4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr
;
83 EXPORT_SYMBOL(max_mapnr
);
84 EXPORT_SYMBOL(mem_map
);
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 EXPORT_SYMBOL(high_memory
);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly
=
105 #ifdef CONFIG_COMPAT_BRK
111 static int __init
disable_randmaps(char *s
)
113 randomize_va_space
= 0;
116 __setup("norandmaps", disable_randmaps
);
118 unsigned long zero_pfn __read_mostly
;
119 unsigned long highest_memmap_pfn __read_mostly
;
121 EXPORT_SYMBOL(zero_pfn
);
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126 static int __init
init_zero_pfn(void)
128 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
131 core_initcall(init_zero_pfn
);
134 #if defined(SPLIT_RSS_COUNTING)
136 void sync_mm_rss(struct mm_struct
*mm
)
140 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
141 if (current
->rss_stat
.count
[i
]) {
142 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
143 current
->rss_stat
.count
[i
] = 0;
146 current
->rss_stat
.events
= 0;
149 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
151 struct task_struct
*task
= current
;
153 if (likely(task
->mm
== mm
))
154 task
->rss_stat
.count
[member
] += val
;
156 add_mm_counter(mm
, member
, val
);
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH (64)
163 static void check_sync_rss_stat(struct task_struct
*task
)
165 if (unlikely(task
!= current
))
167 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
168 sync_mm_rss(task
->mm
);
170 #else /* SPLIT_RSS_COUNTING */
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175 static void check_sync_rss_stat(struct task_struct
*task
)
179 #endif /* SPLIT_RSS_COUNTING */
181 #ifdef HAVE_GENERIC_MMU_GATHER
183 static int tlb_next_batch(struct mmu_gather
*tlb
)
185 struct mmu_gather_batch
*batch
;
189 tlb
->active
= batch
->next
;
193 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
196 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
203 batch
->max
= MAX_GATHER_BATCH
;
205 tlb
->active
->next
= batch
;
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
216 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
220 /* Is it from 0 to ~0? */
221 tlb
->fullmm
= !(start
| (end
+1));
222 tlb
->need_flush_all
= 0;
223 tlb
->local
.next
= NULL
;
225 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
226 tlb
->active
= &tlb
->local
;
227 tlb
->batch_count
= 0;
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 __tlb_reset_range(tlb
);
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
242 mmu_notifier_invalidate_range(tlb
->mm
, tlb
->start
, tlb
->end
);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 tlb_table_flush(tlb
);
246 __tlb_reset_range(tlb
);
249 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
251 struct mmu_gather_batch
*batch
;
253 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
254 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
257 tlb
->active
= &tlb
->local
;
260 void tlb_flush_mmu(struct mmu_gather
*tlb
)
262 tlb_flush_mmu_tlbonly(tlb
);
263 tlb_flush_mmu_free(tlb
);
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
270 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
272 struct mmu_gather_batch
*batch
, *next
;
276 /* keep the page table cache within bounds */
279 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
281 free_pages((unsigned long)batch
, 0);
283 tlb
->local
.next
= NULL
;
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
292 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
294 struct mmu_gather_batch
*batch
;
296 VM_BUG_ON(!tlb
->end
);
299 batch
->pages
[batch
->nr
++] = page
;
300 if (batch
->nr
== batch
->max
) {
301 if (!tlb_next_batch(tlb
))
305 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
307 return batch
->max
- batch
->nr
;
310 #endif /* HAVE_GENERIC_MMU_GATHER */
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
315 * See the comment near struct mmu_table_batch.
318 static void tlb_remove_table_smp_sync(void *arg
)
320 /* Simply deliver the interrupt */
323 static void tlb_remove_table_one(void *table
)
326 * This isn't an RCU grace period and hence the page-tables cannot be
327 * assumed to be actually RCU-freed.
329 * It is however sufficient for software page-table walkers that rely on
330 * IRQ disabling. See the comment near struct mmu_table_batch.
332 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
333 __tlb_remove_table(table
);
336 static void tlb_remove_table_rcu(struct rcu_head
*head
)
338 struct mmu_table_batch
*batch
;
341 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
343 for (i
= 0; i
< batch
->nr
; i
++)
344 __tlb_remove_table(batch
->tables
[i
]);
346 free_page((unsigned long)batch
);
349 void tlb_table_flush(struct mmu_gather
*tlb
)
351 struct mmu_table_batch
**batch
= &tlb
->batch
;
354 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
359 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
361 struct mmu_table_batch
**batch
= &tlb
->batch
;
364 * When there's less then two users of this mm there cannot be a
365 * concurrent page-table walk.
367 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
368 __tlb_remove_table(table
);
372 if (*batch
== NULL
) {
373 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
374 if (*batch
== NULL
) {
375 tlb_remove_table_one(table
);
380 (*batch
)->tables
[(*batch
)->nr
++] = table
;
381 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
382 tlb_table_flush(tlb
);
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388 * Note: this doesn't free the actual pages themselves. That
389 * has been handled earlier when unmapping all the memory regions.
391 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
394 pgtable_t token
= pmd_pgtable(*pmd
);
396 pte_free_tlb(tlb
, token
, addr
);
397 atomic_long_dec(&tlb
->mm
->nr_ptes
);
400 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
401 unsigned long addr
, unsigned long end
,
402 unsigned long floor
, unsigned long ceiling
)
409 pmd
= pmd_offset(pud
, addr
);
411 next
= pmd_addr_end(addr
, end
);
412 if (pmd_none_or_clear_bad(pmd
))
414 free_pte_range(tlb
, pmd
, addr
);
415 } while (pmd
++, addr
= next
, addr
!= end
);
425 if (end
- 1 > ceiling
- 1)
428 pmd
= pmd_offset(pud
, start
);
430 pmd_free_tlb(tlb
, pmd
, start
);
433 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
434 unsigned long addr
, unsigned long end
,
435 unsigned long floor
, unsigned long ceiling
)
442 pud
= pud_offset(pgd
, addr
);
444 next
= pud_addr_end(addr
, end
);
445 if (pud_none_or_clear_bad(pud
))
447 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
448 } while (pud
++, addr
= next
, addr
!= end
);
454 ceiling
&= PGDIR_MASK
;
458 if (end
- 1 > ceiling
- 1)
461 pud
= pud_offset(pgd
, start
);
463 pud_free_tlb(tlb
, pud
, start
);
467 * This function frees user-level page tables of a process.
469 void free_pgd_range(struct mmu_gather
*tlb
,
470 unsigned long addr
, unsigned long end
,
471 unsigned long floor
, unsigned long ceiling
)
477 * The next few lines have given us lots of grief...
479 * Why are we testing PMD* at this top level? Because often
480 * there will be no work to do at all, and we'd prefer not to
481 * go all the way down to the bottom just to discover that.
483 * Why all these "- 1"s? Because 0 represents both the bottom
484 * of the address space and the top of it (using -1 for the
485 * top wouldn't help much: the masks would do the wrong thing).
486 * The rule is that addr 0 and floor 0 refer to the bottom of
487 * the address space, but end 0 and ceiling 0 refer to the top
488 * Comparisons need to use "end - 1" and "ceiling - 1" (though
489 * that end 0 case should be mythical).
491 * Wherever addr is brought up or ceiling brought down, we must
492 * be careful to reject "the opposite 0" before it confuses the
493 * subsequent tests. But what about where end is brought down
494 * by PMD_SIZE below? no, end can't go down to 0 there.
496 * Whereas we round start (addr) and ceiling down, by different
497 * masks at different levels, in order to test whether a table
498 * now has no other vmas using it, so can be freed, we don't
499 * bother to round floor or end up - the tests don't need that.
513 if (end
- 1 > ceiling
- 1)
518 pgd
= pgd_offset(tlb
->mm
, addr
);
520 next
= pgd_addr_end(addr
, end
);
521 if (pgd_none_or_clear_bad(pgd
))
523 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
524 } while (pgd
++, addr
= next
, addr
!= end
);
527 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
528 unsigned long floor
, unsigned long ceiling
)
531 struct vm_area_struct
*next
= vma
->vm_next
;
532 unsigned long addr
= vma
->vm_start
;
535 * Hide vma from rmap and truncate_pagecache before freeing
538 unlink_anon_vmas(vma
);
539 unlink_file_vma(vma
);
541 if (is_vm_hugetlb_page(vma
)) {
542 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
543 floor
, next
? next
->vm_start
: ceiling
);
546 * Optimization: gather nearby vmas into one call down
548 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
549 && !is_vm_hugetlb_page(next
)) {
552 unlink_anon_vmas(vma
);
553 unlink_file_vma(vma
);
555 free_pgd_range(tlb
, addr
, vma
->vm_end
,
556 floor
, next
? next
->vm_start
: ceiling
);
562 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
563 pmd_t
*pmd
, unsigned long address
)
566 pgtable_t
new = pte_alloc_one(mm
, address
);
567 int wait_split_huge_page
;
572 * Ensure all pte setup (eg. pte page lock and page clearing) are
573 * visible before the pte is made visible to other CPUs by being
574 * put into page tables.
576 * The other side of the story is the pointer chasing in the page
577 * table walking code (when walking the page table without locking;
578 * ie. most of the time). Fortunately, these data accesses consist
579 * of a chain of data-dependent loads, meaning most CPUs (alpha
580 * being the notable exception) will already guarantee loads are
581 * seen in-order. See the alpha page table accessors for the
582 * smp_read_barrier_depends() barriers in page table walking code.
584 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586 ptl
= pmd_lock(mm
, pmd
);
587 wait_split_huge_page
= 0;
588 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
589 atomic_long_inc(&mm
->nr_ptes
);
590 pmd_populate(mm
, pmd
, new);
592 } else if (unlikely(pmd_trans_splitting(*pmd
)))
593 wait_split_huge_page
= 1;
597 if (wait_split_huge_page
)
598 wait_split_huge_page(vma
->anon_vma
, pmd
);
602 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
604 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
608 smp_wmb(); /* See comment in __pte_alloc */
610 spin_lock(&init_mm
.page_table_lock
);
611 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
612 pmd_populate_kernel(&init_mm
, pmd
, new);
615 VM_BUG_ON(pmd_trans_splitting(*pmd
));
616 spin_unlock(&init_mm
.page_table_lock
);
618 pte_free_kernel(&init_mm
, new);
622 static inline void init_rss_vec(int *rss
)
624 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
627 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
631 if (current
->mm
== mm
)
633 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
635 add_mm_counter(mm
, i
, rss
[i
]);
639 * This function is called to print an error when a bad pte
640 * is found. For example, we might have a PFN-mapped pte in
641 * a region that doesn't allow it.
643 * The calling function must still handle the error.
