prepared.
3004 if (unlikely(anon_vma_prepare(vma
))) {
3006 goto out_release_all
;
3009 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3010 pages_per_huge_page(h
));
3011 __SetPageUptodate(new_page
);
3012 set_page_huge_active(new_page
);
3014 mmun_start
= address
& huge_page_mask(h
);
3015 mmun_end
= mmun_start
+ huge_page_size(h
);
3016 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3019 * Retake the page table lock to check for racing updates
3020 * before the page tables are altered
3023 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
3024 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3025 ClearPagePrivate(new_page
);
3028 huge_ptep_clear_flush(vma
, address
, ptep
);
3029 mmu_notifier_invalidate_range(mm
, mmun_start
, mmun_end
);
3030 set_huge_pte_at(mm
, address
, ptep
,
3031 make_huge_pte(vma
, new_page
, 1));
3032 page_remove_rmap(old_page
);
3033 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
3034 /* Make the old page be freed below */
3035 new_page
= old_page
;
3038 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3040 page_cache_release(new_page
);
3042 page_cache_release(old_page
);
3044 spin_lock(ptl
); /* Caller expects lock to be held */
3048 /* Return the pagecache page at a given address within a VMA */
3049 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3050 struct vm_area_struct
*vma
, unsigned long address
)
3052 struct address_space
*mapping
;
3055 mapping
= vma
->vm_file
->f_mapping
;
3056 idx
= vma_hugecache_offset(h
, vma
, address
);
3058 return find_lock_page(mapping
, idx
);
3062 * Return whether there is a pagecache page to back given address within VMA.
3063 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3065 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3066 struct vm_area_struct
*vma
, unsigned long address
)
3068 struct address_space
*mapping
;
3072 mapping
= vma
->vm_file
->f_mapping
;
3073 idx
= vma_hugecache_offset(h
, vma
, address
);
3075 page
= find_get_page(mapping
, idx
);
3078 return page
!= NULL
;
3081 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3082 struct address_space
*mapping
, pgoff_t idx
,
3083 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3085 struct hstate
*h
= hstate_vma(vma
);
3086 int ret
= VM_FAULT_SIGBUS
;
3094 * Currently, we are forced to kill the process in the event the
3095 * original mapper has unmapped pages from the child due to a failed
3096 * COW. Warn that such a situation has occurred as it may not be obvious
3098 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3099 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3105 * Use page lock to guard against racing truncation
3106 * before we get page_table_lock.
3109 page
= find_lock_page(mapping
, idx
);
3111 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3114 page
= alloc_huge_page(vma
, address
, 0);
3116 ret
= PTR_ERR(page
);
3120 ret
= VM_FAULT_SIGBUS
;
3123 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3124 __SetPageUptodate(page
);
3125 set_page_huge_active(page
);
3127 if (vma
->vm_flags
& VM_MAYSHARE
) {
3129 struct inode
*inode
= mapping
->host
;
3131 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3138 ClearPagePrivate(page
);
3140 spin_lock(&inode
->i_lock
);
3141 inode
->i_blocks
+= blocks_per_huge_page(h
);
3142 spin_unlock(&inode
->i_lock
);
3145 if (unlikely(anon_vma_prepare(vma
))) {
3147 goto backout_unlocked
;
3153 * If memory error occurs between mmap() and fault, some process
3154 * don't have hwpoisoned swap entry for errored virtual address.
3155 * So we need to block hugepage fault by PG_hwpoison bit check.
3157 if (unlikely(PageHWPoison(page
))) {
3158 ret
= VM_FAULT_HWPOISON
|
3159 VM_FAULT_SET_HINDEX(hstate_index(h
));
3160 goto backout_unlocked
;
3165 * If we are going to COW a private mapping later, we examine the
3166 * pending reservations for this page now. This will ensure that
3167 * any allocations necessary to record that reservation occur outside
3170 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
3171 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3173 goto backout_unlocked
;
3176 ptl
= huge_pte_lockptr(h
, mm
, ptep
);
3178 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3183 if (!huge_pte_none(huge_ptep_get(ptep
)))
3187 ClearPagePrivate(page
);
3188 hugepage_add_new_anon_rmap(page
, vma
, address
);
3190 page_dup_rmap(page
);
3191 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3192 && (vma
->vm_flags
& VM_SHARED
)));
3193 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
3195 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3196 /* Optimization, do the COW without a second fault */
3197 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
, ptl
);
3214 static u32
fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3215 struct vm_area_struct
*vma
,
3216 struct address_space
*mapping
,
3217 pgoff_t idx
, unsigned long address
)
3219 unsigned long key
[2];
3222 if (vma
->vm_flags
& VM_SHARED
) {
3223 key
[0] = (unsigned long) mapping
;
3226 key
[0] = (unsigned long) mm
;
3227 key
[1] = address
>> huge_page_shift(h
);
3230 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3232 return hash
& (num_fault_mutexes
- 1);
3236 * For uniprocesor systems we always use a single mutex, so just
3237 * return 0 and avoid the hashing overhead.
