2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
46 [BTRFS_RAID_RAID10
] = {
49 .devs_max
= 0, /* 0 == as many as possible */
51 .tolerated_failures
= 1,
55 [BTRFS_RAID_RAID1
] = {
60 .tolerated_failures
= 1,
69 .tolerated_failures
= 0,
73 [BTRFS_RAID_RAID0
] = {
78 .tolerated_failures
= 0,
82 [BTRFS_RAID_SINGLE
] = {
87 .tolerated_failures
= 0,
91 [BTRFS_RAID_RAID5
] = {
96 .tolerated_failures
= 1,
100 [BTRFS_RAID_RAID6
] = {
105 .tolerated_failures
= 2,
111 const u64 btrfs_raid_group
[BTRFS_NR_RAID_TYPES
] = {
112 [BTRFS_RAID_RAID10
] = BTRFS_BLOCK_GROUP_RAID10
,
113 [BTRFS_RAID_RAID1
] = BTRFS_BLOCK_GROUP_RAID1
,
114 [BTRFS_RAID_DUP
] = BTRFS_BLOCK_GROUP_DUP
,
115 [BTRFS_RAID_RAID0
] = BTRFS_BLOCK_GROUP_RAID0
,
116 [BTRFS_RAID_SINGLE
] = 0,
117 [BTRFS_RAID_RAID5
] = BTRFS_BLOCK_GROUP_RAID5
,
118 [BTRFS_RAID_RAID6
] = BTRFS_BLOCK_GROUP_RAID6
,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error
[BTRFS_NR_RAID_TYPES
] = {
127 [BTRFS_RAID_RAID10
] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
128 [BTRFS_RAID_RAID1
] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
129 [BTRFS_RAID_DUP
] = 0,
130 [BTRFS_RAID_RAID0
] = 0,
131 [BTRFS_RAID_SINGLE
] = 0,
132 [BTRFS_RAID_RAID5
] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
133 [BTRFS_RAID_RAID6
] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
136 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
137 struct btrfs_root
*root
,
138 struct btrfs_device
*device
);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
140 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
144 DEFINE_MUTEX(uuid_mutex
);
145 static LIST_HEAD(fs_uuids
);
146 struct list_head
*btrfs_get_fs_uuids(void)
151 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
153 struct btrfs_fs_devices
*fs_devs
;
155 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
157 return ERR_PTR(-ENOMEM
);
159 mutex_init(&fs_devs
->device_list_mutex
);
161 INIT_LIST_HEAD(&fs_devs
->devices
);
162 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
163 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
164 INIT_LIST_HEAD(&fs_devs
->list
);
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
178 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
180 struct btrfs_fs_devices
*fs_devs
;
182 fs_devs
= __alloc_fs_devices();
187 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
189 generate_random_uuid(fs_devs
->fsid
);
194 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
196 struct btrfs_device
*device
;
197 WARN_ON(fs_devices
->opened
);
198 while (!list_empty(&fs_devices
->devices
)) {
199 device
= list_entry(fs_devices
->devices
.next
,
200 struct btrfs_device
, dev_list
);
201 list_del(&device
->dev_list
);
202 rcu_string_free(device
->name
);
208 static void btrfs_kobject_uevent(struct block_device
*bdev
,
209 enum kobject_action action
)
213 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
217 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
218 &disk_to_dev(bdev
->bd_disk
)->kobj
);
221 void btrfs_cleanup_fs_uuids(void)
223 struct btrfs_fs_devices
*fs_devices
;
225 while (!list_empty(&fs_uuids
)) {
226 fs_devices
= list_entry(fs_uuids
.next
,
227 struct btrfs_fs_devices
, list
);
228 list_del(&fs_devices
->list
);
229 free_fs_devices(fs_devices
);
233 static struct btrfs_device
*__alloc_device(void)
235 struct btrfs_device
*dev
;
237 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
239 return ERR_PTR(-ENOMEM
);
241 INIT_LIST_HEAD(&dev
->dev_list
);
242 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
243 INIT_LIST_HEAD(&dev
->resized_list
);
245 spin_lock_init(&dev
->io_lock
);
247 spin_lock_init(&dev
->reada_lock
);
248 atomic_set(&dev
->reada_in_flight
, 0);
249 atomic_set(&dev
->dev_stats_ccnt
, 0);
250 btrfs_device_data_ordered_init(dev
);
251 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
252 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
257 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
260 struct btrfs_device
*dev
;
262 list_for_each_entry(dev
, head
, dev_list
) {
263 if (dev
->devid
== devid
&&
264 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
271 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
273 struct btrfs_fs_devices
*fs_devices
;
275 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
276 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
283 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
284 int flush
, struct block_device
**bdev
,
285 struct buffer_head
**bh
)
289 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
292 ret
= PTR_ERR(*bdev
);
297 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
298 ret
= set_blocksize(*bdev
, 4096);
300 blkdev_put(*bdev
, flags
);
303 invalidate_bdev(*bdev
);
304 *bh
= btrfs_read_dev_super(*bdev
);
307 blkdev_put(*bdev
, flags
);
319 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
320 struct bio
*head
, struct bio
*tail
)
323 struct bio
*old_head
;
325 old_head
= pending_bios
->head
;
326 pending_bios
->head
= head
;
327 if (pending_bios
->tail
)
328 tail
->bi_next
= old_head
;
330 pending_bios
->tail
= tail
;
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
344 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
347 struct backing_dev_info
*bdi
;
348 struct btrfs_fs_info
*fs_info
;
349 struct btrfs_pending_bios
*pending_bios
;
353 unsigned long num_run
;
354 unsigned long batch_run
= 0;
356 unsigned long last_waited
= 0;
358 int sync_pending
= 0;
359 struct blk_plug plug
;
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
367 blk_start_plug(&plug
);
369 bdi
= blk_get_backing_dev_info(device
->bdev
);
370 fs_info
= device
->dev_root
->fs_info
;
371 limit
= btrfs_async_submit_limit(fs_info
);
372 limit
= limit
* 2 / 3;
375 spin_lock(&device
->io_lock
);
380 /* take all the bios off the list at once and process them
381 * later on (without the lock held). But, remember the
382 * tail and other pointers so the bios can be properly reinserted
383 * into the list if we hit congestion
385 if (!force_reg
&& device
->pending_sync_bios
.head
) {
386 pending_bios
= &device
->pending_sync_bios
;
389 pending_bios
= &device
->pending_bios
;
393 pending
= pending_bios
->head
;
394 tail
= pending_bios
->tail
;
395 WARN_ON(pending
&& !tail
);
398 * if pending was null this time around, no bios need processing
399 * at all and we can stop. Otherwise it'll loop back up again
400 * and do an additional check so no bios are missed.
402 * device->running_pending is used to synchronize with the
405 if (device
->pending_sync_bios
.head
== NULL
&&
406 device
->pending_bios
.head
== NULL
) {
408 device
->running_pending
= 0;
411 device
->running_pending
= 1;
414 pending_bios
->head
= NULL
;
415 pending_bios
->tail
= NULL
;
417 spin_unlock(&device
->io_lock
);
422 /* we want to work on both lists, but do more bios on the
423 * sync list than the regular list
426 pending_bios
!= &device
->pending_sync_bios
&&
427 device
->pending_sync_bios
.head
) ||
428 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
429 device
->pending_bios
.head
)) {
430 spin_lock(&device
->io_lock
);
431 requeue_list(pending_bios
, pending
, tail
);
436 pending
= pending
->bi_next
;
440 * atomic_dec_return implies a barrier for waitqueue_active
442 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
443 waitqueue_active(&fs_info
->async_submit_wait
))
444 wake_up(&fs_info
->async_submit_wait
);
446 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
449 * if we're doing the sync list, record that our
450 * plug has some sync requests on it
452 * If we're doing the regular list and there are
453 * sync requests sitting around, unplug before
456 if (pending_bios
== &device
->pending_sync_bios
) {
458 } else if (sync_pending
) {
459 blk_finish_plug(&plug
);
460 blk_start_plug(&plug
);
464 btrfsic_submit_bio(cur
);
471 * we made progress, there is more work to do and the bdi
472 * is now congested. Back off and let other work structs
475 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
476 fs_info
->fs_devices
->open_devices
> 1) {
477 struct io_context
*ioc
;
479 ioc
= current
->io_context
;
482 * the main goal here is that we don't want to
483 * block if we're going to be able to submit
484 * more requests without blocking.
486 * This code does two great things, it pokes into
487 * the elevator code from a filesystem _and_
488 * it makes assumptions about how batching works.
490 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
491 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
493 ioc
->last_waited
== last_waited
)) {
495 * we want to go through our batch of
496 * requests and stop. So, we copy out
497 * the ioc->last_waited time and test
498 * against it before looping
500 last_waited
= ioc
->last_waited
;
504 spin_lock(&device
->io_lock
);
505 requeue_list(pending_bios
, pending
, tail
);
506 device
->running_pending
= 1;
508 spin_unlock(&device
->io_lock
);
509 btrfs_queue_work(fs_info
->submit_workers
,
513 /* unplug every 64 requests just for good measure */
514 if (batch_run
% 64 == 0) {
515 blk_finish_plug(&plug
);
516 blk_start_plug(&plug
);
525 spin_lock(&device
->io_lock
);
526 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
528 spin_unlock(&device
->io_lock
);
531 blk_finish_plug(&plug
);
534 static void pending_bios_fn(struct btrfs_work
*work
)
536 struct btrfs_device
*device
;
538 device
= container_of(work
, struct btrfs_device
, work
);
539 run_scheduled_bios(device
);
543 void btrfs_free_stale_device(struct btrfs_device
*cur_dev
)
545 struct btrfs_fs_devices
*fs_devs
;
546 struct btrfs_device
*dev
;
551 list_for_each_entry(fs_devs
, &fs_uuids
, list
) {
556 if (fs_devs
->seeding
)
559 list_for_each_entry(dev
, &fs_devs
->devices
, dev_list
) {
567 * Todo: This won't be enough. What if the same device
568 * comes back (with new uuid and) with its mapper path?
569 * But for now, this does help as mostly an admin will
570 * either use mapper or non mapper path throughout.
573 del
= strcmp(rcu_str_deref(dev
->name
),
574 rcu_str_deref(cur_dev
->name
));
581 /* delete the stale device */
582 if (fs_devs
->num_devices
== 1) {
583 btrfs_sysfs_remove_fsid(fs_devs
);
584 list_del(&fs_devs
->list
);
585 free_fs_devices(fs_devs
);
587 fs_devs
->num_devices
--;
588 list_del(&dev
->dev_list
);
589 rcu_string_free(dev
->name
);
598 * Add new device to list of registered devices
601 * 1 - first time device is seen
602 * 0 - device already known
605 static noinline
int device_list_add(const char *path
,
606 struct btrfs_super_block
*disk_super
,
607 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
609 struct btrfs_device
*device
;
610 struct btrfs_fs_devices
*fs_devices
;
611 struct rcu_string
*name
;
613 u64 found_transid
= btrfs_super_generation(disk_super
);
615 fs_devices
= find_fsid(disk_super
->fsid
);
617 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
618 if (IS_ERR(fs_devices
))
619 return PTR_ERR(fs_devices
);
621 list_add(&fs_devices
->list
, &fs_uuids
);
625 device
= __find_device(&fs_devices
->devices
, devid
,
626 disk_super
->dev_item
.uuid
);
630 if (fs_devices
->opened
)
633 device
= btrfs_alloc_device(NULL
, &devid
,
634 disk_super
->dev_item
.uuid
);
635 if (IS_ERR(device
)) {
636 /* we can safely leave the fs_devices entry around */
637 return PTR_ERR(device
);
640 name
= rcu_string_strdup(path
, GFP_NOFS
);
645 rcu_assign_pointer(device
->name
, name
);
647 mutex_lock(&fs_devices
->device_list_mutex
);
648 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
649 fs_devices
->num_devices
++;
650 mutex_unlock(&fs_devices
->device_list_mutex
);
653 device
->fs_devices
= fs_devices
;
654 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
656 * When FS is already mounted.
657 * 1. If you are here and if the device->name is NULL that
658 * means this device was missing at time of FS mount.
659 * 2. If you are here and if the device->name is different
660 * from 'path' that means either
661 * a. The same device disappeared and reappeared with
663 * b. The missing-disk-which-was-replaced, has
666 * We must allow 1 and 2a above. But 2b would be a spurious
669 * Further in case of 1 and 2a above, the disk at 'path'
670 * would have missed some transaction when it was away and
671 * in case of 2a the stale bdev has to be updated as well.
672 * 2b must not be allowed at all time.
676 * For now, we do allow update to btrfs_fs_device through the
677 * btrfs dev scan cli after FS has been mounted. We're still
678 * tracking a problem where systems fail mount by subvolume id
679 * when we reject replacement on a mounted FS.
681 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
683 * That is if the FS is _not_ mounted and if you
684 * are here, that means there is more than one
685 * disk with same uuid and devid.We keep the one
686 * with larger generation number or the last-in if
687 * generation are equal.
692 name
= rcu_string_strdup(path
, GFP_NOFS
);
695 rcu_string_free(device
->name
);
696 rcu_assign_pointer(device
->name
, name
);
697 if (device
->missing
) {
698 fs_devices
->missing_devices
--;
704 * Unmount does not free the btrfs_device struct but would zero
705 * generation along with most of the other members. So just update
706 * it back. We need it to pick the disk with largest generation
709 if (!fs_devices
->opened
)
710 device
->generation
= found_transid
;
713 * if there is new btrfs on an already registered device,
714 * then remove the stale device entry.
717 btrfs_free_stale_device(device
);
719 *fs_devices_ret
= fs_devices
;
724 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
726 struct btrfs_fs_devices
*fs_devices
;
727 struct btrfs_device
*device
;
728 struct btrfs_device
*orig_dev
;
730 fs_devices
= alloc_fs_devices(orig
->fsid
);
731 if (IS_ERR(fs_devices
))
734 mutex_lock(&orig
->device_list_mutex
);
735 fs_devices
->total_devices
= orig
->total_devices
;
737 /* We have held the volume lock, it is safe to get the devices. */
738 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
739 struct rcu_string
*name
;
741 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
747 * This is ok to do without rcu read locked because we hold the
748 * uuid mutex so nothing we touch in here is going to disappear.
750 if (orig_dev
->name
) {
751 name
= rcu_string_strdup(orig_dev
->name
->str
,
757 rcu_assign_pointer(device
->name
, name
);
760 list_add(&device
->dev_list
, &fs_devices
->devices
);
761 device
->fs_devices
= fs_devices
;
762 fs_devices
->num_devices
++;
764 mutex_unlock(&orig
->device_list_mutex
);
767 mutex_unlock(&orig
->device_list_mutex
);
768 free_fs_devices(fs_devices
);
769 return ERR_PTR(-ENOMEM
);
772 void btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
, int step
)
774 struct btrfs_device
*device
, *next
;
775 struct btrfs_device
*latest_dev
= NULL
;
777 mutex_lock(&uuid_mutex
);
779 /* This is the initialized path, it is safe to release the devices. */
780 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
781 if (device
->in_fs_metadata
) {
782 if (!device
->is_tgtdev_for_dev_replace
&&
784 device
->generation
> latest_dev
->generation
)) {
790 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
792 * In the first step, keep the device which has
793 * the correct fsid and the devid that is used
794 * for the dev_replace procedure.
795 * In the second step, the dev_replace state is
796 * read from the device tree and it is known
797 * whether the procedure is really active or
798 * not, which means whether this device is
799 * used or whether it should be removed.
801 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
806 blkdev_put(device
->bdev
, device
->mode
);
808 fs_devices
->open_devices
--;
810 if (device
->writeable
) {
811 list_del_init(&device
->dev_alloc_list
);
812 device
->writeable
= 0;
813 if (!device
->is_tgtdev_for_dev_replace
)
814 fs_devices
->rw_devices
--;
816 list_del_init(&device
->dev_list
);
817 fs_devices
->num_devices
--;
818 rcu_string_free(device
->name
);
822 if (fs_devices
->seed
) {
823 fs_devices
= fs_devices
->seed
;
827 fs_devices
->latest_bdev
= latest_dev
->bdev
;
829 mutex_unlock(&uuid_mutex
);
832 static void __free_device(struct work_struct
*work
)
834 struct btrfs_device
*device
;
836 device
= container_of(work
, struct btrfs_device
, rcu_work
);
837 rcu_string_free(device
->name
);
841 static void free_device(struct rcu_head
*head
)
843 struct btrfs_device
*device
;
845 device
= container_of(head
, struct btrfs_device
, rcu
);
847 INIT_WORK(&device
->rcu_work
, __free_device
);
848 schedule_work(&device
->rcu_work
);
851 static void btrfs_close_bdev(struct btrfs_device
*device
)
853 if (device
->bdev
&& device
->writeable
) {
854 sync_blockdev(device
->bdev
);
855 invalidate_bdev(device
->bdev
);
859 blkdev_put(device
->bdev
, device
->mode
);
862 static void btrfs_close_one_device(struct btrfs_device
*device
)
864 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
865 struct btrfs_device
*new_device
;
866 struct rcu_string
*name
;
869 fs_devices
->open_devices
--;
871 if (device
->writeable
&&
872 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
873 list_del_init(&device
->dev_alloc_list
);
874 fs_devices
->rw_devices
--;
878 fs_devices
->missing_devices
--;
880 btrfs_close_bdev(device
);
882 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
884 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
886 /* Safe because we are under uuid_mutex */
888 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
889 BUG_ON(!name
); /* -ENOMEM */
890 rcu_assign_pointer(new_device
->name
, name
);
893 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
894 new_device
->fs_devices
= device
->fs_devices
;
896 call_rcu(&device
->rcu
, free_device
);
899 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
901 struct btrfs_device
*device
, *tmp
;
903 if (--fs_devices
->opened
> 0)
906 mutex_lock(&fs_devices
->device_list_mutex
);
907 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
908 btrfs_close_one_device(device
);
910 mutex_unlock(&fs_devices
->device_list_mutex
);
912 WARN_ON(fs_devices
->open_devices
);
913 WARN_ON(fs_devices
->rw_devices
);
914 fs_devices
->opened
= 0;
915 fs_devices
->seeding
= 0;
920 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
922 struct btrfs_fs_devices
*seed_devices
= NULL
;
925 mutex_lock(&uuid_mutex
);
926 ret
= __btrfs_close_devices(fs_devices
);
927 if (!fs_devices
->opened
) {
928 seed_devices
= fs_devices
->seed
;
929 fs_devices
->seed
= NULL
;
931 mutex_unlock(&uuid_mutex
);
933 while (seed_devices
) {
934 fs_devices
= seed_devices
;
935 seed_devices
= fs_devices
->seed
;
936 __btrfs_close_devices(fs_devices
);
937 free_fs_devices(fs_devices
);
940 * Wait for rcu kworkers under __btrfs_close_devices
941 * to finish all blkdev_puts so device is really
942 * free when umount is done.
