2 * linux/kernel/power/snapshot.c
4 * This file provides system snapshot/restore functionality for swsusp.
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * This file is released under the GPLv2.
13 #include <linux/version.h>
14 #include <linux/module.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 #include <linux/compiler.h>
32 #include <asm/uaccess.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
40 static int swsusp_page_is_free(struct page
*);
41 static void swsusp_set_page_forbidden(struct page
*);
42 static void swsusp_unset_page_forbidden(struct page
*);
45 * Number of bytes to reserve for memory allocations made by device drivers
46 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
47 * cause image creation to fail (tunable via /sys/power/reserved_size).
49 unsigned long reserved_size
;
51 void __init
hibernate_reserved_size_init(void)
53 reserved_size
= SPARE_PAGES
* PAGE_SIZE
;
57 * Preferred image size in bytes (tunable via /sys/power/image_size).
58 * When it is set to N, swsusp will do its best to ensure the image
59 * size will not exceed N bytes, but if that is impossible, it will
60 * try to create the smallest image possible.
62 unsigned long image_size
;
64 void __init
hibernate_image_size_init(void)
66 image_size
= ((totalram_pages
* 2) / 5) * PAGE_SIZE
;
69 /* List of PBEs needed for restoring the pages that were allocated before
70 * the suspend and included in the suspend image, but have also been
71 * allocated by the "resume" kernel, so their contents cannot be written
72 * directly to their "original" page frames.
74 struct pbe
*restore_pblist
;
76 /* Pointer to an auxiliary buffer (1 page) */
80 * @safe_needed - on resume, for storing the PBE list and the image,
81 * we can only use memory pages that do not conflict with the pages
82 * used before suspend. The unsafe pages have PageNosaveFree set
83 * and we count them using unsafe_pages.
85 * Each allocated image page is marked as PageNosave and PageNosaveFree
86 * so that swsusp_free() can release it.
91 #define PG_UNSAFE_CLEAR 1
92 #define PG_UNSAFE_KEEP 0
94 static unsigned int allocated_unsafe_pages
;
96 static void *get_image_page(gfp_t gfp_mask
, int safe_needed
)
100 res
= (void *)get_zeroed_page(gfp_mask
);
102 while (res
&& swsusp_page_is_free(virt_to_page(res
))) {
103 /* The page is unsafe, mark it for swsusp_free() */
104 swsusp_set_page_forbidden(virt_to_page(res
));
105 allocated_unsafe_pages
++;
106 res
= (void *)get_zeroed_page(gfp_mask
);
109 swsusp_set_page_forbidden(virt_to_page(res
));
110 swsusp_set_page_free(virt_to_page(res
));
115 unsigned long get_safe_page(gfp_t gfp_mask
)
117 return (unsigned long)get_image_page(gfp_mask
, PG_SAFE
);
120 static struct page
*alloc_image_page(gfp_t gfp_mask
)
124 page
= alloc_page(gfp_mask
);
126 swsusp_set_page_forbidden(page
);
127 swsusp_set_page_free(page
);
133 * free_image_page - free page represented by @addr, allocated with
134 * get_image_page (page flags set by it must be cleared)
137 static inline void free_image_page(void *addr
, int clear_nosave_free
)
141 BUG_ON(!virt_addr_valid(addr
));
143 page
= virt_to_page(addr
);
145 swsusp_unset_page_forbidden(page
);
146 if (clear_nosave_free
)
147 swsusp_unset_page_free(page
);
152 /* struct linked_page is used to build chains of pages */
154 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
157 struct linked_page
*next
;
158 char data
[LINKED_PAGE_DATA_SIZE
];
162 free_list_of_pages(struct linked_page
*list
, int clear_page_nosave
)
165 struct linked_page
*lp
= list
->next
;
167 free_image_page(list
, clear_page_nosave
);
173 * struct chain_allocator is used for allocating small objects out of
174 * a linked list of pages called 'the chain'.
176 * The chain grows each time when there is no room for a new object in
177 * the current page. The allocated objects cannot be freed individually.
178 * It is only possible to free them all at once, by freeing the entire
181 * NOTE: The chain allocator may be inefficient if the allocated objects
182 * are not much smaller than PAGE_SIZE.
185 struct chain_allocator
{
186 struct linked_page
*chain
; /* the chain */
187 unsigned int used_space
; /* total size of objects allocated out
188 * of the current page
190 gfp_t gfp_mask
; /* mask for allocating pages */
191 int safe_needed
; /* if set, only "safe" pages are allocated */
195 chain_init(struct chain_allocator
*ca
, gfp_t gfp_mask
, int safe_needed
)
198 ca
->used_space
= LINKED_PAGE_DATA_SIZE
;
199 ca
->gfp_mask
= gfp_mask
;
200 ca
->safe_needed
= safe_needed
;
203 static void *chain_alloc(struct chain_allocator
*ca
, unsigned int size
)
207 if (LINKED_PAGE_DATA_SIZE
- ca
->used_space
< size
) {
208 struct linked_page
*lp
;
210 lp
= get_image_page(ca
->gfp_mask
, ca
->safe_needed
);
214 lp
->next
= ca
->chain
;
218 ret
= ca
->chain
->data
+ ca
->used_space
;
219 ca
->used_space
+= size
;
224 * Data types related to memory bitmaps.
226 * Memory bitmap is a structure consiting of many linked lists of
227 * objects. The main list's elements are of type struct zone_bitmap
228 * and each of them corresonds to one zone. For each zone bitmap
229 * object there is a list of objects of type struct bm_block that
230 * represent each blocks of bitmap in which information is stored.
232 * struct memory_bitmap contains a pointer to the main list of zone
233 * bitmap objects, a struct bm_position used for browsing the bitmap,
234 * and a pointer to the list of pages used for allocating all of the
235 * zone bitmap objects and bitmap block objects.
237 * NOTE: It has to be possible to lay out the bitmap in memory
238 * using only allocations of order 0. Additionally, the bitmap is
239 * designed to work with arbitrary number of zones (this is over the
240 * top for now, but let's avoid making unnecessary assumptions ;-).
242 * struct zone_bitmap contains a pointer to a list of bitmap block
243 * objects and a pointer to the bitmap block object that has been
244 * most recently used for setting bits. Additionally, it contains the
245 * pfns that correspond to the start and end of the represented zone.
247 * struct bm_block contains a pointer to the memory page in which
248 * information is stored (in the form of a block of bitmap)
249 * It also contains the pfns that correspond to the start and end of
250 * the represented memory area.