645 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
646 pte_t pte
, struct page
*page
)
648 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
649 pud_t
*pud
= pud_offset(pgd
, addr
);
650 pmd_t
*pmd
= pmd_offset(pud
, addr
);
651 struct address_space
*mapping
;
653 static unsigned long resume
;
654 static unsigned long nr_shown
;
655 static unsigned long nr_unshown
;
658 * Allow a burst of 60 reports, then keep quiet for that minute;
659 * or allow a steady drip of one report per second.
661 if (nr_shown
== 60) {
662 if (time_before(jiffies
, resume
)) {
668 "BUG: Bad page map: %lu messages suppressed\n",
675 resume
= jiffies
+ 60 * HZ
;
677 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
678 index
= linear_page_index(vma
, addr
);
681 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
683 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
685 dump_page(page
, "bad pte");
687 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
688 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
690 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
693 printk(KERN_ALERT
"vma->vm_ops->fault: %pSR\n",
696 printk(KERN_ALERT
"vma->vm_file->f_op->mmap: %pSR\n",
697 vma
->vm_file
->f_op
->mmap
);
699 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
703 * vm_normal_page -- This function gets the "struct page" associated with a pte.
705 * "Special" mappings do not wish to be associated with a "struct page" (either
706 * it doesn't exist, or it exists but they don't want to touch it). In this
707 * case, NULL is returned here. "Normal" mappings do have a struct page.
709 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
710 * pte bit, in which case this function is trivial. Secondly, an architecture
711 * may not have a spare pte bit, which requires a more complicated scheme,
714 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
715 * special mapping (even if there are underlying and valid "struct pages").
716 * COWed pages of a VM_PFNMAP are always normal.
718 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
719 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
720 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
721 * mapping will always honor the rule
723 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725 * And for normal mappings this is false.
727 * This restricts such mappings to be a linear translation from virtual address
728 * to pfn. To get around this restriction, we allow arbitrary mappings so long
729 * as the vma is not a COW mapping; in that case, we know that all ptes are
730 * special (because none can have been COWed).
733 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
736 * page" backing, however the difference is that _all_ pages with a struct
737 * page (that is, those where pfn_valid is true) are refcounted and considered
738 * normal pages by the VM. The disadvantage is that pages are refcounted
739 * (which can be slower and simply not an option for some PFNMAP users). The
740 * advantage is that we don't have to follow the strict linearity rule of
741 * PFNMAP mappings in order to support COWable mappings.
744 #ifdef __HAVE_ARCH_PTE_SPECIAL
745 # define HAVE_PTE_SPECIAL 1
747 # define HAVE_PTE_SPECIAL 0
749 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
752 unsigned long pfn
= pte_pfn(pte
);
754 if (HAVE_PTE_SPECIAL
) {
755 if (likely(!pte_special(pte
)))
757 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
759 if (!is_zero_pfn(pfn
))
760 print_bad_pte(vma
, addr
, pte
, NULL
);
764 /* !HAVE_PTE_SPECIAL case follows: */
766 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
767 if (vma
->vm_flags
& VM_MIXEDMAP
) {
773 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
774 if (pfn
== vma
->vm_pgoff
+ off
)
776 if (!is_cow_mapping(vma
->vm_flags
))
781 if (is_zero_pfn(pfn
))
784 if (unlikely(pfn
> highest_memmap_pfn
)) {
785 print_bad_pte(vma
, addr
, pte
, NULL
);
790 * NOTE! We still have PageReserved() pages in the page tables.
791 * eg. VDSO mappings can cause them to exist.
794 return pfn_to_page(pfn
);
798 * copy one vm_area from one task to the other. Assumes the page tables
799 * already present in the new task to be cleared in the whole range
800 * covered by this vma.
803 static inline unsigned long
804 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
805 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
806 unsigned long addr
, int *rss
)
808 unsigned long vm_flags
= vma
->vm_flags
;
809 pte_t pte
= *src_pte
;
812 /* pte contains position in swap or file, so copy. */
813 if (unlikely(!pte_present(pte
))) {
814 if (!pte_file(pte
)) {
815 swp_entry_t entry
= pte_to_swp_entry(pte
);
817 if (likely(!non_swap_entry(entry
))) {
818 if (swap_duplicate(entry
) < 0)
821 /* make sure dst_mm is on swapoff's mmlist. */
822 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
823 spin_lock(&mmlist_lock
);
824 if (list_empty(&dst_mm
->mmlist
))
825 list_add(&dst_mm
->mmlist
,
827 spin_unlock(&mmlist_lock
);
830 } else if (is_migration_entry(entry
)) {
831 page
= migration_entry_to_page(entry
);
838 if (is_write_migration_entry(entry
) &&
839 is_cow_mapping(vm_flags
)) {
841 * COW mappings require pages in both
842 * parent and child to be set to read.
844 make_migration_entry_read(&entry
);
845 pte
= swp_entry_to_pte(entry
);
846 if (pte_swp_soft_dirty(*src_pte
))
847 pte
= pte_swp_mksoft_dirty(pte
);
848 set_pte_at(src_mm
, addr
, src_pte
, pte
);
856 * If it's a COW mapping, write protect it both
857 * in the parent and the child
859 if (is_cow_mapping(vm_flags
)) {
860 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
861 pte
= pte_wrprotect(pte
);
865 * If it's a shared mapping, mark it clean in
868 if (vm_flags
& VM_SHARED
)
869 pte
= pte_mkclean(pte
);
870 pte
= pte_mkold(pte
);
872 page
= vm_normal_page(vma
, addr
, pte
);
883 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
887 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
888 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
889 unsigned long addr
, unsigned long end
)
891 pte_t
*orig_src_pte
, *orig_dst_pte
;
892 pte_t
*src_pte
, *dst_pte
;
893 spinlock_t
*src_ptl
, *dst_ptl
;
895 int rss
[NR_MM_COUNTERS
];
896 swp_entry_t entry
= (swp_entry_t
){0};
901 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
904 src_pte
= pte_offset_map(src_pmd
, addr
);
905 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
906 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
907 orig_src_pte
= src_pte
;
908 orig_dst_pte
= dst_pte
;
909 arch_enter_lazy_mmu_mode();
913 * We are holding two locks at this point - either of them
914 * could generate latencies in another task on another CPU.
916 if (progress
>= 32) {
918 if (need_resched() ||
919 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
922 if (pte_none(*src_pte
)) {
926 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
931 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
933 arch_leave_lazy_mmu_mode();
934 spin_unlock(src_ptl
);
935 pte_unmap(orig_src_pte
);
936 add_mm_rss_vec(dst_mm
, rss
);
937 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
941 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
950 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
951 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
952 unsigned long addr
, unsigned long end
)
954 pmd_t
*src_pmd
, *dst_pmd
;
957 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
960 src_pmd
= pmd_offset(src_pud
, addr
);
962 next
= pmd_addr_end(addr
, end
);
963 if (pmd_trans_huge(*src_pmd
)) {
965 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
966 err
= copy_huge_pmd(dst_mm
, src_mm
,
967 dst_pmd
, src_pmd
, addr
, vma
);
974 if (pmd_none_or_clear_bad(src_pmd
))
976 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
979 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
983 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
984 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
985 unsigned long addr
, unsigned long end
)
987 pud_t
*src_pud
, *dst_pud
;
990 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
993 src_pud
= pud_offset(src_pgd
, addr
);
995 next
= pud_addr_end(addr
, end
);
996 if (pud_none_or_clear_bad(src_pud
))
998 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1001 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1005 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1006 struct vm_area_struct
*vma
)
1008 pgd_t
*src_pgd
, *dst_pgd
;
1010 unsigned long addr
= vma
->vm_start
;
1011 unsigned long end
= vma
->vm_end
;
1012 unsigned long mmun_start
; /* For mmu_notifiers */
1013 unsigned long mmun_end
; /* For mmu_notifiers */
1018 * Don't copy ptes where a page fault will fill them correctly.
1019 * Fork becomes much lighter when there are big shared or private
1020 * readonly mappings. The tradeoff is that copy_page_range is more
1021 * efficient than faulting.
1023 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_NONLINEAR
|
1024 VM_PFNMAP
| VM_MIXEDMAP
))) {
1029 if (is_vm_hugetlb_page(vma
))
1030 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1032 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1034 * We do not free on error cases below as remove_vma
1035 * gets called on error from higher level routine
1037 ret
= track_pfn_copy(vma
);
1043 * We need to invalidate the secondary MMU mappings only when
1044 * there could be a permission downgrade on the ptes of the
1045 * parent mm. And a permission downgrade will only happen if
1046 * is_cow_mapping() returns true.
1048 is_cow
= is_cow_mapping(vma
->vm_flags
);
1052 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1056 dst_pgd
= pgd_offset(dst_mm
, addr
);
1057 src_pgd
= pgd_offset(src_mm
, addr
);
1059 next
= pgd_addr_end(addr
, end
);
1060 if (pgd_none_or_clear_bad(src_pgd
))
1062 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1063 vma
, addr
, next
))) {
1067 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1070 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1074 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1075 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1076 unsigned long addr
, unsigned long end
,
1077 struct zap_details
*details
)
1079 struct mm_struct
*mm
= tlb
->mm
;
1080 int force_flush
= 0;
1081 int rss
[NR_MM_COUNTERS
];
1088 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1090 arch_enter_lazy_mmu_mode();
1093 if (pte_none(ptent
)) {
1097 if (pte_present(ptent
)) {
1100 page
= vm_normal_page(vma
, addr
, ptent
);
1101 if (unlikely(details
) && page
) {
1103 * unmap_shared_mapping_pages() wants to
1104 * invalidate cache without truncating:
1105 * unmap shared but keep private pages.
1107 if (details
->check_mapping
&&
1108 details
->check_mapping
!= page
->mapping
)
1111 * Each page->index must be checked when
1112 * invalidating or truncating nonlinear.
1114 if (details
->nonlinear_vma
&&
1115 (page
->index
< details
->first_index
||
1116 page
->index
> details
->last_index
))
1119 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1121 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1122 if (unlikely(!page
))
1124 if (unlikely(details
) && details
->nonlinear_vma
1125 && linear_page_index(details
->nonlinear_vma
,
1126 addr
) != page
->index
) {
1127 pte_t ptfile
= pgoff_to_pte(page
->index
);
1128 if (pte_soft_dirty(ptent
))
1129 ptfile
= pte_file_mksoft_dirty(ptfile
);
1130 set_pte_at(mm
, addr
, pte
, ptfile
);
1133 rss
[MM_ANONPAGES
]--;
1135 if (pte_dirty(ptent
)) {
1137 set_page_dirty(page
);
1139 if (pte_young(ptent
) &&
1140 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1141 mark_page_accessed(page
);
1142 rss
[MM_FILEPAGES
]--;
1144 page_remove_rmap(page
);
1145 if (unlikely(page_mapcount(page
) < 0))
1146 print_bad_pte(vma
, addr
, ptent
, page
);
1147 if (unlikely(!__tlb_remove_page(tlb
, page
))) {
1155 * If details->check_mapping, we leave swap entries;
1156 * if details->nonlinear_vma, we leave file entries.