948 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
949 fmode_t flags
, void *holder
)
951 struct request_queue
*q
;
952 struct block_device
*bdev
;
953 struct list_head
*head
= &fs_devices
->devices
;
954 struct btrfs_device
*device
;
955 struct btrfs_device
*latest_dev
= NULL
;
956 struct buffer_head
*bh
;
957 struct btrfs_super_block
*disk_super
;
964 list_for_each_entry(device
, head
, dev_list
) {
970 /* Just open everything we can; ignore failures here */
971 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
975 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
976 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
977 if (devid
!= device
->devid
)
980 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
984 device
->generation
= btrfs_super_generation(disk_super
);
986 device
->generation
> latest_dev
->generation
)
989 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
990 device
->writeable
= 0;
992 device
->writeable
= !bdev_read_only(bdev
);
996 q
= bdev_get_queue(bdev
);
997 if (blk_queue_discard(q
))
998 device
->can_discard
= 1;
1000 device
->bdev
= bdev
;
1001 device
->in_fs_metadata
= 0;
1002 device
->mode
= flags
;
1004 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
1005 fs_devices
->rotating
= 1;
1007 fs_devices
->open_devices
++;
1008 if (device
->writeable
&&
1009 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
1010 fs_devices
->rw_devices
++;
1011 list_add(&device
->dev_alloc_list
,
1012 &fs_devices
->alloc_list
);
1019 blkdev_put(bdev
, flags
);
1022 if (fs_devices
->open_devices
== 0) {
1026 fs_devices
->seeding
= seeding
;
1027 fs_devices
->opened
= 1;
1028 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1029 fs_devices
->total_rw_bytes
= 0;
1034 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1035 fmode_t flags
, void *holder
)
1039 mutex_lock(&uuid_mutex
);
1040 if (fs_devices
->opened
) {
1041 fs_devices
->opened
++;
1044 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
1046 mutex_unlock(&uuid_mutex
);
1050 void btrfs_release_disk_super(struct page
*page
)
1056 int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1057 struct page
**page
, struct btrfs_super_block
**disk_super
)
1062 /* make sure our super fits in the device */
1063 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1066 /* make sure our super fits in the page */
1067 if (sizeof(**disk_super
) > PAGE_SIZE
)
1070 /* make sure our super doesn't straddle pages on disk */
1071 index
= bytenr
>> PAGE_SHIFT
;
1072 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1075 /* pull in the page with our super */
1076 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1079 if (IS_ERR_OR_NULL(*page
))
1084 /* align our pointer to the offset of the super block */
1085 *disk_super
= p
+ (bytenr
& ~PAGE_MASK
);
1087 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1088 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1089 btrfs_release_disk_super(*page
);
1093 if ((*disk_super
)->label
[0] &&
1094 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1095 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1101 * Look for a btrfs signature on a device. This may be called out of the mount path
1102 * and we are not allowed to call set_blocksize during the scan. The superblock
1103 * is read via pagecache
1105 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
1106 struct btrfs_fs_devices
**fs_devices_ret
)
1108 struct btrfs_super_block
*disk_super
;
1109 struct block_device
*bdev
;
1118 * we would like to check all the supers, but that would make
1119 * a btrfs mount succeed after a mkfs from a different FS.
1120 * So, we need to add a special mount option to scan for
1121 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1123 bytenr
= btrfs_sb_offset(0);
1124 flags
|= FMODE_EXCL
;
1125 mutex_lock(&uuid_mutex
);
1127 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1129 ret
= PTR_ERR(bdev
);
1133 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
))
1134 goto error_bdev_put
;
1136 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1137 transid
= btrfs_super_generation(disk_super
);
1138 total_devices
= btrfs_super_num_devices(disk_super
);
1140 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
1142 if (disk_super
->label
[0]) {
1143 pr_info("BTRFS: device label %s ", disk_super
->label
);
1145 pr_info("BTRFS: device fsid %pU ", disk_super
->fsid
);
1148 pr_cont("devid %llu transid %llu %s\n", devid
, transid
, path
);
1151 if (!ret
&& fs_devices_ret
)
1152 (*fs_devices_ret
)->total_devices
= total_devices
;
1154 btrfs_release_disk_super(page
);
1157 blkdev_put(bdev
, flags
);
1159 mutex_unlock(&uuid_mutex
);
1163 /* helper to account the used device space in the range */
1164 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1165 u64 end
, u64
*length
)
1167 struct btrfs_key key
;
1168 struct btrfs_root
*root
= device
->dev_root
;
1169 struct btrfs_dev_extent
*dev_extent
;
1170 struct btrfs_path
*path
;
1174 struct extent_buffer
*l
;
1178 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
1181 path
= btrfs_alloc_path();
1184 path
->reada
= READA_FORWARD
;
1186 key
.objectid
= device
->devid
;
1188 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1190 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1194 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1201 slot
= path
->slots
[0];
1202 if (slot
>= btrfs_header_nritems(l
)) {
1203 ret
= btrfs_next_leaf(root
, path
);
1211 btrfs_item_key_to_cpu(l
, &key
, slot
);
1213 if (key
.objectid
< device
->devid
)
1216 if (key
.objectid
> device
->devid
)
1219 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1222 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1223 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1225 if (key
.offset
<= start
&& extent_end
> end
) {
1226 *length
= end
- start
+ 1;
1228 } else if (key
.offset
<= start
&& extent_end
> start
)
1229 *length
+= extent_end
- start
;
1230 else if (key
.offset
> start
&& extent_end
<= end
)
1231 *length
+= extent_end
- key
.offset
;
1232 else if (key
.offset
> start
&& key
.offset
<= end
) {
1233 *length
+= end
- key
.offset
+ 1;
1235 } else if (key
.offset
> end
)
1243 btrfs_free_path(path
);
1247 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1248 struct btrfs_device
*device
,
1249 u64
*start
, u64 len
)
1251 struct btrfs_fs_info
*fs_info
= device
->dev_root
->fs_info
;
1252 struct extent_map
*em
;
1253 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1255 u64 physical_start
= *start
;
1258 search_list
= &transaction
->pending_chunks
;
1260 list_for_each_entry(em
, search_list
, list
) {
1261 struct map_lookup
*map
;
1264 map
= em
->map_lookup
;
1265 for (i
= 0; i
< map
->num_stripes
; i
++) {
1268 if (map
->stripes
[i
].dev
!= device
)
1270 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1271 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1275 * Make sure that while processing the pinned list we do
1276 * not override our *start with a lower value, because
1277 * we can have pinned chunks that fall within this
1278 * device hole and that have lower physical addresses
1279 * than the pending chunks we processed before. If we
1280 * do not take this special care we can end up getting
1281 * 2 pending chunks that start at the same physical
1282 * device offsets because the end offset of a pinned
1283 * chunk can be equal to the start offset of some
1286 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1293 if (search_list
!= &fs_info
->pinned_chunks
) {
1294 search_list
= &fs_info
->pinned_chunks
;
1303 * find_free_dev_extent_start - find free space in the specified device
1304 * @device: the device which we search the free space in
1305 * @num_bytes: the size of the free space that we need
1306 * @search_start: the position from which to begin the search
1307 * @start: store the start of the free space.
1308 * @len: the size of the free space. that we find, or the size
1309 * of the max free space if we don't find suitable free space
1311 * this uses a pretty simple search, the expectation is that it is
1312 * called very infrequently and that a given device has a small number
1315 * @start is used to store the start of the free space if we find. But if we
1316 * don't find suitable free space, it will be used to store the start position
1317 * of the max free space.
1319 * @len is used to store the size of the free space that we find.
1320 * But if we don't find suitable free space, it is used to store the size of
1321 * the max free space.
1323 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1324 struct btrfs_device
*device
, u64 num_bytes
,
1325 u64 search_start
, u64
*start
, u64
*len
)
1327 struct btrfs_key key
;
1328 struct btrfs_root
*root
= device
->dev_root
;
1329 struct btrfs_dev_extent
*dev_extent
;
1330 struct btrfs_path
*path
;
1335 u64 search_end
= device
->total_bytes
;
1338 struct extent_buffer
*l
;
1339 u64 min_search_start
;
1342 * We don't want to overwrite the superblock on the drive nor any area
1343 * used by the boot loader (grub for example), so we make sure to start
1344 * at an offset of at least 1MB.
1346 min_search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
1347 search_start
= max(search_start
, min_search_start
);
1349 path
= btrfs_alloc_path();
1353 max_hole_start
= search_start
;
1357 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1362 path
->reada
= READA_FORWARD
;
1363 path
->search_commit_root
= 1;
1364 path
->skip_locking
= 1;
1366 key
.objectid
= device
->devid
;
1367 key
.offset
= search_start
;
1368 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1370 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1374 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1381 slot
= path
->slots
[0];
1382 if (slot
>= btrfs_header_nritems(l
)) {
1383 ret
= btrfs_next_leaf(root
, path
);
1391 btrfs_item_key_to_cpu(l
, &key
, slot
);
1393 if (key
.objectid
< device
->devid
)
1396 if (key
.objectid
> device
->devid
)
1399 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1402 if (key
.offset
> search_start
) {
1403 hole_size
= key
.offset
- search_start
;
1406 * Have to check before we set max_hole_start, otherwise
1407 * we could end up sending back this offset anyway.
1409 if (contains_pending_extent(transaction
, device
,
1412 if (key
.offset
>= search_start
) {
1413 hole_size
= key
.offset
- search_start
;
1420 if (hole_size
> max_hole_size
) {
1421 max_hole_start
= search_start
;
1422 max_hole_size
= hole_size
;
1426 * If this free space is greater than which we need,
1427 * it must be the max free space that we have found
1428 * until now, so max_hole_start must point to the start
1429 * of this free space and the length of this free space
1430 * is stored in max_hole_size. Thus, we return
1431 * max_hole_start and max_hole_size and go back to the
1434 if (hole_size
>= num_bytes
) {
1440 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1441 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1443 if (extent_end
> search_start
)
1444 search_start
= extent_end
;
1451 * At this point, search_start should be the end of
1452 * allocated dev extents, and when shrinking the device,
1453 * search_end may be smaller than search_start.
1455 if (search_end
> search_start
) {
1456 hole_size
= search_end
- search_start
;
1458 if (contains_pending_extent(transaction
, device
, &search_start
,
1460 btrfs_release_path(path
);
1464 if (hole_size
> max_hole_size
) {
1465 max_hole_start
= search_start
;
1466 max_hole_size
= hole_size
;
1471 if (max_hole_size
< num_bytes
)
1477 btrfs_free_path(path
);
1478 *start
= max_hole_start
;
1480 *len
= max_hole_size
;
1484 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1485 struct btrfs_device
*device
, u64 num_bytes
,
1486 u64
*start
, u64
*len
)
1488 /* FIXME use last free of some kind */
1489 return find_free_dev_extent_start(trans
->transaction
, device
,
1490 num_bytes
, 0, start
, len
);
1493 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1494 struct btrfs_device
*device
,
1495 u64 start
, u64
*dev_extent_len
)
1498 struct btrfs_path
*path
;
1499 struct btrfs_root
*root
= device
->dev_root
;
1500 struct btrfs_key key
;
1501 struct btrfs_key found_key
;
1502 struct extent_buffer
*leaf
= NULL
;
1503 struct btrfs_dev_extent
*extent
= NULL
;
1505 path
= btrfs_alloc_path();
1509 key
.objectid
= device
->devid
;
1511 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1513 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1515 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1516 BTRFS_DEV_EXTENT_KEY
);
1519 leaf
= path
->nodes
[0];
1520 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1521 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1522 struct btrfs_dev_extent
);
1523 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1524 btrfs_dev_extent_length(leaf
, extent
) < start
);
1526 btrfs_release_path(path
);
1528 } else if (ret
== 0) {
1529 leaf
= path
->nodes
[0];
1530 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1531 struct btrfs_dev_extent
);
1533 btrfs_handle_fs_error(root
->fs_info
, ret
, "Slot search failed");
1537 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1539 ret
= btrfs_del_item(trans
, root
, path
);
1541 btrfs_handle_fs_error(root
->fs_info
, ret
,
1542 "Failed to remove dev extent item");
1544 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1547 btrfs_free_path(path
);
1551 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1552 struct btrfs_device
*device
,
1553 u64 chunk_tree
, u64 chunk_objectid
,
1554 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1557 struct btrfs_path
*path
;
1558 struct btrfs_root
*root
= device
->dev_root
;
1559 struct btrfs_dev_extent
*extent
;
1560 struct extent_buffer
*leaf
;
1561 struct btrfs_key key
;
1563 WARN_ON(!device
->in_fs_metadata
);
1564 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1565 path
= btrfs_alloc_path();
1569 key
.objectid
= device
->devid
;
1571 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1572 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1577 leaf
= path
->nodes
[0];
1578 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1579 struct btrfs_dev_extent
);
1580 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1581 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1582 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1584 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1585 btrfs_dev_extent_chunk_tree_uuid(extent
), BTRFS_UUID_SIZE
);
1587 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1588 btrfs_mark_buffer_dirty(leaf
);
1590 btrfs_free_path(path
);
1594 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1596 struct extent_map_tree
*em_tree
;
1597 struct extent_map
*em
;
1601 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1602 read_lock(&em_tree
->lock
);
1603 n
= rb_last(&em_tree
->map
);
1605 em
= rb_entry(n
, struct extent_map
, rb_node
);
1606 ret
= em
->start
+ em
->len
;
1608 read_unlock(&em_tree
->lock
);
1613 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1617 struct btrfs_key key
;
1618 struct btrfs_key found_key
;
1619 struct btrfs_path
*path
;
1621 path
= btrfs_alloc_path();
1625 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1626 key
.type
= BTRFS_DEV_ITEM_KEY
;
1627 key
.offset
= (u64
)-1;
1629 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1633 BUG_ON(ret
== 0); /* Corruption */
1635 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1636 BTRFS_DEV_ITEMS_OBJECTID
,
1637 BTRFS_DEV_ITEM_KEY
);
1641 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1643 *devid_ret
= found_key
.offset
+ 1;
1647 btrfs_free_path(path
);
1652 * the device information is stored in the chunk root
1653 * the btrfs_device struct should be fully filled in
1655 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1656 struct btrfs_root
*root
,
1657 struct btrfs_device
*device
)
1660 struct btrfs_path
*path
;
1661 struct btrfs_dev_item
*dev_item
;
1662 struct extent_buffer
*leaf
;
1663 struct btrfs_key key
;
1666 root
= root
->fs_info
->chunk_root
;
1668 path
= btrfs_alloc_path();
1672 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1673 key
.type
= BTRFS_DEV_ITEM_KEY
;
1674 key
.offset
= device
->devid
;
1676 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1681 leaf
= path
->nodes
[0];
1682 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1684 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1685 btrfs_set_device_generation(leaf
, dev_item
, 0);
1686 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1687 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1688 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1689 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1690 btrfs_set_device_total_bytes(leaf
, dev_item
,
1691 btrfs_device_get_disk_total_bytes(device
));
1692 btrfs_set_device_bytes_used(leaf
, dev_item
,
1693 btrfs_device_get_bytes_used(device
));
1694 btrfs_set_device_group(leaf
, dev_item
, 0);
1695 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1696 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1697 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1699 ptr
= btrfs_device_uuid(dev_item
);
1700 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1701 ptr
= btrfs_device_fsid(dev_item
);
1702 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1703 btrfs_mark_buffer_dirty(leaf
);
1707 btrfs_free_path(path
);
1712 * Function to update ctime/mtime for a given device path.
1713 * Mainly used for ctime/mtime based probe like libblkid.
1715 static void update_dev_time(char *path_name
)
1719 filp
= filp_open(path_name
, O_RDWR
, 0);
1722 file_update_time(filp
);
1723 filp_close(filp
, NULL
);
1726 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1727 struct btrfs_device
*device
)
1730 struct btrfs_path
*path
;
1731 struct btrfs_key key
;
1732 struct btrfs_trans_handle
*trans
;
1734 root
= root
->fs_info
->chunk_root
;
1736 path
= btrfs_alloc_path();
1740 trans
= btrfs_start_transaction(root
, 0);
1741 if (IS_ERR(trans
)) {
1742 btrfs_free_path(path
);
1743 return PTR_ERR(trans
);
1745 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1746 key
.type
= BTRFS_DEV_ITEM_KEY
;
1747 key
.offset
= device
->devid
;
1749 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1758 ret
= btrfs_del_item(trans
, root
, path
);
1762 btrfs_free_path(path
);
1763 btrfs_commit_transaction(trans
, root
);
1768 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1769 * filesystem. It's up to the caller to adjust that number regarding eg. device
1772 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1780 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1782 all_avail
= fs_info
->avail_data_alloc_bits
|
1783 fs_info
->avail_system_alloc_bits
|
1784 fs_info
->avail_metadata_alloc_bits
;
1785 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1787 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1788 if (!(all_avail
& btrfs_raid_group
[i
]))
1791 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1792 int ret
= btrfs_raid_mindev_error
[i
];
1802 struct btrfs_device
*btrfs_find_next_active_device(struct btrfs_fs_devices
*fs_devs
,
1803 struct btrfs_device
*device
)
1805 struct btrfs_device
*next_device
;
1807 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1808 if (next_device
!= device
&&
1809 !next_device
->missing
&& next_device
->bdev
)
1817 * Helper function to check if the given device is part of s_bdev / latest_bdev
1818 * and replace it with the provided or the next active device, in the context
1819 * where this function called, there should be always be another device (or
1820 * this_dev) which is active.
1822 void btrfs_assign_next_active_device(struct btrfs_fs_info
*fs_info
,
1823 struct btrfs_device
*device
, struct btrfs_device
*this_dev
)
1825 struct btrfs_device
*next_device
;
1828 next_device
= this_dev
;
1830 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1832 ASSERT(next_device
);
1834 if (fs_info
->sb
->s_bdev
&&
1835 (fs_info
->sb
->s_bdev
== device
->bdev
))
1836 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1838 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1839 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1842 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
, u64 devid
)
1844 struct btrfs_device
*device
;
1845 struct btrfs_fs_devices
*cur_devices
;
1848 bool clear_super
= false;
1850 mutex_lock(&uuid_mutex
);
1852 num_devices
= root
->fs_info
->fs_devices
->num_devices
;
1853 btrfs_dev_replace_lock(&root
->fs_info
->dev_replace
, 0);
1854 if (btrfs_dev_replace_is_ongoing(&root
->fs_info
->dev_replace
)) {
1855 WARN_ON(num_devices
< 1);
1858 btrfs_dev_replace_unlock(&root
->fs_info
->dev_replace
, 0);
1860 ret
= btrfs_check_raid_min_devices(root
->fs_info
, num_devices
- 1);
1864 ret
= btrfs_find_device_by_devspec(root
, devid
, device_path
,
1869 if (device
->is_tgtdev_for_dev_replace
) {
1870 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1874 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1875 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1879 if (device
->writeable
) {
1881 list_del_init(&device
->dev_alloc_list
);
1882 device
->fs_devices
->rw_devices
--;
1883 unlock_chunks(root
);
1887 mutex_unlock(&uuid_mutex
);
1888 ret
= btrfs_shrink_device(device
, 0);
1889 mutex_lock(&uuid_mutex
);
1894 * TODO: the superblock still includes this device in its num_devices
1895 * counter although write_all_supers() is not locked out. This
1896 * could give a filesystem state which requires a degraded mount.
1898 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1902 device
->in_fs_metadata
= 0;
1903 btrfs_scrub_cancel_dev(root
->fs_info
, device
);
1906 * the device list mutex makes sure that we don't change
1907 * the device list while someone else is writing out all
1908 * the device supers. Whoever is writing all supers, should
1909 * lock the device list mutex before getting the number of
1910 * devices in the super block (super_copy). Conversely,
1911 * whoever updates the number of devices in the super block
1912 * (super_copy) should hold the device list mutex.
1915 cur_devices
= device
->fs_devices
;
1916 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1917 list_del_rcu(&device
->dev_list
);
1919 device
->fs_devices
->num_devices
--;
1920 device
->fs_devices
->total_devices
--;
1922 if (device
->missing
)
1923 device
->fs_devices
->missing_devices
--;
1925 btrfs_assign_next_active_device(root
->fs_info
, device
, NULL
);
1928 device
->fs_devices
->open_devices
--;
1929 /* remove sysfs entry */
1930 btrfs_sysfs_rm_device_link(root
->fs_info
->fs_devices
, device
);
1933 num_devices
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
1934 btrfs_set_super_num_devices(root
->fs_info
->super_copy
, num_devices
);
1935 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1938 * at this point, the device is zero sized and detached from
1939 * the devices list. All that's left is to zero out the old
1940 * supers and free the device.
