6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
52 #include <asm/mmu_context.h>
56 #ifndef arch_mmap_check
57 #define arch_mmap_check(addr, len, flags) (0)
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min
= CONFIG_ARCH_MMAP_RND_BITS_MIN
;
62 const int mmap_rnd_bits_max
= CONFIG_ARCH_MMAP_RND_BITS_MAX
;
63 int mmap_rnd_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_BITS
;
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN
;
67 const int mmap_rnd_compat_bits_max
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX
;
68 int mmap_rnd_compat_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS
;
71 static bool ignore_rlimit_data
;
72 core_param(ignore_rlimit_data
, ignore_rlimit_data
, bool, 0644);
74 static void unmap_region(struct mm_struct
*mm
,
75 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
76 unsigned long start
, unsigned long end
);
78 /* description of effects of mapping type and prot in current implementation.
79 * this is due to the limited x86 page protection hardware. The expected
80 * behavior is in parens:
83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
85 * w: (no) no w: (no) no w: (yes) yes w: (no) no
86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
89 * w: (no) no w: (no) no w: (copy) copy w: (no) no
90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98 pgprot_t protection_map
[16] __ro_after_init
= {
99 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
100 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
103 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
104 static inline pgprot_t
arch_filter_pgprot(pgprot_t prot
)
110 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
112 pgprot_t ret
= __pgprot(pgprot_val(protection_map
[vm_flags
&
113 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
114 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
116 return arch_filter_pgprot(ret
);
118 EXPORT_SYMBOL(vm_get_page_prot
);
120 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
122 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
125 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
126 void vma_set_page_prot(struct vm_area_struct
*vma
)
128 unsigned long vm_flags
= vma
->vm_flags
;
129 pgprot_t vm_page_prot
;
131 vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
132 if (vma_wants_writenotify(vma
, vm_page_prot
)) {
133 vm_flags
&= ~VM_SHARED
;
134 vm_page_prot
= vm_pgprot_modify(vm_page_prot
, vm_flags
);
136 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
137 WRITE_ONCE(vma
->vm_page_prot
, vm_page_prot
);
141 * Requires inode->i_mapping->i_mmap_rwsem
143 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
144 struct file
*file
, struct address_space
*mapping
)
146 if (vma
->vm_flags
& VM_DENYWRITE
)
147 atomic_inc(&file_inode(file
)->i_writecount
);
148 if (vma
->vm_flags
& VM_SHARED
)
149 mapping_unmap_writable(mapping
);
151 flush_dcache_mmap_lock(mapping
);
152 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
153 flush_dcache_mmap_unlock(mapping
);
157 * Unlink a file-based vm structure from its interval tree, to hide
158 * vma from rmap and vmtruncate before freeing its page tables.
160 void unlink_file_vma(struct vm_area_struct
*vma
)
162 struct file
*file
= vma
->vm_file
;
165 struct address_space
*mapping
= file
->f_mapping
;
166 i_mmap_lock_write(mapping
);
167 __remove_shared_vm_struct(vma
, file
, mapping
);
168 i_mmap_unlock_write(mapping
);
173 * Close a vm structure and free it, returning the next.
175 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
177 struct vm_area_struct
*next
= vma
->vm_next
;
180 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
181 vma
->vm_ops
->close(vma
);
184 mpol_put(vma_policy(vma
));
189 static int do_brk_flags(unsigned long addr
, unsigned long request
, unsigned long flags
,
190 struct list_head
*uf
);
191 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
193 unsigned long retval
;
194 unsigned long newbrk
, oldbrk
, origbrk
;
195 struct mm_struct
*mm
= current
->mm
;
196 struct vm_area_struct
*next
;
197 unsigned long min_brk
;
199 bool downgraded
= false;
202 if (down_write_killable(&mm
->mmap_sem
))
207 #ifdef CONFIG_COMPAT_BRK
209 * CONFIG_COMPAT_BRK can still be overridden by setting
210 * randomize_va_space to 2, which will still cause mm->start_brk
211 * to be arbitrarily shifted
213 if (current
->brk_randomized
)
214 min_brk
= mm
->start_brk
;
216 min_brk
= mm
->end_data
;
218 min_brk
= mm
->start_brk
;
224 * Check against rlimit here. If this check is done later after the test
225 * of oldbrk with newbrk then it can escape the test and let the data
226 * segment grow beyond its set limit the in case where the limit is
227 * not page aligned -Ram Gupta
229 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
230 mm
->end_data
, mm
->start_data
))
233 newbrk
= PAGE_ALIGN(brk
);
234 oldbrk
= PAGE_ALIGN(mm
->brk
);
235 if (oldbrk
== newbrk
) {
241 * Always allow shrinking brk.
242 * __do_munmap() may downgrade mmap_sem to read.
244 if (brk
<= mm
->brk
) {
248 * mm->brk must to be protected by write mmap_sem so update it
249 * before downgrading mmap_sem. When __do_munmap() fails,
250 * mm->brk will be restored from origbrk.
253 ret
= __do_munmap(mm
, newbrk
, oldbrk
-newbrk
, &uf
, true);
257 } else if (ret
== 1) {
263 /* Check against existing mmap mappings. */
264 next
= find_vma(mm
, oldbrk
);
265 if (next
&& newbrk
+ PAGE_SIZE
> vm_start_gap(next
))
268 /* Ok, looks good - let it rip. */
269 if (do_brk_flags(oldbrk
, newbrk
-oldbrk
, 0, &uf
) < 0)
274 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
276 up_read(&mm
->mmap_sem
);
278 up_write(&mm
->mmap_sem
);
279 userfaultfd_unmap_complete(mm
, &uf
);
281 mm_populate(oldbrk
, newbrk
- oldbrk
);
286 up_write(&mm
->mmap_sem
);
290 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
292 unsigned long max
, prev_end
, subtree_gap
;
295 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
296 * allow two stack_guard_gaps between them here, and when choosing
297 * an unmapped area; whereas when expanding we only require one.
298 * That's a little inconsistent, but keeps the code here simpler.
300 max
= vm_start_gap(vma
);
302 prev_end
= vm_end_gap(vma
->vm_prev
);
308 if (vma
->vm_rb
.rb_left
) {
309 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
310 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
311 if (subtree_gap
> max
)
314 if (vma
->vm_rb
.rb_right
) {
315 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
316 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
317 if (subtree_gap
> max
)
323 #ifdef CONFIG_DEBUG_VM_RB
324 static int browse_rb(struct mm_struct
*mm
)
326 struct rb_root
*root
= &mm
->mm_rb
;
327 int i
= 0, j
, bug
= 0;
328 struct rb_node
*nd
, *pn
= NULL
;
329 unsigned long prev
= 0, pend
= 0;
331 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
332 struct vm_area_struct
*vma
;
333 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
334 if (vma
->vm_start
< prev
) {
335 pr_emerg("vm_start %lx < prev %lx\n",
336 vma
->vm_start
, prev
);
339 if (vma
->vm_start
< pend
) {
340 pr_emerg("vm_start %lx < pend %lx\n",
341 vma
->vm_start
, pend
);
344 if (vma
->vm_start
> vma
->vm_end
) {
345 pr_emerg("vm_start %lx > vm_end %lx\n",
346 vma
->vm_start
, vma
->vm_end
);
349 spin_lock(&mm
->page_table_lock
);
350 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
351 pr_emerg("free gap %lx, correct %lx\n",
353 vma_compute_subtree_gap(vma
));
356 spin_unlock(&mm
->page_table_lock
);
359 prev
= vma
->vm_start
;
363 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
366 pr_emerg("backwards %d, forwards %d\n", j
, i
);
372 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
376 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
377 struct vm_area_struct
*vma
;
378 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
379 VM_BUG_ON_VMA(vma
!= ignore
&&
380 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
385 static void validate_mm(struct mm_struct
*mm
)
389 unsigned long highest_address
= 0;
390 struct vm_area_struct
*vma
= mm
->mmap
;
393 struct anon_vma
*anon_vma
= vma
->anon_vma
;
394 struct anon_vma_chain
*avc
;
397 anon_vma_lock_read(anon_vma
);
398 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
399 anon_vma_interval_tree_verify(avc
);
400 anon_vma_unlock_read(anon_vma
);
403 highest_address
= vm_end_gap(vma
);
407 if (i
!= mm
->map_count
) {
408 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
411 if (highest_address
!= mm
->highest_vm_end
) {
412 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
413 mm
->highest_vm_end
, highest_address
);
417 if (i
!= mm
->map_count
) {
419 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
422 VM_BUG_ON_MM(bug
, mm
);
425 #define validate_mm_rb(root, ignore) do { } while (0)
426 #define validate_mm(mm) do { } while (0)
429 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
430 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
433 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
434 * vma->vm_prev->vm_end values changed, without modifying the vma's position
437 static void vma_gap_update(struct vm_area_struct
*vma
)
440 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
441 * function that does exacltly what we want.
443 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
446 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
447 struct rb_root
*root
)
449 /* All rb_subtree_gap values must be consistent prior to insertion */
450 validate_mm_rb(root
, NULL
);
452 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
455 static void __vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
458 * Note rb_erase_augmented is a fairly large inline function,
459 * so make sure we instantiate it only once with our desired
460 * augmented rbtree callbacks.
462 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
465 static __always_inline
void vma_rb_erase_ignore(struct vm_area_struct
*vma
,
466 struct rb_root
*root
,
467 struct vm_area_struct
*ignore
)
470 * All rb_subtree_gap values must be consistent prior to erase,
471 * with the possible exception of the "next" vma being erased if
472 * next->vm_start was reduced.
474 validate_mm_rb(root
, ignore
);
476 __vma_rb_erase(vma
, root
);
479 static __always_inline
void vma_rb_erase(struct vm_area_struct
*vma
,
480 struct rb_root
*root
)
483 * All rb_subtree_gap values must be consistent prior to erase,
484 * with the possible exception of the vma being erased.
486 validate_mm_rb(root
, vma
);
488 __vma_rb_erase(vma
, root
);
492 * vma has some anon_vma assigned, and is already inserted on that
493 * anon_vma's interval trees.
495 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
496 * vma must be removed from the anon_vma's interval trees using
497 * anon_vma_interval_tree_pre_update_vma().
499 * After the update, the vma will be reinserted using
500 * anon_vma_interval_tree_post_update_vma().
502 * The entire update must be protected by exclusive mmap_sem and by
503 * the root anon_vma's mutex.
506 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
508 struct anon_vma_chain
*avc
;
510 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
511 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
515 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
517 struct anon_vma_chain
*avc
;
519 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
520 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
523 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
524 unsigned long end
, struct vm_area_struct
**pprev
,
525 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
527 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
529 __rb_link
= &mm
->mm_rb
.rb_node
;
530 rb_prev
= __rb_parent
= NULL
;
533 struct vm_area_struct
*vma_tmp
;
535 __rb_parent
= *__rb_link
;
536 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
538 if (vma_tmp
->vm_end
> addr
) {
539 /* Fail if an existing vma overlaps the area */
540 if (vma_tmp
->vm_start
< end
)
542 __rb_link
= &__rb_parent
->rb_left
;
544 rb_prev
= __rb_parent
;
545 __rb_link
= &__rb_parent
->rb_right
;
551 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
552 *rb_link
= __rb_link
;
553 *rb_parent
= __rb_parent
;
557 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
558 unsigned long addr
, unsigned long end
)
560 unsigned long nr_pages
= 0;
561 struct vm_area_struct
*vma
;
563 /* Find first overlaping mapping */
564 vma
= find_vma_intersection(mm
, addr
, end
);
568 nr_pages
= (min(end
, vma
->vm_end
) -
569 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
571 /* Iterate over the rest of the overlaps */
572 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
573 unsigned long overlap_len
;
575 if (vma
->vm_start
> end
)
578 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
579 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
585 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
586 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
588 /* Update tracking information for the gap following the new vma. */
590 vma_gap_update(vma
->vm_next
);
592 mm
->highest_vm_end
= vm_end_gap(vma
);
595 * vma->vm_prev wasn't known when we followed the rbtree to find the
596 * correct insertion point for that vma. As a result, we could not
597 * update the vma vm_rb parents rb_subtree_gap values on the way down.