253 #define BM_END_OF_MAP (~0UL)
255 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
258 struct list_head hook
; /* hook into a list of bitmap blocks */
259 unsigned long start_pfn
; /* pfn represented by the first bit */
260 unsigned long end_pfn
; /* pfn represented by the last bit plus 1 */
261 unsigned long *data
; /* bitmap representing pages */
264 static inline unsigned long bm_block_bits(struct bm_block
*bb
)
266 return bb
->end_pfn
- bb
->start_pfn
;
269 /* strcut bm_position is used for browsing memory bitmaps */
272 struct bm_block
*block
;
276 struct memory_bitmap
{
277 struct list_head blocks
; /* list of bitmap blocks */
278 struct linked_page
*p_list
; /* list of pages used to store zone
279 * bitmap objects and bitmap block
282 struct bm_position cur
; /* most recently used bit position */
285 /* Functions that operate on memory bitmaps */
287 static void memory_bm_position_reset(struct memory_bitmap
*bm
)
289 bm
->cur
.block
= list_entry(bm
->blocks
.next
, struct bm_block
, hook
);
293 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
);
296 * create_bm_block_list - create a list of block bitmap objects
297 * @pages - number of pages to track
298 * @list - list to put the allocated blocks into
299 * @ca - chain allocator to be used for allocating memory
301 static int create_bm_block_list(unsigned long pages
,
302 struct list_head
*list
,
303 struct chain_allocator
*ca
)
305 unsigned int nr_blocks
= DIV_ROUND_UP(pages
, BM_BITS_PER_BLOCK
);
307 while (nr_blocks
-- > 0) {
310 bb
= chain_alloc(ca
, sizeof(struct bm_block
));
313 list_add(&bb
->hook
, list
);
320 struct list_head hook
;
326 * free_mem_extents - free a list of memory extents
327 * @list - list of extents to empty
329 static void free_mem_extents(struct list_head
*list
)
331 struct mem_extent
*ext
, *aux
;
333 list_for_each_entry_safe(ext
, aux
, list
, hook
) {
334 list_del(&ext
->hook
);
340 * create_mem_extents - create a list of memory extents representing
341 * contiguous ranges of PFNs
342 * @list - list to put the extents into
343 * @gfp_mask - mask to use for memory allocations
345 static int create_mem_extents(struct list_head
*list
, gfp_t gfp_mask
)
349 INIT_LIST_HEAD(list
);
351 for_each_populated_zone(zone
) {
352 unsigned long zone_start
, zone_end
;
353 struct mem_extent
*ext
, *cur
, *aux
;
355 zone_start
= zone
->zone_start_pfn
;
356 zone_end
= zone_end_pfn(zone
);
358 list_for_each_entry(ext
, list
, hook
)
359 if (zone_start
<= ext
->end
)
362 if (&ext
->hook
== list
|| zone_end
< ext
->start
) {
363 /* New extent is necessary */
364 struct mem_extent
*new_ext
;
366 new_ext
= kzalloc(sizeof(struct mem_extent
), gfp_mask
);
368 free_mem_extents(list
);
371 new_ext
->start
= zone_start
;
372 new_ext
->end
= zone_end
;
373 list_add_tail(&new_ext
->hook
, &ext
->hook
);
377 /* Merge this zone's range of PFNs with the existing one */
378 if (zone_start
< ext
->start
)
379 ext
->start
= zone_start
;
380 if (zone_end
> ext
->end
)
383 /* More merging may be possible */
385 list_for_each_entry_safe_continue(cur
, aux
, list
, hook
) {
386 if (zone_end
< cur
->start
)
388 if (zone_end
< cur
->end
)
390 list_del(&cur
->hook
);
399 * memory_bm_create - allocate memory for a memory bitmap
402 memory_bm_create(struct memory_bitmap
*bm
, gfp_t gfp_mask
, int safe_needed
)
404 struct chain_allocator ca
;
405 struct list_head mem_extents
;
406 struct mem_extent
*ext
;
409 chain_init(&ca
, gfp_mask
, safe_needed
);
410 INIT_LIST_HEAD(&bm
->blocks
);
412 error
= create_mem_extents(&mem_extents
, gfp_mask
);
416 list_for_each_entry(ext
, &mem_extents
, hook
) {
418 unsigned long pfn
= ext
->start
;
419 unsigned long pages
= ext
->end
- ext
->start
;
421 bb
= list_entry(bm
->blocks
.prev
, struct bm_block
, hook
);
423 error
= create_bm_block_list(pages
, bm
->blocks
.prev
, &ca
);
427 list_for_each_entry_continue(bb
, &bm
->blocks
, hook
) {
428 bb
->data
= get_image_page(gfp_mask
, safe_needed
);
435 if (pages
>= BM_BITS_PER_BLOCK
) {
436 pfn
+= BM_BITS_PER_BLOCK
;
437 pages
-= BM_BITS_PER_BLOCK
;
439 /* This is executed only once in the loop */
446 bm
->p_list
= ca
.chain
;
447 memory_bm_position_reset(bm
);
449 free_mem_extents(&mem_extents
);
453 bm
->p_list
= ca
.chain
;
454 memory_bm_free(bm
, PG_UNSAFE_CLEAR
);
459 * memory_bm_free - free memory occupied by the memory bitmap @bm
461 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
)
465 list_for_each_entry(bb
, &bm
->blocks
, hook
)
467 free_image_page(bb
->data
, clear_nosave_free
);
469 free_list_of_pages(bm
->p_list
, clear_nosave_free
);
471 INIT_LIST_HEAD(&bm
->blocks
);
475 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
476 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
477 * of @bm->cur_zone_bm are updated.
479 static int memory_bm_find_bit(struct memory_bitmap
*bm
, unsigned long pfn
,
480 void **addr
, unsigned int *bit_nr
)
485 * Check if the pfn corresponds to the current bitmap block and find
486 * the block where it fits if this is not the case.
489 if (pfn
< bb
->start_pfn
)
490 list_for_each_entry_continue_reverse(bb
, &bm
->blocks
, hook
)
491 if (pfn
>= bb
->start_pfn
)
494 if (pfn
>= bb
->end_pfn
)
495 list_for_each_entry_continue(bb
, &bm
->blocks
, hook
)
496 if (pfn
>= bb
->start_pfn
&& pfn
< bb
->end_pfn
)
499 if (&bb
->hook
== &bm
->blocks
)
502 /* The block has been found */
504 pfn
-= bb
->start_pfn
;
505 bm
->cur
.bit
= pfn
+ 1;
511 static void memory_bm_set_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
517 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
522 static int mem_bm_set_bit_check(struct memory_bitmap
*bm
, unsigned long pfn
)
528 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
534 static void memory_bm_clear_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
540 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
542 clear_bit(bit
, addr
);
545 static int memory_bm_test_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
551 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
553 return test_bit(bit
, addr
);
556 static bool memory_bm_pfn_present(struct memory_bitmap
*bm
, unsigned long pfn
)
561 return !memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
565 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
566 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
569 * It is required to run memory_bm_position_reset() before the first call to
573 static unsigned long memory_bm_next_pfn(struct memory_bitmap
*bm
)
581 bit
= find_next_bit(bb
->data
, bm_block_bits(bb
), bit
);
582 if (bit
< bm_block_bits(bb
))
585 bb
= list_entry(bb
->hook
.next
, struct bm_block
, hook
);
588 } while (&bb
->hook
!= &bm
->blocks
);
590 memory_bm_position_reset(bm
);
591 return BM_END_OF_MAP
;
594 bm
->cur
.bit
= bit
+ 1;
595 return bb
->start_pfn
+ bit
;
599 * This structure represents a range of page frames the contents of which
600 * should not be saved during the suspend.
603 struct nosave_region
{
604 struct list_head list
;
605 unsigned long start_pfn
;
606 unsigned long end_pfn
;
609 static LIST_HEAD(nosave_regions
);
612 * register_nosave_region - register a range of page frames the contents
613 * of which should not be saved during the suspend (to be used in the early
614 * initialization code)
618 __register_nosave_region(unsigned long start_pfn
, unsigned long end_pfn
,
621 struct nosave_region
*region
;
623 if (start_pfn
>= end_pfn
)
626 if (!list_empty(&nosave_regions
)) {
627 /* Try to extend the previous region (they should be sorted) */
628 region
= list_entry(nosave_regions
.prev
,
629 struct nosave_region
, list
);
630 if (region
->end_pfn
== start_pfn
) {
631 region
->end_pfn
= end_pfn
;
636 /* during init, this shouldn't fail */
637 region
= kmalloc(sizeof(struct nosave_region
), GFP_KERNEL
);
640 /* This allocation cannot fail */
641 region
= memblock_virt_alloc(sizeof(struct nosave_region
), 0);
642 region
->start_pfn
= start_pfn
;
643 region
->end_pfn
= end_pfn
;
644 list_add_tail(®ion
->list
, &nosave_regions
);
646 printk(KERN_INFO
"PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
647 (unsigned long long) start_pfn
<< PAGE_SHIFT
,
648 ((unsigned long long) end_pfn
<< PAGE_SHIFT
) - 1);
652 * Set bits in this map correspond to the page frames the contents of which
653 * should not be saved during the suspend.
655 static struct memory_bitmap
*forbidden_pages_map
;
657 /* Set bits in this map correspond to free page frames. */
658 static struct memory_bitmap
*free_pages_map
;
661 * Each page frame allocated for creating the image is marked by setting the
662 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
665 void swsusp_set_page_free(struct page
*page
)
668 memory_bm_set_bit(free_pages_map
, page_to_pfn(page
));
671 static int swsusp_page_is_free(struct page
*page
)
673 return free_pages_map
?