1942 if (device
->writeable
)
1943 btrfs_scratch_superblocks(device
->bdev
, device
->name
->str
);
1945 btrfs_close_bdev(device
);
1946 call_rcu(&device
->rcu
, free_device
);
1948 if (cur_devices
->open_devices
== 0) {
1949 struct btrfs_fs_devices
*fs_devices
;
1950 fs_devices
= root
->fs_info
->fs_devices
;
1951 while (fs_devices
) {
1952 if (fs_devices
->seed
== cur_devices
) {
1953 fs_devices
->seed
= cur_devices
->seed
;
1956 fs_devices
= fs_devices
->seed
;
1958 cur_devices
->seed
= NULL
;
1959 __btrfs_close_devices(cur_devices
);
1960 free_fs_devices(cur_devices
);
1963 root
->fs_info
->num_tolerated_disk_barrier_failures
=
1964 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
1967 mutex_unlock(&uuid_mutex
);
1971 if (device
->writeable
) {
1973 list_add(&device
->dev_alloc_list
,
1974 &root
->fs_info
->fs_devices
->alloc_list
);
1975 device
->fs_devices
->rw_devices
++;
1976 unlock_chunks(root
);
1981 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
1982 struct btrfs_device
*srcdev
)
1984 struct btrfs_fs_devices
*fs_devices
;
1986 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
1989 * in case of fs with no seed, srcdev->fs_devices will point
1990 * to fs_devices of fs_info. However when the dev being replaced is
1991 * a seed dev it will point to the seed's local fs_devices. In short
1992 * srcdev will have its correct fs_devices in both the cases.
1994 fs_devices
= srcdev
->fs_devices
;
1996 list_del_rcu(&srcdev
->dev_list
);
1997 list_del_rcu(&srcdev
->dev_alloc_list
);
1998 fs_devices
->num_devices
--;
1999 if (srcdev
->missing
)
2000 fs_devices
->missing_devices
--;
2002 if (srcdev
->writeable
)
2003 fs_devices
->rw_devices
--;
2006 fs_devices
->open_devices
--;
2009 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
2010 struct btrfs_device
*srcdev
)
2012 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2014 if (srcdev
->writeable
) {
2015 /* zero out the old super if it is writable */
2016 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
2019 btrfs_close_bdev(srcdev
);
2021 call_rcu(&srcdev
->rcu
, free_device
);
2024 * unless fs_devices is seed fs, num_devices shouldn't go
2027 BUG_ON(!fs_devices
->num_devices
&& !fs_devices
->seeding
);
2029 /* if this is no devs we rather delete the fs_devices */
2030 if (!fs_devices
->num_devices
) {
2031 struct btrfs_fs_devices
*tmp_fs_devices
;
2033 tmp_fs_devices
= fs_info
->fs_devices
;
2034 while (tmp_fs_devices
) {
2035 if (tmp_fs_devices
->seed
== fs_devices
) {
2036 tmp_fs_devices
->seed
= fs_devices
->seed
;
2039 tmp_fs_devices
= tmp_fs_devices
->seed
;
2041 fs_devices
->seed
= NULL
;
2042 __btrfs_close_devices(fs_devices
);
2043 free_fs_devices(fs_devices
);
2047 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2048 struct btrfs_device
*tgtdev
)
2050 mutex_lock(&uuid_mutex
);
2052 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2054 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, tgtdev
);
2057 fs_info
->fs_devices
->open_devices
--;
2059 fs_info
->fs_devices
->num_devices
--;
2061 btrfs_assign_next_active_device(fs_info
, tgtdev
, NULL
);
2063 list_del_rcu(&tgtdev
->dev_list
);
2065 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2066 mutex_unlock(&uuid_mutex
);
2069 * The update_dev_time() with in btrfs_scratch_superblocks()
2070 * may lead to a call to btrfs_show_devname() which will try
2071 * to hold device_list_mutex. And here this device
2072 * is already out of device list, so we don't have to hold
2073 * the device_list_mutex lock.
2075 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2077 btrfs_close_bdev(tgtdev
);
2078 call_rcu(&tgtdev
->rcu
, free_device
);
2081 static int btrfs_find_device_by_path(struct btrfs_root
*root
, char *device_path
,
2082 struct btrfs_device
**device
)
2085 struct btrfs_super_block
*disk_super
;
2088 struct block_device
*bdev
;
2089 struct buffer_head
*bh
;
2092 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2093 root
->fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2096 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2097 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2098 dev_uuid
= disk_super
->dev_item
.uuid
;
2099 *device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2104 blkdev_put(bdev
, FMODE_READ
);
2108 int btrfs_find_device_missing_or_by_path(struct btrfs_root
*root
,
2110 struct btrfs_device
**device
)
2113 if (strcmp(device_path
, "missing") == 0) {
2114 struct list_head
*devices
;
2115 struct btrfs_device
*tmp
;
2117 devices
= &root
->fs_info
->fs_devices
->devices
;
2119 * It is safe to read the devices since the volume_mutex
2120 * is held by the caller.
2122 list_for_each_entry(tmp
, devices
, dev_list
) {
2123 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
2130 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2134 return btrfs_find_device_by_path(root
, device_path
, device
);
2139 * Lookup a device given by device id, or the path if the id is 0.
2141 int btrfs_find_device_by_devspec(struct btrfs_root
*root
, u64 devid
,
2143 struct btrfs_device
**device
)
2149 *device
= btrfs_find_device(root
->fs_info
, devid
, NULL
,
2154 if (!devpath
|| !devpath
[0])
2157 ret
= btrfs_find_device_missing_or_by_path(root
, devpath
,
2164 * does all the dirty work required for changing file system's UUID.
2166 static int btrfs_prepare_sprout(struct btrfs_root
*root
)
2168 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2169 struct btrfs_fs_devices
*old_devices
;
2170 struct btrfs_fs_devices
*seed_devices
;
2171 struct btrfs_super_block
*disk_super
= root
->fs_info
->super_copy
;
2172 struct btrfs_device
*device
;
2175 BUG_ON(!mutex_is_locked(&uuid_mutex
));
2176 if (!fs_devices
->seeding
)
2179 seed_devices
= __alloc_fs_devices();
2180 if (IS_ERR(seed_devices
))
2181 return PTR_ERR(seed_devices
);
2183 old_devices
= clone_fs_devices(fs_devices
);
2184 if (IS_ERR(old_devices
)) {
2185 kfree(seed_devices
);
2186 return PTR_ERR(old_devices
);
2189 list_add(&old_devices
->list
, &fs_uuids
);
2191 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2192 seed_devices
->opened
= 1;
2193 INIT_LIST_HEAD(&seed_devices
->devices
);
2194 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2195 mutex_init(&seed_devices
->device_list_mutex
);
2197 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2198 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2200 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2201 device
->fs_devices
= seed_devices
;
2204 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2205 unlock_chunks(root
);
2207 fs_devices
->seeding
= 0;
2208 fs_devices
->num_devices
= 0;
2209 fs_devices
->open_devices
= 0;
2210 fs_devices
->missing_devices
= 0;
2211 fs_devices
->rotating
= 0;
2212 fs_devices
->seed
= seed_devices
;
2214 generate_random_uuid(fs_devices
->fsid
);
2215 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2216 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2217 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2219 super_flags
= btrfs_super_flags(disk_super
) &
2220 ~BTRFS_SUPER_FLAG_SEEDING
;
2221 btrfs_set_super_flags(disk_super
, super_flags
);
2227 * Store the expected generation for seed devices in device items.
2229 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2230 struct btrfs_root
*root
)
2232 struct btrfs_path
*path
;
2233 struct extent_buffer
*leaf
;
2234 struct btrfs_dev_item
*dev_item
;
2235 struct btrfs_device
*device
;
2236 struct btrfs_key key
;
2237 u8 fs_uuid
[BTRFS_UUID_SIZE
];
2238 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2242 path
= btrfs_alloc_path();
2246 root
= root
->fs_info
->chunk_root
;
2247 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2249 key
.type
= BTRFS_DEV_ITEM_KEY
;
2252 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2256 leaf
= path
->nodes
[0];
2258 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2259 ret
= btrfs_next_leaf(root
, path
);
2264 leaf
= path
->nodes
[0];
2265 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2266 btrfs_release_path(path
);
2270 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2271 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2272 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2275 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2276 struct btrfs_dev_item
);
2277 devid
= btrfs_device_id(leaf
, dev_item
);
2278 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2280 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2282 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2284 BUG_ON(!device
); /* Logic error */
2286 if (device
->fs_devices
->seeding
) {
2287 btrfs_set_device_generation(leaf
, dev_item
,
2288 device
->generation
);
2289 btrfs_mark_buffer_dirty(leaf
);
2297 btrfs_free_path(path
);
2301 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
2303 struct request_queue
*q
;
2304 struct btrfs_trans_handle
*trans
;
2305 struct btrfs_device
*device
;
2306 struct block_device
*bdev
;
2307 struct list_head
*devices
;
2308 struct super_block
*sb
= root
->fs_info
->sb
;
2309 struct rcu_string
*name
;
2311 int seeding_dev
= 0;
2314 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
2317 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2318 root
->fs_info
->bdev_holder
);
2320 return PTR_ERR(bdev
);
2322 if (root
->fs_info
->fs_devices
->seeding
) {
2324 down_write(&sb
->s_umount
);
2325 mutex_lock(&uuid_mutex
);
2328 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2330 devices
= &root
->fs_info
->fs_devices
->devices
;
2332 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2333 list_for_each_entry(device
, devices
, dev_list
) {
2334 if (device
->bdev
== bdev
) {
2337 &root
->fs_info
->fs_devices
->device_list_mutex
);
2341 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2343 device
= btrfs_alloc_device(root
->fs_info
, NULL
, NULL
);
2344 if (IS_ERR(device
)) {
2345 /* we can safely leave the fs_devices entry around */
2346 ret
= PTR_ERR(device
);
2350 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2356 rcu_assign_pointer(device
->name
, name
);
2358 trans
= btrfs_start_transaction(root
, 0);
2359 if (IS_ERR(trans
)) {
2360 rcu_string_free(device
->name
);
2362 ret
= PTR_ERR(trans
);
2366 q
= bdev_get_queue(bdev
);
2367 if (blk_queue_discard(q
))
2368 device
->can_discard
= 1;
2369 device
->writeable
= 1;
2370 device
->generation
= trans
->transid
;
2371 device
->io_width
= root
->sectorsize
;
2372 device
->io_align
= root
->sectorsize
;
2373 device
->sector_size
= root
->sectorsize
;
2374 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2375 device
->disk_total_bytes
= device
->total_bytes
;
2376 device
->commit_total_bytes
= device
->total_bytes
;
2377 device
->dev_root
= root
->fs_info
->dev_root
;
2378 device
->bdev
= bdev
;
2379 device
->in_fs_metadata
= 1;
2380 device
->is_tgtdev_for_dev_replace
= 0;
2381 device
->mode
= FMODE_EXCL
;
2382 device
->dev_stats_valid
= 1;
2383 set_blocksize(device
->bdev
, 4096);
2386 sb
->s_flags
&= ~MS_RDONLY
;
2387 ret
= btrfs_prepare_sprout(root
);
2388 BUG_ON(ret
); /* -ENOMEM */
2391 device
->fs_devices
= root
->fs_info
->fs_devices
;
2393 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2395 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
2396 list_add(&device
->dev_alloc_list
,
2397 &root
->fs_info
->fs_devices
->alloc_list
);
2398 root
->fs_info
->fs_devices
->num_devices
++;
2399 root
->fs_info
->fs_devices
->open_devices
++;
2400 root
->fs_info
->fs_devices
->rw_devices
++;
2401 root
->fs_info
->fs_devices
->total_devices
++;
2402 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2404 spin_lock(&root
->fs_info
->free_chunk_lock
);
2405 root
->fs_info
->free_chunk_space
+= device
->total_bytes
;
2406 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2408 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
2409 root
->fs_info
->fs_devices
->rotating
= 1;
2411 tmp
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
2412 btrfs_set_super_total_bytes(root
->fs_info
->super_copy
,
2413 tmp
+ device
->total_bytes
);
2415 tmp
= btrfs_super_num_devices(root
->fs_info
->super_copy
);
2416 btrfs_set_super_num_devices(root
->fs_info
->super_copy
,
2419 /* add sysfs device entry */
2420 btrfs_sysfs_add_device_link(root
->fs_info
->fs_devices
, device
);
2423 * we've got more storage, clear any full flags on the space
2426 btrfs_clear_space_info_full(root
->fs_info
);
2428 unlock_chunks(root
);
2429 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2433 ret
= init_first_rw_device(trans
, root
, device
);
2434 unlock_chunks(root
);
2436 btrfs_abort_transaction(trans
, ret
);
2441 ret
= btrfs_add_device(trans
, root
, device
);
2443 btrfs_abort_transaction(trans
, ret
);
2448 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2450 ret
= btrfs_finish_sprout(trans
, root
);
2452 btrfs_abort_transaction(trans
, ret
);
2456 /* Sprouting would change fsid of the mounted root,
2457 * so rename the fsid on the sysfs
2459 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2460 root
->fs_info
->fsid
);
2461 if (kobject_rename(&root
->fs_info
->fs_devices
->fsid_kobj
,
2463 btrfs_warn(root
->fs_info
,
2464 "sysfs: failed to create fsid for sprout");
2467 root
->fs_info
->num_tolerated_disk_barrier_failures
=
2468 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
2469 ret
= btrfs_commit_transaction(trans
, root
);
2472 mutex_unlock(&uuid_mutex
);
2473 up_write(&sb
->s_umount
);
2475 if (ret
) /* transaction commit */
2478 ret
= btrfs_relocate_sys_chunks(root
);
2480 btrfs_handle_fs_error(root
->fs_info
, ret
,
2481 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2482 trans
= btrfs_attach_transaction(root
);
2483 if (IS_ERR(trans
)) {
2484 if (PTR_ERR(trans
) == -ENOENT
)
2486 return PTR_ERR(trans
);
2488 ret
= btrfs_commit_transaction(trans
, root
);
2491 /* Update ctime/mtime for libblkid */
2492 update_dev_time(device_path
);
2496 btrfs_end_transaction(trans
, root
);
2497 rcu_string_free(device
->name
);
2498 btrfs_sysfs_rm_device_link(root
->fs_info
->fs_devices
, device
);
2501 blkdev_put(bdev
, FMODE_EXCL
);
2503 mutex_unlock(&uuid_mutex
);
2504 up_write(&sb
->s_umount
);
2509 int btrfs_init_dev_replace_tgtdev(struct btrfs_root
*root
, char *device_path
,
2510 struct btrfs_device
*srcdev
,
2511 struct btrfs_device
**device_out
)
2513 struct request_queue
*q
;
2514 struct btrfs_device
*device
;
2515 struct block_device
*bdev
;
2516 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2517 struct list_head
*devices
;
2518 struct rcu_string
*name
;
2519 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2523 if (fs_info
->fs_devices
->seeding
) {
2524 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2528 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2529 fs_info
->bdev_holder
);
2531 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2532 return PTR_ERR(bdev
);
2535 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2537 devices
= &fs_info
->fs_devices
->devices
;
2538 list_for_each_entry(device
, devices
, dev_list
) {
2539 if (device
->bdev
== bdev
) {
2541 "target device is in the filesystem!");
2548 if (i_size_read(bdev
->bd_inode
) <
2549 btrfs_device_get_total_bytes(srcdev
)) {
2551 "target device is smaller than source device!");
2557 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2558 if (IS_ERR(device
)) {
2559 ret
= PTR_ERR(device
);
2563 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2569 rcu_assign_pointer(device
->name
, name
);
2571 q
= bdev_get_queue(bdev
);
2572 if (blk_queue_discard(q
))
2573 device
->can_discard
= 1;
2574 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2575 device
->writeable
= 1;
2576 device
->generation
= 0;
2577 device
->io_width
= root
->sectorsize
;
2578 device
->io_align
= root
->sectorsize
;
2579 device
->sector_size
= root
->sectorsize
;
2580 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2581 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2582 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2583 ASSERT(list_empty(&srcdev
->resized_list
));
2584 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2585 device
->commit_bytes_used
= device
->bytes_used
;
2586 device
->dev_root
= fs_info
->dev_root
;
2587 device
->bdev
= bdev
;
2588 device
->in_fs_metadata
= 1;
2589 device
->is_tgtdev_for_dev_replace
= 1;
2590 device
->mode
= FMODE_EXCL
;
2591 device
->dev_stats_valid
= 1;
2592 set_blocksize(device
->bdev
, 4096);
2593 device
->fs_devices
= fs_info
->fs_devices
;
2594 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2595 fs_info
->fs_devices
->num_devices
++;
2596 fs_info
->fs_devices
->open_devices
++;
2597 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2599 *device_out
= device
;
2603 blkdev_put(bdev
, FMODE_EXCL
);
2607 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2608 struct btrfs_device
*tgtdev
)
2610 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2611 tgtdev
->io_width
= fs_info
->dev_root
->sectorsize
;
2612 tgtdev
->io_align
= fs_info
->dev_root
->sectorsize
;
2613 tgtdev
->sector_size
= fs_info
->dev_root
->sectorsize
;
2614 tgtdev
->dev_root
= fs_info
->dev_root
;
2615 tgtdev
->in_fs_metadata
= 1;
2618 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2619 struct btrfs_device
*device
)
2622 struct btrfs_path
*path
;
2623 struct btrfs_root
*root
;
2624 struct btrfs_dev_item
*dev_item
;
2625 struct extent_buffer
*leaf
;
2626 struct btrfs_key key
;
2628 root
= device
->dev_root
->fs_info
->chunk_root
;
2630 path
= btrfs_alloc_path();
2634 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2635 key
.type
= BTRFS_DEV_ITEM_KEY
;
2636 key
.offset
= device
->devid
;
2638 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2647 leaf
= path
->nodes
[0];
2648 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2650 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2651 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2652 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2653 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2654 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2655 btrfs_set_device_total_bytes(leaf
, dev_item
,
2656 btrfs_device_get_disk_total_bytes(device
));
2657 btrfs_set_device_bytes_used(leaf
, dev_item
,
2658 btrfs_device_get_bytes_used(device
));
2659 btrfs_mark_buffer_dirty(leaf
);
2662 btrfs_free_path(path
);
2666 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2667 struct btrfs_device
*device
, u64 new_size
)
2669 struct btrfs_super_block
*super_copy
=
2670 device
->dev_root
->fs_info
->super_copy
;
2671 struct btrfs_fs_devices
*fs_devices
;
2675 if (!device
->writeable
)
2678 lock_chunks(device
->dev_root
);
2679 old_total
= btrfs_super_total_bytes(super_copy
);
2680 diff
= new_size
- device
->total_bytes
;
2682 if (new_size
<= device
->total_bytes
||
2683 device
->is_tgtdev_for_dev_replace
) {
2684 unlock_chunks(device
->dev_root
);
2688 fs_devices
= device
->dev_root
->fs_info
->fs_devices
;
2690 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2691 device
->fs_devices
->total_rw_bytes
+= diff
;
2693 btrfs_device_set_total_bytes(device
, new_size
);
2694 btrfs_device_set_disk_total_bytes(device
, new_size
);
2695 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
2696 if (list_empty(&device
->resized_list
))
2697 list_add_tail(&device
->resized_list
,
2698 &fs_devices
->resized_devices
);
2699 unlock_chunks(device
->dev_root
);
2701 return btrfs_update_device(trans
, device
);
2704 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2705 struct btrfs_root
*root
, u64 chunk_objectid
,
2709 struct btrfs_path
*path
;
2710 struct btrfs_key key
;
2712 root
= root
->fs_info
->chunk_root
;
2713 path
= btrfs_alloc_path();
2717 key
.objectid
= chunk_objectid
;
2718 key
.offset
= chunk_offset
;
2719 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2721 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2724 else if (ret
> 0) { /* Logic error or corruption */
2725 btrfs_handle_fs_error(root
->fs_info
, -ENOENT
,
2726 "Failed lookup while freeing chunk.");
2731 ret
= btrfs_del_item(trans
, root
, path
);
2733 btrfs_handle_fs_error(root
->fs_info
, ret
,
2734 "Failed to delete chunk item.");
2736 btrfs_free_path(path
);
2740 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
2743 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2744 struct btrfs_disk_key
*disk_key
;
2745 struct btrfs_chunk
*chunk
;
2752 struct btrfs_key key
;
2755 array_size
= btrfs_super_sys_array_size(super_copy
);
2757 ptr
= super_copy
->sys_chunk_array
;
2760 while (cur
< array_size
) {
2761 disk_key
= (struct btrfs_disk_key
*)ptr
;
2762 btrfs_disk_key_to_cpu(&key
, disk_key
);
2764 len
= sizeof(*disk_key
);
2766 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2767 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2768 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2769 len
+= btrfs_chunk_item_size(num_stripes
);
2774 if (key
.objectid
== chunk_objectid
&&
2775 key
.offset
== chunk_offset
) {
2776 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2778 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2784 unlock_chunks(root
);
2788 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2789 struct btrfs_root
*root
, u64 chunk_offset
)
2791 struct extent_map_tree
*em_tree
;
2792 struct extent_map
*em
;
2793 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2794 struct map_lookup
*map
;
2795 u64 dev_extent_len
= 0;
2796 u64 chunk_objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2798 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2801 root
= root
->fs_info
->chunk_root
;
2802 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
2804 read_lock(&em_tree
->lock
);
2805 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2806 read_unlock(&em_tree
->lock
);
2808 if (!em
|| em
->start
> chunk_offset
||
2809 em
->start
+ em
->len
< chunk_offset
) {
2811 * This is a logic error, but we don't want to just rely on the
2812 * user having built with ASSERT enabled, so if ASSERT doesn't
2813 * do anything we still error out.