1158 if (unlikely(details
))
1160 if (pte_file(ptent
)) {
1161 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
1162 print_bad_pte(vma
, addr
, ptent
, NULL
);
1164 swp_entry_t entry
= pte_to_swp_entry(ptent
);
1166 if (!non_swap_entry(entry
))
1168 else if (is_migration_entry(entry
)) {
1171 page
= migration_entry_to_page(entry
);
1174 rss
[MM_ANONPAGES
]--;
1176 rss
[MM_FILEPAGES
]--;
1178 if (unlikely(!free_swap_and_cache(entry
)))
1179 print_bad_pte(vma
, addr
, ptent
, NULL
);
1181 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1182 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1184 add_mm_rss_vec(mm
, rss
);
1185 arch_leave_lazy_mmu_mode();
1187 /* Do the actual TLB flush before dropping ptl */
1189 tlb_flush_mmu_tlbonly(tlb
);
1190 pte_unmap_unlock(start_pte
, ptl
);
1193 * If we forced a TLB flush (either due to running out of
1194 * batch buffers or because we needed to flush dirty TLB
1195 * entries before releasing the ptl), free the batched
1196 * memory too. Restart if we didn't do everything.
1200 tlb_flush_mmu_free(tlb
);
1209 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1210 struct vm_area_struct
*vma
, pud_t
*pud
,
1211 unsigned long addr
, unsigned long end
,
1212 struct zap_details
*details
)
1217 pmd
= pmd_offset(pud
, addr
);
1219 next
= pmd_addr_end(addr
, end
);
1220 if (pmd_trans_huge(*pmd
)) {
1221 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1222 #ifdef CONFIG_DEBUG_VM
1223 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1224 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1225 __func__
, addr
, end
,
1231 split_huge_page_pmd(vma
, addr
, pmd
);
1232 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1237 * Here there can be other concurrent MADV_DONTNEED or
1238 * trans huge page faults running, and if the pmd is
1239 * none or trans huge it can change under us. This is
1240 * because MADV_DONTNEED holds the mmap_sem in read
1243 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1245 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1248 } while (pmd
++, addr
= next
, addr
!= end
);
1253 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1254 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1255 unsigned long addr
, unsigned long end
,
1256 struct zap_details
*details
)
1261 pud
= pud_offset(pgd
, addr
);
1263 next
= pud_addr_end(addr
, end
);
1264 if (pud_none_or_clear_bad(pud
))
1266 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1267 } while (pud
++, addr
= next
, addr
!= end
);
1272 static void unmap_page_range(struct mmu_gather
*tlb
,
1273 struct vm_area_struct
*vma
,
1274 unsigned long addr
, unsigned long end
,
1275 struct zap_details
*details
)
1280 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1283 BUG_ON(addr
>= end
);
1284 tlb_start_vma(tlb
, vma
);
1285 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1287 next
= pgd_addr_end(addr
, end
);
1288 if (pgd_none_or_clear_bad(pgd
))
1290 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1291 } while (pgd
++, addr
= next
, addr
!= end
);
1292 tlb_end_vma(tlb
, vma
);
1296 static void unmap_single_vma(struct mmu_gather
*tlb
,
1297 struct vm_area_struct
*vma
, unsigned long start_addr
,
1298 unsigned long end_addr
,
1299 struct zap_details
*details
)
1301 unsigned long start
= max(vma
->vm_start
, start_addr
);
1304 if (start
>= vma
->vm_end
)
1306 end
= min(vma
->vm_end
, end_addr
);
1307 if (end
<= vma
->vm_start
)
1311 uprobe_munmap(vma
, start
, end
);
1313 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1314 untrack_pfn(vma
, 0, 0);
1317 if (unlikely(is_vm_hugetlb_page(vma
))) {
1319 * It is undesirable to test vma->vm_file as it
1320 * should be non-null for valid hugetlb area.
1321 * However, vm_file will be NULL in the error
1322 * cleanup path of mmap_region. When
1323 * hugetlbfs ->mmap method fails,
1324 * mmap_region() nullifies vma->vm_file
1325 * before calling this function to clean up.
1326 * Since no pte has actually been setup, it is
1327 * safe to do nothing in this case.
1330 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1331 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1332 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1335 unmap_page_range(tlb
, vma
, start
, end
, details
);
1340 * unmap_vmas - unmap a range of memory covered by a list of vma's
1341 * @tlb: address of the caller's struct mmu_gather
1342 * @vma: the starting vma
1343 * @start_addr: virtual address at which to start unmapping
1344 * @end_addr: virtual address at which to end unmapping
1346 * Unmap all pages in the vma list.
1348 * Only addresses between `start' and `end' will be unmapped.
1350 * The VMA list must be sorted in ascending virtual address order.
1352 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1353 * range after unmap_vmas() returns. So the only responsibility here is to
1354 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1355 * drops the lock and schedules.
1357 void unmap_vmas(struct mmu_gather
*tlb
,
1358 struct vm_area_struct
*vma
, unsigned long start_addr
,
1359 unsigned long end_addr
)
1361 struct mm_struct
*mm
= vma
->vm_mm
;
1363 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1364 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1365 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1366 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1370 * zap_page_range - remove user pages in a given range
1371 * @vma: vm_area_struct holding the applicable pages
1372 * @start: starting address of pages to zap
1373 * @size: number of bytes to zap
1374 * @details: details of nonlinear truncation or shared cache invalidation
1376 * Caller must protect the VMA list
1378 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1379 unsigned long size
, struct zap_details
*details
)
1381 struct mm_struct
*mm
= vma
->vm_mm
;
1382 struct mmu_gather tlb
;
1383 unsigned long end
= start
+ size
;
1386 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1387 update_hiwater_rss(mm
);
1388 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1389 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1390 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1391 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1392 tlb_finish_mmu(&tlb
, start
, end
);
1396 * zap_page_range_single - remove user pages in a given range
1397 * @vma: vm_area_struct holding the applicable pages
1398 * @address: starting address of pages to zap
1399 * @size: number of bytes to zap
1400 * @details: details of nonlinear truncation or shared cache invalidation
1402 * The range must fit into one VMA.
1404 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1405 unsigned long size
, struct zap_details
*details
)
1407 struct mm_struct
*mm
= vma
->vm_mm
;
1408 struct mmu_gather tlb
;
1409 unsigned long end
= address
+ size
;
1412 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1413 update_hiwater_rss(mm
);
1414 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1415 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1416 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1417 tlb_finish_mmu(&tlb
, address
, end
);
1421 * zap_vma_ptes - remove ptes mapping the vma
1422 * @vma: vm_area_struct holding ptes to be zapped
1423 * @address: starting address of pages to zap
1424 * @size: number of bytes to zap
1426 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1428 * The entire address range must be fully contained within the vma.
1430 * Returns 0 if successful.
1432 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1435 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1436 !(vma
->vm_flags
& VM_PFNMAP
))
1438 zap_page_range_single(vma
, address
, size
, NULL
);
1441 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1443 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1446 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1447 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1449 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1451 VM_BUG_ON(pmd_trans_huge(*pmd
));
1452 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1459 * This is the old fallback for page remapping.
1461 * For historical reasons, it only allows reserved pages. Only
1462 * old drivers should use this, and they needed to mark their
1463 * pages reserved for the old functions anyway.
1465 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1466 struct page
*page
, pgprot_t prot
)
1468 struct mm_struct
*mm
= vma
->vm_mm
;
1477 flush_dcache_page(page
);
1478 pte
= get_locked_pte(mm
, addr
, &ptl
);
1482 if (!pte_none(*pte
))
1485 /* Ok, finally just insert the thing.. */
1487 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
1488 page_add_file_rmap(page
);
1489 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1492 pte_unmap_unlock(pte
, ptl
);
1495 pte_unmap_unlock(pte
, ptl
);
1501 * vm_insert_page - insert single page into user vma
1502 * @vma: user vma to map to
1503 * @addr: target user address of this page
1504 * @page: source kernel page
1506 * This allows drivers to insert individual pages they've allocated
1509 * The page has to be a nice clean _individual_ kernel allocation.
1510 * If you allocate a compound page, you need to have marked it as
1511 * such (__GFP_COMP), or manually just split the page up yourself
1512 * (see split_page()).
1514 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1515 * took an arbitrary page protection parameter. This doesn't allow
1516 * that. Your vma protection will have to be set up correctly, which
1517 * means that if you want a shared writable mapping, you'd better
1518 * ask for a shared writable mapping!
1520 * The page does not need to be reserved.
1522 * Usually this function is called from f_op->mmap() handler
1523 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1524 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1525 * function from other places, for example from page-fault handler.
1527 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1530 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1532 if (!page_count(page
))
1534 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1535 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1536 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1537 vma
->vm_flags
|= VM_MIXEDMAP
;
1539 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1541 EXPORT_SYMBOL(vm_insert_page
);
1543 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1544 unsigned long pfn
, pgprot_t prot
)
1546 struct mm_struct
*mm
= vma
->vm_mm
;
1552 pte
= get_locked_pte(mm
, addr
, &ptl
);
1556 if (!pte_none(*pte
))
1559 /* Ok, finally just insert the thing.. */
1560 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1561 set_pte_at(mm
, addr
, pte
, entry
);
1562 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1566 pte_unmap_unlock(pte
, ptl
);
1572 * vm_insert_pfn - insert single pfn into user vma
1573 * @vma: user vma to map to
1574 * @addr: target user address of this page
1575 * @pfn: source kernel pfn
1577 * Similar to vm_insert_page, this allows drivers to insert individual pages
1578 * they've allocated into a user vma. Same comments apply.
1580 * This function should only be called from a vm_ops->fault handler, and
1581 * in that case the handler should return NULL.
1583 * vma cannot be a COW mapping.
1585 * As this is called only for pages that do not currently exist, we
1586 * do not need to flush old virtual caches or the TLB.
1588 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1592 pgprot_t pgprot
= vma
->vm_page_prot
;
1594 * Technically, architectures with pte_special can avoid all these
1595 * restrictions (same for remap_pfn_range). However we would like
1596 * consistency in testing and feature parity among all, so we should
1597 * try to keep these invariants in place for everybody.