674 memory_bm_test_bit(free_pages_map
, page_to_pfn(page
)) : 0;
677 void swsusp_unset_page_free(struct page
*page
)
680 memory_bm_clear_bit(free_pages_map
, page_to_pfn(page
));
683 static void swsusp_set_page_forbidden(struct page
*page
)
685 if (forbidden_pages_map
)
686 memory_bm_set_bit(forbidden_pages_map
, page_to_pfn(page
));
689 int swsusp_page_is_forbidden(struct page
*page
)
691 return forbidden_pages_map
?
692 memory_bm_test_bit(forbidden_pages_map
, page_to_pfn(page
)) : 0;
695 static void swsusp_unset_page_forbidden(struct page
*page
)
697 if (forbidden_pages_map
)
698 memory_bm_clear_bit(forbidden_pages_map
, page_to_pfn(page
));
702 * mark_nosave_pages - set bits corresponding to the page frames the
703 * contents of which should not be saved in a given bitmap.
706 static void mark_nosave_pages(struct memory_bitmap
*bm
)
708 struct nosave_region
*region
;
710 if (list_empty(&nosave_regions
))
713 list_for_each_entry(region
, &nosave_regions
, list
) {
716 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
717 (unsigned long long) region
->start_pfn
<< PAGE_SHIFT
,
718 ((unsigned long long) region
->end_pfn
<< PAGE_SHIFT
)
721 for (pfn
= region
->start_pfn
; pfn
< region
->end_pfn
; pfn
++)
722 if (pfn_valid(pfn
)) {
724 * It is safe to ignore the result of
725 * mem_bm_set_bit_check() here, since we won't
726 * touch the PFNs for which the error is
729 mem_bm_set_bit_check(bm
, pfn
);
735 * create_basic_memory_bitmaps - create bitmaps needed for marking page
736 * frames that should not be saved and free page frames. The pointers
737 * forbidden_pages_map and free_pages_map are only modified if everything
738 * goes well, because we don't want the bits to be used before both bitmaps
742 int create_basic_memory_bitmaps(void)
744 struct memory_bitmap
*bm1
, *bm2
;
747 if (forbidden_pages_map
&& free_pages_map
)
750 BUG_ON(forbidden_pages_map
|| free_pages_map
);
752 bm1
= kzalloc(sizeof(struct memory_bitmap
), GFP_KERNEL
);
756 error
= memory_bm_create(bm1
, GFP_KERNEL
, PG_ANY
);
758 goto Free_first_object
;
760 bm2
= kzalloc(sizeof(struct memory_bitmap
), GFP_KERNEL
);
762 goto Free_first_bitmap
;
764 error
= memory_bm_create(bm2
, GFP_KERNEL
, PG_ANY
);
766 goto Free_second_object
;
768 forbidden_pages_map
= bm1
;
769 free_pages_map
= bm2
;
770 mark_nosave_pages(forbidden_pages_map
);
772 pr_debug("PM: Basic memory bitmaps created\n");
779 memory_bm_free(bm1
, PG_UNSAFE_CLEAR
);
786 * free_basic_memory_bitmaps - free memory bitmaps allocated by
787 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
788 * so that the bitmaps themselves are not referred to while they are being
792 void free_basic_memory_bitmaps(void)
794 struct memory_bitmap
*bm1
, *bm2
;
796 if (WARN_ON(!(forbidden_pages_map
&& free_pages_map
)))
799 bm1
= forbidden_pages_map
;
800 bm2
= free_pages_map
;
801 forbidden_pages_map
= NULL
;
802 free_pages_map
= NULL
;
803 memory_bm_free(bm1
, PG_UNSAFE_CLEAR
);
805 memory_bm_free(bm2
, PG_UNSAFE_CLEAR
);
808 pr_debug("PM: Basic memory bitmaps freed\n");
812 * snapshot_additional_pages - estimate the number of additional pages
813 * be needed for setting up the suspend image data structures for given
814 * zone (usually the returned value is greater than the exact number)
817 unsigned int snapshot_additional_pages(struct zone
*zone
)
821 res
= DIV_ROUND_UP(zone
->spanned_pages
, BM_BITS_PER_BLOCK
);
822 res
+= DIV_ROUND_UP(res
* sizeof(struct bm_block
),
823 LINKED_PAGE_DATA_SIZE
);
827 #ifdef CONFIG_HIGHMEM
829 * count_free_highmem_pages - compute the total number of free highmem
830 * pages, system-wide.
833 static unsigned int count_free_highmem_pages(void)
836 unsigned int cnt
= 0;
838 for_each_populated_zone(zone
)
839 if (is_highmem(zone
))
840 cnt
+= zone_page_state(zone
, NR_FREE_PAGES
);
846 * saveable_highmem_page - Determine whether a highmem page should be
847 * included in the suspend image.
849 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
850 * and it isn't a part of a free chunk of pages.
852 static struct page
*saveable_highmem_page(struct zone
*zone
, unsigned long pfn
)
859 page
= pfn_to_page(pfn
);
860 if (page_zone(page
) != zone
)
863 BUG_ON(!PageHighMem(page
));
865 if (swsusp_page_is_forbidden(page
) || swsusp_page_is_free(page
) ||
869 if (page_is_guard(page
))
876 * count_highmem_pages - compute the total number of saveable highmem
880 static unsigned int count_highmem_pages(void)
885 for_each_populated_zone(zone
) {
886 unsigned long pfn
, max_zone_pfn
;
888 if (!is_highmem(zone
))
891 mark_free_pages(zone
);
892 max_zone_pfn
= zone_end_pfn(zone
);
893 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
894 if (saveable_highmem_page(zone
, pfn
))
900 static inline void *saveable_highmem_page(struct zone
*z
, unsigned long p
)
904 #endif /* CONFIG_HIGHMEM */
907 * saveable_page - Determine whether a non-highmem page should be included
908 * in the suspend image.
910 * We should save the page if it isn't Nosave, and is not in the range
911 * of pages statically defined as 'unsaveable', and it isn't a part of
912 * a free chunk of pages.
914 static struct page
*saveable_page(struct zone
*zone
, unsigned long pfn
)
921 page
= pfn_to_page(pfn
);
922 if (page_zone(page
) != zone
)
925 BUG_ON(PageHighMem(page
));
927 if (swsusp_page_is_forbidden(page
) || swsusp_page_is_free(page
))
930 if (PageReserved(page
)
931 && (!kernel_page_present(page
) || pfn_is_nosave(pfn
)))
934 if (page_is_guard(page
))
941 * count_data_pages - compute the total number of saveable non-highmem
945 static unsigned int count_data_pages(void)
948 unsigned long pfn
, max_zone_pfn
;
951 for_each_populated_zone(zone
) {
952 if (is_highmem(zone
))
955 mark_free_pages(zone
);
956 max_zone_pfn
= zone_end_pfn(zone
);
957 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
958 if (saveable_page(zone
, pfn
))
964 /* This is needed, because copy_page and memcpy are not usable for copying
967 static inline void do_copy_page(long *dst
, long *src
)
971 for (n
= PAGE_SIZE
/ sizeof(long); n
; n
--)
977 * safe_copy_page - check if the page we are going to copy is marked as
978 * present in the kernel page tables (this always is the case if
979 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
980 * kernel_page_present() always returns 'true').
982 static void safe_copy_page(void *dst
, struct page
*s_page
)
984 if (kernel_page_present(s_page
)) {
985 do_copy_page(dst
, page_address(s_page
));
987 kernel_map_pages(s_page
, 1, 1);
988 do_copy_page(dst
, page_address(s_page
));
989 kernel_map_pages(s_page
, 1, 0);
994 #ifdef CONFIG_HIGHMEM
995 static inline struct page
*
996 page_is_saveable(struct zone
*zone
, unsigned long pfn
)
998 return is_highmem(zone
) ?