2817 free_extent_map(em
);
2820 map
= em
->map_lookup
;
2821 lock_chunks(root
->fs_info
->chunk_root
);
2822 check_system_chunk(trans
, extent_root
, map
->type
);
2823 unlock_chunks(root
->fs_info
->chunk_root
);
2826 * Take the device list mutex to prevent races with the final phase of
2827 * a device replace operation that replaces the device object associated
2828 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2830 mutex_lock(&fs_devices
->device_list_mutex
);
2831 for (i
= 0; i
< map
->num_stripes
; i
++) {
2832 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2833 ret
= btrfs_free_dev_extent(trans
, device
,
2834 map
->stripes
[i
].physical
,
2837 mutex_unlock(&fs_devices
->device_list_mutex
);
2838 btrfs_abort_transaction(trans
, ret
);
2842 if (device
->bytes_used
> 0) {
2844 btrfs_device_set_bytes_used(device
,
2845 device
->bytes_used
- dev_extent_len
);
2846 spin_lock(&root
->fs_info
->free_chunk_lock
);
2847 root
->fs_info
->free_chunk_space
+= dev_extent_len
;
2848 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2849 btrfs_clear_space_info_full(root
->fs_info
);
2850 unlock_chunks(root
);
2853 if (map
->stripes
[i
].dev
) {
2854 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2856 mutex_unlock(&fs_devices
->device_list_mutex
);
2857 btrfs_abort_transaction(trans
, ret
);
2862 mutex_unlock(&fs_devices
->device_list_mutex
);
2864 ret
= btrfs_free_chunk(trans
, root
, chunk_objectid
, chunk_offset
);
2866 btrfs_abort_transaction(trans
, ret
);
2870 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
2872 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2873 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
2875 btrfs_abort_transaction(trans
, ret
);
2880 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
, em
);
2882 btrfs_abort_transaction(trans
, ret
);
2888 free_extent_map(em
);
2892 static int btrfs_relocate_chunk(struct btrfs_root
*root
, u64 chunk_offset
)
2894 struct btrfs_root
*extent_root
;
2896 struct btrfs_block_group_cache
*block_group
;
2898 root
= root
->fs_info
->chunk_root
;
2899 extent_root
= root
->fs_info
->extent_root
;
2902 * Prevent races with automatic removal of unused block groups.
2903 * After we relocate and before we remove the chunk with offset
2904 * chunk_offset, automatic removal of the block group can kick in,
2905 * resulting in a failure when calling btrfs_remove_chunk() below.
2907 * Make sure to acquire this mutex before doing a tree search (dev
2908 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2909 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2910 * we release the path used to search the chunk/dev tree and before
2911 * the current task acquires this mutex and calls us.
2913 ASSERT(mutex_is_locked(&root
->fs_info
->delete_unused_bgs_mutex
));
2915 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
2919 /* step one, relocate all the extents inside this chunk */
2920 btrfs_scrub_pause(root
);
2921 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
2922 btrfs_scrub_continue(root
);
2927 * step two, flag the chunk as removed and let
2928 * btrfs_delete_unused_bgs() remove it.
2930 block_group
= btrfs_lookup_block_group(root
->fs_info
, chunk_offset
);
2931 spin_lock(&block_group
->lock
);
2932 block_group
->removed
= 1;
2933 spin_unlock(&block_group
->lock
);
2934 btrfs_put_block_group(block_group
);
2939 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
2941 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
2942 struct btrfs_path
*path
;
2943 struct extent_buffer
*leaf
;
2944 struct btrfs_chunk
*chunk
;
2945 struct btrfs_key key
;
2946 struct btrfs_key found_key
;
2948 bool retried
= false;
2952 path
= btrfs_alloc_path();
2957 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2958 key
.offset
= (u64
)-1;
2959 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2962 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
2963 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2965 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2968 BUG_ON(ret
== 0); /* Corruption */
2970 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2973 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2979 leaf
= path
->nodes
[0];
2980 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2982 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2983 struct btrfs_chunk
);
2984 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2985 btrfs_release_path(path
);
2987 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2988 ret
= btrfs_relocate_chunk(chunk_root
,
2995 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2997 if (found_key
.offset
== 0)
2999 key
.offset
= found_key
.offset
- 1;
3002 if (failed
&& !retried
) {
3006 } else if (WARN_ON(failed
&& retried
)) {
3010 btrfs_free_path(path
);
3014 static int insert_balance_item(struct btrfs_root
*root
,
3015 struct btrfs_balance_control
*bctl
)
3017 struct btrfs_trans_handle
*trans
;
3018 struct btrfs_balance_item
*item
;
3019 struct btrfs_disk_balance_args disk_bargs
;
3020 struct btrfs_path
*path
;
3021 struct extent_buffer
*leaf
;
3022 struct btrfs_key key
;
3025 path
= btrfs_alloc_path();
3029 trans
= btrfs_start_transaction(root
, 0);
3030 if (IS_ERR(trans
)) {
3031 btrfs_free_path(path
);
3032 return PTR_ERR(trans
);
3035 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3036 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3039 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3044 leaf
= path
->nodes
[0];
3045 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3047 memset_extent_buffer(leaf
, 0, (unsigned long)item
, sizeof(*item
));
3049 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3050 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3051 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3052 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3053 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3054 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3056 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3058 btrfs_mark_buffer_dirty(leaf
);
3060 btrfs_free_path(path
);
3061 err
= btrfs_commit_transaction(trans
, root
);
3067 static int del_balance_item(struct btrfs_root
*root
)
3069 struct btrfs_trans_handle
*trans
;
3070 struct btrfs_path
*path
;
3071 struct btrfs_key key
;
3074 path
= btrfs_alloc_path();
3078 trans
= btrfs_start_transaction(root
, 0);
3079 if (IS_ERR(trans
)) {
3080 btrfs_free_path(path
);
3081 return PTR_ERR(trans
);
3084 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3085 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3088 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3096 ret
= btrfs_del_item(trans
, root
, path
);
3098 btrfs_free_path(path
);
3099 err
= btrfs_commit_transaction(trans
, root
);
3106 * This is a heuristic used to reduce the number of chunks balanced on
3107 * resume after balance was interrupted.
3109 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3112 * Turn on soft mode for chunk types that were being converted.
3114 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3115 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3116 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3117 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3118 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3119 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3122 * Turn on usage filter if is not already used. The idea is
3123 * that chunks that we have already balanced should be
3124 * reasonably full. Don't do it for chunks that are being
3125 * converted - that will keep us from relocating unconverted
3126 * (albeit full) chunks.
3128 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3129 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3130 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3131 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3132 bctl
->data
.usage
= 90;
3134 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3135 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3136 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3137 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3138 bctl
->sys
.usage
= 90;
3140 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3141 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3142 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3143 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3144 bctl
->meta
.usage
= 90;
3149 * Should be called with both balance and volume mutexes held to
3150 * serialize other volume operations (add_dev/rm_dev/resize) with
3151 * restriper. Same goes for unset_balance_control.
3153 static void set_balance_control(struct btrfs_balance_control
*bctl
)
3155 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3157 BUG_ON(fs_info
->balance_ctl
);
3159 spin_lock(&fs_info
->balance_lock
);
3160 fs_info
->balance_ctl
= bctl
;
3161 spin_unlock(&fs_info
->balance_lock
);
3164 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
3166 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3168 BUG_ON(!fs_info
->balance_ctl
);
3170 spin_lock(&fs_info
->balance_lock
);
3171 fs_info
->balance_ctl
= NULL
;
3172 spin_unlock(&fs_info
->balance_lock
);
3178 * Balance filters. Return 1 if chunk should be filtered out
3179 * (should not be balanced).
3181 static int chunk_profiles_filter(u64 chunk_type
,
3182 struct btrfs_balance_args
*bargs
)
3184 chunk_type
= chunk_to_extended(chunk_type
) &
3185 BTRFS_EXTENDED_PROFILE_MASK
;
3187 if (bargs
->profiles
& chunk_type
)
3193 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3194 struct btrfs_balance_args
*bargs
)
3196 struct btrfs_block_group_cache
*cache
;
3198 u64 user_thresh_min
;
3199 u64 user_thresh_max
;
3202 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3203 chunk_used
= btrfs_block_group_used(&cache
->item
);
3205 if (bargs
->usage_min
== 0)
3206 user_thresh_min
= 0;
3208 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3211 if (bargs
->usage_max
== 0)
3212 user_thresh_max
= 1;
3213 else if (bargs
->usage_max
> 100)
3214 user_thresh_max
= cache
->key
.offset
;
3216 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3219 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3222 btrfs_put_block_group(cache
);
3226 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3227 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3229 struct btrfs_block_group_cache
*cache
;
3230 u64 chunk_used
, user_thresh
;
3233 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3234 chunk_used
= btrfs_block_group_used(&cache
->item
);
3236 if (bargs
->usage_min
== 0)
3238 else if (bargs
->usage
> 100)
3239 user_thresh
= cache
->key
.offset
;
3241 user_thresh
= div_factor_fine(cache
->key
.offset
,
3244 if (chunk_used
< user_thresh
)
3247 btrfs_put_block_group(cache
);
3251 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3252 struct btrfs_chunk
*chunk
,
3253 struct btrfs_balance_args
*bargs
)
3255 struct btrfs_stripe
*stripe
;
3256 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3259 for (i
= 0; i
< num_stripes
; i
++) {
3260 stripe
= btrfs_stripe_nr(chunk
, i
);
3261 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3268 /* [pstart, pend) */
3269 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3270 struct btrfs_chunk
*chunk
,
3272 struct btrfs_balance_args
*bargs
)
3274 struct btrfs_stripe
*stripe
;
3275 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3281 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3284 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3285 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3286 factor
= num_stripes
/ 2;
3287 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3288 factor
= num_stripes
- 1;
3289 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3290 factor
= num_stripes
- 2;
3292 factor
= num_stripes
;
3295 for (i
= 0; i
< num_stripes
; i
++) {
3296 stripe
= btrfs_stripe_nr(chunk
, i
);
3297 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3300 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3301 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3302 stripe_length
= div_u64(stripe_length
, factor
);
3304 if (stripe_offset
< bargs
->pend
&&
3305 stripe_offset
+ stripe_length
> bargs
->pstart
)
3312 /* [vstart, vend) */
3313 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3314 struct btrfs_chunk
*chunk
,
3316 struct btrfs_balance_args
*bargs
)
3318 if (chunk_offset
< bargs
->vend
&&
3319 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3320 /* at least part of the chunk is inside this vrange */
3326 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3327 struct btrfs_chunk
*chunk
,
3328 struct btrfs_balance_args
*bargs
)
3330 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3332 if (bargs
->stripes_min
<= num_stripes
3333 && num_stripes
<= bargs
->stripes_max
)
3339 static int chunk_soft_convert_filter(u64 chunk_type
,
3340 struct btrfs_balance_args
*bargs
)
3342 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3345 chunk_type
= chunk_to_extended(chunk_type
) &
3346 BTRFS_EXTENDED_PROFILE_MASK
;
3348 if (bargs
->target
== chunk_type
)
3354 static int should_balance_chunk(struct btrfs_root
*root
,
3355 struct extent_buffer
*leaf
,
3356 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3358 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
3359 struct btrfs_balance_args
*bargs
= NULL
;
3360 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3363 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3364 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3368 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3369 bargs
= &bctl
->data
;
3370 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3372 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3373 bargs
= &bctl
->meta
;
3375 /* profiles filter */
3376 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3377 chunk_profiles_filter(chunk_type
, bargs
)) {
3382 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3383 chunk_usage_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3385 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3386 chunk_usage_range_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3391 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3392 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3396 /* drange filter, makes sense only with devid filter */
3397 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3398 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3403 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3404 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3408 /* stripes filter */
3409 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3410 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3414 /* soft profile changing mode */
3415 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3416 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3421 * limited by count, must be the last filter
3423 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3424 if (bargs
->limit
== 0)
3428 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3430 * Same logic as the 'limit' filter; the minimum cannot be
3431 * determined here because we do not have the global information
3432 * about the count of all chunks that satisfy the filters.
3434 if (bargs
->limit_max
== 0)
3443 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3445 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3446 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3447 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3448 struct list_head
*devices
;
3449 struct btrfs_device
*device
;
3453 struct btrfs_chunk
*chunk
;
3454 struct btrfs_path
*path
= NULL
;
3455 struct btrfs_key key
;
3456 struct btrfs_key found_key
;
3457 struct btrfs_trans_handle
*trans
;
3458 struct extent_buffer
*leaf
;
3461 int enospc_errors
= 0;
3462 bool counting
= true;
3463 /* The single value limit and min/max limits use the same bytes in the */
3464 u64 limit_data
= bctl
->data
.limit
;
3465 u64 limit_meta
= bctl
->meta
.limit
;
3466 u64 limit_sys
= bctl
->sys
.limit
;
3470 int chunk_reserved
= 0;
3473 /* step one make some room on all the devices */
3474 devices
= &fs_info
->fs_devices
->devices
;
3475 list_for_each_entry(device
, devices
, dev_list
) {
3476 old_size
= btrfs_device_get_total_bytes(device
);
3477 size_to_free
= div_factor(old_size
, 1);
3478 size_to_free
= min_t(u64
, size_to_free
, SZ_1M
);
3479 if (!device
->writeable
||
3480 btrfs_device_get_total_bytes(device
) -
3481 btrfs_device_get_bytes_used(device
) > size_to_free
||
3482 device
->is_tgtdev_for_dev_replace
)
3485 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3489 /* btrfs_shrink_device never returns ret > 0 */
3494 trans
= btrfs_start_transaction(dev_root
, 0);
3495 if (IS_ERR(trans
)) {
3496 ret
= PTR_ERR(trans
);
3497 btrfs_info_in_rcu(fs_info
,
3498 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3499 rcu_str_deref(device
->name
), ret
,
3500 old_size
, old_size
- size_to_free
);
3504 ret
= btrfs_grow_device(trans
, device
, old_size
);
3506 btrfs_end_transaction(trans
, dev_root
);
3507 /* btrfs_grow_device never returns ret > 0 */
3509 btrfs_info_in_rcu(fs_info
,
3510 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3511 rcu_str_deref(device
->name
), ret
,
3512 old_size
, old_size
- size_to_free
);
3516 btrfs_end_transaction(trans
, dev_root
);
3519 /* step two, relocate all the chunks */
3520 path
= btrfs_alloc_path();
3526 /* zero out stat counters */
3527 spin_lock(&fs_info
->balance_lock
);
3528 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3529 spin_unlock(&fs_info
->balance_lock
);
3533 * The single value limit and min/max limits use the same bytes
3536 bctl
->data
.limit
= limit_data
;
3537 bctl
->meta
.limit
= limit_meta
;
3538 bctl
->sys
.limit
= limit_sys
;
3540 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3541 key
.offset
= (u64
)-1;
3542 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3545 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3546 atomic_read(&fs_info
->balance_cancel_req
)) {
3551 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3552 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3554 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3559 * this shouldn't happen, it means the last relocate
3563 BUG(); /* FIXME break ? */
3565 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3566 BTRFS_CHUNK_ITEM_KEY
);
3568 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3573 leaf
= path
->nodes
[0];
3574 slot
= path
->slots
[0];
3575 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3577 if (found_key
.objectid
!= key
.objectid
) {
3578 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3582 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3583 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3586 spin_lock(&fs_info
->balance_lock
);
3587 bctl
->stat
.considered
++;
3588 spin_unlock(&fs_info
->balance_lock
);
3591 ret
= should_balance_chunk(chunk_root
, leaf
, chunk
,
3594 btrfs_release_path(path
);
3596 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3601 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3602 spin_lock(&fs_info
->balance_lock
);
3603 bctl
->stat
.expected
++;
3604 spin_unlock(&fs_info
->balance_lock
);
3606 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3608 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3610 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3617 * Apply limit_min filter, no need to check if the LIMITS
3618 * filter is used, limit_min is 0 by default
3620 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3621 count_data
< bctl
->data
.limit_min
)
3622 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3623 count_meta
< bctl
->meta
.limit_min
)
3624 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3625 count_sys
< bctl
->sys
.limit_min
)) {
3626 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3630 ASSERT(fs_info
->data_sinfo
);
3631 spin_lock(&fs_info
->data_sinfo
->lock
);
3632 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3633 spin_unlock(&fs_info
->data_sinfo
->lock
);
3635 if ((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3636 !chunk_reserved
&& !bytes_used
) {
3637 trans
= btrfs_start_transaction(chunk_root
, 0);
3638 if (IS_ERR(trans
)) {
3639 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3640 ret
= PTR_ERR(trans
);
3644 ret
= btrfs_force_chunk_alloc(trans
, chunk_root
,
3645 BTRFS_BLOCK_GROUP_DATA
);
3646 btrfs_end_transaction(trans
, chunk_root
);
3648 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3654 ret
= btrfs_relocate_chunk(chunk_root
,
3656 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3657 if (ret
&& ret
!= -ENOSPC
)
3659 if (ret
== -ENOSPC
) {
3662 spin_lock(&fs_info
->balance_lock
);
3663 bctl
->stat
.completed
++;
3664 spin_unlock(&fs_info
->balance_lock
);
3667 if (found_key
.offset
== 0)
3669 key
.offset
= found_key
.offset
- 1;
3673 btrfs_release_path(path
);
3678 btrfs_free_path(path
);
3679 if (enospc_errors
) {
3680 btrfs_info(fs_info
, "%d enospc errors during balance",
3690 * alloc_profile_is_valid - see if a given profile is valid and reduced
3691 * @flags: profile to validate
3692 * @extended: if true @flags is treated as an extended profile
3694 static int alloc_profile_is_valid(u64 flags
, int extended
)
3696 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3697 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3699 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3701 /* 1) check that all other bits are zeroed */
3705 /* 2) see if profile is reduced */
3707 return !extended
; /* "0" is valid for usual profiles */
3709 /* true if exactly one bit set */
3710 return (flags
& (flags
- 1)) == 0;
3713 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3715 /* cancel requested || normal exit path */
3716 return atomic_read(&fs_info
->balance_cancel_req
) ||
3717 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3718 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3721 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3725 unset_balance_control(fs_info
);
3726 ret
= del_balance_item(fs_info
->tree_root
);
3728 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3730 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3733 /* Non-zero return value signifies invalidity */
3734 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3737 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3738 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3739 (bctl_arg
->target
& ~allowed
)));
3743 * Should be called with both balance and volume mutexes held
3745 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3746 struct btrfs_ioctl_balance_args
*bargs
)
3748 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3755 if (btrfs_fs_closing(fs_info
) ||
3756 atomic_read(&fs_info
->balance_pause_req
) ||
3757 atomic_read(&fs_info
->balance_cancel_req
)) {
3762 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3763 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3767 * In case of mixed groups both data and meta should be picked,
3768 * and identical options should be given for both of them.