3239 static u32
fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3240 struct vm_area_struct
*vma
,
3241 struct address_space
*mapping
,
3242 pgoff_t idx
, unsigned long address
)
3248 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3249 unsigned long address
, unsigned int flags
)
3256 struct page
*page
= NULL
;
3257 struct page
*pagecache_page
= NULL
;
3258 struct hstate
*h
= hstate_vma(vma
);
3259 struct address_space
*mapping
;
3260 int need_wait_lock
= 0;
3262 address
&= huge_page_mask(h
);
3264 ptep
= huge_pte_offset(mm
, address
);
3266 entry
= huge_ptep_get(ptep
);
3267 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3268 migration_entry_wait_huge(vma
, mm
, ptep
);
3270 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3271 return VM_FAULT_HWPOISON_LARGE
|
3272 VM_FAULT_SET_HINDEX(hstate_index(h
));
3275 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
3277 return VM_FAULT_OOM
;
3279 mapping
= vma
->vm_file
->f_mapping
;
3280 idx
= vma_hugecache_offset(h
, vma
, address
);
3283 * Serialize hugepage allocation and instantiation, so that we don't
3284 * get spurious allocation failures if two CPUs race to instantiate
3285 * the same page in the page cache.
3287 hash
= fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, address
);
3288 mutex_lock(&htlb_fault_mutex_table
[hash
]);
3290 entry
= huge_ptep_get(ptep
);
3291 if (huge_pte_none(entry
)) {
3292 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3299 * entry could be a migration/hwpoison entry at this point, so this
3300 * check prevents the kernel from going below assuming that we have
3301 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3302 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3305 if (!pte_present(entry
))
3309 * If we are going to COW the mapping later, we examine the pending
3310 * reservations for this page now. This will ensure that any
3311 * allocations necessary to record that reservation occur outside the
3312 * spinlock. For private mappings, we also lookup the pagecache
3313 * page now as it is used to determine if a reservation has been
3316 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3317 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3322 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3323 pagecache_page
= hugetlbfs_pagecache_page(h
,
3327 ptl
= huge_pte_lock(h
, mm
, ptep
);
3329 /* Check for a racing update before calling hugetlb_cow */
3330 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3334 * hugetlb_cow() requires page locks of pte_page(entry) and
3335 * pagecache_page, so here we need take the former one
3336 * when page != pagecache_page or !pagecache_page.
3338 page
= pte_page(entry
);
3339 if (page
!= pagecache_page
)
3340 if (!trylock_page(page
)) {
3347 if (flags
& FAULT_FLAG_WRITE
) {
3348 if (!huge_pte_write(entry
)) {
3349 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
3350 pagecache_page
, ptl
);
3353 entry
= huge_pte_mkdirty(entry
);
3355 entry
= pte_mkyoung(entry
);
3356 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
3357 flags
& FAULT_FLAG_WRITE
))
3358 update_mmu_cache(vma
, address
, ptep
);
3360 if (page
!= pagecache_page
)
3366 if (pagecache_page
) {
3367 unlock_page(pagecache_page
);
3368 put_page(pagecache_page
);
3371 mutex_unlock(&htlb_fault_mutex_table
[hash
]);
3373 * Generally it's safe to hold refcount during waiting page lock. But
3374 * here we just wait to defer the next page fault to avoid busy loop and
3375 * the page is not used after unlocked before returning from the current
3376 * page fault. So we are safe from accessing freed page, even if we wait
3377 * here without taking refcount.