999 saveable_highmem_page(zone
, pfn
) : saveable_page(zone
, pfn
);
1002 static void copy_data_page(unsigned long dst_pfn
, unsigned long src_pfn
)
1004 struct page
*s_page
, *d_page
;
1007 s_page
= pfn_to_page(src_pfn
);
1008 d_page
= pfn_to_page(dst_pfn
);
1009 if (PageHighMem(s_page
)) {
1010 src
= kmap_atomic(s_page
);
1011 dst
= kmap_atomic(d_page
);
1012 do_copy_page(dst
, src
);
1016 if (PageHighMem(d_page
)) {
1017 /* Page pointed to by src may contain some kernel
1018 * data modified by kmap_atomic()
1020 safe_copy_page(buffer
, s_page
);
1021 dst
= kmap_atomic(d_page
);
1022 copy_page(dst
, buffer
);
1025 safe_copy_page(page_address(d_page
), s_page
);
1030 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1032 static inline void copy_data_page(unsigned long dst_pfn
, unsigned long src_pfn
)
1034 safe_copy_page(page_address(pfn_to_page(dst_pfn
)),
1035 pfn_to_page(src_pfn
));
1037 #endif /* CONFIG_HIGHMEM */
1040 copy_data_pages(struct memory_bitmap
*copy_bm
, struct memory_bitmap
*orig_bm
)
1045 for_each_populated_zone(zone
) {
1046 unsigned long max_zone_pfn
;
1048 mark_free_pages(zone
);
1049 max_zone_pfn
= zone_end_pfn(zone
);
1050 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1051 if (page_is_saveable(zone
, pfn
))
1052 memory_bm_set_bit(orig_bm
, pfn
);
1054 memory_bm_position_reset(orig_bm
);
1055 memory_bm_position_reset(copy_bm
);
1057 pfn
= memory_bm_next_pfn(orig_bm
);
1058 if (unlikely(pfn
== BM_END_OF_MAP
))
1060 copy_data_page(memory_bm_next_pfn(copy_bm
), pfn
);
1064 /* Total number of image pages */
1065 static unsigned int nr_copy_pages
;
1066 /* Number of pages needed for saving the original pfns of the image pages */
1067 static unsigned int nr_meta_pages
;
1069 * Numbers of normal and highmem page frames allocated for hibernation image
1070 * before suspending devices.
1072 unsigned int alloc_normal
, alloc_highmem
;
1074 * Memory bitmap used for marking saveable pages (during hibernation) or
1075 * hibernation image pages (during restore)
1077 static struct memory_bitmap orig_bm
;
1079 * Memory bitmap used during hibernation for marking allocated page frames that
1080 * will contain copies of saveable pages. During restore it is initially used
1081 * for marking hibernation image pages, but then the set bits from it are
1082 * duplicated in @orig_bm and it is released. On highmem systems it is next
1083 * used for marking "safe" highmem pages, but it has to be reinitialized for
1086 static struct memory_bitmap copy_bm
;
1089 * swsusp_free - free pages allocated for the suspend.
1091 * Suspend pages are alocated before the atomic copy is made, so we
1092 * need to release them after the resume.
1095 void swsusp_free(void)
1098 unsigned long pfn
, max_zone_pfn
;
1100 for_each_populated_zone(zone
) {
1101 max_zone_pfn
= zone_end_pfn(zone
);
1102 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1103 if (pfn_valid(pfn
)) {
1104 struct page
*page
= pfn_to_page(pfn
);
1106 if (swsusp_page_is_forbidden(page
) &&
1107 swsusp_page_is_free(page
)) {
1108 swsusp_unset_page_forbidden(page
);
1109 swsusp_unset_page_free(page
);
1116 restore_pblist
= NULL
;
1122 /* Helper functions used for the shrinking of memory. */
1124 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1127 * preallocate_image_pages - Allocate a number of pages for hibernation image
1128 * @nr_pages: Number of page frames to allocate.
1129 * @mask: GFP flags to use for the allocation.
1131 * Return value: Number of page frames actually allocated
1133 static unsigned long preallocate_image_pages(unsigned long nr_pages
, gfp_t mask
)
1135 unsigned long nr_alloc
= 0;
1137 while (nr_pages
> 0) {
1140 page
= alloc_image_page(mask
);
1143 memory_bm_set_bit(©_bm
, page_to_pfn(page
));
1144 if (PageHighMem(page
))
1155 static unsigned long preallocate_image_memory(unsigned long nr_pages
,
1156 unsigned long avail_normal
)
1158 unsigned long alloc
;
1160 if (avail_normal
<= alloc_normal
)
1163 alloc
= avail_normal
- alloc_normal
;
1164 if (nr_pages
< alloc
)
1167 return preallocate_image_pages(alloc
, GFP_IMAGE
);
1170 #ifdef CONFIG_HIGHMEM
1171 static unsigned long preallocate_image_highmem(unsigned long nr_pages
)
1173 return preallocate_image_pages(nr_pages
, GFP_IMAGE
| __GFP_HIGHMEM
);
1177 * __fraction - Compute (an approximation of) x * (multiplier / base)
1179 static unsigned long __fraction(u64 x
, u64 multiplier
, u64 base
)
1183 return (unsigned long)x
;
1186 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages
,
1187 unsigned long highmem
,
1188 unsigned long total
)
1190 unsigned long alloc
= __fraction(nr_pages
, highmem
, total
);
1192 return preallocate_image_pages(alloc
, GFP_IMAGE
| __GFP_HIGHMEM
);
1194 #else /* CONFIG_HIGHMEM */
1195 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages
)
1200 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages
,
1201 unsigned long highmem
,
1202 unsigned long total
)
1206 #endif /* CONFIG_HIGHMEM */
1209 * free_unnecessary_pages - Release preallocated pages not needed for the image
1211 static void free_unnecessary_pages(void)
1213 unsigned long save
, to_free_normal
, to_free_highmem
;
1215 save
= count_data_pages();
1216 if (alloc_normal
>= save
) {
1217 to_free_normal
= alloc_normal
- save
;
1221 save
-= alloc_normal
;
1223 save
+= count_highmem_pages();
1224 if (alloc_highmem
>= save
) {
1225 to_free_highmem
= alloc_highmem
- save
;
1227 to_free_highmem
= 0;
1228 save
-= alloc_highmem
;
1229 if (to_free_normal
> save
)
1230 to_free_normal
-= save
;
1235 memory_bm_position_reset(©_bm
);
1237 while (to_free_normal
> 0 || to_free_highmem
> 0) {
1238 unsigned long pfn
= memory_bm_next_pfn(©_bm
);
1239 struct page
*page
= pfn_to_page(pfn
);
1241 if (PageHighMem(page
)) {
1242 if (!to_free_highmem
)
1247 if (!to_free_normal
)
1252 memory_bm_clear_bit(©_bm
, pfn
);
1253 swsusp_unset_page_forbidden(page
);
1254 swsusp_unset_page_free(page
);
1260 * minimum_image_size - Estimate the minimum acceptable size of an image
1261 * @saveable: Number of saveable pages in the system.
1263 * We want to avoid attempting to free too much memory too hard, so estimate the
1264 * minimum acceptable size of a hibernation image to use as the lower limit for
1265 * preallocating memory.
1267 * We assume that the minimum image size should be proportional to
1269 * [number of saveable pages] - [number of pages that can be freed in theory]
1271 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1272 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1273 * minus mapped file pages.
1275 static unsigned long minimum_image_size(unsigned long saveable
)
1279 size
= global_page_state(NR_SLAB_RECLAIMABLE
)
1280 + global_page_state(NR_ACTIVE_ANON
)
1281 + global_page_state(NR_INACTIVE_ANON
)
1282 + global_page_state(NR_ACTIVE_FILE
)
1283 + global_page_state(NR_INACTIVE_FILE
)
1284 - global_page_state(NR_FILE_MAPPED
);
1286 return saveable
<= size
? 0 : saveable
- size
;
1290 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1292 * To create a hibernation image it is necessary to make a copy of every page
1293 * frame in use. We also need a number of page frames to be free during
1294 * hibernation for allocations made while saving the image and for device
1295 * drivers, in case they need to allocate memory from their hibernation
1296 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1297 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1298 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1299 * total number of available page frames and allocate at least
1301 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1302 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1304 * of them, which corresponds to the maximum size of a hibernation image.