598 * So, we first insert the vma with a zero rb_subtree_gap value
599 * (to be consistent with what we did on the way down), and then
600 * immediately update the gap to the correct value. Finally we
601 * rebalance the rbtree after all augmented values have been set.
603 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
604 vma
->rb_subtree_gap
= 0;
606 vma_rb_insert(vma
, &mm
->mm_rb
);
609 static void __vma_link_file(struct vm_area_struct
*vma
)
615 struct address_space
*mapping
= file
->f_mapping
;
617 if (vma
->vm_flags
& VM_DENYWRITE
)
618 atomic_dec(&file_inode(file
)->i_writecount
);
619 if (vma
->vm_flags
& VM_SHARED
)
620 atomic_inc(&mapping
->i_mmap_writable
);
622 flush_dcache_mmap_lock(mapping
);
623 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
624 flush_dcache_mmap_unlock(mapping
);
629 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
630 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
631 struct rb_node
*rb_parent
)
633 __vma_link_list(mm
, vma
, prev
, rb_parent
);
634 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
637 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
638 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
639 struct rb_node
*rb_parent
)
641 struct address_space
*mapping
= NULL
;
644 mapping
= vma
->vm_file
->f_mapping
;
645 i_mmap_lock_write(mapping
);
648 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
649 __vma_link_file(vma
);
652 i_mmap_unlock_write(mapping
);
659 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
660 * mm's list and rbtree. It has already been inserted into the interval tree.
662 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
664 struct vm_area_struct
*prev
;
665 struct rb_node
**rb_link
, *rb_parent
;
667 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
668 &prev
, &rb_link
, &rb_parent
))
670 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
674 static __always_inline
void __vma_unlink_common(struct mm_struct
*mm
,
675 struct vm_area_struct
*vma
,
676 struct vm_area_struct
*prev
,
678 struct vm_area_struct
*ignore
)
680 struct vm_area_struct
*next
;
682 vma_rb_erase_ignore(vma
, &mm
->mm_rb
, ignore
);
685 prev
->vm_next
= next
;
689 prev
->vm_next
= next
;
694 next
->vm_prev
= prev
;
697 vmacache_invalidate(mm
);
700 static inline void __vma_unlink_prev(struct mm_struct
*mm
,
701 struct vm_area_struct
*vma
,
702 struct vm_area_struct
*prev
)
704 __vma_unlink_common(mm
, vma
, prev
, true, vma
);
708 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
709 * is already present in an i_mmap tree without adjusting the tree.
710 * The following helper function should be used when such adjustments
711 * are necessary. The "insert" vma (if any) is to be inserted
712 * before we drop the necessary locks.
714 int __vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
715 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
,
716 struct vm_area_struct
*expand
)
718 struct mm_struct
*mm
= vma
->vm_mm
;
719 struct vm_area_struct
*next
= vma
->vm_next
, *orig_vma
= vma
;
720 struct address_space
*mapping
= NULL
;
721 struct rb_root_cached
*root
= NULL
;
722 struct anon_vma
*anon_vma
= NULL
;
723 struct file
*file
= vma
->vm_file
;
724 bool start_changed
= false, end_changed
= false;
725 long adjust_next
= 0;
728 if (next
&& !insert
) {
729 struct vm_area_struct
*exporter
= NULL
, *importer
= NULL
;
731 if (end
>= next
->vm_end
) {
733 * vma expands, overlapping all the next, and
734 * perhaps the one after too (mprotect case 6).
735 * The only other cases that gets here are
736 * case 1, case 7 and case 8.
738 if (next
== expand
) {
740 * The only case where we don't expand "vma"
741 * and we expand "next" instead is case 8.
743 VM_WARN_ON(end
!= next
->vm_end
);
745 * remove_next == 3 means we're
746 * removing "vma" and that to do so we
747 * swapped "vma" and "next".
750 VM_WARN_ON(file
!= next
->vm_file
);
753 VM_WARN_ON(expand
!= vma
);
755 * case 1, 6, 7, remove_next == 2 is case 6,
756 * remove_next == 1 is case 1 or 7.
758 remove_next
= 1 + (end
> next
->vm_end
);
759 VM_WARN_ON(remove_next
== 2 &&
760 end
!= next
->vm_next
->vm_end
);
761 VM_WARN_ON(remove_next
== 1 &&
762 end
!= next
->vm_end
);
763 /* trim end to next, for case 6 first pass */
771 * If next doesn't have anon_vma, import from vma after
772 * next, if the vma overlaps with it.
774 if (remove_next
== 2 && !next
->anon_vma
)
775 exporter
= next
->vm_next
;
777 } else if (end
> next
->vm_start
) {
779 * vma expands, overlapping part of the next:
780 * mprotect case 5 shifting the boundary up.
782 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
785 VM_WARN_ON(expand
!= importer
);
786 } else if (end
< vma
->vm_end
) {
788 * vma shrinks, and !insert tells it's not
789 * split_vma inserting another: so it must be
790 * mprotect case 4 shifting the boundary down.
792 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
795 VM_WARN_ON(expand
!= importer
);
799 * Easily overlooked: when mprotect shifts the boundary,
800 * make sure the expanding vma has anon_vma set if the
801 * shrinking vma had, to cover any anon pages imported.
803 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
806 importer
->anon_vma
= exporter
->anon_vma
;
807 error
= anon_vma_clone(importer
, exporter
);
813 vma_adjust_trans_huge(orig_vma
, start
, end
, adjust_next
);
816 mapping
= file
->f_mapping
;
817 root
= &mapping
->i_mmap
;
818 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
821 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
823 i_mmap_lock_write(mapping
);
826 * Put into interval tree now, so instantiated pages
827 * are visible to arm/parisc __flush_dcache_page
828 * throughout; but we cannot insert into address
829 * space until vma start or end is updated.
831 __vma_link_file(insert
);
835 anon_vma
= vma
->anon_vma
;
836 if (!anon_vma
&& adjust_next
)
837 anon_vma
= next
->anon_vma
;
839 VM_WARN_ON(adjust_next
&& next
->anon_vma
&&
840 anon_vma
!= next
->anon_vma
);
841 anon_vma_lock_write(anon_vma
);
842 anon_vma_interval_tree_pre_update_vma(vma
);
844 anon_vma_interval_tree_pre_update_vma(next
);
848 flush_dcache_mmap_lock(mapping
);
849 vma_interval_tree_remove(vma
, root
);
851 vma_interval_tree_remove(next
, root
);
854 if (start
!= vma
->vm_start
) {
855 vma
->vm_start
= start
;
856 start_changed
= true;
858 if (end
!= vma
->vm_end
) {
862 vma
->vm_pgoff
= pgoff
;
864 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
865 next
->vm_pgoff
+= adjust_next
;
870 vma_interval_tree_insert(next
, root
);
871 vma_interval_tree_insert(vma
, root
);
872 flush_dcache_mmap_unlock(mapping
);
877 * vma_merge has merged next into vma, and needs
878 * us to remove next before dropping the locks.
880 if (remove_next
!= 3)
881 __vma_unlink_prev(mm
, next
, vma
);
884 * vma is not before next if they've been
887 * pre-swap() next->vm_start was reduced so
888 * tell validate_mm_rb to ignore pre-swap()
889 * "next" (which is stored in post-swap()
892 __vma_unlink_common(mm
, next
, NULL
, false, vma
);
894 __remove_shared_vm_struct(next
, file
, mapping
);
897 * split_vma has split insert from vma, and needs
898 * us to insert it before dropping the locks
899 * (it may either follow vma or precede it).
901 __insert_vm_struct(mm
, insert
);
907 mm
->highest_vm_end
= vm_end_gap(vma
);
908 else if (!adjust_next
)
909 vma_gap_update(next
);
914 anon_vma_interval_tree_post_update_vma(vma
);
916 anon_vma_interval_tree_post_update_vma(next
);
917 anon_vma_unlock_write(anon_vma
);
920 i_mmap_unlock_write(mapping
);
931 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
935 anon_vma_merge(vma
, next
);
937 mpol_put(vma_policy(next
));
940 * In mprotect's case 6 (see comments on vma_merge),
941 * we must remove another next too. It would clutter
942 * up the code too much to do both in one go.
944 if (remove_next
!= 3) {
946 * If "next" was removed and vma->vm_end was
947 * expanded (up) over it, in turn
948 * "next->vm_prev->vm_end" changed and the
949 * "vma->vm_next" gap must be updated.
954 * For the scope of the comment "next" and
955 * "vma" considered pre-swap(): if "vma" was
956 * removed, next->vm_start was expanded (down)
957 * over it and the "next" gap must be updated.
958 * Because of the swap() the post-swap() "vma"
959 * actually points to pre-swap() "next"
960 * (post-swap() "next" as opposed is now a
965 if (remove_next
== 2) {
971 vma_gap_update(next
);
974 * If remove_next == 2 we obviously can't
977 * If remove_next == 3 we can't reach this
978 * path because pre-swap() next is always not
979 * NULL. pre-swap() "next" is not being
980 * removed and its next->vm_end is not altered
981 * (and furthermore "end" already matches
982 * next->vm_end in remove_next == 3).
984 * We reach this only in the remove_next == 1
985 * case if the "next" vma that was removed was
986 * the highest vma of the mm. However in such
987 * case next->vm_end == "end" and the extended
988 * "vma" has vma->vm_end == next->vm_end so
989 * mm->highest_vm_end doesn't need any update
990 * in remove_next == 1 case.
992 VM_WARN_ON(mm
->highest_vm_end
!= vm_end_gap(vma
));
1004 * If the vma has a ->close operation then the driver probably needs to release
1005 * per-vma resources, so we don't attempt to merge those.
1007 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
1008 struct file
*file
, unsigned long vm_flags
,
1009 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1012 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1013 * match the flags but dirty bit -- the caller should mark
1014 * merged VMA as dirty. If dirty bit won't be excluded from
1015 * comparison, we increase pressue on the memory system forcing
1016 * the kernel to generate new VMAs when old one could be
1019 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
1021 if (vma
->vm_file
!= file
)
1023 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
1025 if (!is_mergeable_vm_userfaultfd_ctx(vma
, vm_userfaultfd_ctx
))
1030 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
1031 struct anon_vma
*anon_vma2
,
1032 struct vm_area_struct
*vma
)
1035 * The list_is_singular() test is to avoid merging VMA cloned from
1036 * parents. This can improve scalability caused by anon_vma lock.
1038 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
1039 list_is_singular(&vma
->anon_vma_chain
)))
1041 return anon_vma1
== anon_vma2
;
1045 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1046 * in front of (at a lower virtual address and file offset than) the vma.
1048 * We cannot merge two vmas if they have differently assigned (non-NULL)
1049 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1051 * We don't check here for the merged mmap wrapping around the end of pagecache
1052 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1053 * wrap, nor mmaps which cover the final page at index -1UL.
1056 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1057 struct anon_vma
*anon_vma
, struct file
*file
,
1059 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1061 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1062 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1063 if (vma
->vm_pgoff
== vm_pgoff
)
1070 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1071 * beyond (at a higher virtual address and file offset than) the vma.