3380 wait_on_page_locked(page
);
3384 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3385 struct page
**pages
, struct vm_area_struct
**vmas
,
3386 unsigned long *position
, unsigned long *nr_pages
,
3387 long i
, unsigned int flags
)
3389 unsigned long pfn_offset
;
3390 unsigned long vaddr
= *position
;
3391 unsigned long remainder
= *nr_pages
;
3392 struct hstate
*h
= hstate_vma(vma
);
3394 while (vaddr
< vma
->vm_end
&& remainder
) {
3396 spinlock_t
*ptl
= NULL
;
3401 * If we have a pending SIGKILL, don't keep faulting pages and
3402 * potentially allocating memory.
3404 if (unlikely(fatal_signal_pending(current
))) {
3410 * Some archs (sparc64, sh*) have multiple pte_ts to
3411 * each hugepage. We have to make sure we get the
3412 * first, for the page indexing below to work.
3414 * Note that page table lock is not held when pte is null.
3416 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
3418 ptl
= huge_pte_lock(h
, mm
, pte
);
3419 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
3422 * When coredumping, it suits get_dump_page if we just return
3423 * an error where there's an empty slot with no huge pagecache
3424 * to back it. This way, we avoid allocating a hugepage, and
3425 * the sparse dumpfile avoids allocating disk blocks, but its
3426 * huge holes still show up with zeroes where they need to be.
3428 if (absent
&& (flags
& FOLL_DUMP
) &&
3429 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
3437 * We need call hugetlb_fault for both hugepages under migration
3438 * (in which case hugetlb_fault waits for the migration,) and
3439 * hwpoisoned hugepages (in which case we need to prevent the
3440 * caller from accessing to them.) In order to do this, we use
3441 * here is_swap_pte instead of is_hugetlb_entry_migration and
3442 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3443 * both cases, and because we can't follow correct pages
3444 * directly from any kind of swap entries.
3446 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
3447 ((flags
& FOLL_WRITE
) &&
3448 !huge_pte_write(huge_ptep_get(pte
)))) {
3453 ret
= hugetlb_fault(mm
, vma
, vaddr
,
3454 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
3455 if (!(ret
& VM_FAULT_ERROR
))
3462 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
3463 page
= pte_page(huge_ptep_get(pte
));
3466 pages
[i
] = mem_map_offset(page
, pfn_offset
);
3467 get_page_foll(pages
[i
]);
3477 if (vaddr
< vma
->vm_end
&& remainder
&&
3478 pfn_offset
< pages_per_huge_page(h
)) {
3480 * We use pfn_offset to avoid touching the pageframes
3481 * of this compound page.
3487 *nr_pages
= remainder
;
3490 return i
? i
: -EFAULT
;
3493 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
3494 unsigned long address
, unsigned long end
, pgprot_t newprot
)
3496 struct mm_struct
*mm
= vma
->vm_mm
;
3497 unsigned long start
= address
;
3500 struct hstate
*h
= hstate_vma(vma
);
3501 unsigned long pages
= 0;
3503 BUG_ON(address
>= end
);
3504 flush_cache_range(vma
, address
, end
);
3506 mmu_notifier_invalidate_range_start(mm
, start
, end
);
3507 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
3508 for (; address
< end
; address
+= huge_page_size(h
)) {
3510 ptep
= huge_pte_offset(mm
, address
);
3513 ptl
= huge_pte_lock(h
, mm
, ptep
);
3514 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3519 pte
= huge_ptep_get(ptep
);
3520 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
3524 if (unlikely(is_hugetlb_entry_migration(pte
))) {
3525 swp_entry_t entry
= pte_to_swp_entry(pte
);
3527 if (is_write_migration_entry(entry
)) {
3530 make_migration_entry_read(&entry
);
3531 newpte
= swp_entry_to_pte(entry
);
3532 set_huge_pte_at(mm
, address
, ptep
, newpte
);
3538 if (!huge_pte_none(pte
)) {
3539 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3540 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
3541 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
3542 set_huge_pte_at(mm
, address
, ptep
, pte
);
3548 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3549 * may have cleared our pud entry and done put_page on the page table:
3550 * once we release i_mmap_rwsem, another task can do the final put_page
3551 * and that page table be reused and filled with junk.