1306 * If image_size is set below the number following from the above formula,
1307 * the preallocation of memory is continued until the total number of saveable
1308 * pages in the system is below the requested image size or the minimum
1309 * acceptable image size returned by minimum_image_size(), whichever is greater.
1311 int hibernate_preallocate_memory(void)
1314 unsigned long saveable
, size
, max_size
, count
, highmem
, pages
= 0;
1315 unsigned long alloc
, save_highmem
, pages_highmem
, avail_normal
;
1316 struct timeval start
, stop
;
1319 printk(KERN_INFO
"PM: Preallocating image memory... ");
1320 do_gettimeofday(&start
);
1322 error
= memory_bm_create(&orig_bm
, GFP_IMAGE
, PG_ANY
);
1326 error
= memory_bm_create(©_bm
, GFP_IMAGE
, PG_ANY
);
1333 /* Count the number of saveable data pages. */
1334 save_highmem
= count_highmem_pages();
1335 saveable
= count_data_pages();
1338 * Compute the total number of page frames we can use (count) and the
1339 * number of pages needed for image metadata (size).
1342 saveable
+= save_highmem
;
1343 highmem
= save_highmem
;
1345 for_each_populated_zone(zone
) {
1346 size
+= snapshot_additional_pages(zone
);
1347 if (is_highmem(zone
))
1348 highmem
+= zone_page_state(zone
, NR_FREE_PAGES
);
1350 count
+= zone_page_state(zone
, NR_FREE_PAGES
);
1352 avail_normal
= count
;
1354 count
-= totalreserve_pages
;
1356 /* Add number of pages required for page keys (s390 only). */
1357 size
+= page_key_additional_pages(saveable
);
1359 /* Compute the maximum number of saveable pages to leave in memory. */
1360 max_size
= (count
- (size
+ PAGES_FOR_IO
)) / 2
1361 - 2 * DIV_ROUND_UP(reserved_size
, PAGE_SIZE
);
1362 /* Compute the desired number of image pages specified by image_size. */
1363 size
= DIV_ROUND_UP(image_size
, PAGE_SIZE
);
1364 if (size
> max_size
)
1367 * If the desired number of image pages is at least as large as the
1368 * current number of saveable pages in memory, allocate page frames for
1369 * the image and we're done.
1371 if (size
>= saveable
) {
1372 pages
= preallocate_image_highmem(save_highmem
);
1373 pages
+= preallocate_image_memory(saveable
- pages
, avail_normal
);
1377 /* Estimate the minimum size of the image. */
1378 pages
= minimum_image_size(saveable
);
1380 * To avoid excessive pressure on the normal zone, leave room in it to
1381 * accommodate an image of the minimum size (unless it's already too
1382 * small, in which case don't preallocate pages from it at all).
1384 if (avail_normal
> pages
)
1385 avail_normal
-= pages
;
1389 size
= min_t(unsigned long, pages
, max_size
);
1392 * Let the memory management subsystem know that we're going to need a
1393 * large number of page frames to allocate and make it free some memory.
1394 * NOTE: If this is not done, performance will be hurt badly in some
1397 shrink_all_memory(saveable
- size
);
1400 * The number of saveable pages in memory was too high, so apply some
1401 * pressure to decrease it. First, make room for the largest possible
1402 * image and fail if that doesn't work. Next, try to decrease the size
1403 * of the image as much as indicated by 'size' using allocations from
1404 * highmem and non-highmem zones separately.
1406 pages_highmem
= preallocate_image_highmem(highmem
/ 2);
1407 alloc
= count
- max_size
;
1408 if (alloc
> pages_highmem
)
1409 alloc
-= pages_highmem
;
1412 pages
= preallocate_image_memory(alloc
, avail_normal
);
1413 if (pages
< alloc
) {
1414 /* We have exhausted non-highmem pages, try highmem. */
1416 pages
+= pages_highmem
;
1417 pages_highmem
= preallocate_image_highmem(alloc
);
1418 if (pages_highmem
< alloc
)
1420 pages
+= pages_highmem
;
1422 * size is the desired number of saveable pages to leave in
1423 * memory, so try to preallocate (all memory - size) pages.
1425 alloc
= (count
- pages
) - size
;
1426 pages
+= preallocate_image_highmem(alloc
);
1429 * There are approximately max_size saveable pages at this point
1430 * and we want to reduce this number down to size.
1432 alloc
= max_size
- size
;
1433 size
= preallocate_highmem_fraction(alloc
, highmem
, count
);
1434 pages_highmem
+= size
;
1436 size
= preallocate_image_memory(alloc
, avail_normal
);
1437 pages_highmem
+= preallocate_image_highmem(alloc
- size
);
1438 pages
+= pages_highmem
+ size
;
1442 * We only need as many page frames for the image as there are saveable
1443 * pages in memory, but we have allocated more. Release the excessive
1446 free_unnecessary_pages();
1449 do_gettimeofday(&stop
);
1450 printk(KERN_CONT
"done (allocated %lu pages)\n", pages
);
1451 swsusp_show_speed(&start
, &stop
, pages
, "Allocated");
1456 printk(KERN_CONT
"\n");
1461 #ifdef CONFIG_HIGHMEM
1463 * count_pages_for_highmem - compute the number of non-highmem pages
1464 * that will be necessary for creating copies of highmem pages.
1467 static unsigned int count_pages_for_highmem(unsigned int nr_highmem
)
1469 unsigned int free_highmem
= count_free_highmem_pages() + alloc_highmem
;
1471 if (free_highmem
>= nr_highmem
)
1474 nr_highmem
-= free_highmem
;
1480 count_pages_for_highmem(unsigned int nr_highmem
) { return 0; }
1481 #endif /* CONFIG_HIGHMEM */
1484 * enough_free_mem - Make sure we have enough free memory for the
1488 static int enough_free_mem(unsigned int nr_pages
, unsigned int nr_highmem
)
1491 unsigned int free
= alloc_normal
;
1493 for_each_populated_zone(zone
)
1494 if (!is_highmem(zone
))
1495 free
+= zone_page_state(zone
, NR_FREE_PAGES
);
1497 nr_pages
+= count_pages_for_highmem(nr_highmem
);
1498 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1499 nr_pages
, PAGES_FOR_IO
, free
);
1501 return free
> nr_pages
+ PAGES_FOR_IO
;
1504 #ifdef CONFIG_HIGHMEM
1506 * get_highmem_buffer - if there are some highmem pages in the suspend
1507 * image, we may need the buffer to copy them and/or load their data.
1510 static inline int get_highmem_buffer(int safe_needed
)
1512 buffer
= get_image_page(GFP_ATOMIC
| __GFP_COLD
, safe_needed
);
1513 return buffer
? 0 : -ENOMEM
;
1517 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1518 * Try to allocate as many pages as needed, but if the number of free
1519 * highmem pages is lesser than that, allocate them all.
1522 static inline unsigned int
1523 alloc_highmem_pages(struct memory_bitmap
*bm
, unsigned int nr_highmem
)
1525 unsigned int to_alloc
= count_free_highmem_pages();
1527 if (to_alloc
> nr_highmem
)
1528 to_alloc
= nr_highmem
;
1530 nr_highmem
-= to_alloc
;
1531 while (to_alloc
-- > 0) {
1534 page
= alloc_image_page(__GFP_HIGHMEM
);
1535 memory_bm_set_bit(bm
, page_to_pfn(page
));
1540 static inline int get_highmem_buffer(int safe_needed
) { return 0; }
1542 static inline unsigned int
1543 alloc_highmem_pages(struct memory_bitmap
*bm
, unsigned int n
) { return 0; }
1544 #endif /* CONFIG_HIGHMEM */
1547 * swsusp_alloc - allocate memory for the suspend image
1549 * We first try to allocate as many highmem pages as there are
1550 * saveable highmem pages in the system. If that fails, we allocate
1551 * non-highmem pages for the copies of the remaining highmem ones.