1073 * We cannot merge two vmas if they have differently assigned (non-NULL)
1074 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1077 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1078 struct anon_vma
*anon_vma
, struct file
*file
,
1080 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1082 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1083 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1085 vm_pglen
= vma_pages(vma
);
1086 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
1093 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1094 * whether that can be merged with its predecessor or its successor.
1095 * Or both (it neatly fills a hole).
1097 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1098 * certain not to be mapped by the time vma_merge is called; but when
1099 * called for mprotect, it is certain to be already mapped (either at
1100 * an offset within prev, or at the start of next), and the flags of
1101 * this area are about to be changed to vm_flags - and the no-change
1102 * case has already been eliminated.
1104 * The following mprotect cases have to be considered, where AAAA is
1105 * the area passed down from mprotect_fixup, never extending beyond one
1106 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1108 * AAAA AAAA AAAA AAAA
1109 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1110 * cannot merge might become might become might become
1111 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1112 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1113 * mremap move: PPPPXXXXXXXX 8
1115 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1116 * might become case 1 below case 2 below case 3 below
1118 * It is important for case 8 that the the vma NNNN overlapping the
1119 * region AAAA is never going to extended over XXXX. Instead XXXX must
1120 * be extended in region AAAA and NNNN must be removed. This way in
1121 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1122 * rmap_locks, the properties of the merged vma will be already
1123 * correct for the whole merged range. Some of those properties like
1124 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1125 * be correct for the whole merged range immediately after the
1126 * rmap_locks are released. Otherwise if XXXX would be removed and
1127 * NNNN would be extended over the XXXX range, remove_migration_ptes
1128 * or other rmap walkers (if working on addresses beyond the "end"
1129 * parameter) may establish ptes with the wrong permissions of NNNN
1130 * instead of the right permissions of XXXX.
1132 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
1133 struct vm_area_struct
*prev
, unsigned long addr
,
1134 unsigned long end
, unsigned long vm_flags
,
1135 struct anon_vma
*anon_vma
, struct file
*file
,
1136 pgoff_t pgoff
, struct mempolicy
*policy
,
1137 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1139 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
1140 struct vm_area_struct
*area
, *next
;
1144 * We later require that vma->vm_flags == vm_flags,
1145 * so this tests vma->vm_flags & VM_SPECIAL, too.
1147 if (vm_flags
& VM_SPECIAL
)
1151 next
= prev
->vm_next
;
1155 if (area
&& area
->vm_end
== end
) /* cases 6, 7, 8 */
1156 next
= next
->vm_next
;
1158 /* verify some invariant that must be enforced by the caller */
1159 VM_WARN_ON(prev
&& addr
<= prev
->vm_start
);
1160 VM_WARN_ON(area
&& end
> area
->vm_end
);
1161 VM_WARN_ON(addr
>= end
);
1164 * Can it merge with the predecessor?
1166 if (prev
&& prev
->vm_end
== addr
&&
1167 mpol_equal(vma_policy(prev
), policy
) &&
1168 can_vma_merge_after(prev
, vm_flags
,
1169 anon_vma
, file
, pgoff
,
1170 vm_userfaultfd_ctx
)) {
1172 * OK, it can. Can we now merge in the successor as well?
1174 if (next
&& end
== next
->vm_start
&&
1175 mpol_equal(policy
, vma_policy(next
)) &&
1176 can_vma_merge_before(next
, vm_flags
,
1179 vm_userfaultfd_ctx
) &&
1180 is_mergeable_anon_vma(prev
->anon_vma
,
1181 next
->anon_vma
, NULL
)) {
1183 err
= __vma_adjust(prev
, prev
->vm_start
,
1184 next
->vm_end
, prev
->vm_pgoff
, NULL
,
1186 } else /* cases 2, 5, 7 */
1187 err
= __vma_adjust(prev
, prev
->vm_start
,
1188 end
, prev
->vm_pgoff
, NULL
, prev
);
1191 khugepaged_enter_vma_merge(prev
, vm_flags
);
1196 * Can this new request be merged in front of next?
1198 if (next
&& end
== next
->vm_start
&&
1199 mpol_equal(policy
, vma_policy(next
)) &&
1200 can_vma_merge_before(next
, vm_flags
,
1201 anon_vma
, file
, pgoff
+pglen
,
1202 vm_userfaultfd_ctx
)) {
1203 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1204 err
= __vma_adjust(prev
, prev
->vm_start
,
1205 addr
, prev
->vm_pgoff
, NULL
, next
);
1206 else { /* cases 3, 8 */
1207 err
= __vma_adjust(area
, addr
, next
->vm_end
,
1208 next
->vm_pgoff
- pglen
, NULL
, next
);
1210 * In case 3 area is already equal to next and
1211 * this is a noop, but in case 8 "area" has
1212 * been removed and next was expanded over it.
1218 khugepaged_enter_vma_merge(area
, vm_flags
);
1226 * Rough compatbility check to quickly see if it's even worth looking
1227 * at sharing an anon_vma.
1229 * They need to have the same vm_file, and the flags can only differ
1230 * in things that mprotect may change.
1232 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1233 * we can merge the two vma's. For example, we refuse to merge a vma if
1234 * there is a vm_ops->close() function, because that indicates that the
1235 * driver is doing some kind of reference counting. But that doesn't
1236 * really matter for the anon_vma sharing case.
1238 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1240 return a
->vm_end
== b
->vm_start
&&
1241 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1242 a
->vm_file
== b
->vm_file
&&
1243 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1244 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1248 * Do some basic sanity checking to see if we can re-use the anon_vma
1249 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1250 * the same as 'old', the other will be the new one that is trying
1251 * to share the anon_vma.
1253 * NOTE! This runs with mm_sem held for reading, so it is possible that
1254 * the anon_vma of 'old' is concurrently in the process of being set up
1255 * by another page fault trying to merge _that_. But that's ok: if it
1256 * is being set up, that automatically means that it will be a singleton
1257 * acceptable for merging, so we can do all of this optimistically. But
1258 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1260 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1261 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1262 * is to return an anon_vma that is "complex" due to having gone through
1265 * We also make sure that the two vma's are compatible (adjacent,
1266 * and with the same memory policies). That's all stable, even with just
1267 * a read lock on the mm_sem.
1269 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1271 if (anon_vma_compatible(a
, b
)) {
1272 struct anon_vma
*anon_vma
= READ_ONCE(old
->anon_vma
);
1274 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1281 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1282 * neighbouring vmas for a suitable anon_vma, before it goes off
1283 * to allocate a new anon_vma. It checks because a repetitive
1284 * sequence of mprotects and faults may otherwise lead to distinct
1285 * anon_vmas being allocated, preventing vma merge in subsequent
1288 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1290 struct anon_vma
*anon_vma
;
1291 struct vm_area_struct
*near
;
1293 near
= vma
->vm_next
;
1297 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1301 near
= vma
->vm_prev
;
1305 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1310 * There's no absolute need to look only at touching neighbours:
1311 * we could search further afield for "compatible" anon_vmas.
1312 * But it would probably just be a waste of time searching,
1313 * or lead to too many vmas hanging off the same anon_vma.
1314 * We're trying to allow mprotect remerging later on,
1315 * not trying to minimize memory used for anon_vmas.
1321 * If a hint addr is less than mmap_min_addr change hint to be as
1322 * low as possible but still greater than mmap_min_addr
1324 static inline unsigned long round_hint_to_min(unsigned long hint
)
1327 if (((void *)hint
!= NULL
) &&
1328 (hint
< mmap_min_addr
))
1329 return PAGE_ALIGN(mmap_min_addr
);
1333 static inline int mlock_future_check(struct mm_struct
*mm
,
1334 unsigned long flags
,
1337 unsigned long locked
, lock_limit
;
1339 /* mlock MCL_FUTURE? */
1340 if (flags
& VM_LOCKED
) {
1341 locked
= len
>> PAGE_SHIFT
;
1342 locked
+= mm
->locked_vm
;
1343 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1344 lock_limit
>>= PAGE_SHIFT
;
1345 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1351 static inline u64
file_mmap_size_max(struct file
*file
, struct inode
*inode
)
1353 if (S_ISREG(inode
->i_mode
))
1354 return MAX_LFS_FILESIZE
;
1356 if (S_ISBLK(inode
->i_mode
))
1357 return MAX_LFS_FILESIZE
;
1359 /* Special "we do even unsigned file positions" case */
1360 if (file
->f_mode
& FMODE_UNSIGNED_OFFSET
)
1363 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1367 static inline bool file_mmap_ok(struct file
*file
, struct inode
*inode
,
1368 unsigned long pgoff
, unsigned long len
)
1370 u64 maxsize
= file_mmap_size_max(file
, inode
);
1372 if (maxsize
&& len
> maxsize
)
1375 if (pgoff
> maxsize
>> PAGE_SHIFT
)
1381 * The caller must hold down_write(¤t->mm->mmap_sem).
1383 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1384 unsigned long len
, unsigned long prot
,
1385 unsigned long flags
, vm_flags_t vm_flags
,
1386 unsigned long pgoff
, unsigned long *populate
,
1387 struct list_head
*uf
)
1389 struct mm_struct
*mm
= current
->mm
;
1398 * Does the application expect PROT_READ to imply PROT_EXEC?
1400 * (the exception is when the underlying filesystem is noexec
1401 * mounted, in which case we dont add PROT_EXEC.)
1403 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1404 if (!(file
&& path_noexec(&file
->f_path
)))
1407 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1408 if (flags
& MAP_FIXED_NOREPLACE
)
1411 if (!(flags
& MAP_FIXED
))
1412 addr
= round_hint_to_min(addr
);
1414 /* Careful about overflows.. */
1415 len
= PAGE_ALIGN(len
);
1419 /* offset overflow? */
1420 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1423 /* Too many mappings? */
1424 if (mm
->map_count
> sysctl_max_map_count
)
1427 /* Obtain the address to map to. we verify (or select) it and ensure
1428 * that it represents a valid section of the address space.
1430 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1431 if (offset_in_page(addr
))
1434 if (flags
& MAP_FIXED_NOREPLACE
) {
1435 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
1437 if (vma
&& vma
->vm_start
< addr
+ len
)
1441 if (prot
== PROT_EXEC
) {
1442 pkey
= execute_only_pkey(mm
);
1447 /* Do simple checking here so the lower-level routines won't have
1448 * to. we assume access permissions have been handled by the open
1449 * of the memory object, so we don't do any here.
1451 vm_flags
|= calc_vm_prot_bits(prot
, pkey
) | calc_vm_flag_bits(flags
) |
1452 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1454 if (flags
& MAP_LOCKED
)
1455 if (!can_do_mlock())
1458 if (mlock_future_check(mm
, vm_flags
, len
))
1462 struct inode
*inode
= file_inode(file
);
1463 unsigned long flags_mask
;
1465 if (!file_mmap_ok(file
, inode
, pgoff
, len
))
1468 flags_mask
= LEGACY_MAP_MASK
| file
->f_op
->mmap_supported_flags
;
1470 switch (flags
& MAP_TYPE
) {
1473 * Force use of MAP_SHARED_VALIDATE with non-legacy
1474 * flags. E.g. MAP_SYNC is dangerous to use with
1475 * MAP_SHARED as you don't know which consistency model
1476 * you will get. We silently ignore unsupported flags
1477 * with MAP_SHARED to preserve backward compatibility.