3553 flush_tlb_range(vma
, start
, end
);
3554 mmu_notifier_invalidate_range(mm
, start
, end
);
3555 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
3556 mmu_notifier_invalidate_range_end(mm
, start
, end
);
3558 return pages
<< h
->order
;
3561 int hugetlb_reserve_pages(struct inode
*inode
,
3563 struct vm_area_struct
*vma
,
3564 vm_flags_t vm_flags
)
3567 struct hstate
*h
= hstate_inode(inode
);
3568 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3569 struct resv_map
*resv_map
;
3573 * Only apply hugepage reservation if asked. At fault time, an
3574 * attempt will be made for VM_NORESERVE to allocate a page
3575 * without using reserves
3577 if (vm_flags
& VM_NORESERVE
)
3581 * Shared mappings base their reservation on the number of pages that
3582 * are already allocated on behalf of the file. Private mappings need
3583 * to reserve the full area even if read-only as mprotect() may be
3584 * called to make the mapping read-write. Assume !vma is a shm mapping
3586 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
3587 resv_map
= inode_resv_map(inode
);
3589 chg
= region_chg(resv_map
, from
, to
);
3592 resv_map
= resv_map_alloc();
3598 set_vma_resv_map(vma
, resv_map
);
3599 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
3608 * There must be enough pages in the subpool for the mapping. If
3609 * the subpool has a minimum size, there may be some global
3610 * reservations already in place (gbl_reserve).
3612 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
3613 if (gbl_reserve
< 0) {
3619 * Check enough hugepages are available for the reservation.
3620 * Hand the pages back to the subpool if there are not
3622 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
3624 /* put back original number of pages, chg */
3625 (void)hugepage_subpool_put_pages(spool
, chg
);
3630 * Account for the reservations made. Shared mappings record regions
3631 * that have reservations as they are shared by multiple VMAs.
3632 * When the last VMA disappears, the region map says how much
3633 * the reservation was and the page cache tells how much of
3634 * the reservation was consumed. Private mappings are per-VMA and
3635 * only the consumed reservations are tracked. When the VMA
3636 * disappears, the original reservation is the VMA size and the
3637 * consumed reservations are stored in the map. Hence, nothing
3638 * else has to be done for private mappings here
3640 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3641 region_add(resv_map
, from
, to
);
3644 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3645 kref_put(&resv_map
->refs
, resv_map_release
);
3649 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
3651 struct hstate
*h
= hstate_inode(inode
);
3652 struct resv_map
*resv_map
= inode_resv_map(inode
);
3654 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3658 chg
= region_truncate(resv_map
, offset
);
3659 spin_lock(&inode
->i_lock
);
3660 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
3661 spin_unlock(&inode
->i_lock
);
3664 * If the subpool has a minimum size, the number of global
3665 * reservations to be released may be adjusted.
3667 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
3668 hugetlb_acct_memory(h
, -gbl_reserve
);
3671 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3672 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
3673 struct vm_area_struct
*vma
,
3674 unsigned long addr
, pgoff_t idx
)
3676 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
3678 unsigned long sbase
= saddr
& PUD_MASK
;
3679 unsigned long s_end
= sbase
+ PUD_SIZE
;
3681 /* Allow segments to share if only one is marked locked */
3682 unsigned long vm_flags
= vma
->vm_flags
& ~VM_LOCKED
;
3683 unsigned long svm_flags
= svma
->vm_flags
& ~VM_LOCKED
;
3686 * match the virtual addresses, permission and the alignment of the
3689 if (pmd_index(addr
) != pmd_index(saddr
) ||
3690 vm_flags
!= svm_flags
||
3691 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
3697 static int vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
3699 unsigned long base
= addr
& PUD_MASK
;
3700 unsigned long end
= base
+ PUD_SIZE
;
3703 * check on proper vm_flags and page table alignment
3705 if (vma
->vm_flags
& VM_MAYSHARE
&&
3706 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
3712 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3713 * and returns the corresponding pte. While this is not necessary for the
3714 * !shared pmd case because we can allocate the pmd later as well, it makes the
3715 * code much cleaner. pmd allocation is essential for the shared case because
3716 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3717 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3718 * bad pmd for sharing.
3720 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3722 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
3723 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
3724 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
3726 struct vm_area_struct
*svma
;
3727 unsigned long saddr
;
3732 if (!vma_shareable(vma
, addr
))
3733 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3735 i_mmap_lock_write(mapping
);
3736 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
3740 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
3742 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
3745 get_page(virt_to_page(spte
));
3754 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, spte
);
3756 if (pud_none(*pud
)) {
3757 pud_populate(mm
, pud
,
3758 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
3760 put_page(virt_to_page(spte
));
3765 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3766 i_mmap_unlock_write(mapping
);
3771 * unmap huge page backed by shared pte.