1599 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1600 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1601 (VM_PFNMAP
|VM_MIXEDMAP
));
1602 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1603 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1605 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1607 if (track_pfn_insert(vma
, &pgprot
, pfn
))
1610 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1614 EXPORT_SYMBOL(vm_insert_pfn
);
1616 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1619 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1621 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1625 * If we don't have pte special, then we have to use the pfn_valid()
1626 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1627 * refcount the page if pfn_valid is true (hence insert_page rather
1628 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1629 * without pte special, it would there be refcounted as a normal page.
1631 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1634 page
= pfn_to_page(pfn
);
1635 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1637 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1639 EXPORT_SYMBOL(vm_insert_mixed
);
1642 * maps a range of physical memory into the requested pages. the old
1643 * mappings are removed. any references to nonexistent pages results
1644 * in null mappings (currently treated as "copy-on-access")
1646 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1647 unsigned long addr
, unsigned long end
,
1648 unsigned long pfn
, pgprot_t prot
)
1653 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1656 arch_enter_lazy_mmu_mode();
1658 BUG_ON(!pte_none(*pte
));
1659 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1661 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1662 arch_leave_lazy_mmu_mode();
1663 pte_unmap_unlock(pte
- 1, ptl
);
1667 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1668 unsigned long addr
, unsigned long end
,
1669 unsigned long pfn
, pgprot_t prot
)
1674 pfn
-= addr
>> PAGE_SHIFT
;
1675 pmd
= pmd_alloc(mm
, pud
, addr
);
1678 VM_BUG_ON(pmd_trans_huge(*pmd
));
1680 next
= pmd_addr_end(addr
, end
);
1681 if (remap_pte_range(mm
, pmd
, addr
, next
,
1682 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1684 } while (pmd
++, addr
= next
, addr
!= end
);
1688 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1689 unsigned long addr
, unsigned long end
,
1690 unsigned long pfn
, pgprot_t prot
)
1695 pfn
-= addr
>> PAGE_SHIFT
;
1696 pud
= pud_alloc(mm
, pgd
, addr
);
1700 next
= pud_addr_end(addr
, end
);
1701 if (remap_pmd_range(mm
, pud
, addr
, next
,
1702 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1704 } while (pud
++, addr
= next
, addr
!= end
);
1709 * remap_pfn_range - remap kernel memory to userspace
1710 * @vma: user vma to map to
1711 * @addr: target user address to start at
1712 * @pfn: physical address of kernel memory
1713 * @size: size of map area
1714 * @prot: page protection flags for this mapping
1716 * Note: this is only safe if the mm semaphore is held when called.
1718 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1719 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1723 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1724 struct mm_struct
*mm
= vma
->vm_mm
;
1728 * Physically remapped pages are special. Tell the
1729 * rest of the world about it:
1730 * VM_IO tells people not to look at these pages
1731 * (accesses can have side effects).
1732 * VM_PFNMAP tells the core MM that the base pages are just
1733 * raw PFN mappings, and do not have a "struct page" associated
1736 * Disable vma merging and expanding with mremap().
1738 * Omit vma from core dump, even when VM_IO turned off.
1740 * There's a horrible special case to handle copy-on-write
1741 * behaviour that some programs depend on. We mark the "original"
1742 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1743 * See vm_normal_page() for details.
1745 if (is_cow_mapping(vma
->vm_flags
)) {
1746 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1748 vma
->vm_pgoff
= pfn
;
1751 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
1755 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1757 BUG_ON(addr
>= end
);
1758 pfn
-= addr
>> PAGE_SHIFT
;
1759 pgd
= pgd_offset(mm
, addr
);
1760 flush_cache_range(vma
, addr
, end
);
1762 next
= pgd_addr_end(addr
, end
);
1763 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1764 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1767 } while (pgd
++, addr
= next
, addr
!= end
);
1770 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
1774 EXPORT_SYMBOL(remap_pfn_range
);
1777 * vm_iomap_memory - remap memory to userspace
1778 * @vma: user vma to map to
1779 * @start: start of area
1780 * @len: size of area
1782 * This is a simplified io_remap_pfn_range() for common driver use. The
1783 * driver just needs to give us the physical memory range to be mapped,
1784 * we'll figure out the rest from the vma information.
1786 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1787 * whatever write-combining details or similar.
1789 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1791 unsigned long vm_len
, pfn
, pages
;
1793 /* Check that the physical memory area passed in looks valid */
1794 if (start
+ len
< start
)
1797 * You *really* shouldn't map things that aren't page-aligned,
1798 * but we've historically allowed it because IO memory might
1799 * just have smaller alignment.
1801 len
+= start
& ~PAGE_MASK
;
1802 pfn
= start
>> PAGE_SHIFT
;
1803 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1804 if (pfn
+ pages
< pfn
)
1807 /* We start the mapping 'vm_pgoff' pages into the area */
1808 if (vma
->vm_pgoff
> pages
)
1810 pfn
+= vma
->vm_pgoff
;
1811 pages
-= vma
->vm_pgoff
;
1813 /* Can we fit all of the mapping? */
1814 vm_len
= vma
->vm_end
- vma
->vm_start
;
1815 if (vm_len
>> PAGE_SHIFT
> pages
)
1818 /* Ok, let it rip */
1819 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1821 EXPORT_SYMBOL(vm_iomap_memory
);
1823 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1824 unsigned long addr
, unsigned long end
,
1825 pte_fn_t fn
, void *data
)
1830 spinlock_t
*uninitialized_var(ptl
);
1832 pte
= (mm
== &init_mm
) ?
1833 pte_alloc_kernel(pmd
, addr
) :
1834 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1838 BUG_ON(pmd_huge(*pmd
));
1840 arch_enter_lazy_mmu_mode();
1842 token
= pmd_pgtable(*pmd
);
1845 err
= fn(pte
++, token
, addr
, data
);
1848 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1850 arch_leave_lazy_mmu_mode();
1853 pte_unmap_unlock(pte
-1, ptl
);
1857 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1858 unsigned long addr
, unsigned long end
,
1859 pte_fn_t fn
, void *data
)
1865 BUG_ON(pud_huge(*pud
));
1867 pmd
= pmd_alloc(mm
, pud
, addr
);
1871 next
= pmd_addr_end(addr
, end
);
1872 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1875 } while (pmd
++, addr
= next
, addr
!= end
);
1879 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1880 unsigned long addr
, unsigned long end
,
1881 pte_fn_t fn
, void *data
)
1887 pud
= pud_alloc(mm
, pgd
, addr
);
1891 next
= pud_addr_end(addr
, end
);
1892 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1895 } while (pud
++, addr
= next
, addr
!= end
);
1900 * Scan a region of virtual memory, filling in page tables as necessary
1901 * and calling a provided function on each leaf page table.
1903 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1904 unsigned long size
, pte_fn_t fn
, void *data
)
1908 unsigned long end
= addr
+ size
;
1911 BUG_ON(addr
>= end
);
1912 pgd
= pgd_offset(mm
, addr
);
1914 next
= pgd_addr_end(addr
, end
);
1915 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1918 } while (pgd
++, addr
= next
, addr
!= end
);
1922 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1925 * handle_pte_fault chooses page fault handler according to an entry
1926 * which was read non-atomically. Before making any commitment, on
1927 * those architectures or configurations (e.g. i386 with PAE) which
1928 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1929 * must check under lock before unmapping the pte and proceeding
1930 * (but do_wp_page is only called after already making such a check;
1931 * and do_anonymous_page can safely check later on).
1933 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1934 pte_t
*page_table
, pte_t orig_pte
)
1937 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1938 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1939 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1941 same
= pte_same(*page_table
, orig_pte
);
1945 pte_unmap(page_table
);
1949 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1951 debug_dma_assert_idle(src
);
1954 * If the source page was a PFN mapping, we don't have
1955 * a "struct page" for it. We do a best-effort copy by
1956 * just copying from the original user address. If that
1957 * fails, we just zero-fill it. Live with it.
1959 if (unlikely(!src
)) {
1960 void *kaddr
= kmap_atomic(dst
);
1961 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1964 * This really shouldn't fail, because the page is there
1965 * in the page tables. But it might just be unreadable,
1966 * in which case we just give up and fill the result with
1969 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1971 kunmap_atomic(kaddr
);
1972 flush_dcache_page(dst
);
1974 copy_user_highpage(dst
, src
, va
, vma
);
1978 * Notify the address space that the page is about to become writable so that
1979 * it can prohibit this or wait for the page to get into an appropriate state.
1981 * We do this without the lock held, so that it can sleep if it needs to.
1983 static int do_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
,
1984 unsigned long address
)
1986 struct vm_fault vmf
;
1989 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
1990 vmf
.pgoff
= page
->index
;
1991 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
1994 ret
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
1995 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
1997 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
1999 if (!page
->mapping
) {
2001 return 0; /* retry */
2003 ret
|= VM_FAULT_LOCKED
;
2005 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2010 * This routine handles present pages, when users try to write
2011 * to a shared page. It is done by copying the page to a new address
2012 * and decrementing the shared-page counter for the old page.
2014 * Note that this routine assumes that the protection checks have been
2015 * done by the caller (the low-level page fault routine in most cases).
2016 * Thus we can safely just mark it writable once we've done any necessary
2019 * We also mark the page dirty at this point even though the page will
2020 * change only once the write actually happens. This avoids a few races,
2021 * and potentially makes it more efficient.
2023 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2024 * but allow concurrent faults), with pte both mapped and locked.
2025 * We return with mmap_sem still held, but pte unmapped and unlocked.
2027 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2028 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2029 spinlock_t
*ptl
, pte_t orig_pte
)
2032 struct page
*old_page
, *new_page
= NULL
;
2035 int page_mkwrite
= 0;
2036 struct page
*dirty_page
= NULL
;
2037 unsigned long mmun_start
= 0; /* For mmu_notifiers */
2038 unsigned long mmun_end
= 0; /* For mmu_notifiers */
2039 struct mem_cgroup
*memcg
;
2041 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2044 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2047 * We should not cow pages in a shared writeable mapping.
2048 * Just mark the pages writable as we can't do any dirty
2049 * accounting on raw pfn maps.
2051 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2052 (VM_WRITE
|VM_SHARED
))
2058 * Take out anonymous pages first, anonymous shared vmas are
2059 * not dirty accountable.
2061 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2062 if (!trylock_page(old_page
)) {
2063 page_cache_get(old_page
);
2064 pte_unmap_unlock(page_table
, ptl
);
2065 lock_page(old_page
);
2066 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2068 if (!pte_same(*page_table
, orig_pte
)) {
2069 unlock_page(old_page
);
2072 page_cache_release(old_page
);
2074 if (reuse_swap_page(old_page
)) {
2076 * The page is all ours. Move it to our anon_vma so
2077 * the rmap code will not search our parent or siblings.