1479 flags
&= LEGACY_MAP_MASK
;
1481 case MAP_SHARED_VALIDATE
:
1482 if (flags
& ~flags_mask
)
1484 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1488 * Make sure we don't allow writing to an append-only
1491 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1495 * Make sure there are no mandatory locks on the file.
1497 if (locks_verify_locked(file
))
1500 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1501 if (!(file
->f_mode
& FMODE_WRITE
))
1502 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1506 if (!(file
->f_mode
& FMODE_READ
))
1508 if (path_noexec(&file
->f_path
)) {
1509 if (vm_flags
& VM_EXEC
)
1511 vm_flags
&= ~VM_MAYEXEC
;
1514 if (!file
->f_op
->mmap
)
1516 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1524 switch (flags
& MAP_TYPE
) {
1526 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1532 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1536 * Set pgoff according to addr for anon_vma.
1538 pgoff
= addr
>> PAGE_SHIFT
;
1546 * Set 'VM_NORESERVE' if we should not account for the
1547 * memory use of this mapping.
1549 if (flags
& MAP_NORESERVE
) {
1550 /* We honor MAP_NORESERVE if allowed to overcommit */
1551 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1552 vm_flags
|= VM_NORESERVE
;
1554 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1555 if (file
&& is_file_hugepages(file
))
1556 vm_flags
|= VM_NORESERVE
;
1559 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
, uf
);
1560 if (!IS_ERR_VALUE(addr
) &&
1561 ((vm_flags
& VM_LOCKED
) ||
1562 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1567 unsigned long ksys_mmap_pgoff(unsigned long addr
, unsigned long len
,
1568 unsigned long prot
, unsigned long flags
,
1569 unsigned long fd
, unsigned long pgoff
)
1571 struct file
*file
= NULL
;
1572 unsigned long retval
;
1574 if (!(flags
& MAP_ANONYMOUS
)) {
1575 audit_mmap_fd(fd
, flags
);
1579 if (is_file_hugepages(file
))
1580 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1582 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1584 } else if (flags
& MAP_HUGETLB
) {
1585 struct user_struct
*user
= NULL
;
1588 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1592 len
= ALIGN(len
, huge_page_size(hs
));
1594 * VM_NORESERVE is used because the reservations will be
1595 * taken when vm_ops->mmap() is called
1596 * A dummy user value is used because we are not locking
1597 * memory so no accounting is necessary
1599 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1601 &user
, HUGETLB_ANONHUGE_INODE
,
1602 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1604 return PTR_ERR(file
);
1607 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1609 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1616 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1617 unsigned long, prot
, unsigned long, flags
,
1618 unsigned long, fd
, unsigned long, pgoff
)
1620 return ksys_mmap_pgoff(addr
, len
, prot
, flags
, fd
, pgoff
);
1623 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1624 struct mmap_arg_struct
{
1628 unsigned long flags
;
1630 unsigned long offset
;
1633 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1635 struct mmap_arg_struct a
;
1637 if (copy_from_user(&a
, arg
, sizeof(a
)))
1639 if (offset_in_page(a
.offset
))
1642 return ksys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1643 a
.offset
>> PAGE_SHIFT
);
1645 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1648 * Some shared mappigns will want the pages marked read-only
1649 * to track write events. If so, we'll downgrade vm_page_prot
1650 * to the private version (using protection_map[] without the
1653 int vma_wants_writenotify(struct vm_area_struct
*vma
, pgprot_t vm_page_prot
)
1655 vm_flags_t vm_flags
= vma
->vm_flags
;
1656 const struct vm_operations_struct
*vm_ops
= vma
->vm_ops
;
1658 /* If it was private or non-writable, the write bit is already clear */
1659 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1662 /* The backer wishes to know when pages are first written to? */
1663 if (vm_ops
&& (vm_ops
->page_mkwrite
|| vm_ops
->pfn_mkwrite
))
1666 /* The open routine did something to the protections that pgprot_modify
1667 * won't preserve? */
1668 if (pgprot_val(vm_page_prot
) !=
1669 pgprot_val(vm_pgprot_modify(vm_page_prot
, vm_flags
)))
1672 /* Do we need to track softdirty? */
1673 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1676 /* Specialty mapping? */
1677 if (vm_flags
& VM_PFNMAP
)
1680 /* Can the mapping track the dirty pages? */
1681 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1682 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1686 * We account for memory if it's a private writeable mapping,
1687 * not hugepages and VM_NORESERVE wasn't set.
1689 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1692 * hugetlb has its own accounting separate from the core VM
1693 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1695 if (file
&& is_file_hugepages(file
))
1698 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1701 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1702 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
,
1703 struct list_head
*uf
)
1705 struct mm_struct
*mm
= current
->mm
;
1706 struct vm_area_struct
*vma
, *prev
;
1708 struct rb_node
**rb_link
, *rb_parent
;
1709 unsigned long charged
= 0;
1711 /* Check against address space limit. */
1712 if (!may_expand_vm(mm
, vm_flags
, len
>> PAGE_SHIFT
)) {
1713 unsigned long nr_pages
;
1716 * MAP_FIXED may remove pages of mappings that intersects with
1717 * requested mapping. Account for the pages it would unmap.
1719 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1721 if (!may_expand_vm(mm
, vm_flags
,
1722 (len
>> PAGE_SHIFT
) - nr_pages
))
1726 /* Clear old maps */
1727 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
1729 if (do_munmap(mm
, addr
, len
, uf
))
1734 * Private writable mapping: check memory availability
1736 if (accountable_mapping(file
, vm_flags
)) {
1737 charged
= len
>> PAGE_SHIFT
;
1738 if (security_vm_enough_memory_mm(mm
, charged
))
1740 vm_flags
|= VM_ACCOUNT
;
1744 * Can we just expand an old mapping?
1746 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1747 NULL
, file
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
1752 * Determine the object being mapped and call the appropriate
1753 * specific mapper. the address has already been validated, but
1754 * not unmapped, but the maps are removed from the list.
1756 vma
= vm_area_alloc(mm
);
1762 vma
->vm_start
= addr
;
1763 vma
->vm_end
= addr
+ len
;
1764 vma
->vm_flags
= vm_flags
;
1765 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1766 vma
->vm_pgoff
= pgoff
;
1769 if (vm_flags
& VM_DENYWRITE
) {
1770 error
= deny_write_access(file
);
1774 if (vm_flags
& VM_SHARED
) {
1775 error
= mapping_map_writable(file
->f_mapping
);
1777 goto allow_write_and_free_vma
;
1780 /* ->mmap() can change vma->vm_file, but must guarantee that
1781 * vma_link() below can deny write-access if VM_DENYWRITE is set
1782 * and map writably if VM_SHARED is set. This usually means the
1783 * new file must not have been exposed to user-space, yet.
1785 vma
->vm_file
= get_file(file
);
1786 error
= call_mmap(file
, vma
);
1788 goto unmap_and_free_vma
;
1790 /* Can addr have changed??
1792 * Answer: Yes, several device drivers can do it in their
1793 * f_op->mmap method. -DaveM
1794 * Bug: If addr is changed, prev, rb_link, rb_parent should
1795 * be updated for vma_link()
1797 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1799 addr
= vma
->vm_start
;
1800 vm_flags
= vma
->vm_flags
;
1801 } else if (vm_flags
& VM_SHARED
) {
1802 error
= shmem_zero_setup(vma
);
1806 vma_set_anonymous(vma
);
1809 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1810 /* Once vma denies write, undo our temporary denial count */
1812 if (vm_flags
& VM_SHARED
)
1813 mapping_unmap_writable(file
->f_mapping
);
1814 if (vm_flags
& VM_DENYWRITE
)
1815 allow_write_access(file
);
1817 file
= vma
->vm_file
;
1819 perf_event_mmap(vma
);
1821 vm_stat_account(mm
, vm_flags
, len
>> PAGE_SHIFT
);
1822 if (vm_flags
& VM_LOCKED
) {
1823 if ((vm_flags
& VM_SPECIAL
) || vma_is_dax(vma
) ||
1824 is_vm_hugetlb_page(vma
) ||
1825 vma
== get_gate_vma(current
->mm
))
1826 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
1828 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1835 * New (or expanded) vma always get soft dirty status.
1836 * Otherwise user-space soft-dirty page tracker won't
1837 * be able to distinguish situation when vma area unmapped,
1838 * then new mapped in-place (which must be aimed as
1839 * a completely new data area).
1841 vma
->vm_flags
|= VM_SOFTDIRTY
;
1843 vma_set_page_prot(vma
);
1848 vma
->vm_file
= NULL
;
1851 /* Undo any partial mapping done by a device driver. */
1852 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1854 if (vm_flags
& VM_SHARED
)
1855 mapping_unmap_writable(file
->f_mapping
);
1856 allow_write_and_free_vma
:
1857 if (vm_flags
& VM_DENYWRITE
)
1858 allow_write_access(file
);
1863 vm_unacct_memory(charged
);
1867 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1870 * We implement the search by looking for an rbtree node that
1871 * immediately follows a suitable gap. That is,
1872 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1873 * - gap_end = vma->vm_start >= info->low_limit + length;
1874 * - gap_end - gap_start >= length
1877 struct mm_struct
*mm
= current
->mm
;
1878 struct vm_area_struct
*vma
;
1879 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1881 /* Adjust search length to account for worst case alignment overhead */
1882 length
= info
->length
+ info
->align_mask
;
1883 if (length
< info
->length
)
1886 /* Adjust search limits by the desired length */
1887 if (info
->high_limit
< length
)
1889 high_limit
= info
->high_limit
- length
;
1891 if (info
->low_limit
> high_limit
)
1893 low_limit
= info
->low_limit
+ length
;
1895 /* Check if rbtree root looks promising */
1896 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1898 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1899 if (vma
->rb_subtree_gap
< length
)
1903 /* Visit left subtree if it looks promising */
1904 gap_end
= vm_start_gap(vma
);
1905 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1906 struct vm_area_struct
*left
=
1907 rb_entry(vma
->vm_rb
.rb_left
,
1908 struct vm_area_struct
, vm_rb
);
1909 if (left
->rb_subtree_gap
>= length
) {
1915 gap_start
= vma
->vm_prev
? vm_end_gap(vma
->vm_prev
) : 0;
1917 /* Check if current node has a suitable gap */
1918 if (gap_start
> high_limit
)
1920 if (gap_end
>= low_limit
&&
1921 gap_end
> gap_start
&& gap_end
- gap_start
>= length
)
1924 /* Visit right subtree if it looks promising */
1925 if (vma
->vm_rb
.rb_right
) {
1926 struct vm_area_struct
*right
=
1927 rb_entry(vma
->vm_rb
.rb_right
,
1928 struct vm_area_struct
, vm_rb
);
1929 if (right
->rb_subtree_gap
>= length
) {
1935 /* Go back up the rbtree to find next candidate node */
1937 struct rb_node
*prev
= &vma
->vm_rb
;
1938 if (!rb_parent(prev
))
1940 vma
= rb_entry(rb_parent(prev
),
1941 struct vm_area_struct
, vm_rb
);
1942 if (prev
== vma
->vm_rb
.rb_left
) {
1943 gap_start
= vm_end_gap(vma
->vm_prev
);
1944 gap_end
= vm_start_gap(vma
);
1951 /* Check highest gap, which does not precede any rbtree node */
1952 gap_start
= mm
->highest_vm_end
;
1953 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1954 if (gap_start
> high_limit
)
1958 /* We found a suitable gap. Clip it with the original low_limit. */
1959 if (gap_start
< info
->low_limit
)
1960 gap_start
= info
->low_limit
;
1962 /* Adjust gap address to the desired alignment */
1963 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1965 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1966 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1970 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1972 struct mm_struct
*mm
= current
->mm
;
1973 struct vm_area_struct
*vma
;
1974 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1976 /* Adjust search length to account for worst case alignment overhead */
1977 length
= info
->length
+ info
->align_mask
;
1978 if (length
< info
->length
)
1982 * Adjust search limits by the desired length.