3773 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3774 * indicated by page_count > 1, unmap is achieved by clearing pud and
3775 * decrementing the ref count. If count == 1, the pte page is not shared.
3777 * called with page table lock held.
3779 * returns: 1 successfully unmapped a shared pte page
3780 * 0 the underlying pte page is not shared, or it is the last user
3782 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
3784 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
3785 pud_t
*pud
= pud_offset(pgd
, *addr
);
3787 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
3788 if (page_count(virt_to_page(ptep
)) == 1)
3792 put_page(virt_to_page(ptep
));
3794 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
3797 #define want_pmd_share() (1)
3798 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3799 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3803 #define want_pmd_share() (0)
3804 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3806 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3807 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
3808 unsigned long addr
, unsigned long sz
)
3814 pgd
= pgd_offset(mm
, addr
);
3815 pud
= pud_alloc(mm
, pgd
, addr
);
3817 if (sz
== PUD_SIZE
) {
3820 BUG_ON(sz
!= PMD_SIZE
);
3821 if (want_pmd_share() && pud_none(*pud
))
3822 pte
= huge_pmd_share(mm
, addr
, pud
);
3824 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3827 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
3832 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
3838 pgd
= pgd_offset(mm
, addr
);
3839 if (pgd_present(*pgd
)) {
3840 pud
= pud_offset(pgd
, addr
);
3841 if (pud_present(*pud
)) {
3843 return (pte_t
*)pud
;
3844 pmd
= pmd_offset(pud
, addr
);
3847 return (pte_t
*) pmd
;
3850 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3853 * These functions are overwritable if your architecture needs its own
3856 struct page
* __weak
3857 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
3860 return ERR_PTR(-EINVAL
);
3863 struct page
* __weak
3864 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
3865 pmd_t
*pmd
, int flags
)
3867 struct page
*page
= NULL
;
3870 ptl
= pmd_lockptr(mm
, pmd
);
3873 * make sure that the address range covered by this pmd is not
3874 * unmapped from other threads.
3876 if (!pmd_huge(*pmd
))
3878 if (pmd_present(*pmd
)) {
3879 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
3880 if (flags
& FOLL_GET
)
3883 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t
*)pmd
))) {
3885 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
3889 * hwpoisoned entry is treated as no_page_table in
3890 * follow_page_mask().
3898 struct page
* __weak
3899 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3900 pud_t
*pud
, int flags
)
3902 if (flags
& FOLL_GET
)
3905 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
3908 #ifdef CONFIG_MEMORY_FAILURE
3911 * This function is called from memory failure code.
3912 * Assume the caller holds page lock of the head page.
3914 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
3916 struct hstate
*h
= page_hstate(hpage
);
3917 int nid
= page_to_nid(hpage
);
3920 spin_lock(&hugetlb_lock
);
3922 * Just checking !page_huge_active is not enough, because that could be
3923 * an isolated/hwpoisoned hugepage (which have >0 refcount).
3925 if (!page_huge_active(hpage
) && !page_count(hpage
)) {
3927 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3928 * but dangling hpage->lru can trigger list-debug warnings
3929 * (this happens when we call unpoison_memory() on it),
3930 * so let it point to itself with list_del_init().
3932 list_del_init(&hpage
->lru
);
3933 set_page_refcounted(hpage
);
3934 h
->free_huge_pages
--;
3935 h
->free_huge_pages_node
[nid
]--;
3938 spin_unlock(&hugetlb_lock
);
3943 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
3947 VM_BUG_ON_PAGE(!PageHead(page
), page
);
3948 spin_lock(&hugetlb_lock
);
3949 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
3953 clear_page_huge_active(page
);
3954 list_move_tail(&page
->lru
, list
);
3956 spin_unlock(&hugetlb_lock
);
3960 void putback_active_hugepage(struct page
*page
)
3962 VM_BUG_ON_PAGE(!PageHead(page
), page
);
3963 spin_lock(&hugetlb_lock
);
3964 set_page_huge_active(page
);
3965 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
3966 spin_unlock(&hugetlb_lock
);