2078 * Protected against the rmap code by the page lock.
2080 page_move_anon_rmap(old_page
, vma
, address
);
2081 unlock_page(old_page
);
2084 unlock_page(old_page
);
2085 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2086 (VM_WRITE
|VM_SHARED
))) {
2088 * Only catch write-faults on shared writable pages,
2089 * read-only shared pages can get COWed by
2090 * get_user_pages(.write=1, .force=1).
2092 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2094 page_cache_get(old_page
);
2095 pte_unmap_unlock(page_table
, ptl
);
2096 tmp
= do_page_mkwrite(vma
, old_page
, address
);
2097 if (unlikely(!tmp
|| (tmp
&
2098 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2099 page_cache_release(old_page
);
2103 * Since we dropped the lock we need to revalidate
2104 * the PTE as someone else may have changed it. If
2105 * they did, we just return, as we can count on the
2106 * MMU to tell us if they didn't also make it writable.
2108 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2110 if (!pte_same(*page_table
, orig_pte
)) {
2111 unlock_page(old_page
);
2117 dirty_page
= old_page
;
2118 get_page(dirty_page
);
2122 * Clear the pages cpupid information as the existing
2123 * information potentially belongs to a now completely
2124 * unrelated process.
2127 page_cpupid_xchg_last(old_page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2129 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2130 entry
= pte_mkyoung(orig_pte
);
2131 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2132 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2133 update_mmu_cache(vma
, address
, page_table
);
2134 pte_unmap_unlock(page_table
, ptl
);
2135 ret
|= VM_FAULT_WRITE
;
2140 if (!page_mkwrite
) {
2141 struct address_space
*mapping
;
2144 lock_page(dirty_page
);
2145 dirtied
= set_page_dirty(dirty_page
);
2146 VM_BUG_ON_PAGE(PageAnon(dirty_page
), dirty_page
);
2147 mapping
= dirty_page
->mapping
;
2148 unlock_page(dirty_page
);
2150 if (dirtied
&& mapping
) {
2152 * Some device drivers do not set page.mapping
2153 * but still dirty their pages
2155 balance_dirty_pages_ratelimited(mapping
);
2158 /* file_update_time outside page_lock */
2160 file_update_time(vma
->vm_file
);
2162 put_page(dirty_page
);
2164 struct address_space
*mapping
= dirty_page
->mapping
;
2166 set_page_dirty(dirty_page
);
2167 unlock_page(dirty_page
);
2168 page_cache_release(dirty_page
);
2171 * Some device drivers do not set page.mapping
2172 * but still dirty their pages
2174 balance_dirty_pages_ratelimited(mapping
);
2182 * Ok, we need to copy. Oh, well..
2184 page_cache_get(old_page
);
2186 pte_unmap_unlock(page_table
, ptl
);
2188 if (unlikely(anon_vma_prepare(vma
)))
2191 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2192 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2196 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2199 cow_user_page(new_page
, old_page
, address
, vma
);
2201 __SetPageUptodate(new_page
);
2203 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
))
2206 mmun_start
= address
& PAGE_MASK
;
2207 mmun_end
= mmun_start
+ PAGE_SIZE
;
2208 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2211 * Re-check the pte - we dropped the lock
2213 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2214 if (likely(pte_same(*page_table
, orig_pte
))) {
2216 if (!PageAnon(old_page
)) {
2217 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2218 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2221 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2222 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2223 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2224 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2226 * Clear the pte entry and flush it first, before updating the
2227 * pte with the new entry. This will avoid a race condition
2228 * seen in the presence of one thread doing SMC and another
2231 ptep_clear_flush_notify(vma
, address
, page_table
);
2232 page_add_new_anon_rmap(new_page
, vma
, address
);
2233 mem_cgroup_commit_charge(new_page
, memcg
, false);
2234 lru_cache_add_active_or_unevictable(new_page
, vma
);
2236 * We call the notify macro here because, when using secondary
2237 * mmu page tables (such as kvm shadow page tables), we want the
2238 * new page to be mapped directly into the secondary page table.
2240 set_pte_at_notify(mm
, address
, page_table
, entry
);
2241 update_mmu_cache(vma
, address
, page_table
);
2244 * Only after switching the pte to the new page may
2245 * we remove the mapcount here. Otherwise another
2246 * process may come and find the rmap count decremented
2247 * before the pte is switched to the new page, and
2248 * "reuse" the old page writing into it while our pte
2249 * here still points into it and can be read by other
2252 * The critical issue is to order this
2253 * page_remove_rmap with the ptp_clear_flush above.
2254 * Those stores are ordered by (if nothing else,)
2255 * the barrier present in the atomic_add_negative
2256 * in page_remove_rmap.
2258 * Then the TLB flush in ptep_clear_flush ensures that
2259 * no process can access the old page before the
2260 * decremented mapcount is visible. And the old page
2261 * cannot be reused until after the decremented
2262 * mapcount is visible. So transitively, TLBs to
2263 * old page will be flushed before it can be reused.
2265 page_remove_rmap(old_page
);
2268 /* Free the old page.. */
2269 new_page
= old_page
;
2270 ret
|= VM_FAULT_WRITE
;
2272 mem_cgroup_cancel_charge(new_page
, memcg
);
2275 page_cache_release(new_page
);
2277 pte_unmap_unlock(page_table
, ptl
);
2278 if (mmun_end
> mmun_start
)
2279 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2282 * Don't let another task, with possibly unlocked vma,
2283 * keep the mlocked page.
2285 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2286 lock_page(old_page
); /* LRU manipulation */
2287 munlock_vma_page(old_page
);
2288 unlock_page(old_page
);
2290 page_cache_release(old_page
);
2294 page_cache_release(new_page
);
2297 page_cache_release(old_page
);
2298 return VM_FAULT_OOM
;
2301 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2302 unsigned long start_addr
, unsigned long end_addr
,
2303 struct zap_details
*details
)
2305 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2308 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2309 struct zap_details
*details
)
2311 struct vm_area_struct
*vma
;
2312 pgoff_t vba
, vea
, zba
, zea
;
2314 vma_interval_tree_foreach(vma
, root
,
2315 details
->first_index
, details
->last_index
) {
2317 vba
= vma
->vm_pgoff
;
2318 vea
= vba
+ vma_pages(vma
) - 1;
2319 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2320 zba
= details
->first_index
;
2323 zea
= details
->last_index
;
2327 unmap_mapping_range_vma(vma
,
2328 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2329 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2334 static inline void unmap_mapping_range_list(struct list_head
*head
,
2335 struct zap_details
*details
)
2337 struct vm_area_struct
*vma
;
2340 * In nonlinear VMAs there is no correspondence between virtual address
2341 * offset and file offset. So we must perform an exhaustive search
2342 * across *all* the pages in each nonlinear VMA, not just the pages
2343 * whose virtual address lies outside the file truncation point.
2345 list_for_each_entry(vma
, head
, shared
.nonlinear
) {
2346 details
->nonlinear_vma
= vma
;
2347 unmap_mapping_range_vma(vma
, vma
->vm_start
, vma
->vm_end
, details
);
2352 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2353 * @mapping: the address space containing mmaps to be unmapped.
2354 * @holebegin: byte in first page to unmap, relative to the start of
2355 * the underlying file. This will be rounded down to a PAGE_SIZE
2356 * boundary. Note that this is different from truncate_pagecache(), which
2357 * must keep the partial page. In contrast, we must get rid of
2359 * @holelen: size of prospective hole in bytes. This will be rounded
2360 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2362 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2363 * but 0 when invalidating pagecache, don't throw away private data.
2365 void unmap_mapping_range(struct address_space
*mapping
,
2366 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2368 struct zap_details details
;
2369 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2370 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2372 /* Check for overflow. */
2373 if (sizeof(holelen
) > sizeof(hlen
)) {
2375 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2376 if (holeend
& ~(long long)ULONG_MAX
)
2377 hlen
= ULONG_MAX
- hba
+ 1;
2380 details
.check_mapping
= even_cows
? NULL
: mapping
;
2381 details
.nonlinear_vma
= NULL
;
2382 details
.first_index
= hba
;
2383 details
.last_index
= hba
+ hlen
- 1;
2384 if (details
.last_index
< details
.first_index
)
2385 details
.last_index
= ULONG_MAX
;
2388 i_mmap_lock_write(mapping
);
2389 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2390 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2391 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2392 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2393 i_mmap_unlock_write(mapping
);
2395 EXPORT_SYMBOL(unmap_mapping_range
);
2398 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2399 * but allow concurrent faults), and pte mapped but not yet locked.
2400 * We return with pte unmapped and unlocked.
2402 * We return with the mmap_sem locked or unlocked in the same cases
2403 * as does filemap_fault().
2405 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2406 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2407 unsigned int flags
, pte_t orig_pte
)
2410 struct page
*page
, *swapcache
;
2411 struct mem_cgroup
*memcg
;
2418 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2421 entry
= pte_to_swp_entry(orig_pte
);
2422 if (unlikely(non_swap_entry(entry
))) {
2423 if (is_migration_entry(entry
)) {
2424 migration_entry_wait(mm
, pmd
, address
);
2425 } else if (is_hwpoison_entry(entry
)) {
2426 ret
= VM_FAULT_HWPOISON
;
2428 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2429 ret
= VM_FAULT_SIGBUS
;
2433 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2434 page
= lookup_swap_cache(entry
);
2436 page
= swapin_readahead(entry
,
2437 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2440 * Back out if somebody else faulted in this pte
2441 * while we released the pte lock.
2443 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2444 if (likely(pte_same(*page_table
, orig_pte
)))
2446 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2450 /* Had to read the page from swap area: Major fault */
2451 ret
= VM_FAULT_MAJOR
;
2452 count_vm_event(PGMAJFAULT
);
2453 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
2454 } else if (PageHWPoison(page
)) {
2456 * hwpoisoned dirty swapcache pages are kept for killing
2457 * owner processes (which may be unknown at hwpoison time)
2459 ret
= VM_FAULT_HWPOISON
;
2460 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2466 locked
= lock_page_or_retry(page
, mm
, flags
);
2468 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2470 ret
|= VM_FAULT_RETRY
;
2475 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2476 * release the swapcache from under us. The page pin, and pte_same
2477 * test below, are not enough to exclude that. Even if it is still
2478 * swapcache, we need to check that the page's swap has not changed.
2480 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2483 page
= ksm_might_need_to_copy(page
, vma
, address
);
2484 if (unlikely(!page
)) {
2490 if (mem_cgroup_try_charge(page
, mm
, GFP_KERNEL
, &memcg
)) {
2496 * Back out if somebody else already faulted in this pte.