1553 * In this approach it is likely that the copies of highmem pages will
1554 * also be located in the high memory, because of the way in which
1555 * copy_data_pages() works.
1559 swsusp_alloc(struct memory_bitmap
*orig_bm
, struct memory_bitmap
*copy_bm
,
1560 unsigned int nr_pages
, unsigned int nr_highmem
)
1562 if (nr_highmem
> 0) {
1563 if (get_highmem_buffer(PG_ANY
))
1565 if (nr_highmem
> alloc_highmem
) {
1566 nr_highmem
-= alloc_highmem
;
1567 nr_pages
+= alloc_highmem_pages(copy_bm
, nr_highmem
);
1570 if (nr_pages
> alloc_normal
) {
1571 nr_pages
-= alloc_normal
;
1572 while (nr_pages
-- > 0) {
1575 page
= alloc_image_page(GFP_ATOMIC
| __GFP_COLD
);
1578 memory_bm_set_bit(copy_bm
, page_to_pfn(page
));
1589 asmlinkage __visible
int swsusp_save(void)
1591 unsigned int nr_pages
, nr_highmem
;
1593 printk(KERN_INFO
"PM: Creating hibernation image:\n");
1595 drain_local_pages(NULL
);
1596 nr_pages
= count_data_pages();
1597 nr_highmem
= count_highmem_pages();
1598 printk(KERN_INFO
"PM: Need to copy %u pages\n", nr_pages
+ nr_highmem
);
1600 if (!enough_free_mem(nr_pages
, nr_highmem
)) {
1601 printk(KERN_ERR
"PM: Not enough free memory\n");
1605 if (swsusp_alloc(&orig_bm
, ©_bm
, nr_pages
, nr_highmem
)) {
1606 printk(KERN_ERR
"PM: Memory allocation failed\n");
1610 /* During allocating of suspend pagedir, new cold pages may appear.
1613 drain_local_pages(NULL
);
1614 copy_data_pages(©_bm
, &orig_bm
);
1617 * End of critical section. From now on, we can write to memory,
1618 * but we should not touch disk. This specially means we must _not_
1619 * touch swap space! Except we must write out our image of course.
1622 nr_pages
+= nr_highmem
;
1623 nr_copy_pages
= nr_pages
;
1624 nr_meta_pages
= DIV_ROUND_UP(nr_pages
* sizeof(long), PAGE_SIZE
);
1626 printk(KERN_INFO
"PM: Hibernation image created (%d pages copied)\n",
1632 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1633 static int init_header_complete(struct swsusp_info
*info
)
1635 memcpy(&info
->uts
, init_utsname(), sizeof(struct new_utsname
));
1636 info
->version_code
= LINUX_VERSION_CODE
;
1640 static char *check_image_kernel(struct swsusp_info
*info
)
1642 if (info
->version_code
!= LINUX_VERSION_CODE
)
1643 return "kernel version";
1644 if (strcmp(info
->uts
.sysname
,init_utsname()->sysname
))
1645 return "system type";
1646 if (strcmp(info
->uts
.release
,init_utsname()->release
))
1647 return "kernel release";
1648 if (strcmp(info
->uts
.version
,init_utsname()->version
))
1650 if (strcmp(info
->uts
.machine
,init_utsname()->machine
))
1654 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1656 unsigned long snapshot_get_image_size(void)
1658 return nr_copy_pages
+ nr_meta_pages
+ 1;
1661 static int init_header(struct swsusp_info
*info
)
1663 memset(info
, 0, sizeof(struct swsusp_info
));
1664 info
->num_physpages
= get_num_physpages();
1665 info
->image_pages
= nr_copy_pages
;
1666 info
->pages
= snapshot_get_image_size();
1667 info
->size
= info
->pages
;
1668 info
->size
<<= PAGE_SHIFT
;
1669 return init_header_complete(info
);
1673 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1674 * are stored in the array @buf[] (1 page at a time)
1678 pack_pfns(unsigned long *buf
, struct memory_bitmap
*bm
)
1682 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
1683 buf
[j
] = memory_bm_next_pfn(bm
);
1684 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
1686 /* Save page key for data page (s390 only). */
1687 page_key_read(buf
+ j
);
1692 * snapshot_read_next - used for reading the system memory snapshot.
1694 * On the first call to it @handle should point to a zeroed
1695 * snapshot_handle structure. The structure gets updated and a pointer
1696 * to it should be passed to this function every next time.
1698 * On success the function returns a positive number. Then, the caller
1699 * is allowed to read up to the returned number of bytes from the memory
1700 * location computed by the data_of() macro.
1702 * The function returns 0 to indicate the end of data stream condition,
1703 * and a negative number is returned on error. In such cases the
1704 * structure pointed to by @handle is not updated and should not be used
1708 int snapshot_read_next(struct snapshot_handle
*handle
)
1710 if (handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
1714 /* This makes the buffer be freed by swsusp_free() */
1715 buffer
= get_image_page(GFP_ATOMIC
, PG_ANY
);
1722 error
= init_header((struct swsusp_info
*)buffer
);
1725 handle
->buffer
= buffer
;
1726 memory_bm_position_reset(&orig_bm
);
1727 memory_bm_position_reset(©_bm
);
1728 } else if (handle
->cur
<= nr_meta_pages
) {
1730 pack_pfns(buffer
, &orig_bm
);
1734 page
= pfn_to_page(memory_bm_next_pfn(©_bm
));
1735 if (PageHighMem(page
)) {
1736 /* Highmem pages are copied to the buffer,
1737 * because we can't return with a kmapped
1738 * highmem page (we may not be called again).
1742 kaddr
= kmap_atomic(page
);
1743 copy_page(buffer
, kaddr
);
1744 kunmap_atomic(kaddr
);
1745 handle
->buffer
= buffer
;
1747 handle
->buffer
= page_address(page
);
1755 * mark_unsafe_pages - mark the pages that cannot be used for storing
1756 * the image during resume, because they conflict with the pages that
1757 * had been used before suspend
1760 static int mark_unsafe_pages(struct memory_bitmap
*bm
)
1763 unsigned long pfn
, max_zone_pfn
;
1765 /* Clear page flags */
1766 for_each_populated_zone(zone
) {
1767 max_zone_pfn
= zone_end_pfn(zone
);
1768 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1770 swsusp_unset_page_free(pfn_to_page(pfn
));
1773 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1774 memory_bm_position_reset(bm
);
1776 pfn
= memory_bm_next_pfn(bm
);
1777 if (likely(pfn
!= BM_END_OF_MAP
)) {
1778 if (likely(pfn_valid(pfn
)))
1779 swsusp_set_page_free(pfn_to_page(pfn
));
1783 } while (pfn
!= BM_END_OF_MAP
);
1785 allocated_unsafe_pages
= 0;
1791 duplicate_memory_bitmap(struct memory_bitmap
*dst
, struct memory_bitmap
*src
)
1795 memory_bm_position_reset(src
);
1796 pfn
= memory_bm_next_pfn(src
);
1797 while (pfn
!= BM_END_OF_MAP
) {
1798 memory_bm_set_bit(dst
, pfn
);
1799 pfn
= memory_bm_next_pfn(src
);
1803 static int check_header(struct swsusp_info
*info
)
1807 reason
= check_image_kernel(info
);
1808 if (!reason
&& info
->num_physpages
!= get_num_physpages())
1809 reason
= "memory size";
1811 printk(KERN_ERR
"PM: Image mismatch: %s\n", reason
);
1818 * load header - check the image header and copy data from it
1822 load_header(struct swsusp_info
*info
)
1826 restore_pblist
= NULL
;
1827 error
= check_header(info
);
1829 nr_copy_pages
= info
->image_pages
;
1830 nr_meta_pages
= info
->pages
- info
->image_pages
- 1;
1836 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1837 * the corresponding bit in the memory bitmap @bm
1839 static int unpack_orig_pfns(unsigned long *buf
, struct memory_bitmap
*bm
)
1843 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
1844 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
1847 /* Extract and buffer page key for data page (s390 only). */
1848 page_key_memorize(buf
+ j
);
1850 if (memory_bm_pfn_present(bm
, buf
[j
]))
1851 memory_bm_set_bit(bm
, buf
[j
]);
1859 /* List of "safe" pages that may be used to store data loaded from the suspend
1862 static struct linked_page
*safe_pages_list
;
1864 #ifdef CONFIG_HIGHMEM
1865 /* struct highmem_pbe is used for creating the list of highmem pages that
1866 * should be restored atomically during the resume from disk, because the page
1867 * frames they have occupied before the suspend are in use.