3770 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3771 if (mixed
&& (bctl
->flags
& allowed
)) {
3772 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3773 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3774 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3776 "with mixed groups data and metadata balance options must be the same");
3782 num_devices
= fs_info
->fs_devices
->num_devices
;
3783 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3784 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3785 BUG_ON(num_devices
< 1);
3788 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3789 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
| BTRFS_BLOCK_GROUP_DUP
;
3790 if (num_devices
> 1)
3791 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3792 if (num_devices
> 2)
3793 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3794 if (num_devices
> 3)
3795 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3796 BTRFS_BLOCK_GROUP_RAID6
);
3797 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3799 "unable to start balance with target data profile %llu",
3804 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3806 "unable to start balance with target metadata profile %llu",
3811 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3813 "unable to start balance with target system profile %llu",
3819 /* allow to reduce meta or sys integrity only if force set */
3820 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3821 BTRFS_BLOCK_GROUP_RAID10
|
3822 BTRFS_BLOCK_GROUP_RAID5
|
3823 BTRFS_BLOCK_GROUP_RAID6
;
3825 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3827 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3828 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3829 !(bctl
->sys
.target
& allowed
)) ||
3830 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3831 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3832 !(bctl
->meta
.target
& allowed
))) {
3833 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3835 "force reducing metadata integrity");
3838 "balance will reduce metadata integrity, use force if you want this");
3843 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3845 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl
->meta
.target
) <
3846 btrfs_get_num_tolerated_disk_barrier_failures(bctl
->data
.target
)) {
3848 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3849 bctl
->meta
.target
, bctl
->data
.target
);
3852 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3853 fs_info
->num_tolerated_disk_barrier_failures
= min(
3854 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
),
3855 btrfs_get_num_tolerated_disk_barrier_failures(
3859 ret
= insert_balance_item(fs_info
->tree_root
, bctl
);
3860 if (ret
&& ret
!= -EEXIST
)
3863 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3864 BUG_ON(ret
== -EEXIST
);
3865 set_balance_control(bctl
);
3867 BUG_ON(ret
!= -EEXIST
);
3868 spin_lock(&fs_info
->balance_lock
);
3869 update_balance_args(bctl
);
3870 spin_unlock(&fs_info
->balance_lock
);
3873 atomic_inc(&fs_info
->balance_running
);
3874 mutex_unlock(&fs_info
->balance_mutex
);
3876 ret
= __btrfs_balance(fs_info
);
3878 mutex_lock(&fs_info
->balance_mutex
);
3879 atomic_dec(&fs_info
->balance_running
);
3881 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3882 fs_info
->num_tolerated_disk_barrier_failures
=
3883 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3887 memset(bargs
, 0, sizeof(*bargs
));
3888 update_ioctl_balance_args(fs_info
, 0, bargs
);
3891 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3892 balance_need_close(fs_info
)) {
3893 __cancel_balance(fs_info
);
3896 wake_up(&fs_info
->balance_wait_q
);
3900 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3901 __cancel_balance(fs_info
);
3904 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3909 static int balance_kthread(void *data
)
3911 struct btrfs_fs_info
*fs_info
= data
;
3914 mutex_lock(&fs_info
->volume_mutex
);
3915 mutex_lock(&fs_info
->balance_mutex
);
3917 if (fs_info
->balance_ctl
) {
3918 btrfs_info(fs_info
, "continuing balance");
3919 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3922 mutex_unlock(&fs_info
->balance_mutex
);
3923 mutex_unlock(&fs_info
->volume_mutex
);
3928 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3930 struct task_struct
*tsk
;
3932 spin_lock(&fs_info
->balance_lock
);
3933 if (!fs_info
->balance_ctl
) {
3934 spin_unlock(&fs_info
->balance_lock
);
3937 spin_unlock(&fs_info
->balance_lock
);
3939 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
3940 btrfs_info(fs_info
, "force skipping balance");
3944 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3945 return PTR_ERR_OR_ZERO(tsk
);
3948 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3950 struct btrfs_balance_control
*bctl
;
3951 struct btrfs_balance_item
*item
;
3952 struct btrfs_disk_balance_args disk_bargs
;
3953 struct btrfs_path
*path
;
3954 struct extent_buffer
*leaf
;
3955 struct btrfs_key key
;
3958 path
= btrfs_alloc_path();
3962 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3963 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3966 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3969 if (ret
> 0) { /* ret = -ENOENT; */
3974 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3980 leaf
= path
->nodes
[0];
3981 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3983 bctl
->fs_info
= fs_info
;
3984 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
3985 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3987 btrfs_balance_data(leaf
, item
, &disk_bargs
);
3988 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
3989 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
3990 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
3991 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
3992 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
3994 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
3996 mutex_lock(&fs_info
->volume_mutex
);
3997 mutex_lock(&fs_info
->balance_mutex
);
3999 set_balance_control(bctl
);
4001 mutex_unlock(&fs_info
->balance_mutex
);
4002 mutex_unlock(&fs_info
->volume_mutex
);
4004 btrfs_free_path(path
);
4008 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4012 mutex_lock(&fs_info
->balance_mutex
);
4013 if (!fs_info
->balance_ctl
) {
4014 mutex_unlock(&fs_info
->balance_mutex
);
4018 if (atomic_read(&fs_info
->balance_running
)) {
4019 atomic_inc(&fs_info
->balance_pause_req
);
4020 mutex_unlock(&fs_info
->balance_mutex
);
4022 wait_event(fs_info
->balance_wait_q
,
4023 atomic_read(&fs_info
->balance_running
) == 0);
4025 mutex_lock(&fs_info
->balance_mutex
);
4026 /* we are good with balance_ctl ripped off from under us */
4027 BUG_ON(atomic_read(&fs_info
->balance_running
));
4028 atomic_dec(&fs_info
->balance_pause_req
);
4033 mutex_unlock(&fs_info
->balance_mutex
);
4037 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4039 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
4042 mutex_lock(&fs_info
->balance_mutex
);
4043 if (!fs_info
->balance_ctl
) {
4044 mutex_unlock(&fs_info
->balance_mutex
);
4048 atomic_inc(&fs_info
->balance_cancel_req
);
4050 * if we are running just wait and return, balance item is
4051 * deleted in btrfs_balance in this case
4053 if (atomic_read(&fs_info
->balance_running
)) {
4054 mutex_unlock(&fs_info
->balance_mutex
);
4055 wait_event(fs_info
->balance_wait_q
,
4056 atomic_read(&fs_info
->balance_running
) == 0);
4057 mutex_lock(&fs_info
->balance_mutex
);
4059 /* __cancel_balance needs volume_mutex */
4060 mutex_unlock(&fs_info
->balance_mutex
);
4061 mutex_lock(&fs_info
->volume_mutex
);
4062 mutex_lock(&fs_info
->balance_mutex
);
4064 if (fs_info
->balance_ctl
)
4065 __cancel_balance(fs_info
);
4067 mutex_unlock(&fs_info
->volume_mutex
);
4070 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
4071 atomic_dec(&fs_info
->balance_cancel_req
);
4072 mutex_unlock(&fs_info
->balance_mutex
);
4076 static int btrfs_uuid_scan_kthread(void *data
)
4078 struct btrfs_fs_info
*fs_info
= data
;
4079 struct btrfs_root
*root
= fs_info
->tree_root
;
4080 struct btrfs_key key
;
4081 struct btrfs_key max_key
;
4082 struct btrfs_path
*path
= NULL
;
4084 struct extent_buffer
*eb
;
4086 struct btrfs_root_item root_item
;
4088 struct btrfs_trans_handle
*trans
= NULL
;
4090 path
= btrfs_alloc_path();
4097 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4100 max_key
.objectid
= (u64
)-1;
4101 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
4102 max_key
.offset
= (u64
)-1;
4105 ret
= btrfs_search_forward(root
, &key
, path
, 0);
4112 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4113 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4114 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4115 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4118 eb
= path
->nodes
[0];
4119 slot
= path
->slots
[0];
4120 item_size
= btrfs_item_size_nr(eb
, slot
);
4121 if (item_size
< sizeof(root_item
))
4124 read_extent_buffer(eb
, &root_item
,
4125 btrfs_item_ptr_offset(eb
, slot
),
4126 (int)sizeof(root_item
));
4127 if (btrfs_root_refs(&root_item
) == 0)
4130 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4131 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4135 btrfs_release_path(path
);
4137 * 1 - subvol uuid item
4138 * 1 - received_subvol uuid item
4140 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4141 if (IS_ERR(trans
)) {
4142 ret
= PTR_ERR(trans
);
4150 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4151 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
4153 BTRFS_UUID_KEY_SUBVOL
,
4156 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4162 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4163 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
4164 root_item
.received_uuid
,
4165 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4168 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4176 ret
= btrfs_end_transaction(trans
, fs_info
->uuid_root
);
4182 btrfs_release_path(path
);
4183 if (key
.offset
< (u64
)-1) {
4185 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4187 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4188 } else if (key
.objectid
< (u64
)-1) {
4190 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4199 btrfs_free_path(path
);
4200 if (trans
&& !IS_ERR(trans
))
4201 btrfs_end_transaction(trans
, fs_info
->uuid_root
);
4203 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4205 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4206 up(&fs_info
->uuid_tree_rescan_sem
);
4211 * Callback for btrfs_uuid_tree_iterate().
4213 * 0 check succeeded, the entry is not outdated.
4214 * < 0 if an error occurred.
4215 * > 0 if the check failed, which means the caller shall remove the entry.
4217 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4218 u8
*uuid
, u8 type
, u64 subid
)
4220 struct btrfs_key key
;
4222 struct btrfs_root
*subvol_root
;
4224 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4225 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4228 key
.objectid
= subid
;
4229 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4230 key
.offset
= (u64
)-1;
4231 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4232 if (IS_ERR(subvol_root
)) {
4233 ret
= PTR_ERR(subvol_root
);
4240 case BTRFS_UUID_KEY_SUBVOL
:
4241 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4244 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4245 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4255 static int btrfs_uuid_rescan_kthread(void *data
)
4257 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4261 * 1st step is to iterate through the existing UUID tree and
4262 * to delete all entries that contain outdated data.
4263 * 2nd step is to add all missing entries to the UUID tree.
4265 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4267 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4268 up(&fs_info
->uuid_tree_rescan_sem
);
4271 return btrfs_uuid_scan_kthread(data
);
4274 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4276 struct btrfs_trans_handle
*trans
;
4277 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4278 struct btrfs_root
*uuid_root
;
4279 struct task_struct
*task
;
4286 trans
= btrfs_start_transaction(tree_root
, 2);
4288 return PTR_ERR(trans
);
4290 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4291 BTRFS_UUID_TREE_OBJECTID
);
4292 if (IS_ERR(uuid_root
)) {
4293 ret
= PTR_ERR(uuid_root
);
4294 btrfs_abort_transaction(trans
, ret
);
4295 btrfs_end_transaction(trans
, tree_root
);
4299 fs_info
->uuid_root
= uuid_root
;
4301 ret
= btrfs_commit_transaction(trans
, tree_root
);
4305 down(&fs_info
->uuid_tree_rescan_sem
);
4306 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4308 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4309 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4310 up(&fs_info
->uuid_tree_rescan_sem
);
4311 return PTR_ERR(task
);
4317 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4319 struct task_struct
*task
;
4321 down(&fs_info
->uuid_tree_rescan_sem
);
4322 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4324 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4325 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4326 up(&fs_info
->uuid_tree_rescan_sem
);
4327 return PTR_ERR(task
);
4334 * shrinking a device means finding all of the device extents past
4335 * the new size, and then following the back refs to the chunks.
4336 * The chunk relocation code actually frees the device extent
4338 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4340 struct btrfs_trans_handle
*trans
;
4341 struct btrfs_root
*root
= device
->dev_root
;
4342 struct btrfs_dev_extent
*dev_extent
= NULL
;
4343 struct btrfs_path
*path
;
4349 bool retried
= false;
4350 bool checked_pending_chunks
= false;
4351 struct extent_buffer
*l
;
4352 struct btrfs_key key
;
4353 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4354 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4355 u64 old_size
= btrfs_device_get_total_bytes(device
);
4356 u64 diff
= old_size
- new_size
;
4358 if (device
->is_tgtdev_for_dev_replace
)
4361 path
= btrfs_alloc_path();
4365 path
->reada
= READA_FORWARD
;
4369 btrfs_device_set_total_bytes(device
, new_size
);
4370 if (device
->writeable
) {
4371 device
->fs_devices
->total_rw_bytes
-= diff
;
4372 spin_lock(&root
->fs_info
->free_chunk_lock
);
4373 root
->fs_info
->free_chunk_space
-= diff
;
4374 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4376 unlock_chunks(root
);
4379 key
.objectid
= device
->devid
;
4380 key
.offset
= (u64
)-1;
4381 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4384 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
4385 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4387 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4391 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4393 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4398 btrfs_release_path(path
);
4403 slot
= path
->slots
[0];
4404 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4406 if (key
.objectid
!= device
->devid
) {
4407 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4408 btrfs_release_path(path
);
4412 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4413 length
= btrfs_dev_extent_length(l
, dev_extent
);
4415 if (key
.offset
+ length
<= new_size
) {
4416 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4417 btrfs_release_path(path
);
4421 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4422 btrfs_release_path(path
);
4424 ret
= btrfs_relocate_chunk(root
, chunk_offset
);
4425 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4426 if (ret
&& ret
!= -ENOSPC
)
4430 } while (key
.offset
-- > 0);
4432 if (failed
&& !retried
) {
4436 } else if (failed
&& retried
) {
4441 /* Shrinking succeeded, else we would be at "done". */
4442 trans
= btrfs_start_transaction(root
, 0);
4443 if (IS_ERR(trans
)) {
4444 ret
= PTR_ERR(trans
);
4451 * We checked in the above loop all device extents that were already in
4452 * the device tree. However before we have updated the device's
4453 * total_bytes to the new size, we might have had chunk allocations that
4454 * have not complete yet (new block groups attached to transaction
4455 * handles), and therefore their device extents were not yet in the
4456 * device tree and we missed them in the loop above. So if we have any
4457 * pending chunk using a device extent that overlaps the device range
4458 * that we can not use anymore, commit the current transaction and
4459 * repeat the search on the device tree - this way we guarantee we will
4460 * not have chunks using device extents that end beyond 'new_size'.
4462 if (!checked_pending_chunks
) {
4463 u64 start
= new_size
;
4464 u64 len
= old_size
- new_size
;
4466 if (contains_pending_extent(trans
->transaction
, device
,
4468 unlock_chunks(root
);
4469 checked_pending_chunks
= true;
4472 ret
= btrfs_commit_transaction(trans
, root
);
4479 btrfs_device_set_disk_total_bytes(device
, new_size
);
4480 if (list_empty(&device
->resized_list
))
4481 list_add_tail(&device
->resized_list
,
4482 &root
->fs_info
->fs_devices
->resized_devices
);
4484 WARN_ON(diff
> old_total
);
4485 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
4486 unlock_chunks(root
);
4488 /* Now btrfs_update_device() will change the on-disk size. */
4489 ret
= btrfs_update_device(trans
, device
);
4490 btrfs_end_transaction(trans
, root
);
4492 btrfs_free_path(path
);
4495 btrfs_device_set_total_bytes(device
, old_size
);
4496 if (device
->writeable
)
4497 device
->fs_devices
->total_rw_bytes
+= diff
;
4498 spin_lock(&root
->fs_info
->free_chunk_lock
);
4499 root
->fs_info
->free_chunk_space
+= diff
;
4500 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4501 unlock_chunks(root
);
4506 static int btrfs_add_system_chunk(struct btrfs_root
*root
,
4507 struct btrfs_key
*key
,
4508 struct btrfs_chunk
*chunk
, int item_size
)
4510 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4511 struct btrfs_disk_key disk_key
;
4516 array_size
= btrfs_super_sys_array_size(super_copy
);
4517 if (array_size
+ item_size
+ sizeof(disk_key
)
4518 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4519 unlock_chunks(root
);
4523 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4524 btrfs_cpu_key_to_disk(&disk_key
, key
);
4525 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4526 ptr
+= sizeof(disk_key
);
4527 memcpy(ptr
, chunk
, item_size
);
4528 item_size
+= sizeof(disk_key
);
4529 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4530 unlock_chunks(root
);
4536 * sort the devices in descending order by max_avail, total_avail
4538 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4540 const struct btrfs_device_info
*di_a
= a
;
4541 const struct btrfs_device_info
*di_b
= b
;
4543 if (di_a
->max_avail
> di_b
->max_avail
)
4545 if (di_a
->max_avail
< di_b
->max_avail
)
4547 if (di_a
->total_avail
> di_b
->total_avail
)
4549 if (di_a
->total_avail
< di_b
->total_avail
)
4554 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
4556 /* TODO allow them to set a preferred stripe size */
4560 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4562 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4565 btrfs_set_fs_incompat(info
, RAID56
);
4568 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r) \
4569 - sizeof(struct btrfs_chunk)) \
4570 / sizeof(struct btrfs_stripe) + 1)
4572 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4573 - 2 * sizeof(struct btrfs_disk_key) \
4574 - 2 * sizeof(struct btrfs_chunk)) \
4575 / sizeof(struct btrfs_stripe) + 1)
4577 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4578 struct btrfs_root
*extent_root
, u64 start
,
4581 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
4582 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4583 struct list_head
*cur
;
4584 struct map_lookup
*map
= NULL
;
4585 struct extent_map_tree
*em_tree
;
4586 struct extent_map
*em
;
4587 struct btrfs_device_info
*devices_info
= NULL
;
4589 int num_stripes
; /* total number of stripes to allocate */
4590 int data_stripes
; /* number of stripes that count for
4592 int sub_stripes
; /* sub_stripes info for map */
4593 int dev_stripes
; /* stripes per dev */
4594 int devs_max
; /* max devs to use */
4595 int devs_min
; /* min devs needed */
4596 int devs_increment
; /* ndevs has to be a multiple of this */
4597 int ncopies
; /* how many copies to data has */
4599 u64 max_stripe_size
;
4603 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4609 BUG_ON(!alloc_profile_is_valid(type
, 0));
4611 if (list_empty(&fs_devices
->alloc_list
))
4614 index
= __get_raid_index(type
);
4616 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4617 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4618 devs_max
= btrfs_raid_array
[index
].devs_max
;
4619 devs_min
= btrfs_raid_array
[index
].devs_min
;
4620 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4621 ncopies
= btrfs_raid_array
[index
].ncopies
;
4623 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4624 max_stripe_size
= SZ_1G
;
4625 max_chunk_size
= 10 * max_stripe_size
;
4627 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4628 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4629 /* for larger filesystems, use larger metadata chunks */
4630 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4631 max_stripe_size
= SZ_1G
;
4633 max_stripe_size
= SZ_256M
;
4634 max_chunk_size
= max_stripe_size
;
4636 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4637 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4638 max_stripe_size
= SZ_32M
;
4639 max_chunk_size
= 2 * max_stripe_size
;
4641 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4643 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4648 /* we don't want a chunk larger than 10% of writeable space */
4649 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4652 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4657 cur
= fs_devices
->alloc_list
.next
;
4660 * in the first pass through the devices list, we gather information
4661 * about the available holes on each device.
4664 while (cur
!= &fs_devices
->alloc_list
) {
4665 struct btrfs_device
*device
;
4669 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4673 if (!device
->writeable
) {
4675 "BTRFS: read-only device in alloc_list\n");
4679 if (!device
->in_fs_metadata
||
4680 device
->is_tgtdev_for_dev_replace
)
4683 if (device
->total_bytes
> device
->bytes_used
)
4684 total_avail
= device
->total_bytes
- device
->bytes_used
;
4688 /* If there is no space on this device, skip it. */
4689 if (total_avail
== 0)
4692 ret
= find_free_dev_extent(trans
, device
,
4693 max_stripe_size
* dev_stripes
,
4694 &dev_offset
, &max_avail
);
4695 if (ret
&& ret
!= -ENOSPC
)
4699 max_avail
= max_stripe_size
* dev_stripes
;
4701 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4704 if (ndevs
== fs_devices
->rw_devices
) {
4705 WARN(1, "%s: found more than %llu devices\n",
4706 __func__
, fs_devices
->rw_devices
);
4709 devices_info
[ndevs
].dev_offset
= dev_offset
;
4710 devices_info
[ndevs
].max_avail
= max_avail
;
4711 devices_info
[ndevs
].total_avail
= total_avail
;
4712 devices_info
[ndevs
].dev
= device
;
4717 * now sort the devices by hole size / available space
4719 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4720 btrfs_cmp_device_info
, NULL
);
4722 /* round down to number of usable stripes */
4723 ndevs
-= ndevs
% devs_increment
;
4725 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4730 if (devs_max
&& ndevs
> devs_max
)
4733 * the primary goal is to maximize the number of stripes, so use as many
4734 * devices as possible, even if the stripes are not maximum sized.