2498 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2499 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2502 if (unlikely(!PageUptodate(page
))) {
2503 ret
= VM_FAULT_SIGBUS
;
2508 * The page isn't present yet, go ahead with the fault.
2510 * Be careful about the sequence of operations here.
2511 * To get its accounting right, reuse_swap_page() must be called
2512 * while the page is counted on swap but not yet in mapcount i.e.
2513 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2514 * must be called after the swap_free(), or it will never succeed.
2517 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2518 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
2519 pte
= mk_pte(page
, vma
->vm_page_prot
);
2520 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2521 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2522 flags
&= ~FAULT_FLAG_WRITE
;
2523 ret
|= VM_FAULT_WRITE
;
2526 flush_icache_page(vma
, page
);
2527 if (pte_swp_soft_dirty(orig_pte
))
2528 pte
= pte_mksoft_dirty(pte
);
2529 set_pte_at(mm
, address
, page_table
, pte
);
2530 if (page
== swapcache
) {
2531 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
2532 mem_cgroup_commit_charge(page
, memcg
, true);
2533 } else { /* ksm created a completely new copy */
2534 page_add_new_anon_rmap(page
, vma
, address
);
2535 mem_cgroup_commit_charge(page
, memcg
, false);
2536 lru_cache_add_active_or_unevictable(page
, vma
);
2540 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2541 try_to_free_swap(page
);
2543 if (page
!= swapcache
) {
2545 * Hold the lock to avoid the swap entry to be reused
2546 * until we take the PT lock for the pte_same() check
2547 * (to avoid false positives from pte_same). For
2548 * further safety release the lock after the swap_free
2549 * so that the swap count won't change under a
2550 * parallel locked swapcache.
2552 unlock_page(swapcache
);
2553 page_cache_release(swapcache
);
2556 if (flags
& FAULT_FLAG_WRITE
) {
2557 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2558 if (ret
& VM_FAULT_ERROR
)
2559 ret
&= VM_FAULT_ERROR
;
2563 /* No need to invalidate - it was non-present before */
2564 update_mmu_cache(vma
, address
, page_table
);
2566 pte_unmap_unlock(page_table
, ptl
);
2570 mem_cgroup_cancel_charge(page
, memcg
);
2571 pte_unmap_unlock(page_table
, ptl
);
2575 page_cache_release(page
);
2576 if (page
!= swapcache
) {
2577 unlock_page(swapcache
);
2578 page_cache_release(swapcache
);
2584 * This is like a special single-page "expand_{down|up}wards()",
2585 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2586 * doesn't hit another vma.
2588 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
2590 address
&= PAGE_MASK
;
2591 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
2592 struct vm_area_struct
*prev
= vma
->vm_prev
;
2595 * Is there a mapping abutting this one below?
2597 * That's only ok if it's the same stack mapping
2598 * that has gotten split..
2600 if (prev
&& prev
->vm_end
== address
)
2601 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
2603 return expand_downwards(vma
, address
- PAGE_SIZE
);
2605 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
2606 struct vm_area_struct
*next
= vma
->vm_next
;
2608 /* As VM_GROWSDOWN but s/below/above/ */
2609 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
2610 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
2612 return expand_upwards(vma
, address
+ PAGE_SIZE
);
2618 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2619 * but allow concurrent faults), and pte mapped but not yet locked.
2620 * We return with mmap_sem still held, but pte unmapped and unlocked.
2622 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2623 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2626 struct mem_cgroup
*memcg
;
2631 pte_unmap(page_table
);
2633 /* Check if we need to add a guard page to the stack */
2634 if (check_stack_guard_page(vma
, address
) < 0)
2635 return VM_FAULT_SIGBUS
;
2637 /* Use the zero-page for reads */
2638 if (!(flags
& FAULT_FLAG_WRITE
) && !mm_forbids_zeropage(mm
)) {
2639 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2640 vma
->vm_page_prot
));
2641 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2642 if (!pte_none(*page_table
))
2647 /* Allocate our own private page. */
2648 if (unlikely(anon_vma_prepare(vma
)))
2650 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2654 * The memory barrier inside __SetPageUptodate makes sure that
2655 * preceeding stores to the page contents become visible before
2656 * the set_pte_at() write.
2658 __SetPageUptodate(page
);
2660 if (mem_cgroup_try_charge(page
, mm
, GFP_KERNEL
, &memcg
))
2663 entry
= mk_pte(page
, vma
->vm_page_prot
);
2664 if (vma
->vm_flags
& VM_WRITE
)
2665 entry
= pte_mkwrite(pte_mkdirty(entry
));
2667 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2668 if (!pte_none(*page_table
))
2671 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2672 page_add_new_anon_rmap(page
, vma
, address
);
2673 mem_cgroup_commit_charge(page
, memcg
, false);
2674 lru_cache_add_active_or_unevictable(page
, vma
);
2676 set_pte_at(mm
, address
, page_table
, entry
);
2678 /* No need to invalidate - it was non-present before */
2679 update_mmu_cache(vma
, address
, page_table
);
2681 pte_unmap_unlock(page_table
, ptl
);
2684 mem_cgroup_cancel_charge(page
, memcg
);
2685 page_cache_release(page
);
2688 page_cache_release(page
);
2690 return VM_FAULT_OOM
;
2694 * The mmap_sem must have been held on entry, and may have been
2695 * released depending on flags and vma->vm_ops->fault() return value.
2696 * See filemap_fault() and __lock_page_retry().
2698 static int __do_fault(struct vm_area_struct
*vma
, unsigned long address
,
2699 pgoff_t pgoff
, unsigned int flags
, struct page
**page
)
2701 struct vm_fault vmf
;
2704 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2709 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2710 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2713 if (unlikely(PageHWPoison(vmf
.page
))) {
2714 if (ret
& VM_FAULT_LOCKED
)
2715 unlock_page(vmf
.page
);
2716 page_cache_release(vmf
.page
);
2717 return VM_FAULT_HWPOISON
;
2720 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2721 lock_page(vmf
.page
);
2723 VM_BUG_ON_PAGE(!PageLocked(vmf
.page
), vmf
.page
);
2730 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2732 * @vma: virtual memory area
2733 * @address: user virtual address
2734 * @page: page to map
2735 * @pte: pointer to target page table entry
2736 * @write: true, if new entry is writable
2737 * @anon: true, if it's anonymous page
2739 * Caller must hold page table lock relevant for @pte.
2741 * Target users are page handler itself and implementations of
2742 * vm_ops->map_pages.
2744 void do_set_pte(struct vm_area_struct
*vma
, unsigned long address
,
2745 struct page
*page
, pte_t
*pte
, bool write
, bool anon
)
2749 flush_icache_page(vma
, page
);
2750 entry
= mk_pte(page
, vma
->vm_page_prot
);
2752 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2753 else if (pte_file(*pte
) && pte_file_soft_dirty(*pte
))
2754 entry
= pte_mksoft_dirty(entry
);
2756 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2757 page_add_new_anon_rmap(page
, vma
, address
);
2759 inc_mm_counter_fast(vma
->vm_mm
, MM_FILEPAGES
);
2760 page_add_file_rmap(page
);
2762 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
2764 /* no need to invalidate: a not-present page won't be cached */
2765 update_mmu_cache(vma
, address
, pte
);
2768 static unsigned long fault_around_bytes __read_mostly
=
2769 rounddown_pow_of_two(65536);
2771 #ifdef CONFIG_DEBUG_FS
2772 static int fault_around_bytes_get(void *data
, u64
*val
)
2774 *val
= fault_around_bytes
;
2779 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2780 * rounded down to nearest page order. It's what do_fault_around() expects to
2783 static int fault_around_bytes_set(void *data
, u64 val
)
2785 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
2787 if (val
> PAGE_SIZE
)
2788 fault_around_bytes
= rounddown_pow_of_two(val
);
2790 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
2793 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops
,
2794 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
2796 static int __init
fault_around_debugfs(void)
2800 ret
= debugfs_create_file("fault_around_bytes", 0644, NULL
, NULL
,
2801 &fault_around_bytes_fops
);
2803 pr_warn("Failed to create fault_around_bytes in debugfs");
2806 late_initcall(fault_around_debugfs
);
2810 * do_fault_around() tries to map few pages around the fault address. The hope
2811 * is that the pages will be needed soon and this will lower the number of
2814 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2815 * not ready to be mapped: not up-to-date, locked, etc.
2817 * This function is called with the page table lock taken. In the split ptlock
2818 * case the page table lock only protects only those entries which belong to
2819 * the page table corresponding to the fault address.
2821 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2824 * fault_around_pages() defines how many pages we'll try to map.
2825 * do_fault_around() expects it to return a power of two less than or equal to
2828 * The virtual address of the area that we map is naturally aligned to the
2829 * fault_around_pages() value (and therefore to page order). This way it's
2830 * easier to guarantee that we don't cross page table boundaries.
2832 static void do_fault_around(struct vm_area_struct
*vma
, unsigned long address
,
2833 pte_t
*pte
, pgoff_t pgoff
, unsigned int flags
)
2835 unsigned long start_addr
, nr_pages
, mask
;
2837 struct vm_fault vmf
;
2840 nr_pages
= ACCESS_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
2841 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
2843 start_addr
= max(address
& mask
, vma
->vm_start
);
2844 off
= ((address
- start_addr
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
2849 * max_pgoff is either end of page table or end of vma
2850 * or fault_around_pages() from pgoff, depending what is nearest.