1983 * See implementation comment at top of unmapped_area().
1985 gap_end
= info
->high_limit
;
1986 if (gap_end
< length
)
1988 high_limit
= gap_end
- length
;
1990 if (info
->low_limit
> high_limit
)
1992 low_limit
= info
->low_limit
+ length
;
1994 /* Check highest gap, which does not precede any rbtree node */
1995 gap_start
= mm
->highest_vm_end
;
1996 if (gap_start
<= high_limit
)
1999 /* Check if rbtree root looks promising */
2000 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
2002 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
2003 if (vma
->rb_subtree_gap
< length
)
2007 /* Visit right subtree if it looks promising */
2008 gap_start
= vma
->vm_prev
? vm_end_gap(vma
->vm_prev
) : 0;
2009 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
2010 struct vm_area_struct
*right
=
2011 rb_entry(vma
->vm_rb
.rb_right
,
2012 struct vm_area_struct
, vm_rb
);
2013 if (right
->rb_subtree_gap
>= length
) {
2020 /* Check if current node has a suitable gap */
2021 gap_end
= vm_start_gap(vma
);
2022 if (gap_end
< low_limit
)
2024 if (gap_start
<= high_limit
&&
2025 gap_end
> gap_start
&& gap_end
- gap_start
>= length
)
2028 /* Visit left subtree if it looks promising */
2029 if (vma
->vm_rb
.rb_left
) {
2030 struct vm_area_struct
*left
=
2031 rb_entry(vma
->vm_rb
.rb_left
,
2032 struct vm_area_struct
, vm_rb
);
2033 if (left
->rb_subtree_gap
>= length
) {
2039 /* Go back up the rbtree to find next candidate node */
2041 struct rb_node
*prev
= &vma
->vm_rb
;
2042 if (!rb_parent(prev
))
2044 vma
= rb_entry(rb_parent(prev
),
2045 struct vm_area_struct
, vm_rb
);
2046 if (prev
== vma
->vm_rb
.rb_right
) {
2047 gap_start
= vma
->vm_prev
?
2048 vm_end_gap(vma
->vm_prev
) : 0;
2055 /* We found a suitable gap. Clip it with the original high_limit. */
2056 if (gap_end
> info
->high_limit
)
2057 gap_end
= info
->high_limit
;
2060 /* Compute highest gap address at the desired alignment */
2061 gap_end
-= info
->length
;
2062 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
2064 VM_BUG_ON(gap_end
< info
->low_limit
);
2065 VM_BUG_ON(gap_end
< gap_start
);
2069 /* Get an address range which is currently unmapped.
2070 * For shmat() with addr=0.
2072 * Ugly calling convention alert:
2073 * Return value with the low bits set means error value,
2075 * if (ret & ~PAGE_MASK)
2078 * This function "knows" that -ENOMEM has the bits set.
2080 #ifndef HAVE_ARCH_UNMAPPED_AREA
2082 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
2083 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
2085 struct mm_struct
*mm
= current
->mm
;
2086 struct vm_area_struct
*vma
, *prev
;
2087 struct vm_unmapped_area_info info
;
2089 if (len
> TASK_SIZE
- mmap_min_addr
)
2092 if (flags
& MAP_FIXED
)
2096 addr
= PAGE_ALIGN(addr
);
2097 vma
= find_vma_prev(mm
, addr
, &prev
);
2098 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
2099 (!vma
|| addr
+ len
<= vm_start_gap(vma
)) &&
2100 (!prev
|| addr
>= vm_end_gap(prev
)))
2106 info
.low_limit
= mm
->mmap_base
;
2107 info
.high_limit
= TASK_SIZE
;
2108 info
.align_mask
= 0;
2109 return vm_unmapped_area(&info
);
2114 * This mmap-allocator allocates new areas top-down from below the
2115 * stack's low limit (the base):
2117 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2119 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
2120 const unsigned long len
, const unsigned long pgoff
,
2121 const unsigned long flags
)
2123 struct vm_area_struct
*vma
, *prev
;
2124 struct mm_struct
*mm
= current
->mm
;
2125 unsigned long addr
= addr0
;
2126 struct vm_unmapped_area_info info
;
2128 /* requested length too big for entire address space */
2129 if (len
> TASK_SIZE
- mmap_min_addr
)
2132 if (flags
& MAP_FIXED
)
2135 /* requesting a specific address */
2137 addr
= PAGE_ALIGN(addr
);
2138 vma
= find_vma_prev(mm
, addr
, &prev
);
2139 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
2140 (!vma
|| addr
+ len
<= vm_start_gap(vma
)) &&
2141 (!prev
|| addr
>= vm_end_gap(prev
)))
2145 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
2147 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
2148 info
.high_limit
= mm
->mmap_base
;
2149 info
.align_mask
= 0;
2150 addr
= vm_unmapped_area(&info
);
2153 * A failed mmap() very likely causes application failure,
2154 * so fall back to the bottom-up function here. This scenario
2155 * can happen with large stack limits and large mmap()
2158 if (offset_in_page(addr
)) {
2159 VM_BUG_ON(addr
!= -ENOMEM
);
2161 info
.low_limit
= TASK_UNMAPPED_BASE
;
2162 info
.high_limit
= TASK_SIZE
;
2163 addr
= vm_unmapped_area(&info
);
2171 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
2172 unsigned long pgoff
, unsigned long flags
)
2174 unsigned long (*get_area
)(struct file
*, unsigned long,
2175 unsigned long, unsigned long, unsigned long);
2177 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
2181 /* Careful about overflows.. */
2182 if (len
> TASK_SIZE
)
2185 get_area
= current
->mm
->get_unmapped_area
;
2187 if (file
->f_op
->get_unmapped_area
)
2188 get_area
= file
->f_op
->get_unmapped_area
;
2189 } else if (flags
& MAP_SHARED
) {
2191 * mmap_region() will call shmem_zero_setup() to create a file,
2192 * so use shmem's get_unmapped_area in case it can be huge.
2193 * do_mmap_pgoff() will clear pgoff, so match alignment.
2196 get_area
= shmem_get_unmapped_area
;
2199 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
2200 if (IS_ERR_VALUE(addr
))
2203 if (addr
> TASK_SIZE
- len
)
2205 if (offset_in_page(addr
))
2208 error
= security_mmap_addr(addr
);
2209 return error
? error
: addr
;
2212 EXPORT_SYMBOL(get_unmapped_area
);
2214 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2215 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
2217 struct rb_node
*rb_node
;
2218 struct vm_area_struct
*vma
;
2220 /* Check the cache first. */
2221 vma
= vmacache_find(mm
, addr
);
2225 rb_node
= mm
->mm_rb
.rb_node
;
2228 struct vm_area_struct
*tmp
;
2230 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2232 if (tmp
->vm_end
> addr
) {
2234 if (tmp
->vm_start
<= addr
)
2236 rb_node
= rb_node
->rb_left
;
2238 rb_node
= rb_node
->rb_right
;
2242 vmacache_update(addr
, vma
);
2246 EXPORT_SYMBOL(find_vma
);
2249 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2251 struct vm_area_struct
*
2252 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
2253 struct vm_area_struct
**pprev
)
2255 struct vm_area_struct
*vma
;
2257 vma
= find_vma(mm
, addr
);
2259 *pprev
= vma
->vm_prev
;
2261 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
2264 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2265 rb_node
= rb_node
->rb_right
;
2272 * Verify that the stack growth is acceptable and
2273 * update accounting. This is shared with both the
2274 * grow-up and grow-down cases.
2276 static int acct_stack_growth(struct vm_area_struct
*vma
,
2277 unsigned long size
, unsigned long grow
)
2279 struct mm_struct
*mm
= vma
->vm_mm
;
2280 unsigned long new_start
;
2282 /* address space limit tests */
2283 if (!may_expand_vm(mm
, vma
->vm_flags
, grow
))
2286 /* Stack limit test */
2287 if (size
> rlimit(RLIMIT_STACK
))
2290 /* mlock limit tests */
2291 if (vma
->vm_flags
& VM_LOCKED
) {
2292 unsigned long locked
;
2293 unsigned long limit
;
2294 locked
= mm
->locked_vm
+ grow
;
2295 limit
= rlimit(RLIMIT_MEMLOCK
);
2296 limit
>>= PAGE_SHIFT
;
2297 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2301 /* Check to ensure the stack will not grow into a hugetlb-only region */
2302 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2304 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2308 * Overcommit.. This must be the final test, as it will
2309 * update security statistics.
2311 if (security_vm_enough_memory_mm(mm
, grow
))
2317 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2319 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2320 * vma is the last one with address > vma->vm_end. Have to extend vma.
2322 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2324 struct mm_struct
*mm
= vma
->vm_mm
;
2325 struct vm_area_struct
*next
;
2326 unsigned long gap_addr
;
2329 if (!(vma
->vm_flags
& VM_GROWSUP
))
2332 /* Guard against exceeding limits of the address space. */
2333 address
&= PAGE_MASK
;
2334 if (address
>= (TASK_SIZE
& PAGE_MASK
))
2336 address
+= PAGE_SIZE
;
2338 /* Enforce stack_guard_gap */
2339 gap_addr
= address
+ stack_guard_gap
;
2341 /* Guard against overflow */
2342 if (gap_addr
< address
|| gap_addr
> TASK_SIZE
)
2343 gap_addr
= TASK_SIZE
;
2345 next
= vma
->vm_next
;
2346 if (next
&& next
->vm_start
< gap_addr
&&
2347 (next
->vm_flags
& (VM_WRITE
|VM_READ
|VM_EXEC
))) {
2348 if (!(next
->vm_flags
& VM_GROWSUP
))
2350 /* Check that both stack segments have the same anon_vma? */
2353 /* We must make sure the anon_vma is allocated. */
2354 if (unlikely(anon_vma_prepare(vma
)))
2358 * vma->vm_start/vm_end cannot change under us because the caller
2359 * is required to hold the mmap_sem in read mode. We need the
2360 * anon_vma lock to serialize against concurrent expand_stacks.
2362 anon_vma_lock_write(vma
->anon_vma
);
2364 /* Somebody else might have raced and expanded it already */
2365 if (address
> vma
->vm_end
) {
2366 unsigned long size
, grow
;
2368 size
= address
- vma
->vm_start
;
2369 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2372 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2373 error
= acct_stack_growth(vma
, size
, grow
);
2376 * vma_gap_update() doesn't support concurrent
2377 * updates, but we only hold a shared mmap_sem
2378 * lock here, so we need to protect against
2379 * concurrent vma expansions.
2380 * anon_vma_lock_write() doesn't help here, as
2381 * we don't guarantee that all growable vmas
2382 * in a mm share the same root anon vma.
2383 * So, we reuse mm->page_table_lock to guard
2384 * against concurrent vma expansions.
2386 spin_lock(&mm
->page_table_lock
);
2387 if (vma
->vm_flags
& VM_LOCKED
)
2388 mm
->locked_vm
+= grow
;
2389 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2390 anon_vma_interval_tree_pre_update_vma(vma
);
2391 vma
->vm_end
= address
;
2392 anon_vma_interval_tree_post_update_vma(vma
);
2394 vma_gap_update(vma
->vm_next
);
2396 mm
->highest_vm_end
= vm_end_gap(vma
);
2397 spin_unlock(&mm
->page_table_lock
);
2399 perf_event_mmap(vma
);
2403 anon_vma_unlock_write(vma
->anon_vma
);
2404 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2408 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2411 * vma is the first one with address < vma->vm_start. Have to extend vma.