4736 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4737 num_stripes
= ndevs
* dev_stripes
;
4740 * this will have to be fixed for RAID1 and RAID10 over
4743 data_stripes
= num_stripes
/ ncopies
;
4745 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4746 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4747 extent_root
->stripesize
);
4748 data_stripes
= num_stripes
- 1;
4750 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4751 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4752 extent_root
->stripesize
);
4753 data_stripes
= num_stripes
- 2;
4757 * Use the number of data stripes to figure out how big this chunk
4758 * is really going to be in terms of logical address space,
4759 * and compare that answer with the max chunk size
4761 if (stripe_size
* data_stripes
> max_chunk_size
) {
4762 u64 mask
= (1ULL << 24) - 1;
4764 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4766 /* bump the answer up to a 16MB boundary */
4767 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4769 /* but don't go higher than the limits we found
4770 * while searching for free extents
4772 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4773 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4776 stripe_size
= div_u64(stripe_size
, dev_stripes
);
4778 /* align to BTRFS_STRIPE_LEN */
4779 stripe_size
= div_u64(stripe_size
, raid_stripe_len
);
4780 stripe_size
*= raid_stripe_len
;
4782 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4787 map
->num_stripes
= num_stripes
;
4789 for (i
= 0; i
< ndevs
; ++i
) {
4790 for (j
= 0; j
< dev_stripes
; ++j
) {
4791 int s
= i
* dev_stripes
+ j
;
4792 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4793 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4797 map
->sector_size
= extent_root
->sectorsize
;
4798 map
->stripe_len
= raid_stripe_len
;
4799 map
->io_align
= raid_stripe_len
;
4800 map
->io_width
= raid_stripe_len
;
4802 map
->sub_stripes
= sub_stripes
;
4804 num_bytes
= stripe_size
* data_stripes
;
4806 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
4808 em
= alloc_extent_map();
4814 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4815 em
->map_lookup
= map
;
4817 em
->len
= num_bytes
;
4818 em
->block_start
= 0;
4819 em
->block_len
= em
->len
;
4820 em
->orig_block_len
= stripe_size
;
4822 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4823 write_lock(&em_tree
->lock
);
4824 ret
= add_extent_mapping(em_tree
, em
, 0);
4826 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4827 atomic_inc(&em
->refs
);
4829 write_unlock(&em_tree
->lock
);
4831 free_extent_map(em
);
4835 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
4836 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4839 goto error_del_extent
;
4841 for (i
= 0; i
< map
->num_stripes
; i
++) {
4842 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4843 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4846 spin_lock(&extent_root
->fs_info
->free_chunk_lock
);
4847 extent_root
->fs_info
->free_chunk_space
-= (stripe_size
*
4849 spin_unlock(&extent_root
->fs_info
->free_chunk_lock
);
4851 free_extent_map(em
);
4852 check_raid56_incompat_flag(extent_root
->fs_info
, type
);
4854 kfree(devices_info
);
4858 write_lock(&em_tree
->lock
);
4859 remove_extent_mapping(em_tree
, em
);
4860 write_unlock(&em_tree
->lock
);
4862 /* One for our allocation */
4863 free_extent_map(em
);
4864 /* One for the tree reference */
4865 free_extent_map(em
);
4866 /* One for the pending_chunks list reference */
4867 free_extent_map(em
);
4869 kfree(devices_info
);
4873 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4874 struct btrfs_root
*extent_root
,
4875 u64 chunk_offset
, u64 chunk_size
)
4877 struct btrfs_key key
;
4878 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
4879 struct btrfs_device
*device
;
4880 struct btrfs_chunk
*chunk
;
4881 struct btrfs_stripe
*stripe
;
4882 struct extent_map_tree
*em_tree
;
4883 struct extent_map
*em
;
4884 struct map_lookup
*map
;
4891 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4892 read_lock(&em_tree
->lock
);
4893 em
= lookup_extent_mapping(em_tree
, chunk_offset
, chunk_size
);
4894 read_unlock(&em_tree
->lock
);
4897 btrfs_crit(extent_root
->fs_info
,
4898 "unable to find logical %Lu len %Lu",
4899 chunk_offset
, chunk_size
);
4903 if (em
->start
!= chunk_offset
|| em
->len
!= chunk_size
) {
4904 btrfs_crit(extent_root
->fs_info
,
4905 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4906 chunk_offset
, chunk_size
, em
->start
, em
->len
);
4907 free_extent_map(em
);
4911 map
= em
->map_lookup
;
4912 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4913 stripe_size
= em
->orig_block_len
;
4915 chunk
= kzalloc(item_size
, GFP_NOFS
);
4922 * Take the device list mutex to prevent races with the final phase of
4923 * a device replace operation that replaces the device object associated
4924 * with the map's stripes, because the device object's id can change
4925 * at any time during that final phase of the device replace operation
4926 * (dev-replace.c:btrfs_dev_replace_finishing()).
4928 mutex_lock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4929 for (i
= 0; i
< map
->num_stripes
; i
++) {
4930 device
= map
->stripes
[i
].dev
;
4931 dev_offset
= map
->stripes
[i
].physical
;
4933 ret
= btrfs_update_device(trans
, device
);
4936 ret
= btrfs_alloc_dev_extent(trans
, device
,
4937 chunk_root
->root_key
.objectid
,
4938 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4939 chunk_offset
, dev_offset
,
4945 mutex_unlock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4949 stripe
= &chunk
->stripe
;
4950 for (i
= 0; i
< map
->num_stripes
; i
++) {
4951 device
= map
->stripes
[i
].dev
;
4952 dev_offset
= map
->stripes
[i
].physical
;
4954 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4955 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4956 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4959 mutex_unlock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4961 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4962 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4963 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4964 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4965 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4966 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4967 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4968 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
4969 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4971 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4972 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4973 key
.offset
= chunk_offset
;
4975 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4976 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4978 * TODO: Cleanup of inserted chunk root in case of
4981 ret
= btrfs_add_system_chunk(chunk_root
, &key
, chunk
,
4987 free_extent_map(em
);
4992 * Chunk allocation falls into two parts. The first part does works
4993 * that make the new allocated chunk useable, but not do any operation
4994 * that modifies the chunk tree. The second part does the works that
4995 * require modifying the chunk tree. This division is important for the
4996 * bootstrap process of adding storage to a seed btrfs.
4998 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4999 struct btrfs_root
*extent_root
, u64 type
)
5003 ASSERT(mutex_is_locked(&extent_root
->fs_info
->chunk_mutex
));
5004 chunk_offset
= find_next_chunk(extent_root
->fs_info
);
5005 return __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
, type
);
5008 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
5009 struct btrfs_root
*root
,
5010 struct btrfs_device
*device
)
5013 u64 sys_chunk_offset
;
5015 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5016 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
5019 chunk_offset
= find_next_chunk(fs_info
);
5020 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
5021 ret
= __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
,
5026 sys_chunk_offset
= find_next_chunk(root
->fs_info
);
5027 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
5028 ret
= __btrfs_alloc_chunk(trans
, extent_root
, sys_chunk_offset
,
5033 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5037 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5038 BTRFS_BLOCK_GROUP_RAID10
|
5039 BTRFS_BLOCK_GROUP_RAID5
|
5040 BTRFS_BLOCK_GROUP_DUP
)) {
5042 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5051 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
5053 struct extent_map
*em
;
5054 struct map_lookup
*map
;
5055 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5060 read_lock(&map_tree
->map_tree
.lock
);
5061 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
5062 read_unlock(&map_tree
->map_tree
.lock
);
5066 map
= em
->map_lookup
;
5067 for (i
= 0; i
< map
->num_stripes
; i
++) {
5068 if (map
->stripes
[i
].dev
->missing
) {
5073 if (!map
->stripes
[i
].dev
->writeable
) {
5080 * If the number of missing devices is larger than max errors,
5081 * we can not write the data into that chunk successfully, so
5084 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5087 free_extent_map(em
);
5091 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
5093 extent_map_tree_init(&tree
->map_tree
);
5096 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
5098 struct extent_map
*em
;
5101 write_lock(&tree
->map_tree
.lock
);
5102 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
5104 remove_extent_mapping(&tree
->map_tree
, em
);
5105 write_unlock(&tree
->map_tree
.lock
);
5109 free_extent_map(em
);
5110 /* once for the tree */
5111 free_extent_map(em
);
5115 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5117 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5118 struct extent_map
*em
;
5119 struct map_lookup
*map
;
5120 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5123 read_lock(&em_tree
->lock
);
5124 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5125 read_unlock(&em_tree
->lock
);
5128 * We could return errors for these cases, but that could get ugly and
5129 * we'd probably do the same thing which is just not do anything else
5130 * and exit, so return 1 so the callers don't try to use other copies.
5133 btrfs_crit(fs_info
, "No mapping for %Lu-%Lu", logical
,
5138 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5139 btrfs_crit(fs_info
, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5140 logical
, logical
+len
, em
->start
,
5141 em
->start
+ em
->len
);
5142 free_extent_map(em
);
5146 map
= em
->map_lookup
;
5147 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5148 ret
= map
->num_stripes
;
5149 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5150 ret
= map
->sub_stripes
;
5151 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5153 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5157 free_extent_map(em
);
5159 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
5160 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
5162 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
5167 unsigned long btrfs_full_stripe_len(struct btrfs_root
*root
,
5168 struct btrfs_mapping_tree
*map_tree
,
5171 struct extent_map
*em
;
5172 struct map_lookup
*map
;
5173 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5174 unsigned long len
= root
->sectorsize
;
5176 read_lock(&em_tree
->lock
);
5177 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5178 read_unlock(&em_tree
->lock
);
5181 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5182 map
= em
->map_lookup
;
5183 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5184 len
= map
->stripe_len
* nr_data_stripes(map
);
5185 free_extent_map(em
);
5189 int btrfs_is_parity_mirror(struct btrfs_mapping_tree
*map_tree
,
5190 u64 logical
, u64 len
, int mirror_num
)
5192 struct extent_map
*em
;
5193 struct map_lookup
*map
;
5194 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5197 read_lock(&em_tree
->lock
);
5198 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5199 read_unlock(&em_tree
->lock
);
5202 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5203 map
= em
->map_lookup
;
5204 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5206 free_extent_map(em
);
5210 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5211 struct map_lookup
*map
, int first
, int num
,
5212 int optimal
, int dev_replace_is_ongoing
)
5216 struct btrfs_device
*srcdev
;
5218 if (dev_replace_is_ongoing
&&
5219 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5220 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5221 srcdev
= fs_info
->dev_replace
.srcdev
;
5226 * try to avoid the drive that is the source drive for a
5227 * dev-replace procedure, only choose it if no other non-missing
5228 * mirror is available
5230 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5231 if (map
->stripes
[optimal
].dev
->bdev
&&
5232 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
5234 for (i
= first
; i
< first
+ num
; i
++) {
5235 if (map
->stripes
[i
].dev
->bdev
&&
5236 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5241 /* we couldn't find one that doesn't fail. Just return something
5242 * and the io error handling code will clean up eventually
5247 static inline int parity_smaller(u64 a
, u64 b
)
5252 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5253 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5255 struct btrfs_bio_stripe s
;
5262 for (i
= 0; i
< num_stripes
- 1; i
++) {
5263 if (parity_smaller(bbio
->raid_map
[i
],
5264 bbio
->raid_map
[i
+1])) {
5265 s
= bbio
->stripes
[i
];
5266 l
= bbio
->raid_map
[i
];
5267 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5268 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5269 bbio
->stripes
[i
+1] = s
;
5270 bbio
->raid_map
[i
+1] = l
;
5278 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5280 struct btrfs_bio
*bbio
= kzalloc(
5281 /* the size of the btrfs_bio */
5282 sizeof(struct btrfs_bio
) +
5283 /* plus the variable array for the stripes */
5284 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5285 /* plus the variable array for the tgt dev */
5286 sizeof(int) * (real_stripes
) +
5288 * plus the raid_map, which includes both the tgt dev
5291 sizeof(u64
) * (total_stripes
),
5292 GFP_NOFS
|__GFP_NOFAIL
);
5294 atomic_set(&bbio
->error
, 0);
5295 atomic_set(&bbio
->refs
, 1);
5300 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5302 WARN_ON(!atomic_read(&bbio
->refs
));
5303 atomic_inc(&bbio
->refs
);
5306 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5310 if (atomic_dec_and_test(&bbio
->refs
))
5314 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
, int op
,
5315 u64 logical
, u64
*length
,
5316 struct btrfs_bio
**bbio_ret
,
5317 int mirror_num
, int need_raid_map
)
5319 struct extent_map
*em
;
5320 struct map_lookup
*map
;
5321 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5322 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5325 u64 stripe_end_offset
;
5335 int tgtdev_indexes
= 0;
5336 struct btrfs_bio
*bbio
= NULL
;
5337 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5338 int dev_replace_is_ongoing
= 0;
5339 int num_alloc_stripes
;
5340 int patch_the_first_stripe_for_dev_replace
= 0;
5341 u64 physical_to_patch_in_first_stripe
= 0;
5342 u64 raid56_full_stripe_start
= (u64
)-1;
5344 read_lock(&em_tree
->lock
);
5345 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
5346 read_unlock(&em_tree
->lock
);
5349 btrfs_crit(fs_info
, "unable to find logical %llu len %llu",
5354 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5356 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5357 logical
, em
->start
, em
->start
+ em
->len
);
5358 free_extent_map(em
);
5362 map
= em
->map_lookup
;
5363 offset
= logical
- em
->start
;
5365 stripe_len
= map
->stripe_len
;
5368 * stripe_nr counts the total number of stripes we have to stride
5369 * to get to this block
5371 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5373 stripe_offset
= stripe_nr
* stripe_len
;
5374 if (offset
< stripe_offset
) {
5376 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5377 stripe_offset
, offset
, em
->start
, logical
,
5379 free_extent_map(em
);
5383 /* stripe_offset is the offset of this block in its stripe*/
5384 stripe_offset
= offset
- stripe_offset
;
5386 /* if we're here for raid56, we need to know the stripe aligned start */
5387 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5388 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5389 raid56_full_stripe_start
= offset
;
5391 /* allow a write of a full stripe, but make sure we don't
5392 * allow straddling of stripes
5394 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5396 raid56_full_stripe_start
*= full_stripe_len
;
5399 if (op
== REQ_OP_DISCARD
) {
5400 /* we don't discard raid56 yet */
5401 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5405 *length
= min_t(u64
, em
->len
- offset
, *length
);
5406 } else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5408 /* For writes to RAID[56], allow a full stripeset across all disks.
5409 For other RAID types and for RAID[56] reads, just allow a single
5410 stripe (on a single disk). */
5411 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5412 (op
== REQ_OP_WRITE
)) {
5413 max_len
= stripe_len
* nr_data_stripes(map
) -
5414 (offset
- raid56_full_stripe_start
);
5416 /* we limit the length of each bio to what fits in a stripe */
5417 max_len
= stripe_len
- stripe_offset
;
5419 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5421 *length
= em
->len
- offset
;
5424 /* This is for when we're called from btrfs_merge_bio_hook() and all
5425 it cares about is the length */
5429 btrfs_dev_replace_lock(dev_replace
, 0);
5430 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5431 if (!dev_replace_is_ongoing
)
5432 btrfs_dev_replace_unlock(dev_replace
, 0);
5434 btrfs_dev_replace_set_lock_blocking(dev_replace
);
5436 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5437 op
!= REQ_OP_WRITE
&& op
!= REQ_OP_DISCARD
&&
5438 op
!= REQ_GET_READ_MIRRORS
&& dev_replace
->tgtdev
!= NULL
) {
5440 * in dev-replace case, for repair case (that's the only
5441 * case where the mirror is selected explicitly when
5442 * calling btrfs_map_block), blocks left of the left cursor
5443 * can also be read from the target drive.
5444 * For REQ_GET_READ_MIRRORS, the target drive is added as
5445 * the last one to the array of stripes. For READ, it also
5446 * needs to be supported using the same mirror number.
5447 * If the requested block is not left of the left cursor,
5448 * EIO is returned. This can happen because btrfs_num_copies()
5449 * returns one more in the dev-replace case.
5451 u64 tmp_length
= *length
;
5452 struct btrfs_bio
*tmp_bbio
= NULL
;
5453 int tmp_num_stripes
;
5454 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5455 int index_srcdev
= 0;
5457 u64 physical_of_found
= 0;
5459 ret
= __btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
,
5460 logical
, &tmp_length
, &tmp_bbio
, 0, 0);
5462 WARN_ON(tmp_bbio
!= NULL
);
5466 tmp_num_stripes
= tmp_bbio
->num_stripes
;
5467 if (mirror_num
> tmp_num_stripes
) {
5469 * REQ_GET_READ_MIRRORS does not contain this
5470 * mirror, that means that the requested area
5471 * is not left of the left cursor
5474 btrfs_put_bbio(tmp_bbio
);
5479 * process the rest of the function using the mirror_num
5480 * of the source drive. Therefore look it up first.
5481 * At the end, patch the device pointer to the one of the
5484 for (i
= 0; i
< tmp_num_stripes
; i
++) {
5485 if (tmp_bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5489 * In case of DUP, in order to keep it simple, only add
5490 * the mirror with the lowest physical address
5493 physical_of_found
<= tmp_bbio
->stripes
[i
].physical
)
5498 physical_of_found
= tmp_bbio
->stripes
[i
].physical
;
5501 btrfs_put_bbio(tmp_bbio
);
5509 mirror_num
= index_srcdev
+ 1;
5510 patch_the_first_stripe_for_dev_replace
= 1;
5511 physical_to_patch_in_first_stripe
= physical_of_found
;
5512 } else if (mirror_num
> map
->num_stripes
) {
5518 stripe_nr_orig
= stripe_nr
;
5519 stripe_nr_end
= ALIGN(offset
+ *length
, map
->stripe_len
);
5520 stripe_nr_end
= div_u64(stripe_nr_end
, map
->stripe_len
);
5521 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5524 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5525 if (op
== REQ_OP_DISCARD
)
5526 num_stripes
= min_t(u64
, map
->num_stripes
,
5527 stripe_nr_end
- stripe_nr_orig
);
5528 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5530 if (op
!= REQ_OP_WRITE
&& op
!= REQ_OP_DISCARD
&&
5531 op
!= REQ_GET_READ_MIRRORS
)
5533 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5534 if (op
== REQ_OP_WRITE
|| op
== REQ_OP_DISCARD
||
5535 op
== REQ_GET_READ_MIRRORS
)
5536 num_stripes
= map
->num_stripes
;
5537 else if (mirror_num
)
5538 stripe_index
= mirror_num
- 1;
5540 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5542 current
->pid
% map
->num_stripes
,
5543 dev_replace_is_ongoing
);
5544 mirror_num
= stripe_index
+ 1;
5547 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5548 if (op
== REQ_OP_WRITE
|| op
== REQ_OP_DISCARD
||
5549 op
== REQ_GET_READ_MIRRORS
) {
5550 num_stripes
= map
->num_stripes
;
5551 } else if (mirror_num
) {
5552 stripe_index
= mirror_num
- 1;
5557 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5558 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5560 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5561 stripe_index
*= map
->sub_stripes
;
5563 if (op
== REQ_OP_WRITE
|| op
== REQ_GET_READ_MIRRORS
)
5564 num_stripes
= map
->sub_stripes
;
5565 else if (op
== REQ_OP_DISCARD
)
5566 num_stripes
= min_t(u64
, map
->sub_stripes
*
5567 (stripe_nr_end
- stripe_nr_orig
),
5569 else if (mirror_num
)
5570 stripe_index
+= mirror_num
- 1;
5572 int old_stripe_index
= stripe_index
;
5573 stripe_index
= find_live_mirror(fs_info
, map
,
5575 map
->sub_stripes
, stripe_index
+
5576 current
->pid
% map
->sub_stripes
,
5577 dev_replace_is_ongoing
);
5578 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5581 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5582 if (need_raid_map
&&
5583 (op
== REQ_OP_WRITE
|| op
== REQ_GET_READ_MIRRORS
||
5585 /* push stripe_nr back to the start of the full stripe */
5586 stripe_nr
= div_u64(raid56_full_stripe_start
,
5587 stripe_len
* nr_data_stripes(map
));
5589 /* RAID[56] write or recovery. Return all stripes */
5590 num_stripes
= map
->num_stripes
;
5591 max_errors
= nr_parity_stripes(map
);
5593 *length
= map
->stripe_len
;
5598 * Mirror #0 or #1 means the original data block.