2852 max_pgoff
= pgoff
- ((start_addr
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
2854 max_pgoff
= min3(max_pgoff
, vma_pages(vma
) + vma
->vm_pgoff
- 1,
2855 pgoff
+ nr_pages
- 1);
2857 /* Check if it makes any sense to call ->map_pages */
2858 while (!pte_none(*pte
)) {
2859 if (++pgoff
> max_pgoff
)
2861 start_addr
+= PAGE_SIZE
;
2862 if (start_addr
>= vma
->vm_end
)
2867 vmf
.virtual_address
= (void __user
*) start_addr
;
2870 vmf
.max_pgoff
= max_pgoff
;
2872 vma
->vm_ops
->map_pages(vma
, &vmf
);
2875 static int do_read_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2876 unsigned long address
, pmd_t
*pmd
,
2877 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2879 struct page
*fault_page
;
2885 * Let's call ->map_pages() first and use ->fault() as fallback
2886 * if page by the offset is not ready to be mapped (cold cache or
2889 if (vma
->vm_ops
->map_pages
&& !(flags
& FAULT_FLAG_NONLINEAR
) &&
2890 fault_around_bytes
>> PAGE_SHIFT
> 1) {
2891 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2892 do_fault_around(vma
, address
, pte
, pgoff
, flags
);
2893 if (!pte_same(*pte
, orig_pte
))
2895 pte_unmap_unlock(pte
, ptl
);
2898 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2899 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2902 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2903 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2904 pte_unmap_unlock(pte
, ptl
);
2905 unlock_page(fault_page
);
2906 page_cache_release(fault_page
);
2909 do_set_pte(vma
, address
, fault_page
, pte
, false, false);
2910 unlock_page(fault_page
);
2912 pte_unmap_unlock(pte
, ptl
);
2916 static int do_cow_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2917 unsigned long address
, pmd_t
*pmd
,
2918 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2920 struct page
*fault_page
, *new_page
;
2921 struct mem_cgroup
*memcg
;
2926 if (unlikely(anon_vma_prepare(vma
)))
2927 return VM_FAULT_OOM
;
2929 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2931 return VM_FAULT_OOM
;
2933 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
)) {
2934 page_cache_release(new_page
);
2935 return VM_FAULT_OOM
;
2938 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2939 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2942 copy_user_highpage(new_page
, fault_page
, address
, vma
);
2943 __SetPageUptodate(new_page
);
2945 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2946 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2947 pte_unmap_unlock(pte
, ptl
);
2948 unlock_page(fault_page
);
2949 page_cache_release(fault_page
);
2952 do_set_pte(vma
, address
, new_page
, pte
, true, true);
2953 mem_cgroup_commit_charge(new_page
, memcg
, false);
2954 lru_cache_add_active_or_unevictable(new_page
, vma
);
2955 pte_unmap_unlock(pte
, ptl
);
2956 unlock_page(fault_page
);
2957 page_cache_release(fault_page
);
2960 mem_cgroup_cancel_charge(new_page
, memcg
);
2961 page_cache_release(new_page
);
2965 static int do_shared_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2966 unsigned long address
, pmd_t
*pmd
,
2967 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2969 struct page
*fault_page
;
2970 struct address_space
*mapping
;
2976 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2977 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2981 * Check if the backing address space wants to know that the page is
2982 * about to become writable
2984 if (vma
->vm_ops
->page_mkwrite
) {
2985 unlock_page(fault_page
);
2986 tmp
= do_page_mkwrite(vma
, fault_page
, address
);
2987 if (unlikely(!tmp
||
2988 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2989 page_cache_release(fault_page
);
2994 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2995 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2996 pte_unmap_unlock(pte
, ptl
);
2997 unlock_page(fault_page
);
2998 page_cache_release(fault_page
);
3001 do_set_pte(vma
, address
, fault_page
, pte
, true, false);
3002 pte_unmap_unlock(pte
, ptl
);
3004 if (set_page_dirty(fault_page
))
3007 * Take a local copy of the address_space - page.mapping may be zeroed
3008 * by truncate after unlock_page(). The address_space itself remains
3009 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3010 * release semantics to prevent the compiler from undoing this copying.
3012 mapping
= fault_page
->mapping
;
3013 unlock_page(fault_page
);
3014 if ((dirtied
|| vma
->vm_ops
->page_mkwrite
) && mapping
) {
3016 * Some device drivers do not set page.mapping but still
3019 balance_dirty_pages_ratelimited(mapping
);
3022 /* file_update_time outside page_lock */
3023 if (vma
->vm_file
&& !vma
->vm_ops
->page_mkwrite
)
3024 file_update_time(vma
->vm_file
);
3030 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3031 * but allow concurrent faults).
3032 * The mmap_sem may have been released depending on flags and our
3033 * return value. See filemap_fault() and __lock_page_or_retry().
3035 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3036 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3037 unsigned int flags
, pte_t orig_pte
)
3039 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3040 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3042 pte_unmap(page_table
);
3043 if (!(flags
& FAULT_FLAG_WRITE
))
3044 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3046 if (!(vma
->vm_flags
& VM_SHARED
))
3047 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3049 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3053 * Fault of a previously existing named mapping. Repopulate the pte
3054 * from the encoded file_pte if possible. This enables swappable
3057 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3058 * but allow concurrent faults), and pte mapped but not yet locked.
3059 * We return with pte unmapped and unlocked.
3060 * The mmap_sem may have been released depending on flags and our
3061 * return value. See filemap_fault() and __lock_page_or_retry().
3063 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3064 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3065 unsigned int flags
, pte_t orig_pte
)
3069 flags
|= FAULT_FLAG_NONLINEAR
;
3071 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3074 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3076 * Page table corrupted: show pte and kill process.
3078 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3079 return VM_FAULT_SIGBUS
;
3082 pgoff
= pte_to_pgoff(orig_pte
);
3083 if (!(flags
& FAULT_FLAG_WRITE
))
3084 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3086 if (!(vma
->vm_flags
& VM_SHARED
))
3087 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3089 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3092 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3093 unsigned long addr
, int page_nid
,
3098 count_vm_numa_event(NUMA_HINT_FAULTS
);
3099 if (page_nid
== numa_node_id()) {
3100 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3101 *flags
|= TNF_FAULT_LOCAL
;
3104 return mpol_misplaced(page
, vma
, addr
);
3107 static int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3108 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3110 struct page
*page
= NULL
;
3115 bool migrated
= false;
3119 * The "pte" at this point cannot be used safely without
3120 * validation through pte_unmap_same(). It's of NUMA type but
3121 * the pfn may be screwed if the read is non atomic.
3123 * ptep_modify_prot_start is not called as this is clearing
3124 * the _PAGE_NUMA bit and it is not really expected that there
3125 * would be concurrent hardware modifications to the PTE.
3127 ptl
= pte_lockptr(mm
, pmd
);
3129 if (unlikely(!pte_same(*ptep
, pte
))) {
3130 pte_unmap_unlock(ptep
, ptl
);
3134 pte
= pte_mknonnuma(pte
);
3135 set_pte_at(mm
, addr
, ptep
, pte
);
3136 update_mmu_cache(vma
, addr
, ptep
);
3138 page
= vm_normal_page(vma
, addr
, pte
);
3140 pte_unmap_unlock(ptep
, ptl
);
3143 BUG_ON(is_zero_pfn(page_to_pfn(page
)));
3146 * Avoid grouping on DSO/COW pages in specific and RO pages
3147 * in general, RO pages shouldn't hurt as much anyway since
3148 * they can be in shared cache state.
3150 if (!pte_write(pte
))
3151 flags
|= TNF_NO_GROUP
;
3154 * Flag if the page is shared between multiple address spaces. This
3155 * is later used when determining whether to group tasks together
3157 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3158 flags
|= TNF_SHARED
;
3160 last_cpupid
= page_cpupid_last(page
);
3161 page_nid
= page_to_nid(page
);
3162 target_nid
= numa_migrate_prep(page
, vma
, addr
, page_nid
, &flags
);
3163 pte_unmap_unlock(ptep
, ptl
);
3164 if (target_nid
== -1) {
3169 /* Migrate to the requested node */
3170 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3172 page_nid
= target_nid
;
3173 flags
|= TNF_MIGRATED
;
3178 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3183 * These routines also need to handle stuff like marking pages dirty
3184 * and/or accessed for architectures that don't do it in hardware (most
3185 * RISC architectures). The early dirtying is also good on the i386.
3187 * There is also a hook called "update_mmu_cache()" that architectures
3188 * with external mmu caches can use to update those (ie the Sparc or
3189 * PowerPC hashed page tables that act as extended TLBs).
3191 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3192 * but allow concurrent faults), and pte mapped but not yet locked.
3193 * We return with pte unmapped and unlocked.
3195 * The mmap_sem may have been released depending on flags and our
3196 * return value. See filemap_fault() and __lock_page_or_retry().
3198 static int handle_pte_fault(struct mm_struct
*mm
,
3199 struct vm_area_struct
*vma
, unsigned long address
,
3200 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3206 * some architectures can have larger ptes than wordsize,
3207 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3208 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3209 * The code below just needs a consistent view for the ifs and
3210 * we later double check anyway with the ptl lock held. So here
3211 * a barrier will do.
3215 if (!pte_present(entry
)) {
3216 if (pte_none(entry
)) {
3218 if (likely(vma
->vm_ops
->fault
))
3219 return do_linear_fault(mm
, vma
, address
,
3220 pte
, pmd
, flags
, entry
);
3222 return do_anonymous_page(mm
, vma
, address
,
3225 if (pte_file(entry
))
3226 return do_nonlinear_fault(mm
, vma
, address
,
3227 pte
, pmd
, flags
, entry
);
3228 return do_swap_page(mm
, vma
, address
,
3229 pte
, pmd
, flags
, entry
);
3232 if (pte_numa(entry
))
3233 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3235 ptl
= pte_lockptr(mm
, pmd
);
3237 if (unlikely(!pte_same(*pte
, entry
)))
3239 if (flags
& FAULT_FLAG_WRITE
) {
3240 if (!pte_write(entry
))
3241 return do_wp_page(mm
, vma
, address
,
3242 pte
, pmd
, ptl
, entry
);
3243 entry
= pte_mkdirty(entry
);
3245 entry
= pte_mkyoung(entry
);
3246 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3247 update_mmu_cache(vma
, address
, pte
);
3250 * This is needed only for protection faults but the arch code
3251 * is not yet telling us if this is a protection fault or not.
3252 * This still avoids useless tlb flushes for .text page faults
3255 if (flags
& FAULT_FLAG_WRITE
)
3256 flush_tlb_fix_spurious_fault(vma
, address
);
3259 pte_unmap_unlock(pte
, ptl
);
3264 * By the time we get here, we already hold the mm semaphore
3266 * The mmap_sem may have been released depending on flags and our
3267 * return value. See filemap_fault() and __lock_page_or_retry().
3269 static int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3270 unsigned long address
, unsigned int flags
)
3277 if (unlikely(is_vm_hugetlb_page(vma
)))
3278 return hugetlb_fault(mm
, vma
, address
, flags
);
3280 pgd
= pgd_offset(mm
, address
);
3281 pud
= pud_alloc(mm
, pgd
, address
);
3283 return VM_FAULT_OOM
;
3284 pmd
= pmd_alloc(mm
, pud
, address
);
3286 return VM_FAULT_OOM
;
3287 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3288 int ret
= VM_FAULT_FALLBACK
;
3290 ret
= do_huge_pmd_anonymous_page(mm
, vma
, address
,
3292 if (!(ret
& VM_FAULT_FALLBACK
))
3295 pmd_t orig_pmd
= *pmd
;
3299 if (pmd_trans_huge(orig_pmd
)) {
3300 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3303 * If the pmd is splitting, return and retry the
3304 * the fault. Alternative: wait until the split
3305 * is done, and goto retry.