1869 struct highmem_pbe
{
1870 struct page
*copy_page
; /* data is here now */
1871 struct page
*orig_page
; /* data was here before the suspend */
1872 struct highmem_pbe
*next
;
1875 /* List of highmem PBEs needed for restoring the highmem pages that were
1876 * allocated before the suspend and included in the suspend image, but have
1877 * also been allocated by the "resume" kernel, so their contents cannot be
1878 * written directly to their "original" page frames.
1880 static struct highmem_pbe
*highmem_pblist
;
1883 * count_highmem_image_pages - compute the number of highmem pages in the
1884 * suspend image. The bits in the memory bitmap @bm that correspond to the
1885 * image pages are assumed to be set.
1888 static unsigned int count_highmem_image_pages(struct memory_bitmap
*bm
)
1891 unsigned int cnt
= 0;
1893 memory_bm_position_reset(bm
);
1894 pfn
= memory_bm_next_pfn(bm
);
1895 while (pfn
!= BM_END_OF_MAP
) {
1896 if (PageHighMem(pfn_to_page(pfn
)))
1899 pfn
= memory_bm_next_pfn(bm
);
1905 * prepare_highmem_image - try to allocate as many highmem pages as
1906 * there are highmem image pages (@nr_highmem_p points to the variable
1907 * containing the number of highmem image pages). The pages that are
1908 * "safe" (ie. will not be overwritten when the suspend image is
1909 * restored) have the corresponding bits set in @bm (it must be
1912 * NOTE: This function should not be called if there are no highmem
1916 static unsigned int safe_highmem_pages
;
1918 static struct memory_bitmap
*safe_highmem_bm
;
1921 prepare_highmem_image(struct memory_bitmap
*bm
, unsigned int *nr_highmem_p
)
1923 unsigned int to_alloc
;
1925 if (memory_bm_create(bm
, GFP_ATOMIC
, PG_SAFE
))
1928 if (get_highmem_buffer(PG_SAFE
))
1931 to_alloc
= count_free_highmem_pages();
1932 if (to_alloc
> *nr_highmem_p
)
1933 to_alloc
= *nr_highmem_p
;
1935 *nr_highmem_p
= to_alloc
;
1937 safe_highmem_pages
= 0;
1938 while (to_alloc
-- > 0) {
1941 page
= alloc_page(__GFP_HIGHMEM
);
1942 if (!swsusp_page_is_free(page
)) {
1943 /* The page is "safe", set its bit the bitmap */
1944 memory_bm_set_bit(bm
, page_to_pfn(page
));
1945 safe_highmem_pages
++;
1947 /* Mark the page as allocated */
1948 swsusp_set_page_forbidden(page
);
1949 swsusp_set_page_free(page
);
1951 memory_bm_position_reset(bm
);
1952 safe_highmem_bm
= bm
;
1957 * get_highmem_page_buffer - for given highmem image page find the buffer
1958 * that suspend_write_next() should set for its caller to write to.
1960 * If the page is to be saved to its "original" page frame or a copy of
1961 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1962 * the copy of the page is to be made in normal memory, so the address of
1963 * the copy is returned.
1965 * If @buffer is returned, the caller of suspend_write_next() will write
1966 * the page's contents to @buffer, so they will have to be copied to the
1967 * right location on the next call to suspend_write_next() and it is done
1968 * with the help of copy_last_highmem_page(). For this purpose, if
1969 * @buffer is returned, @last_highmem page is set to the page to which
1970 * the data will have to be copied from @buffer.
1973 static struct page
*last_highmem_page
;
1976 get_highmem_page_buffer(struct page
*page
, struct chain_allocator
*ca
)
1978 struct highmem_pbe
*pbe
;
1981 if (swsusp_page_is_forbidden(page
) && swsusp_page_is_free(page
)) {
1982 /* We have allocated the "original" page frame and we can
1983 * use it directly to store the loaded page.
1985 last_highmem_page
= page
;
1988 /* The "original" page frame has not been allocated and we have to
1989 * use a "safe" page frame to store the loaded page.
1991 pbe
= chain_alloc(ca
, sizeof(struct highmem_pbe
));
1994 return ERR_PTR(-ENOMEM
);
1996 pbe
->orig_page
= page
;
1997 if (safe_highmem_pages
> 0) {
2000 /* Copy of the page will be stored in high memory */
2002 tmp
= pfn_to_page(memory_bm_next_pfn(safe_highmem_bm
));
2003 safe_highmem_pages
--;
2004 last_highmem_page
= tmp
;
2005 pbe
->copy_page
= tmp
;
2007 /* Copy of the page will be stored in normal memory */
2008 kaddr
= safe_pages_list
;
2009 safe_pages_list
= safe_pages_list
->next
;
2010 pbe
->copy_page
= virt_to_page(kaddr
);
2012 pbe
->next
= highmem_pblist
;
2013 highmem_pblist
= pbe
;
2018 * copy_last_highmem_page - copy the contents of a highmem image from
2019 * @buffer, where the caller of snapshot_write_next() has place them,
2020 * to the right location represented by @last_highmem_page .
2023 static void copy_last_highmem_page(void)
2025 if (last_highmem_page
) {
2028 dst
= kmap_atomic(last_highmem_page
);
2029 copy_page(dst
, buffer
);
2031 last_highmem_page
= NULL
;
2035 static inline int last_highmem_page_copied(void)
2037 return !last_highmem_page
;
2040 static inline void free_highmem_data(void)
2042 if (safe_highmem_bm
)
2043 memory_bm_free(safe_highmem_bm
, PG_UNSAFE_CLEAR
);
2046 free_image_page(buffer
, PG_UNSAFE_CLEAR
);
2049 static inline int get_safe_write_buffer(void) { return 0; }
2052 count_highmem_image_pages(struct memory_bitmap
*bm
) { return 0; }
2055 prepare_highmem_image(struct memory_bitmap
*bm
, unsigned int *nr_highmem_p
)
2060 static inline void *
2061 get_highmem_page_buffer(struct page
*page
, struct chain_allocator
*ca
)
2063 return ERR_PTR(-EINVAL
);
2066 static inline void copy_last_highmem_page(void) {}
2067 static inline int last_highmem_page_copied(void) { return 1; }
2068 static inline void free_highmem_data(void) {}
2069 #endif /* CONFIG_HIGHMEM */
2072 * prepare_image - use the memory bitmap @bm to mark the pages that will
2073 * be overwritten in the process of restoring the system memory state
2074 * from the suspend image ("unsafe" pages) and allocate memory for the
2077 * The idea is to allocate a new memory bitmap first and then allocate
2078 * as many pages as needed for the image data, but not to assign these
2079 * pages to specific tasks initially. Instead, we just mark them as
2080 * allocated and create a lists of "safe" pages that will be used
2081 * later. On systems with high memory a list of "safe" highmem pages is
2085 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2088 prepare_image(struct memory_bitmap
*new_bm
, struct memory_bitmap
*bm
)
2090 unsigned int nr_pages
, nr_highmem
;
2091 struct linked_page
*sp_list
, *lp
;
2094 /* If there is no highmem, the buffer will not be necessary */
2095 free_image_page(buffer
, PG_UNSAFE_CLEAR
);
2098 nr_highmem
= count_highmem_image_pages(bm
);
2099 error
= mark_unsafe_pages(bm
);
2103 error
= memory_bm_create(new_bm
, GFP_ATOMIC
, PG_SAFE
);
2107 duplicate_memory_bitmap(new_bm
, bm
);
2108 memory_bm_free(bm
, PG_UNSAFE_KEEP
);
2109 if (nr_highmem
> 0) {
2110 error
= prepare_highmem_image(bm
, &nr_highmem
);
2114 /* Reserve some safe pages for potential later use.