5599 * Mirror #2 is RAID5 parity block.
5600 * Mirror #3 is RAID6 Q block.
5602 stripe_nr
= div_u64_rem(stripe_nr
,
5603 nr_data_stripes(map
), &stripe_index
);
5605 stripe_index
= nr_data_stripes(map
) +
5608 /* We distribute the parity blocks across stripes */
5609 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5611 if ((op
!= REQ_OP_WRITE
&& op
!= REQ_OP_DISCARD
&&
5612 op
!= REQ_GET_READ_MIRRORS
) && mirror_num
<= 1)
5617 * after this, stripe_nr is the number of stripes on this
5618 * device we have to walk to find the data, and stripe_index is
5619 * the number of our device in the stripe array
5621 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5623 mirror_num
= stripe_index
+ 1;
5625 if (stripe_index
>= map
->num_stripes
) {
5627 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5628 stripe_index
, map
->num_stripes
);
5633 num_alloc_stripes
= num_stripes
;
5634 if (dev_replace_is_ongoing
) {
5635 if (op
== REQ_OP_WRITE
|| op
== REQ_OP_DISCARD
)
5636 num_alloc_stripes
<<= 1;
5637 if (op
== REQ_GET_READ_MIRRORS
)
5638 num_alloc_stripes
++;
5639 tgtdev_indexes
= num_stripes
;
5642 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5647 if (dev_replace_is_ongoing
)
5648 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5650 /* build raid_map */
5651 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&&
5653 ((op
== REQ_OP_WRITE
|| op
== REQ_GET_READ_MIRRORS
) ||
5658 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5659 sizeof(struct btrfs_bio_stripe
) *
5661 sizeof(int) * tgtdev_indexes
);
5663 /* Work out the disk rotation on this stripe-set */
5664 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5666 /* Fill in the logical address of each stripe */
5667 tmp
= stripe_nr
* nr_data_stripes(map
);
5668 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5669 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5670 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5672 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5673 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5674 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5678 if (op
== REQ_OP_DISCARD
) {
5680 u32 sub_stripes
= 0;
5681 u64 stripes_per_dev
= 0;
5682 u32 remaining_stripes
= 0;
5683 u32 last_stripe
= 0;
5686 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
5687 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5690 sub_stripes
= map
->sub_stripes
;
5692 factor
= map
->num_stripes
/ sub_stripes
;
5693 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
5696 &remaining_stripes
);
5697 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5698 last_stripe
*= sub_stripes
;
5701 for (i
= 0; i
< num_stripes
; i
++) {
5702 bbio
->stripes
[i
].physical
=
5703 map
->stripes
[stripe_index
].physical
+
5704 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5705 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5707 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5708 BTRFS_BLOCK_GROUP_RAID10
)) {
5709 bbio
->stripes
[i
].length
= stripes_per_dev
*
5712 if (i
/ sub_stripes
< remaining_stripes
)
5713 bbio
->stripes
[i
].length
+=
5717 * Special for the first stripe and
5720 * |-------|...|-------|
5724 if (i
< sub_stripes
)
5725 bbio
->stripes
[i
].length
-=
5728 if (stripe_index
>= last_stripe
&&
5729 stripe_index
<= (last_stripe
+
5731 bbio
->stripes
[i
].length
-=
5734 if (i
== sub_stripes
- 1)
5737 bbio
->stripes
[i
].length
= *length
;
5740 if (stripe_index
== map
->num_stripes
) {
5741 /* This could only happen for RAID0/10 */
5747 for (i
= 0; i
< num_stripes
; i
++) {
5748 bbio
->stripes
[i
].physical
=
5749 map
->stripes
[stripe_index
].physical
+
5751 stripe_nr
* map
->stripe_len
;
5752 bbio
->stripes
[i
].dev
=
5753 map
->stripes
[stripe_index
].dev
;
5758 if (op
== REQ_OP_WRITE
|| op
== REQ_GET_READ_MIRRORS
)
5759 max_errors
= btrfs_chunk_max_errors(map
);
5762 sort_parity_stripes(bbio
, num_stripes
);
5765 if (dev_replace_is_ongoing
&&
5766 (op
== REQ_OP_WRITE
|| op
== REQ_OP_DISCARD
) &&
5767 dev_replace
->tgtdev
!= NULL
) {
5768 int index_where_to_add
;
5769 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5772 * duplicate the write operations while the dev replace
5773 * procedure is running. Since the copying of the old disk
5774 * to the new disk takes place at run time while the
5775 * filesystem is mounted writable, the regular write
5776 * operations to the old disk have to be duplicated to go
5777 * to the new disk as well.
5778 * Note that device->missing is handled by the caller, and
5779 * that the write to the old disk is already set up in the
5782 index_where_to_add
= num_stripes
;
5783 for (i
= 0; i
< num_stripes
; i
++) {
5784 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5785 /* write to new disk, too */
5786 struct btrfs_bio_stripe
*new =
5787 bbio
->stripes
+ index_where_to_add
;
5788 struct btrfs_bio_stripe
*old
=
5791 new->physical
= old
->physical
;
5792 new->length
= old
->length
;
5793 new->dev
= dev_replace
->tgtdev
;
5794 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5795 index_where_to_add
++;
5800 num_stripes
= index_where_to_add
;
5801 } else if (dev_replace_is_ongoing
&& (op
== REQ_GET_READ_MIRRORS
) &&
5802 dev_replace
->tgtdev
!= NULL
) {
5803 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5804 int index_srcdev
= 0;
5806 u64 physical_of_found
= 0;
5809 * During the dev-replace procedure, the target drive can
5810 * also be used to read data in case it is needed to repair
5811 * a corrupt block elsewhere. This is possible if the
5812 * requested area is left of the left cursor. In this area,
5813 * the target drive is a full copy of the source drive.
5815 for (i
= 0; i
< num_stripes
; i
++) {
5816 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5818 * In case of DUP, in order to keep it
5819 * simple, only add the mirror with the
5820 * lowest physical address
5823 physical_of_found
<=
5824 bbio
->stripes
[i
].physical
)
5828 physical_of_found
= bbio
->stripes
[i
].physical
;
5832 struct btrfs_bio_stripe
*tgtdev_stripe
=
5833 bbio
->stripes
+ num_stripes
;
5835 tgtdev_stripe
->physical
= physical_of_found
;
5836 tgtdev_stripe
->length
=
5837 bbio
->stripes
[index_srcdev
].length
;
5838 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5839 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5847 bbio
->map_type
= map
->type
;
5848 bbio
->num_stripes
= num_stripes
;
5849 bbio
->max_errors
= max_errors
;
5850 bbio
->mirror_num
= mirror_num
;
5851 bbio
->num_tgtdevs
= tgtdev_indexes
;
5854 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5855 * mirror_num == num_stripes + 1 && dev_replace target drive is
5856 * available as a mirror
5858 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5859 WARN_ON(num_stripes
> 1);
5860 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5861 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5862 bbio
->mirror_num
= map
->num_stripes
+ 1;
5865 if (dev_replace_is_ongoing
) {
5866 btrfs_dev_replace_clear_lock_blocking(dev_replace
);
5867 btrfs_dev_replace_unlock(dev_replace
, 0);
5869 free_extent_map(em
);
5873 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, int op
,
5874 u64 logical
, u64
*length
,
5875 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5877 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
5881 /* For Scrub/replace */
5882 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, int op
,
5883 u64 logical
, u64
*length
,
5884 struct btrfs_bio
**bbio_ret
, int mirror_num
,
5887 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
5888 mirror_num
, need_raid_map
);
5891 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
5892 u64 chunk_start
, u64 physical
, u64 devid
,
5893 u64
**logical
, int *naddrs
, int *stripe_len
)
5895 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5896 struct extent_map
*em
;
5897 struct map_lookup
*map
;
5905 read_lock(&em_tree
->lock
);
5906 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
5907 read_unlock(&em_tree
->lock
);
5910 pr_err("BTRFS: couldn't find em for chunk %Lu\n",
5915 if (em
->start
!= chunk_start
) {
5916 pr_err("BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5917 em
->start
, chunk_start
);
5918 free_extent_map(em
);
5921 map
= em
->map_lookup
;
5924 rmap_len
= map
->stripe_len
;
5926 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5927 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
5928 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5929 length
= div_u64(length
, map
->num_stripes
);
5930 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5931 length
= div_u64(length
, nr_data_stripes(map
));
5932 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5935 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
5936 BUG_ON(!buf
); /* -ENOMEM */
5938 for (i
= 0; i
< map
->num_stripes
; i
++) {
5939 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5941 if (map
->stripes
[i
].physical
> physical
||
5942 map
->stripes
[i
].physical
+ length
<= physical
)
5945 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5946 stripe_nr
= div_u64(stripe_nr
, map
->stripe_len
);
5948 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5949 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5950 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
5951 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5952 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5953 } /* else if RAID[56], multiply by nr_data_stripes().
5954 * Alternatively, just use rmap_len below instead of
5955 * map->stripe_len */
5957 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
5958 WARN_ON(nr
>= map
->num_stripes
);
5959 for (j
= 0; j
< nr
; j
++) {
5960 if (buf
[j
] == bytenr
)
5964 WARN_ON(nr
>= map
->num_stripes
);
5971 *stripe_len
= rmap_len
;
5973 free_extent_map(em
);
5977 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
5979 bio
->bi_private
= bbio
->private;
5980 bio
->bi_end_io
= bbio
->end_io
;
5983 btrfs_put_bbio(bbio
);
5986 static void btrfs_end_bio(struct bio
*bio
)
5988 struct btrfs_bio
*bbio
= bio
->bi_private
;
5989 int is_orig_bio
= 0;
5991 if (bio
->bi_error
) {
5992 atomic_inc(&bbio
->error
);
5993 if (bio
->bi_error
== -EIO
|| bio
->bi_error
== -EREMOTEIO
) {
5994 unsigned int stripe_index
=
5995 btrfs_io_bio(bio
)->stripe_index
;
5996 struct btrfs_device
*dev
;
5998 BUG_ON(stripe_index
>= bbio
->num_stripes
);
5999 dev
= bbio
->stripes
[stripe_index
].dev
;
6001 if (bio_op(bio
) == REQ_OP_WRITE
)
6002 btrfs_dev_stat_inc(dev
,
6003 BTRFS_DEV_STAT_WRITE_ERRS
);
6005 btrfs_dev_stat_inc(dev
,
6006 BTRFS_DEV_STAT_READ_ERRS
);
6007 if ((bio
->bi_opf
& WRITE_FLUSH
) == WRITE_FLUSH
)
6008 btrfs_dev_stat_inc(dev
,
6009 BTRFS_DEV_STAT_FLUSH_ERRS
);
6010 btrfs_dev_stat_print_on_error(dev
);
6015 if (bio
== bbio
->orig_bio
)
6018 btrfs_bio_counter_dec(bbio
->fs_info
);
6020 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6023 bio
= bbio
->orig_bio
;
6026 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6027 /* only send an error to the higher layers if it is
6028 * beyond the tolerance of the btrfs bio
6030 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6031 bio
->bi_error
= -EIO
;
6034 * this bio is actually up to date, we didn't
6035 * go over the max number of errors
6040 btrfs_end_bbio(bbio
, bio
);
6041 } else if (!is_orig_bio
) {
6047 * see run_scheduled_bios for a description of why bios are collected for
6050 * This will add one bio to the pending list for a device and make sure
6051 * the work struct is scheduled.
6053 static noinline
void btrfs_schedule_bio(struct btrfs_root
*root
,
6054 struct btrfs_device
*device
,
6057 int should_queue
= 1;
6058 struct btrfs_pending_bios
*pending_bios
;
6060 if (device
->missing
|| !device
->bdev
) {
6065 /* don't bother with additional async steps for reads, right now */
6066 if (bio_op(bio
) == REQ_OP_READ
) {
6068 btrfsic_submit_bio(bio
);
6074 * nr_async_bios allows us to reliably return congestion to the
6075 * higher layers. Otherwise, the async bio makes it appear we have
6076 * made progress against dirty pages when we've really just put it
6077 * on a queue for later
6079 atomic_inc(&root
->fs_info
->nr_async_bios
);
6080 WARN_ON(bio
->bi_next
);
6081 bio
->bi_next
= NULL
;
6083 spin_lock(&device
->io_lock
);
6084 if (bio
->bi_opf
& REQ_SYNC
)
6085 pending_bios
= &device
->pending_sync_bios
;
6087 pending_bios
= &device
->pending_bios
;
6089 if (pending_bios
->tail
)
6090 pending_bios
->tail
->bi_next
= bio
;
6092 pending_bios
->tail
= bio
;
6093 if (!pending_bios
->head
)
6094 pending_bios
->head
= bio
;
6095 if (device
->running_pending
)
6098 spin_unlock(&device
->io_lock
);
6101 btrfs_queue_work(root
->fs_info
->submit_workers
,
6105 static void submit_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
6106 struct bio
*bio
, u64 physical
, int dev_nr
,
6109 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6111 bio
->bi_private
= bbio
;
6112 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6113 bio
->bi_end_io
= btrfs_end_bio
;
6114 bio
->bi_iter
.bi_sector
= physical
>> 9;
6117 struct rcu_string
*name
;
6120 name
= rcu_dereference(dev
->name
);
6121 pr_debug("btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u\n",
6122 bio_op(bio
), bio
->bi_opf
, (u64
)bio
->bi_iter
.bi_sector
,
6123 (u_long
)dev
->bdev
->bd_dev
, name
->str
, dev
->devid
,
6124 bio
->bi_iter
.bi_size
);
6128 bio
->bi_bdev
= dev
->bdev
;
6130 btrfs_bio_counter_inc_noblocked(root
->fs_info
);
6133 btrfs_schedule_bio(root
, dev
, bio
);
6135 btrfsic_submit_bio(bio
);
6138 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6140 atomic_inc(&bbio
->error
);
6141 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6142 /* Should be the original bio. */
6143 WARN_ON(bio
!= bbio
->orig_bio
);
6145 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6146 bio
->bi_iter
.bi_sector
= logical
>> 9;
6147 bio
->bi_error
= -EIO
;
6148 btrfs_end_bbio(bbio
, bio
);
6152 int btrfs_map_bio(struct btrfs_root
*root
, struct bio
*bio
,
6153 int mirror_num
, int async_submit
)
6155 struct btrfs_device
*dev
;
6156 struct bio
*first_bio
= bio
;
6157 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6163 struct btrfs_bio
*bbio
= NULL
;
6165 length
= bio
->bi_iter
.bi_size
;
6166 map_length
= length
;
6168 btrfs_bio_counter_inc_blocked(root
->fs_info
);
6169 ret
= __btrfs_map_block(root
->fs_info
, bio_op(bio
), logical
,
6170 &map_length
, &bbio
, mirror_num
, 1);
6172 btrfs_bio_counter_dec(root
->fs_info
);
6176 total_devs
= bbio
->num_stripes
;
6177 bbio
->orig_bio
= first_bio
;
6178 bbio
->private = first_bio
->bi_private
;
6179 bbio
->end_io
= first_bio
->bi_end_io
;
6180 bbio
->fs_info
= root
->fs_info
;
6181 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6183 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6184 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6185 /* In this case, map_length has been set to the length of
6186 a single stripe; not the whole write */
6187 if (bio_op(bio
) == REQ_OP_WRITE
) {
6188 ret
= raid56_parity_write(root
, bio
, bbio
, map_length
);
6190 ret
= raid56_parity_recover(root
, bio
, bbio
, map_length
,
6194 btrfs_bio_counter_dec(root
->fs_info
);
6198 if (map_length
< length
) {
6199 btrfs_crit(root
->fs_info
,
6200 "mapping failed logical %llu bio len %llu len %llu",
6201 logical
, length
, map_length
);
6205 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6206 dev
= bbio
->stripes
[dev_nr
].dev
;
6207 if (!dev
|| !dev
->bdev
||
6208 (bio_op(bio
) == REQ_OP_WRITE
&& !dev
->writeable
)) {
6209 bbio_error(bbio
, first_bio
, logical
);
6213 if (dev_nr
< total_devs
- 1) {
6214 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
6215 BUG_ON(!bio
); /* -ENOMEM */
6219 submit_stripe_bio(root
, bbio
, bio
,
6220 bbio
->stripes
[dev_nr
].physical
, dev_nr
,
6223 btrfs_bio_counter_dec(root
->fs_info
);
6227 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6230 struct btrfs_device
*device
;
6231 struct btrfs_fs_devices
*cur_devices
;
6233 cur_devices
= fs_info
->fs_devices
;
6234 while (cur_devices
) {
6236 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
6237 device
= __find_device(&cur_devices
->devices
,
6242 cur_devices
= cur_devices
->seed
;
6247 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
6248 struct btrfs_fs_devices
*fs_devices
,
6249 u64 devid
, u8
*dev_uuid
)
6251 struct btrfs_device
*device
;
6253 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6257 list_add(&device
->dev_list
, &fs_devices
->devices
);
6258 device
->fs_devices
= fs_devices
;
6259 fs_devices
->num_devices
++;
6261 device
->missing
= 1;
6262 fs_devices
->missing_devices
++;
6268 * btrfs_alloc_device - allocate struct btrfs_device
6269 * @fs_info: used only for generating a new devid, can be NULL if
6270 * devid is provided (i.e. @devid != NULL).
6271 * @devid: a pointer to devid for this device. If NULL a new devid
6273 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6276 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6277 * on error. Returned struct is not linked onto any lists and can be
6278 * destroyed with kfree() right away.