2413 int expand_downwards(struct vm_area_struct
*vma
,
2414 unsigned long address
)
2416 struct mm_struct
*mm
= vma
->vm_mm
;
2417 struct vm_area_struct
*prev
;
2420 address
&= PAGE_MASK
;
2421 error
= security_mmap_addr(address
);
2425 /* Enforce stack_guard_gap */
2426 prev
= vma
->vm_prev
;
2427 /* Check that both stack segments have the same anon_vma? */
2428 if (prev
&& !(prev
->vm_flags
& VM_GROWSDOWN
) &&
2429 (prev
->vm_flags
& (VM_WRITE
|VM_READ
|VM_EXEC
))) {
2430 if (address
- prev
->vm_end
< stack_guard_gap
)
2434 /* We must make sure the anon_vma is allocated. */
2435 if (unlikely(anon_vma_prepare(vma
)))
2439 * vma->vm_start/vm_end cannot change under us because the caller
2440 * is required to hold the mmap_sem in read mode. We need the
2441 * anon_vma lock to serialize against concurrent expand_stacks.
2443 anon_vma_lock_write(vma
->anon_vma
);
2445 /* Somebody else might have raced and expanded it already */
2446 if (address
< vma
->vm_start
) {
2447 unsigned long size
, grow
;
2449 size
= vma
->vm_end
- address
;
2450 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2453 if (grow
<= vma
->vm_pgoff
) {
2454 error
= acct_stack_growth(vma
, size
, grow
);
2457 * vma_gap_update() doesn't support concurrent
2458 * updates, but we only hold a shared mmap_sem
2459 * lock here, so we need to protect against
2460 * concurrent vma expansions.
2461 * anon_vma_lock_write() doesn't help here, as
2462 * we don't guarantee that all growable vmas
2463 * in a mm share the same root anon vma.
2464 * So, we reuse mm->page_table_lock to guard
2465 * against concurrent vma expansions.
2467 spin_lock(&mm
->page_table_lock
);
2468 if (vma
->vm_flags
& VM_LOCKED
)
2469 mm
->locked_vm
+= grow
;
2470 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2471 anon_vma_interval_tree_pre_update_vma(vma
);
2472 vma
->vm_start
= address
;
2473 vma
->vm_pgoff
-= grow
;
2474 anon_vma_interval_tree_post_update_vma(vma
);
2475 vma_gap_update(vma
);
2476 spin_unlock(&mm
->page_table_lock
);
2478 perf_event_mmap(vma
);
2482 anon_vma_unlock_write(vma
->anon_vma
);
2483 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2488 /* enforced gap between the expanding stack and other mappings. */
2489 unsigned long stack_guard_gap
= 256UL<<PAGE_SHIFT
;
2491 static int __init
cmdline_parse_stack_guard_gap(char *p
)
2496 val
= simple_strtoul(p
, &endptr
, 10);
2498 stack_guard_gap
= val
<< PAGE_SHIFT
;
2502 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap
);
2504 #ifdef CONFIG_STACK_GROWSUP
2505 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2507 return expand_upwards(vma
, address
);
2510 struct vm_area_struct
*
2511 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2513 struct vm_area_struct
*vma
, *prev
;
2516 vma
= find_vma_prev(mm
, addr
, &prev
);
2517 if (vma
&& (vma
->vm_start
<= addr
))
2519 if (!prev
|| expand_stack(prev
, addr
))
2521 if (prev
->vm_flags
& VM_LOCKED
)
2522 populate_vma_page_range(prev
, addr
, prev
->vm_end
, NULL
);
2526 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2528 return expand_downwards(vma
, address
);
2531 struct vm_area_struct
*
2532 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2534 struct vm_area_struct
*vma
;
2535 unsigned long start
;
2538 vma
= find_vma(mm
, addr
);
2541 if (vma
->vm_start
<= addr
)
2543 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2545 start
= vma
->vm_start
;
2546 if (expand_stack(vma
, addr
))
2548 if (vma
->vm_flags
& VM_LOCKED
)
2549 populate_vma_page_range(vma
, addr
, start
, NULL
);
2554 EXPORT_SYMBOL_GPL(find_extend_vma
);
2557 * Ok - we have the memory areas we should free on the vma list,
2558 * so release them, and do the vma updates.
2560 * Called with the mm semaphore held.
2562 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2564 unsigned long nr_accounted
= 0;
2566 /* Update high watermark before we lower total_vm */
2567 update_hiwater_vm(mm
);
2569 long nrpages
= vma_pages(vma
);
2571 if (vma
->vm_flags
& VM_ACCOUNT
)
2572 nr_accounted
+= nrpages
;
2573 vm_stat_account(mm
, vma
->vm_flags
, -nrpages
);
2574 vma
= remove_vma(vma
);
2576 vm_unacct_memory(nr_accounted
);
2581 * Get rid of page table information in the indicated region.
2583 * Called with the mm semaphore held.
2585 static void unmap_region(struct mm_struct
*mm
,
2586 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2587 unsigned long start
, unsigned long end
)
2589 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2590 struct mmu_gather tlb
;
2593 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2594 update_hiwater_rss(mm
);
2595 unmap_vmas(&tlb
, vma
, start
, end
);
2596 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2597 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2598 tlb_finish_mmu(&tlb
, start
, end
);
2602 * Create a list of vma's touched by the unmap, removing them from the mm's
2603 * vma list as we go..
2606 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2607 struct vm_area_struct
*prev
, unsigned long end
)
2609 struct vm_area_struct
**insertion_point
;
2610 struct vm_area_struct
*tail_vma
= NULL
;
2612 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2613 vma
->vm_prev
= NULL
;
2615 vma_rb_erase(vma
, &mm
->mm_rb
);
2619 } while (vma
&& vma
->vm_start
< end
);
2620 *insertion_point
= vma
;
2622 vma
->vm_prev
= prev
;
2623 vma_gap_update(vma
);
2625 mm
->highest_vm_end
= prev
? vm_end_gap(prev
) : 0;
2626 tail_vma
->vm_next
= NULL
;
2628 /* Kill the cache */
2629 vmacache_invalidate(mm
);
2633 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2634 * has already been checked or doesn't make sense to fail.
2636 int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2637 unsigned long addr
, int new_below
)
2639 struct vm_area_struct
*new;
2642 if (vma
->vm_ops
&& vma
->vm_ops
->split
) {
2643 err
= vma
->vm_ops
->split(vma
, addr
);
2648 new = vm_area_dup(vma
);
2655 new->vm_start
= addr
;
2656 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2659 err
= vma_dup_policy(vma
, new);
2663 err
= anon_vma_clone(new, vma
);
2668 get_file(new->vm_file
);
2670 if (new->vm_ops
&& new->vm_ops
->open
)
2671 new->vm_ops
->open(new);
2674 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2675 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2677 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2683 /* Clean everything up if vma_adjust failed. */
2684 if (new->vm_ops
&& new->vm_ops
->close
)
2685 new->vm_ops
->close(new);
2688 unlink_anon_vmas(new);
2690 mpol_put(vma_policy(new));
2697 * Split a vma into two pieces at address 'addr', a new vma is allocated
2698 * either for the first part or the tail.
2700 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2701 unsigned long addr
, int new_below
)
2703 if (mm
->map_count
>= sysctl_max_map_count
)
2706 return __split_vma(mm
, vma
, addr
, new_below
);
2709 /* Munmap is split into 2 main parts -- this part which finds
2710 * what needs doing, and the areas themselves, which do the
2711 * work. This now handles partial unmappings.
2712 * Jeremy Fitzhardinge <jeremy@goop.org>
2714 int __do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
,
2715 struct list_head
*uf
, bool downgrade
)
2718 struct vm_area_struct
*vma
, *prev
, *last
;
2720 if ((offset_in_page(start
)) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2723 len
= PAGE_ALIGN(len
);
2727 /* Find the first overlapping VMA */
2728 vma
= find_vma(mm
, start
);
2731 prev
= vma
->vm_prev
;
2732 /* we have start < vma->vm_end */
2734 /* if it doesn't overlap, we have nothing.. */
2736 if (vma
->vm_start
>= end
)
2740 * If we need to split any vma, do it now to save pain later.
2742 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2743 * unmapped vm_area_struct will remain in use: so lower split_vma
2744 * places tmp vma above, and higher split_vma places tmp vma below.
2746 if (start
> vma
->vm_start
) {
2750 * Make sure that map_count on return from munmap() will
2751 * not exceed its limit; but let map_count go just above
2752 * its limit temporarily, to help free resources as expected.
2754 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2757 error
= __split_vma(mm
, vma
, start
, 0);
2763 /* Does it split the last one? */
2764 last
= find_vma(mm
, end
);
2765 if (last
&& end
> last
->vm_start
) {
2766 int error
= __split_vma(mm
, last
, end
, 1);
2770 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2774 * If userfaultfd_unmap_prep returns an error the vmas
2775 * will remain splitted, but userland will get a
2776 * highly unexpected error anyway. This is no
2777 * different than the case where the first of the two
2778 * __split_vma fails, but we don't undo the first
2779 * split, despite we could. This is unlikely enough
2780 * failure that it's not worth optimizing it for.
2782 int error
= userfaultfd_unmap_prep(vma
, start
, end
, uf
);
2788 * unlock any mlock()ed ranges before detaching vmas
2790 if (mm
->locked_vm
) {
2791 struct vm_area_struct
*tmp
= vma
;
2792 while (tmp
&& tmp
->vm_start
< end
) {
2793 if (tmp
->vm_flags
& VM_LOCKED
) {
2794 mm
->locked_vm
-= vma_pages(tmp
);
2795 munlock_vma_pages_all(tmp
);
2802 /* Detach vmas from rbtree */
2803 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2806 * mpx unmap needs to be called with mmap_sem held for write.
2807 * It is safe to call it before unmap_region().
2809 arch_unmap(mm
, vma
, start
, end
);
2812 downgrade_write(&mm
->mmap_sem
);
2814 unmap_region(mm
, vma
, prev
, start
, end
);
2816 /* Fix up all other VM information */
2817 remove_vma_list(mm
, vma
);
2819 return downgrade
? 1 : 0;
2822 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
,
2823 struct list_head
*uf
)
2825 return __do_munmap(mm
, start
, len
, uf
, false);
2828 static int __vm_munmap(unsigned long start
, size_t len
, bool downgrade
)
2831 struct mm_struct
*mm
= current
->mm
;
2834 if (down_write_killable(&mm
->mmap_sem
))
2837 ret
= __do_munmap(mm
, start
, len
, &uf
, downgrade
);
2839 * Returning 1 indicates mmap_sem is downgraded.
2840 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2841 * it to 0 before return.
2844 up_read(&mm
->mmap_sem
);
2847 up_write(&mm
->mmap_sem
);
2849 userfaultfd_unmap_complete(mm
, &uf
);
2853 int vm_munmap(unsigned long start
, size_t len
)
2855 return __vm_munmap(start
, len
, false);
2857 EXPORT_SYMBOL(vm_munmap
);
2859 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2861 profile_munmap(addr
);
2862 return __vm_munmap(addr
, len
, true);
2867 * Emulation of deprecated remap_file_pages() syscall.