2116 * NOTE: This way we make sure there will be enough safe pages for the
2117 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2118 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2121 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2122 nr_pages
= nr_copy_pages
- nr_highmem
- allocated_unsafe_pages
;
2123 nr_pages
= DIV_ROUND_UP(nr_pages
, PBES_PER_LINKED_PAGE
);
2124 while (nr_pages
> 0) {
2125 lp
= get_image_page(GFP_ATOMIC
, PG_SAFE
);
2134 /* Preallocate memory for the image */
2135 safe_pages_list
= NULL
;
2136 nr_pages
= nr_copy_pages
- nr_highmem
- allocated_unsafe_pages
;
2137 while (nr_pages
> 0) {
2138 lp
= (struct linked_page
*)get_zeroed_page(GFP_ATOMIC
);
2143 if (!swsusp_page_is_free(virt_to_page(lp
))) {
2144 /* The page is "safe", add it to the list */
2145 lp
->next
= safe_pages_list
;
2146 safe_pages_list
= lp
;
2148 /* Mark the page as allocated */
2149 swsusp_set_page_forbidden(virt_to_page(lp
));
2150 swsusp_set_page_free(virt_to_page(lp
));
2153 /* Free the reserved safe pages so that chain_alloc() can use them */
2156 free_image_page(sp_list
, PG_UNSAFE_CLEAR
);
2167 * get_buffer - compute the address that snapshot_write_next() should
2168 * set for its caller to write to.
2171 static void *get_buffer(struct memory_bitmap
*bm
, struct chain_allocator
*ca
)
2175 unsigned long pfn
= memory_bm_next_pfn(bm
);
2177 if (pfn
== BM_END_OF_MAP
)
2178 return ERR_PTR(-EFAULT
);
2180 page
= pfn_to_page(pfn
);
2181 if (PageHighMem(page
))
2182 return get_highmem_page_buffer(page
, ca
);
2184 if (swsusp_page_is_forbidden(page
) && swsusp_page_is_free(page
))
2185 /* We have allocated the "original" page frame and we can
2186 * use it directly to store the loaded page.
2188 return page_address(page
);
2190 /* The "original" page frame has not been allocated and we have to
2191 * use a "safe" page frame to store the loaded page.
2193 pbe
= chain_alloc(ca
, sizeof(struct pbe
));
2196 return ERR_PTR(-ENOMEM
);
2198 pbe
->orig_address
= page_address(page
);
2199 pbe
->address
= safe_pages_list
;
2200 safe_pages_list
= safe_pages_list
->next
;
2201 pbe
->next
= restore_pblist
;
2202 restore_pblist
= pbe
;
2203 return pbe
->address
;
2207 * snapshot_write_next - used for writing the system memory snapshot.
2209 * On the first call to it @handle should point to a zeroed
2210 * snapshot_handle structure. The structure gets updated and a pointer
2211 * to it should be passed to this function every next time.
2213 * On success the function returns a positive number. Then, the caller
2214 * is allowed to write up to the returned number of bytes to the memory
2215 * location computed by the data_of() macro.
2217 * The function returns 0 to indicate the "end of file" condition,
2218 * and a negative number is returned on error. In such cases the
2219 * structure pointed to by @handle is not updated and should not be used
2223 int snapshot_write_next(struct snapshot_handle
*handle
)
2225 static struct chain_allocator ca
;
2228 /* Check if we have already loaded the entire image */
2229 if (handle
->cur
> 1 && handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
2232 handle
->sync_read
= 1;
2236 /* This makes the buffer be freed by swsusp_free() */
2237 buffer
= get_image_page(GFP_ATOMIC
, PG_ANY
);
2242 handle
->buffer
= buffer
;
2243 } else if (handle
->cur
== 1) {
2244 error
= load_header(buffer
);
2248 error
= memory_bm_create(©_bm
, GFP_ATOMIC
, PG_ANY
);
2252 /* Allocate buffer for page keys. */
2253 error
= page_key_alloc(nr_copy_pages
);
2257 } else if (handle
->cur
<= nr_meta_pages
+ 1) {
2258 error
= unpack_orig_pfns(buffer
, ©_bm
);
2262 if (handle
->cur
== nr_meta_pages
+ 1) {
2263 error
= prepare_image(&orig_bm
, ©_bm
);
2267 chain_init(&ca
, GFP_ATOMIC
, PG_SAFE
);
2268 memory_bm_position_reset(&orig_bm
);
2269 restore_pblist
= NULL
;
2270 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
2271 handle
->sync_read
= 0;
2272 if (IS_ERR(handle
->buffer
))
2273 return PTR_ERR(handle
->buffer
);
2276 copy_last_highmem_page();
2277 /* Restore page key for data page (s390 only). */
2278 page_key_write(handle
->buffer
);
2279 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
2280 if (IS_ERR(handle
->buffer
))
2281 return PTR_ERR(handle
->buffer
);
2282 if (handle
->buffer
!= buffer
)
2283 handle
->sync_read
= 0;
2290 * snapshot_write_finalize - must be called after the last call to
2291 * snapshot_write_next() in case the last page in the image happens
2292 * to be a highmem page and its contents should be stored in the
2293 * highmem. Additionally, it releases the memory that will not be
2297 void snapshot_write_finalize(struct snapshot_handle
*handle
)
2299 copy_last_highmem_page();
2300 /* Restore page key for data page (s390 only). */
2301 page_key_write(handle
->buffer
);
2303 /* Free only if we have loaded the image entirely */
2304 if (handle
->cur
> 1 && handle
->cur
> nr_meta_pages
+ nr_copy_pages
) {
2305 memory_bm_free(&orig_bm
, PG_UNSAFE_CLEAR
);
2306 free_highmem_data();
2310 int snapshot_image_loaded(struct snapshot_handle
*handle
)
2312 return !(!nr_copy_pages
|| !last_highmem_page_copied() ||
2313 handle
->cur
<= nr_meta_pages
+ nr_copy_pages
);
2316 #ifdef CONFIG_HIGHMEM
2317 /* Assumes that @buf is ready and points to a "safe" page */
2319 swap_two_pages_data(struct page
*p1
, struct page
*p2
, void *buf
)
2321 void *kaddr1
, *kaddr2
;
2323 kaddr1
= kmap_atomic(p1
);
2324 kaddr2
= kmap_atomic(p2
);
2325 copy_page(buf
, kaddr1
);
2326 copy_page(kaddr1
, kaddr2
);
2327 copy_page(kaddr2
, buf
);
2328 kunmap_atomic(kaddr2
);
2329 kunmap_atomic(kaddr1
);
2333 * restore_highmem - for each highmem page that was allocated before
2334 * the suspend and included in the suspend image, and also has been
2335 * allocated by the "resume" kernel swap its current (ie. "before
2336 * resume") contents with the previous (ie. "before suspend") one.
2338 * If the resume eventually fails, we can call this function once
2339 * again and restore the "before resume" highmem state.
2342 int restore_highmem(void)
2344 struct highmem_pbe
*pbe
= highmem_pblist
;
2350 buf
= get_image_page(GFP_ATOMIC
, PG_SAFE
);
2355 swap_two_pages_data(pbe
->copy_page
, pbe
->orig_page
, buf
);
2358 free_image_page(buf
, PG_UNSAFE_CLEAR
);
2361 #endif /* CONFIG_HIGHMEM */