6280 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6284 struct btrfs_device
*dev
;
6287 if (WARN_ON(!devid
&& !fs_info
))
6288 return ERR_PTR(-EINVAL
);
6290 dev
= __alloc_device();
6299 ret
= find_next_devid(fs_info
, &tmp
);
6302 return ERR_PTR(ret
);
6308 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6310 generate_random_uuid(dev
->uuid
);
6312 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6313 pending_bios_fn
, NULL
, NULL
);
6318 /* Return -EIO if any error, otherwise return 0. */
6319 static int btrfs_check_chunk_valid(struct btrfs_root
*root
,
6320 struct extent_buffer
*leaf
,
6321 struct btrfs_chunk
*chunk
, u64 logical
)
6329 length
= btrfs_chunk_length(leaf
, chunk
);
6330 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6331 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6332 sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6333 type
= btrfs_chunk_type(leaf
, chunk
);
6336 btrfs_err(root
->fs_info
, "invalid chunk num_stripes: %u",
6340 if (!IS_ALIGNED(logical
, root
->sectorsize
)) {
6341 btrfs_err(root
->fs_info
,
6342 "invalid chunk logical %llu", logical
);
6345 if (btrfs_chunk_sector_size(leaf
, chunk
) != root
->sectorsize
) {
6346 btrfs_err(root
->fs_info
, "invalid chunk sectorsize %u",
6347 btrfs_chunk_sector_size(leaf
, chunk
));
6350 if (!length
|| !IS_ALIGNED(length
, root
->sectorsize
)) {
6351 btrfs_err(root
->fs_info
,
6352 "invalid chunk length %llu", length
);
6355 if (!is_power_of_2(stripe_len
) || stripe_len
!= BTRFS_STRIPE_LEN
) {
6356 btrfs_err(root
->fs_info
, "invalid chunk stripe length: %llu",
6360 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK
| BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6362 btrfs_err(root
->fs_info
, "unrecognized chunk type: %llu",
6363 ~(BTRFS_BLOCK_GROUP_TYPE_MASK
|
6364 BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6365 btrfs_chunk_type(leaf
, chunk
));
6368 if ((type
& BTRFS_BLOCK_GROUP_RAID10
&& sub_stripes
!= 2) ||
6369 (type
& BTRFS_BLOCK_GROUP_RAID1
&& num_stripes
< 1) ||
6370 (type
& BTRFS_BLOCK_GROUP_RAID5
&& num_stripes
< 2) ||
6371 (type
& BTRFS_BLOCK_GROUP_RAID6
&& num_stripes
< 3) ||
6372 (type
& BTRFS_BLOCK_GROUP_DUP
&& num_stripes
> 2) ||
6373 ((type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 &&
6374 num_stripes
!= 1)) {
6375 btrfs_err(root
->fs_info
,
6376 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6377 num_stripes
, sub_stripes
,
6378 type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
);
6385 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
6386 struct extent_buffer
*leaf
,
6387 struct btrfs_chunk
*chunk
)
6389 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
6390 struct map_lookup
*map
;
6391 struct extent_map
*em
;
6396 u8 uuid
[BTRFS_UUID_SIZE
];
6401 logical
= key
->offset
;
6402 length
= btrfs_chunk_length(leaf
, chunk
);
6403 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6404 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6406 ret
= btrfs_check_chunk_valid(root
, leaf
, chunk
, logical
);
6410 read_lock(&map_tree
->map_tree
.lock
);
6411 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6412 read_unlock(&map_tree
->map_tree
.lock
);
6414 /* already mapped? */
6415 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6416 free_extent_map(em
);
6419 free_extent_map(em
);
6422 em
= alloc_extent_map();
6425 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6427 free_extent_map(em
);
6431 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6432 em
->map_lookup
= map
;
6433 em
->start
= logical
;
6436 em
->block_start
= 0;
6437 em
->block_len
= em
->len
;
6439 map
->num_stripes
= num_stripes
;
6440 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6441 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6442 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
6443 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6444 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6445 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6446 for (i
= 0; i
< num_stripes
; i
++) {
6447 map
->stripes
[i
].physical
=
6448 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6449 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6450 read_extent_buffer(leaf
, uuid
, (unsigned long)
6451 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6453 map
->stripes
[i
].dev
= btrfs_find_device(root
->fs_info
, devid
,
6455 if (!map
->stripes
[i
].dev
&&
6456 !btrfs_test_opt(root
->fs_info
, DEGRADED
)) {
6457 free_extent_map(em
);
6460 if (!map
->stripes
[i
].dev
) {
6461 map
->stripes
[i
].dev
=
6462 add_missing_dev(root
, root
->fs_info
->fs_devices
,
6464 if (!map
->stripes
[i
].dev
) {
6465 free_extent_map(em
);
6468 btrfs_warn(root
->fs_info
,
6469 "devid %llu uuid %pU is missing",
6472 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
6475 write_lock(&map_tree
->map_tree
.lock
);
6476 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6477 write_unlock(&map_tree
->map_tree
.lock
);
6478 BUG_ON(ret
); /* Tree corruption */
6479 free_extent_map(em
);
6484 static void fill_device_from_item(struct extent_buffer
*leaf
,
6485 struct btrfs_dev_item
*dev_item
,
6486 struct btrfs_device
*device
)
6490 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6491 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6492 device
->total_bytes
= device
->disk_total_bytes
;
6493 device
->commit_total_bytes
= device
->disk_total_bytes
;
6494 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6495 device
->commit_bytes_used
= device
->bytes_used
;
6496 device
->type
= btrfs_device_type(leaf
, dev_item
);
6497 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6498 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6499 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6500 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6501 device
->is_tgtdev_for_dev_replace
= 0;
6503 ptr
= btrfs_device_uuid(dev_item
);
6504 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6507 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_root
*root
,
6510 struct btrfs_fs_devices
*fs_devices
;
6513 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6515 fs_devices
= root
->fs_info
->fs_devices
->seed
;
6516 while (fs_devices
) {
6517 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
))
6520 fs_devices
= fs_devices
->seed
;
6523 fs_devices
= find_fsid(fsid
);
6525 if (!btrfs_test_opt(root
->fs_info
, DEGRADED
))
6526 return ERR_PTR(-ENOENT
);
6528 fs_devices
= alloc_fs_devices(fsid
);
6529 if (IS_ERR(fs_devices
))
6532 fs_devices
->seeding
= 1;
6533 fs_devices
->opened
= 1;
6537 fs_devices
= clone_fs_devices(fs_devices
);
6538 if (IS_ERR(fs_devices
))
6541 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6542 root
->fs_info
->bdev_holder
);
6544 free_fs_devices(fs_devices
);
6545 fs_devices
= ERR_PTR(ret
);
6549 if (!fs_devices
->seeding
) {
6550 __btrfs_close_devices(fs_devices
);
6551 free_fs_devices(fs_devices
);
6552 fs_devices
= ERR_PTR(-EINVAL
);
6556 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
6557 root
->fs_info
->fs_devices
->seed
= fs_devices
;
6562 static int read_one_dev(struct btrfs_root
*root
,
6563 struct extent_buffer
*leaf
,
6564 struct btrfs_dev_item
*dev_item
)
6566 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6567 struct btrfs_device
*device
;
6570 u8 fs_uuid
[BTRFS_UUID_SIZE
];
6571 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6573 devid
= btrfs_device_id(leaf
, dev_item
);
6574 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6576 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6579 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
6580 fs_devices
= open_seed_devices(root
, fs_uuid
);
6581 if (IS_ERR(fs_devices
))
6582 return PTR_ERR(fs_devices
);
6585 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
, fs_uuid
);
6587 if (!btrfs_test_opt(root
->fs_info
, DEGRADED
))
6590 device
= add_missing_dev(root
, fs_devices
, devid
, dev_uuid
);
6593 btrfs_warn(root
->fs_info
, "devid %llu uuid %pU missing",
6596 if (!device
->bdev
&& !btrfs_test_opt(root
->fs_info
, DEGRADED
))
6599 if(!device
->bdev
&& !device
->missing
) {
6601 * this happens when a device that was properly setup
6602 * in the device info lists suddenly goes bad.
6603 * device->bdev is NULL, and so we have to set
6604 * device->missing to one here
6606 device
->fs_devices
->missing_devices
++;
6607 device
->missing
= 1;
6610 /* Move the device to its own fs_devices */
6611 if (device
->fs_devices
!= fs_devices
) {
6612 ASSERT(device
->missing
);
6614 list_move(&device
->dev_list
, &fs_devices
->devices
);
6615 device
->fs_devices
->num_devices
--;
6616 fs_devices
->num_devices
++;
6618 device
->fs_devices
->missing_devices
--;
6619 fs_devices
->missing_devices
++;
6621 device
->fs_devices
= fs_devices
;
6625 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
6626 BUG_ON(device
->writeable
);
6627 if (device
->generation
!=
6628 btrfs_device_generation(leaf
, dev_item
))
6632 fill_device_from_item(leaf
, dev_item
, device
);
6633 device
->in_fs_metadata
= 1;
6634 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
6635 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6636 spin_lock(&root
->fs_info
->free_chunk_lock
);
6637 root
->fs_info
->free_chunk_space
+= device
->total_bytes
-
6639 spin_unlock(&root
->fs_info
->free_chunk_lock
);
6645 int btrfs_read_sys_array(struct btrfs_root
*root
)
6647 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
6648 struct extent_buffer
*sb
;
6649 struct btrfs_disk_key
*disk_key
;
6650 struct btrfs_chunk
*chunk
;
6652 unsigned long sb_array_offset
;
6659 struct btrfs_key key
;
6661 ASSERT(BTRFS_SUPER_INFO_SIZE
<= root
->nodesize
);
6663 * This will create extent buffer of nodesize, superblock size is
6664 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6665 * overallocate but we can keep it as-is, only the first page is used.
6667 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
);
6670 set_extent_buffer_uptodate(sb
);
6671 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6673 * The sb extent buffer is artificial and just used to read the system array.
6674 * set_extent_buffer_uptodate() call does not properly mark all it's
6675 * pages up-to-date when the page is larger: extent does not cover the
6676 * whole page and consequently check_page_uptodate does not find all
6677 * the page's extents up-to-date (the hole beyond sb),
6678 * write_extent_buffer then triggers a WARN_ON.
6680 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6681 * but sb spans only this function. Add an explicit SetPageUptodate call
6682 * to silence the warning eg. on PowerPC 64.
6684 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6685 SetPageUptodate(sb
->pages
[0]);
6687 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6688 array_size
= btrfs_super_sys_array_size(super_copy
);
6690 array_ptr
= super_copy
->sys_chunk_array
;
6691 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6694 while (cur_offset
< array_size
) {
6695 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6696 len
= sizeof(*disk_key
);
6697 if (cur_offset
+ len
> array_size
)
6698 goto out_short_read
;
6700 btrfs_disk_key_to_cpu(&key
, disk_key
);
6703 sb_array_offset
+= len
;
6706 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6707 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6709 * At least one btrfs_chunk with one stripe must be
6710 * present, exact stripe count check comes afterwards
6712 len
= btrfs_chunk_item_size(1);
6713 if (cur_offset
+ len
> array_size
)
6714 goto out_short_read
;
6716 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6718 pr_err("BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6719 num_stripes
, cur_offset
);
6724 type
= btrfs_chunk_type(sb
, chunk
);
6725 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6726 btrfs_err(root
->fs_info
,
6727 "invalid chunk type %llu in sys_array at offset %u",
6733 len
= btrfs_chunk_item_size(num_stripes
);
6734 if (cur_offset
+ len
> array_size
)
6735 goto out_short_read
;
6737 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
6741 pr_err("BTRFS: unexpected item type %u in sys_array at offset %u\n",
6742 (u32
)key
.type
, cur_offset
);
6747 sb_array_offset
+= len
;
6750 clear_extent_buffer_uptodate(sb
);
6751 free_extent_buffer_stale(sb
);
6755 pr_err("BTRFS: sys_array too short to read %u bytes at offset %u\n",
6757 clear_extent_buffer_uptodate(sb
);
6758 free_extent_buffer_stale(sb
);
6762 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
6764 struct btrfs_path
*path
;
6765 struct extent_buffer
*leaf
;
6766 struct btrfs_key key
;
6767 struct btrfs_key found_key
;
6772 root
= root
->fs_info
->chunk_root
;
6774 path
= btrfs_alloc_path();
6778 mutex_lock(&uuid_mutex
);
6782 * Read all device items, and then all the chunk items. All
6783 * device items are found before any chunk item (their object id
6784 * is smaller than the lowest possible object id for a chunk
6785 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6787 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6790 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6794 leaf
= path
->nodes
[0];
6795 slot
= path
->slots
[0];
6796 if (slot
>= btrfs_header_nritems(leaf
)) {
6797 ret
= btrfs_next_leaf(root
, path
);
6804 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6805 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6806 struct btrfs_dev_item
*dev_item
;
6807 dev_item
= btrfs_item_ptr(leaf
, slot
,
6808 struct btrfs_dev_item
);
6809 ret
= read_one_dev(root
, leaf
, dev_item
);
6813 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6814 struct btrfs_chunk
*chunk
;
6815 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6816 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
6824 * After loading chunk tree, we've got all device information,
6825 * do another round of validation checks.
6827 if (total_dev
!= root
->fs_info
->fs_devices
->total_devices
) {
6828 btrfs_err(root
->fs_info
,
6829 "super_num_devices %llu mismatch with num_devices %llu found here",
6830 btrfs_super_num_devices(root
->fs_info
->super_copy
),
6835 if (btrfs_super_total_bytes(root
->fs_info
->super_copy
) <
6836 root
->fs_info
->fs_devices
->total_rw_bytes
) {
6837 btrfs_err(root
->fs_info
,
6838 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6839 btrfs_super_total_bytes(root
->fs_info
->super_copy
),
6840 root
->fs_info
->fs_devices
->total_rw_bytes
);
6846 unlock_chunks(root
);
6847 mutex_unlock(&uuid_mutex
);
6849 btrfs_free_path(path
);
6853 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6855 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6856 struct btrfs_device
*device
;
6858 while (fs_devices
) {
6859 mutex_lock(&fs_devices
->device_list_mutex
);
6860 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6861 device
->dev_root
= fs_info
->dev_root
;
6862 mutex_unlock(&fs_devices
->device_list_mutex
);
6864 fs_devices
= fs_devices
->seed
;
6868 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6872 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6873 btrfs_dev_stat_reset(dev
, i
);
6876 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6878 struct btrfs_key key
;
6879 struct btrfs_key found_key
;
6880 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6881 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6882 struct extent_buffer
*eb
;
6885 struct btrfs_device
*device
;
6886 struct btrfs_path
*path
= NULL
;
6889 path
= btrfs_alloc_path();
6895 mutex_lock(&fs_devices
->device_list_mutex
);
6896 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6898 struct btrfs_dev_stats_item
*ptr
;
6900 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
6901 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
6902 key
.offset
= device
->devid
;
6903 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6905 __btrfs_reset_dev_stats(device
);
6906 device
->dev_stats_valid
= 1;
6907 btrfs_release_path(path
);
6910 slot
= path
->slots
[0];
6911 eb
= path
->nodes
[0];
6912 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6913 item_size
= btrfs_item_size_nr(eb
, slot
);
6915 ptr
= btrfs_item_ptr(eb
, slot
,
6916 struct btrfs_dev_stats_item
);
6918 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6919 if (item_size
>= (1 + i
) * sizeof(__le64
))
6920 btrfs_dev_stat_set(device
, i
,
6921 btrfs_dev_stats_value(eb
, ptr
, i
));
6923 btrfs_dev_stat_reset(device
, i
);
6926 device
->dev_stats_valid
= 1;
6927 btrfs_dev_stat_print_on_load(device
);
6928 btrfs_release_path(path
);
6930 mutex_unlock(&fs_devices
->device_list_mutex
);
6933 btrfs_free_path(path
);
6934 return ret
< 0 ? ret
: 0;
6937 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
6938 struct btrfs_root
*dev_root
,
6939 struct btrfs_device
*device
)
6941 struct btrfs_path
*path
;
6942 struct btrfs_key key
;
6943 struct extent_buffer
*eb
;
6944 struct btrfs_dev_stats_item
*ptr
;
6948 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
6949 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
6950 key
.offset
= device
->devid
;
6952 path
= btrfs_alloc_path();
6954 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
6956 btrfs_warn_in_rcu(dev_root
->fs_info
,
6957 "error %d while searching for dev_stats item for device %s",
6958 ret
, rcu_str_deref(device
->name
));
6963 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
6964 /* need to delete old one and insert a new one */
6965 ret
= btrfs_del_item(trans
, dev_root
, path
);
6967 btrfs_warn_in_rcu(dev_root
->fs_info
,
6968 "delete too small dev_stats item for device %s failed %d",
6969 rcu_str_deref(device
->name
), ret
);
6976 /* need to insert a new item */
6977 btrfs_release_path(path
);
6978 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
6979 &key
, sizeof(*ptr
));
6981 btrfs_warn_in_rcu(dev_root
->fs_info
,
6982 "insert dev_stats item for device %s failed %d",
6983 rcu_str_deref(device
->name
), ret
);
6988 eb
= path
->nodes
[0];
6989 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
6990 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6991 btrfs_set_dev_stats_value(eb
, ptr
, i
,
6992 btrfs_dev_stat_read(device
, i
));
6993 btrfs_mark_buffer_dirty(eb
);
6996 btrfs_free_path(path
);
7001 * called from commit_transaction. Writes all changed device stats to disk.
7003 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
7004 struct btrfs_fs_info
*fs_info
)
7006 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7007 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7008 struct btrfs_device
*device
;
7012 mutex_lock(&fs_devices
->device_list_mutex
);
7013 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7014 if (!device
->dev_stats_valid
|| !btrfs_dev_stats_dirty(device
))
7017 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7018 ret
= update_dev_stat_item(trans
, dev_root
, device
);
7020 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7022 mutex_unlock(&fs_devices
->device_list_mutex
);
7027 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7029 btrfs_dev_stat_inc(dev
, index
);
7030 btrfs_dev_stat_print_on_error(dev
);
7033 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7035 if (!dev
->dev_stats_valid
)
7037 btrfs_err_rl_in_rcu(dev
->dev_root
->fs_info
,
7038 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7039 rcu_str_deref(dev
->name
),
7040 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7041 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7042 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7043 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7044 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7047 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7051 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7052 if (btrfs_dev_stat_read(dev
, i
) != 0)
7054 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7055 return; /* all values == 0, suppress message */
7057 btrfs_info_in_rcu(dev
->dev_root
->fs_info
,
7058 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7059 rcu_str_deref(dev
->name
),
7060 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7061 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7062 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7063 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7064 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7067 int btrfs_get_dev_stats(struct btrfs_root
*root
,
7068 struct btrfs_ioctl_get_dev_stats
*stats
)
7070 struct btrfs_device
*dev
;
7071 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
7074 mutex_lock(&fs_devices
->device_list_mutex
);
7075 dev
= btrfs_find_device(root
->fs_info
, stats
->devid
, NULL
, NULL
);
7076 mutex_unlock(&fs_devices
->device_list_mutex
);
7079 btrfs_warn(root
->fs_info
,
7080 "get dev_stats failed, device not found");
7082 } else if (!dev
->dev_stats_valid
) {
7083 btrfs_warn(root
->fs_info
,
7084 "get dev_stats failed, not yet valid");
7086 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7087 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7088 if (stats
->nr_items
> i
)
7090 btrfs_dev_stat_read_and_reset(dev
, i
);
7092 btrfs_dev_stat_reset(dev
, i
);
7095 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7096 if (stats
->nr_items
> i
)
7097 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7099 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7100 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7104 void btrfs_scratch_superblocks(struct block_device
*bdev
, char *device_path
)
7106 struct buffer_head
*bh
;
7107 struct btrfs_super_block
*disk_super
;
7113 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7116 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7119 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7121 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7122 set_buffer_dirty(bh
);
7123 sync_dirty_buffer(bh
);
7127 /* Notify udev that device has changed */
7128 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7130 /* Update ctime/mtime for device path for libblkid */
7131 update_dev_time(device_path
);
7135 * Update the size of all devices, which is used for writing out the
7138 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
7140 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7141 struct btrfs_device
*curr
, *next
;
7143 if (list_empty(&fs_devices
->resized_devices
))
7146 mutex_lock(&fs_devices
->device_list_mutex
);
7147 lock_chunks(fs_info
->dev_root
);
7148 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
7150 list_del_init(&curr
->resized_list
);
7151 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7153 unlock_chunks(fs_info
->dev_root
);
7154 mutex_unlock(&fs_devices
->device_list_mutex
);
7157 /* Must be invoked during the transaction commit */
7158 void btrfs_update_commit_device_bytes_used(struct btrfs_root
*root
,
7159 struct btrfs_transaction
*transaction
)
7161 struct extent_map
*em
;
7162 struct map_lookup
*map
;
7163 struct btrfs_device
*dev
;
7166 if (list_empty(&transaction
->pending_chunks
))
7169 /* In order to kick the device replace finish process */
7171 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
7172 map
= em
->map_lookup
;
7174 for (i
= 0; i
< map
->num_stripes
; i
++) {
7175 dev
= map
->stripes
[i
].dev
;
7176 dev
->commit_bytes_used
= dev
->bytes_used
;
7179 unlock_chunks(root
);
7182 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7184 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7185 while (fs_devices
) {
7186 fs_devices
->fs_info
= fs_info
;
7187 fs_devices
= fs_devices
->seed
;
7191 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7193 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7194 while (fs_devices
) {
7195 fs_devices
->fs_info
= NULL
;
7196 fs_devices
= fs_devices
->seed
;