2869 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2870 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2873 struct mm_struct
*mm
= current
->mm
;
2874 struct vm_area_struct
*vma
;
2875 unsigned long populate
= 0;
2876 unsigned long ret
= -EINVAL
;
2879 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2880 current
->comm
, current
->pid
);
2884 start
= start
& PAGE_MASK
;
2885 size
= size
& PAGE_MASK
;
2887 if (start
+ size
<= start
)
2890 /* Does pgoff wrap? */
2891 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2894 if (down_write_killable(&mm
->mmap_sem
))
2897 vma
= find_vma(mm
, start
);
2899 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2902 if (start
< vma
->vm_start
)
2905 if (start
+ size
> vma
->vm_end
) {
2906 struct vm_area_struct
*next
;
2908 for (next
= vma
->vm_next
; next
; next
= next
->vm_next
) {
2909 /* hole between vmas ? */
2910 if (next
->vm_start
!= next
->vm_prev
->vm_end
)
2913 if (next
->vm_file
!= vma
->vm_file
)
2916 if (next
->vm_flags
!= vma
->vm_flags
)
2919 if (start
+ size
<= next
->vm_end
)
2927 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2928 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2929 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2931 flags
&= MAP_NONBLOCK
;
2932 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2933 if (vma
->vm_flags
& VM_LOCKED
) {
2934 struct vm_area_struct
*tmp
;
2935 flags
|= MAP_LOCKED
;
2937 /* drop PG_Mlocked flag for over-mapped range */
2938 for (tmp
= vma
; tmp
->vm_start
>= start
+ size
;
2939 tmp
= tmp
->vm_next
) {
2941 * Split pmd and munlock page on the border
2944 vma_adjust_trans_huge(tmp
, start
, start
+ size
, 0);
2946 munlock_vma_pages_range(tmp
,
2947 max(tmp
->vm_start
, start
),
2948 min(tmp
->vm_end
, start
+ size
));
2952 file
= get_file(vma
->vm_file
);
2953 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2954 prot
, flags
, pgoff
, &populate
, NULL
);
2957 up_write(&mm
->mmap_sem
);
2959 mm_populate(ret
, populate
);
2960 if (!IS_ERR_VALUE(ret
))
2965 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2967 #ifdef CONFIG_DEBUG_VM
2968 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2970 up_read(&mm
->mmap_sem
);
2976 * this is really a simplified "do_mmap". it only handles
2977 * anonymous maps. eventually we may be able to do some
2978 * brk-specific accounting here.
2980 static int do_brk_flags(unsigned long addr
, unsigned long len
, unsigned long flags
, struct list_head
*uf
)
2982 struct mm_struct
*mm
= current
->mm
;
2983 struct vm_area_struct
*vma
, *prev
;
2984 struct rb_node
**rb_link
, *rb_parent
;
2985 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2988 /* Until we need other flags, refuse anything except VM_EXEC. */
2989 if ((flags
& (~VM_EXEC
)) != 0)
2991 flags
|= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2993 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2994 if (offset_in_page(error
))
2997 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
3002 * mm->mmap_sem is required to protect against another thread
3003 * changing the mappings in case we sleep.
3005 verify_mm_writelocked(mm
);
3008 * Clear old maps. this also does some error checking for us
3010 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
3012 if (do_munmap(mm
, addr
, len
, uf
))
3016 /* Check against address space limits *after* clearing old maps... */
3017 if (!may_expand_vm(mm
, flags
, len
>> PAGE_SHIFT
))
3020 if (mm
->map_count
> sysctl_max_map_count
)
3023 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
3026 /* Can we just expand an old private anonymous mapping? */
3027 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
3028 NULL
, NULL
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
3033 * create a vma struct for an anonymous mapping
3035 vma
= vm_area_alloc(mm
);
3037 vm_unacct_memory(len
>> PAGE_SHIFT
);
3041 vma_set_anonymous(vma
);
3042 vma
->vm_start
= addr
;
3043 vma
->vm_end
= addr
+ len
;
3044 vma
->vm_pgoff
= pgoff
;
3045 vma
->vm_flags
= flags
;
3046 vma
->vm_page_prot
= vm_get_page_prot(flags
);
3047 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
3049 perf_event_mmap(vma
);
3050 mm
->total_vm
+= len
>> PAGE_SHIFT
;
3051 mm
->data_vm
+= len
>> PAGE_SHIFT
;
3052 if (flags
& VM_LOCKED
)
3053 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
3054 vma
->vm_flags
|= VM_SOFTDIRTY
;
3058 int vm_brk_flags(unsigned long addr
, unsigned long request
, unsigned long flags
)
3060 struct mm_struct
*mm
= current
->mm
;
3066 len
= PAGE_ALIGN(request
);
3072 if (down_write_killable(&mm
->mmap_sem
))
3075 ret
= do_brk_flags(addr
, len
, flags
, &uf
);
3076 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
3077 up_write(&mm
->mmap_sem
);
3078 userfaultfd_unmap_complete(mm
, &uf
);
3079 if (populate
&& !ret
)
3080 mm_populate(addr
, len
);
3083 EXPORT_SYMBOL(vm_brk_flags
);
3085 int vm_brk(unsigned long addr
, unsigned long len
)
3087 return vm_brk_flags(addr
, len
, 0);
3089 EXPORT_SYMBOL(vm_brk
);
3091 /* Release all mmaps. */
3092 void exit_mmap(struct mm_struct
*mm
)
3094 struct mmu_gather tlb
;
3095 struct vm_area_struct
*vma
;
3096 unsigned long nr_accounted
= 0;
3098 /* mm's last user has gone, and its about to be pulled down */
3099 mmu_notifier_release(mm
);
3101 if (unlikely(mm_is_oom_victim(mm
))) {
3103 * Manually reap the mm to free as much memory as possible.
3104 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3105 * this mm from further consideration. Taking mm->mmap_sem for
3106 * write after setting MMF_OOM_SKIP will guarantee that the oom
3107 * reaper will not run on this mm again after mmap_sem is
3110 * Nothing can be holding mm->mmap_sem here and the above call
3111 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3112 * __oom_reap_task_mm() will not block.
3114 * This needs to be done before calling munlock_vma_pages_all(),
3115 * which clears VM_LOCKED, otherwise the oom reaper cannot
3118 (void)__oom_reap_task_mm(mm
);
3120 set_bit(MMF_OOM_SKIP
, &mm
->flags
);
3121 down_write(&mm
->mmap_sem
);
3122 up_write(&mm
->mmap_sem
);
3125 if (mm
->locked_vm
) {
3128 if (vma
->vm_flags
& VM_LOCKED
)
3129 munlock_vma_pages_all(vma
);
3137 if (!vma
) /* Can happen if dup_mmap() received an OOM */
3142 tlb_gather_mmu(&tlb
, mm
, 0, -1);
3143 /* update_hiwater_rss(mm) here? but nobody should be looking */
3144 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3145 unmap_vmas(&tlb
, vma
, 0, -1);
3146 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
3147 tlb_finish_mmu(&tlb
, 0, -1);
3150 * Walk the list again, actually closing and freeing it,
3151 * with preemption enabled, without holding any MM locks.
3154 if (vma
->vm_flags
& VM_ACCOUNT
)
3155 nr_accounted
+= vma_pages(vma
);
3156 vma
= remove_vma(vma
);
3158 vm_unacct_memory(nr_accounted
);
3161 /* Insert vm structure into process list sorted by address
3162 * and into the inode's i_mmap tree. If vm_file is non-NULL
3163 * then i_mmap_rwsem is taken here.
3165 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
3167 struct vm_area_struct
*prev
;
3168 struct rb_node
**rb_link
, *rb_parent
;
3170 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
3171 &prev
, &rb_link
, &rb_parent
))
3173 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
3174 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
3178 * The vm_pgoff of a purely anonymous vma should be irrelevant
3179 * until its first write fault, when page's anon_vma and index
3180 * are set. But now set the vm_pgoff it will almost certainly
3181 * end up with (unless mremap moves it elsewhere before that
3182 * first wfault), so /proc/pid/maps tells a consistent story.
3184 * By setting it to reflect the virtual start address of the
3185 * vma, merges and splits can happen in a seamless way, just
3186 * using the existing file pgoff checks and manipulations.
3187 * Similarly in do_mmap_pgoff and in do_brk.
3189 if (vma_is_anonymous(vma
)) {
3190 BUG_ON(vma
->anon_vma
);
3191 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
3194 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
3199 * Copy the vma structure to a new location in the same mm,
3200 * prior to moving page table entries, to effect an mremap move.
3202 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
3203 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
3204 bool *need_rmap_locks
)
3206 struct vm_area_struct
*vma
= *vmap
;
3207 unsigned long vma_start
= vma
->vm_start
;
3208 struct mm_struct
*mm
= vma
->vm_mm
;
3209 struct vm_area_struct
*new_vma
, *prev
;
3210 struct rb_node
**rb_link
, *rb_parent
;
3211 bool faulted_in_anon_vma
= true;
3214 * If anonymous vma has not yet been faulted, update new pgoff
3215 * to match new location, to increase its chance of merging.
3217 if (unlikely(vma_is_anonymous(vma
) && !vma
->anon_vma
)) {
3218 pgoff
= addr
>> PAGE_SHIFT
;
3219 faulted_in_anon_vma
= false;
3222 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
3223 return NULL
; /* should never get here */
3224 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
3225 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
),
3226 vma
->vm_userfaultfd_ctx
);
3229 * Source vma may have been merged into new_vma
3231 if (unlikely(vma_start
>= new_vma
->vm_start
&&
3232 vma_start
< new_vma
->vm_end
)) {
3234 * The only way we can get a vma_merge with
3235 * self during an mremap is if the vma hasn't
3236 * been faulted in yet and we were allowed to
3237 * reset the dst vma->vm_pgoff to the
3238 * destination address of the mremap to allow
3239 * the merge to happen. mremap must change the
3240 * vm_pgoff linearity between src and dst vmas
3241 * (in turn preventing a vma_merge) to be
3242 * safe. It is only safe to keep the vm_pgoff
3243 * linear if there are no pages mapped yet.
3245 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
3246 *vmap
= vma
= new_vma
;
3248 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
3250 new_vma
= vm_area_dup(vma
);
3253 new_vma
->vm_start
= addr
;
3254 new_vma
->vm_end
= addr
+ len
;
3255 new_vma
->vm_pgoff
= pgoff
;
3256 if (vma_dup_policy(vma
, new_vma
))
3258 if (anon_vma_clone(new_vma
, vma
))
3259 goto out_free_mempol
;
3260 if (new_vma
->vm_file
)
3261 get_file(new_vma
->vm_file
);
3262 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
3263 new_vma
->vm_ops
->open(new_vma
);
3264 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
3265 *need_rmap_locks
= false;
3270 mpol_put(vma_policy(new_vma
));
3272 vm_area_free(new_vma
);
3278 * Return true if the calling process may expand its vm space by the passed
3281 bool may_expand_vm(struct mm_struct
*mm
, vm_flags_t flags
, unsigned long npages
)
3283 if (mm
->total_vm
+ npages
> rlimit(RLIMIT_AS
) >> PAGE_SHIFT
)
3286 if (is_data_mapping(flags
) &&
3287 mm
->data_vm
+ npages
> rlimit(RLIMIT_DATA
) >> PAGE_SHIFT
) {
3288 /* Workaround for Valgrind */
3289 if (rlimit(RLIMIT_DATA
) == 0 &&
3290 mm
->data_vm
+ npages
<= rlimit_max(RLIMIT_DATA
) >> PAGE_SHIFT
)
3293 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3294 current
->comm
, current
->pid
,
3295 (mm
->data_vm
+ npages
) << PAGE_SHIFT
,
3296 rlimit(RLIMIT_DATA
),
3297 ignore_rlimit_data
? "" : " or use boot option ignore_rlimit_data");
3299 if (!ignore_rlimit_data
)
3306 void vm_stat_account(struct mm_struct
*mm
, vm_flags_t flags
, long npages
)
3308 mm
->total_vm
+= npages
;
3310 if (is_exec_mapping(flags
))
3311 mm
->exec_vm
+= npages
;
3312 else if (is_stack_mapping(flags
))
3313 mm
->stack_vm
+= npages
;
3314 else if (is_data_mapping(flags
))
3315 mm
->data_vm
+= npages
;
3318 static vm_fault_t
special_mapping_fault(struct vm_fault
*vmf
);
3321 * Having a close hook prevents vma merging regardless of flags.