3307 if (pmd_trans_splitting(orig_pmd
))
3310 if (pmd_numa(orig_pmd
))
3311 return do_huge_pmd_numa_page(mm
, vma
, address
,
3314 if (dirty
&& !pmd_write(orig_pmd
)) {
3315 ret
= do_huge_pmd_wp_page(mm
, vma
, address
, pmd
,
3317 if (!(ret
& VM_FAULT_FALLBACK
))
3320 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3328 * Use __pte_alloc instead of pte_alloc_map, because we can't
3329 * run pte_offset_map on the pmd, if an huge pmd could
3330 * materialize from under us from a different thread.
3332 if (unlikely(pmd_none(*pmd
)) &&
3333 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3334 return VM_FAULT_OOM
;
3335 /* if an huge pmd materialized from under us just retry later */
3336 if (unlikely(pmd_trans_huge(*pmd
)))
3339 * A regular pmd is established and it can't morph into a huge pmd
3340 * from under us anymore at this point because we hold the mmap_sem
3341 * read mode and khugepaged takes it in write mode. So now it's
3342 * safe to run pte_offset_map().
3344 pte
= pte_offset_map(pmd
, address
);
3346 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3350 * By the time we get here, we already hold the mm semaphore
3352 * The mmap_sem may have been released depending on flags and our
3353 * return value. See filemap_fault() and __lock_page_or_retry().
3355 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3356 unsigned long address
, unsigned int flags
)
3360 __set_current_state(TASK_RUNNING
);
3362 count_vm_event(PGFAULT
);
3363 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3365 /* do counter updates before entering really critical section. */
3366 check_sync_rss_stat(current
);
3369 * Enable the memcg OOM handling for faults triggered in user
3370 * space. Kernel faults are handled more gracefully.
3372 if (flags
& FAULT_FLAG_USER
)
3373 mem_cgroup_oom_enable();
3375 ret
= __handle_mm_fault(mm
, vma
, address
, flags
);
3377 if (flags
& FAULT_FLAG_USER
) {
3378 mem_cgroup_oom_disable();
3380 * The task may have entered a memcg OOM situation but
3381 * if the allocation error was handled gracefully (no
3382 * VM_FAULT_OOM), there is no need to kill anything.
3383 * Just clean up the OOM state peacefully.
3385 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3386 mem_cgroup_oom_synchronize(false);
3391 EXPORT_SYMBOL_GPL(handle_mm_fault
);
3393 #ifndef __PAGETABLE_PUD_FOLDED
3395 * Allocate page upper directory.
3396 * We've already handled the fast-path in-line.
3398 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3400 pud_t
*new = pud_alloc_one(mm
, address
);
3404 smp_wmb(); /* See comment in __pte_alloc */
3406 spin_lock(&mm
->page_table_lock
);
3407 if (pgd_present(*pgd
)) /* Another has populated it */
3410 pgd_populate(mm
, pgd
, new);
3411 spin_unlock(&mm
->page_table_lock
);
3414 #endif /* __PAGETABLE_PUD_FOLDED */
3416 #ifndef __PAGETABLE_PMD_FOLDED
3418 * Allocate page middle directory.
3419 * We've already handled the fast-path in-line.
3421 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3423 pmd_t
*new = pmd_alloc_one(mm
, address
);
3427 smp_wmb(); /* See comment in __pte_alloc */
3429 spin_lock(&mm
->page_table_lock
);
3430 #ifndef __ARCH_HAS_4LEVEL_HACK
3431 if (pud_present(*pud
)) /* Another has populated it */
3434 pud_populate(mm
, pud
, new);
3436 if (pgd_present(*pud
)) /* Another has populated it */
3439 pgd_populate(mm
, pud
, new);
3440 #endif /* __ARCH_HAS_4LEVEL_HACK */
3441 spin_unlock(&mm
->page_table_lock
);
3444 #endif /* __PAGETABLE_PMD_FOLDED */
3446 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3447 pte_t
**ptepp
, spinlock_t
**ptlp
)
3454 pgd
= pgd_offset(mm
, address
);
3455 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3458 pud
= pud_offset(pgd
, address
);
3459 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3462 pmd
= pmd_offset(pud
, address
);
3463 VM_BUG_ON(pmd_trans_huge(*pmd
));
3464 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3467 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3471 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3474 if (!pte_present(*ptep
))
3479 pte_unmap_unlock(ptep
, *ptlp
);
3484 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3485 pte_t
**ptepp
, spinlock_t
**ptlp
)
3489 /* (void) is needed to make gcc happy */
3490 (void) __cond_lock(*ptlp
,
3491 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3496 * follow_pfn - look up PFN at a user virtual address
3497 * @vma: memory mapping
3498 * @address: user virtual address
3499 * @pfn: location to store found PFN
3501 * Only IO mappings and raw PFN mappings are allowed.
3503 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3505 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3512 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3515 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3518 *pfn
= pte_pfn(*ptep
);
3519 pte_unmap_unlock(ptep
, ptl
);
3522 EXPORT_SYMBOL(follow_pfn
);
3524 #ifdef CONFIG_HAVE_IOREMAP_PROT
3525 int follow_phys(struct vm_area_struct
*vma
,
3526 unsigned long address
, unsigned int flags
,
3527 unsigned long *prot
, resource_size_t
*phys
)
3533 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3536 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3540 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3543 *prot
= pgprot_val(pte_pgprot(pte
));
3544 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3548 pte_unmap_unlock(ptep
, ptl
);
3553 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3554 void *buf
, int len
, int write
)
3556 resource_size_t phys_addr
;
3557 unsigned long prot
= 0;
3558 void __iomem
*maddr
;
3559 int offset
= addr
& (PAGE_SIZE
-1);
3561 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3564 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3566 memcpy_toio(maddr
+ offset
, buf
, len
);
3568 memcpy_fromio(buf
, maddr
+ offset
, len
);
3573 EXPORT_SYMBOL_GPL(generic_access_phys
);
3577 * Access another process' address space as given in mm. If non-NULL, use the
3578 * given task for page fault accounting.
3580 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3581 unsigned long addr
, void *buf
, int len
, int write
)
3583 struct vm_area_struct
*vma
;
3584 void *old_buf
= buf
;
3586 down_read(&mm
->mmap_sem
);
3587 /* ignore errors, just check how much was successfully transferred */
3589 int bytes
, ret
, offset
;
3591 struct page
*page
= NULL
;
3593 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3594 write
, 1, &page
, &vma
);
3596 #ifndef CONFIG_HAVE_IOREMAP_PROT
3600 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3601 * we can access using slightly different code.
3603 vma
= find_vma(mm
, addr
);
3604 if (!vma
|| vma
->vm_start
> addr
)
3606 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3607 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3615 offset
= addr
& (PAGE_SIZE
-1);
3616 if (bytes
> PAGE_SIZE
-offset
)
3617 bytes
= PAGE_SIZE
-offset
;
3621 copy_to_user_page(vma
, page
, addr
,
3622 maddr
+ offset
, buf
, bytes
);
3623 set_page_dirty_lock(page
);
3625 copy_from_user_page(vma
, page
, addr
,
3626 buf
, maddr
+ offset
, bytes
);
3629 page_cache_release(page
);
3635 up_read(&mm
->mmap_sem
);
3637 return buf
- old_buf
;
3641 * access_remote_vm - access another process' address space
3642 * @mm: the mm_struct of the target address space
3643 * @addr: start address to access
3644 * @buf: source or destination buffer
3645 * @len: number of bytes to transfer
3646 * @write: whether the access is a write
3648 * The caller must hold a reference on @mm.
3650 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
3651 void *buf
, int len
, int write
)
3653 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
3657 * Access another process' address space.
3658 * Source/target buffer must be kernel space,
3659 * Do not walk the page table directly, use get_user_pages
3661 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
3662 void *buf
, int len
, int write
)
3664 struct mm_struct
*mm
;
3667 mm
= get_task_mm(tsk
);
3671 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
3678 * Print the name of a VMA.
3680 void print_vma_addr(char *prefix
, unsigned long ip
)
3682 struct mm_struct
*mm
= current
->mm
;
3683 struct vm_area_struct
*vma
;
3686 * Do not print if we are in atomic
3687 * contexts (in exception stacks, etc.):
3689 if (preempt_count())
3692 down_read(&mm
->mmap_sem
);
3693 vma
= find_vma(mm
, ip
);
3694 if (vma
&& vma
->vm_file
) {
3695 struct file
*f
= vma
->vm_file
;
3696 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3700 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3703 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
3705 vma
->vm_end
- vma
->vm_start
);
3706 free_page((unsigned long)buf
);
3709 up_read(&mm
->mmap_sem
);
3712 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3713 void might_fault(void)
3716 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3717 * holding the mmap_sem, this is safe because kernel memory doesn't
3718 * get paged out, therefore we'll never actually fault, and the
3719 * below annotations will generate false positives.
3721 if (segment_eq(get_fs(), KERNEL_DS
))
3725 * it would be nicer only to annotate paths which are not under
3726 * pagefault_disable, however that requires a larger audit and
3727 * providing helpers like get_user_atomic.
3732 __might_sleep(__FILE__
, __LINE__
, 0);
3735 might_lock_read(¤t
->mm
->mmap_sem
);
3737 EXPORT_SYMBOL(might_fault
);
3740 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3741 static void clear_gigantic_page(struct page
*page
,
3743 unsigned int pages_per_huge_page
)
3746 struct page
*p
= page
;
3749 for (i
= 0; i
< pages_per_huge_page
;
3750 i
++, p
= mem_map_next(p
, page
, i
)) {
3752 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
3755 void clear_huge_page(struct page
*page
,
3756 unsigned long addr
, unsigned int pages_per_huge_page
)
3760 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3761 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
3766 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3768 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
3772 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
3774 struct vm_area_struct
*vma
,
3775 unsigned int pages_per_huge_page
)
3778 struct page
*dst_base
= dst
;
3779 struct page
*src_base
= src
;
3781 for (i
= 0; i
< pages_per_huge_page
; ) {
3783 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
3786 dst
= mem_map_next(dst
, dst_base
, i
);
3787 src
= mem_map_next(src
, src_base
, i
);
3791 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
3792 unsigned long addr
, struct vm_area_struct
*vma
,
3793 unsigned int pages_per_huge_page
)
3797 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3798 copy_user_gigantic_page(dst
, src
, addr
, vma
,
3799 pages_per_huge_page
);
3804 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3806 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
3809 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3811 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3813 static struct kmem_cache
*page_ptl_cachep
;
3815 void __init
ptlock_cache_init(void)
3817 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
3821 bool ptlock_alloc(struct page
*page
)
3825 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
3832 void ptlock_free(struct page
*page
)
3834 kmem_cache_free(page_ptl_cachep
, page
->ptl
);