3323 static void special_mapping_close(struct vm_area_struct
*vma
)
3327 static const char *special_mapping_name(struct vm_area_struct
*vma
)
3329 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
3332 static int special_mapping_mremap(struct vm_area_struct
*new_vma
)
3334 struct vm_special_mapping
*sm
= new_vma
->vm_private_data
;
3336 if (WARN_ON_ONCE(current
->mm
!= new_vma
->vm_mm
))
3340 return sm
->mremap(sm
, new_vma
);
3345 static const struct vm_operations_struct special_mapping_vmops
= {
3346 .close
= special_mapping_close
,
3347 .fault
= special_mapping_fault
,
3348 .mremap
= special_mapping_mremap
,
3349 .name
= special_mapping_name
,
3352 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
3353 .close
= special_mapping_close
,
3354 .fault
= special_mapping_fault
,
3357 static vm_fault_t
special_mapping_fault(struct vm_fault
*vmf
)
3359 struct vm_area_struct
*vma
= vmf
->vma
;
3361 struct page
**pages
;
3363 if (vma
->vm_ops
== &legacy_special_mapping_vmops
) {
3364 pages
= vma
->vm_private_data
;
3366 struct vm_special_mapping
*sm
= vma
->vm_private_data
;
3369 return sm
->fault(sm
, vmf
->vma
, vmf
);
3374 for (pgoff
= vmf
->pgoff
; pgoff
&& *pages
; ++pages
)
3378 struct page
*page
= *pages
;
3384 return VM_FAULT_SIGBUS
;
3387 static struct vm_area_struct
*__install_special_mapping(
3388 struct mm_struct
*mm
,
3389 unsigned long addr
, unsigned long len
,
3390 unsigned long vm_flags
, void *priv
,
3391 const struct vm_operations_struct
*ops
)
3394 struct vm_area_struct
*vma
;
3396 vma
= vm_area_alloc(mm
);
3397 if (unlikely(vma
== NULL
))
3398 return ERR_PTR(-ENOMEM
);
3400 vma
->vm_start
= addr
;
3401 vma
->vm_end
= addr
+ len
;
3403 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
3404 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
3407 vma
->vm_private_data
= priv
;
3409 ret
= insert_vm_struct(mm
, vma
);
3413 vm_stat_account(mm
, vma
->vm_flags
, len
>> PAGE_SHIFT
);
3415 perf_event_mmap(vma
);
3421 return ERR_PTR(ret
);
3424 bool vma_is_special_mapping(const struct vm_area_struct
*vma
,
3425 const struct vm_special_mapping
*sm
)
3427 return vma
->vm_private_data
== sm
&&
3428 (vma
->vm_ops
== &special_mapping_vmops
||
3429 vma
->vm_ops
== &legacy_special_mapping_vmops
);
3433 * Called with mm->mmap_sem held for writing.
3434 * Insert a new vma covering the given region, with the given flags.
3435 * Its pages are supplied by the given array of struct page *.
3436 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3437 * The region past the last page supplied will always produce SIGBUS.
3438 * The array pointer and the pages it points to are assumed to stay alive
3439 * for as long as this mapping might exist.
3441 struct vm_area_struct
*_install_special_mapping(
3442 struct mm_struct
*mm
,
3443 unsigned long addr
, unsigned long len
,
3444 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3446 return __install_special_mapping(mm
, addr
, len
, vm_flags
, (void *)spec
,
3447 &special_mapping_vmops
);
3450 int install_special_mapping(struct mm_struct
*mm
,
3451 unsigned long addr
, unsigned long len
,
3452 unsigned long vm_flags
, struct page
**pages
)
3454 struct vm_area_struct
*vma
= __install_special_mapping(
3455 mm
, addr
, len
, vm_flags
, (void *)pages
,
3456 &legacy_special_mapping_vmops
);
3458 return PTR_ERR_OR_ZERO(vma
);
3461 static DEFINE_MUTEX(mm_all_locks_mutex
);
3463 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3465 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_root
.rb_node
)) {
3467 * The LSB of head.next can't change from under us
3468 * because we hold the mm_all_locks_mutex.
3470 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3472 * We can safely modify head.next after taking the
3473 * anon_vma->root->rwsem. If some other vma in this mm shares
3474 * the same anon_vma we won't take it again.
3476 * No need of atomic instructions here, head.next
3477 * can't change from under us thanks to the
3478 * anon_vma->root->rwsem.
3480 if (__test_and_set_bit(0, (unsigned long *)
3481 &anon_vma
->root
->rb_root
.rb_root
.rb_node
))
3486 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3488 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3490 * AS_MM_ALL_LOCKS can't change from under us because
3491 * we hold the mm_all_locks_mutex.
3493 * Operations on ->flags have to be atomic because
3494 * even if AS_MM_ALL_LOCKS is stable thanks to the
3495 * mm_all_locks_mutex, there may be other cpus
3496 * changing other bitflags in parallel to us.
3498 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3500 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3505 * This operation locks against the VM for all pte/vma/mm related
3506 * operations that could ever happen on a certain mm. This includes
3507 * vmtruncate, try_to_unmap, and all page faults.
3509 * The caller must take the mmap_sem in write mode before calling
3510 * mm_take_all_locks(). The caller isn't allowed to release the
3511 * mmap_sem until mm_drop_all_locks() returns.
3513 * mmap_sem in write mode is required in order to block all operations
3514 * that could modify pagetables and free pages without need of
3515 * altering the vma layout. It's also needed in write mode to avoid new
3516 * anon_vmas to be associated with existing vmas.
3518 * A single task can't take more than one mm_take_all_locks() in a row
3519 * or it would deadlock.
3521 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3522 * mapping->flags avoid to take the same lock twice, if more than one
3523 * vma in this mm is backed by the same anon_vma or address_space.
3525 * We take locks in following order, accordingly to comment at beginning
3527 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3529 * - all i_mmap_rwsem locks;
3530 * - all anon_vma->rwseml
3532 * We can take all locks within these types randomly because the VM code
3533 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3534 * mm_all_locks_mutex.
3536 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3537 * that may have to take thousand of locks.
3539 * mm_take_all_locks() can fail if it's interrupted by signals.
3541 int mm_take_all_locks(struct mm_struct
*mm
)
3543 struct vm_area_struct
*vma
;
3544 struct anon_vma_chain
*avc
;
3546 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3548 mutex_lock(&mm_all_locks_mutex
);
3550 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3551 if (signal_pending(current
))
3553 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3554 is_vm_hugetlb_page(vma
))
3555 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3558 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3559 if (signal_pending(current
))
3561 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3562 !is_vm_hugetlb_page(vma
))
3563 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3566 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3567 if (signal_pending(current
))
3570 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3571 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3577 mm_drop_all_locks(mm
);
3581 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3583 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_root
.rb_node
)) {
3585 * The LSB of head.next can't change to 0 from under
3586 * us because we hold the mm_all_locks_mutex.
3588 * We must however clear the bitflag before unlocking
3589 * the vma so the users using the anon_vma->rb_root will
3590 * never see our bitflag.
3592 * No need of atomic instructions here, head.next
3593 * can't change from under us until we release the
3594 * anon_vma->root->rwsem.
3596 if (!__test_and_clear_bit(0, (unsigned long *)
3597 &anon_vma
->root
->rb_root
.rb_root
.rb_node
))
3599 anon_vma_unlock_write(anon_vma
);
3603 static void vm_unlock_mapping(struct address_space
*mapping
)
3605 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3607 * AS_MM_ALL_LOCKS can't change to 0 from under us
3608 * because we hold the mm_all_locks_mutex.
3610 i_mmap_unlock_write(mapping
);
3611 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3618 * The mmap_sem cannot be released by the caller until
3619 * mm_drop_all_locks() returns.
3621 void mm_drop_all_locks(struct mm_struct
*mm
)
3623 struct vm_area_struct
*vma
;
3624 struct anon_vma_chain
*avc
;
3626 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3627 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3629 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3631 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3632 vm_unlock_anon_vma(avc
->anon_vma
);
3633 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3634 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3637 mutex_unlock(&mm_all_locks_mutex
);
3641 * initialise the percpu counter for VM
3643 void __init
mmap_init(void)
3647 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3652 * Initialise sysctl_user_reserve_kbytes.
3654 * This is intended to prevent a user from starting a single memory hogging
3655 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3658 * The default value is min(3% of free memory, 128MB)
3659 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3661 static int init_user_reserve(void)
3663 unsigned long free_kbytes
;
3665 free_kbytes
= global_zone_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3667 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3670 subsys_initcall(init_user_reserve
);
3673 * Initialise sysctl_admin_reserve_kbytes.
3675 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3676 * to log in and kill a memory hogging process.
3678 * Systems with more than 256MB will reserve 8MB, enough to recover
3679 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3680 * only reserve 3% of free pages by default.
3682 static int init_admin_reserve(void)
3684 unsigned long free_kbytes
;
3686 free_kbytes
= global_zone_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3688 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3691 subsys_initcall(init_admin_reserve
);
3694 * Reinititalise user and admin reserves if memory is added or removed.
3696 * The default user reserve max is 128MB, and the default max for the
3697 * admin reserve is 8MB. These are usually, but not always, enough to
3698 * enable recovery from a memory hogging process using login/sshd, a shell,
3699 * and tools like top. It may make sense to increase or even disable the
3700 * reserve depending on the existence of swap or variations in the recovery
3701 * tools. So, the admin may have changed them.
3703 * If memory is added and the reserves have been eliminated or increased above
3704 * the default max, then we'll trust the admin.
3706 * If memory is removed and there isn't enough free memory, then we
3707 * need to reset the reserves.
3709 * Otherwise keep the reserve set by the admin.
3711 static int reserve_mem_notifier(struct notifier_block
*nb
,
3712 unsigned long action
, void *data
)
3714 unsigned long tmp
, free_kbytes
;
3718 /* Default max is 128MB. Leave alone if modified by operator. */
3719 tmp
= sysctl_user_reserve_kbytes
;
3720 if (0 < tmp
&& tmp
< (1UL << 17))
3721 init_user_reserve();
3723 /* Default max is 8MB. Leave alone if modified by operator. */
3724 tmp
= sysctl_admin_reserve_kbytes
;
3725 if (0 < tmp
&& tmp
< (1UL << 13))
3726 init_admin_reserve();
3730 free_kbytes
= global_zone_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3732 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3733 init_user_reserve();
3734 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3735 sysctl_user_reserve_kbytes
);
3738 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3739 init_admin_reserve();
3740 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3741 sysctl_admin_reserve_kbytes
);
3750 static struct notifier_block reserve_mem_nb
= {
3751 .notifier_call
= reserve_mem_notifier
,
3754 static int __meminit
init_reserve_notifier(void)
3756 if (register_hotmemory_notifier(&reserve_mem_nb
))
3757 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3761 subsys_initcall(init_reserve_notifier
);