2 * mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
46 * To use this allocator, arch code should do the followings.
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
70 #include <linux/kmemleak.h>
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79 #define PCPU_ATOMIC_MAP_MARGIN_LOW 32
80 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
81 #define PCPU_EMPTY_POP_PAGES_LOW 2
82 #define PCPU_EMPTY_POP_PAGES_HIGH 4
85 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
86 #ifndef __addr_to_pcpu_ptr
87 #define __addr_to_pcpu_ptr(addr) \
88 (void __percpu *)((unsigned long)(addr) - \
89 (unsigned long)pcpu_base_addr + \
90 (unsigned long)__per_cpu_start)
92 #ifndef __pcpu_ptr_to_addr
93 #define __pcpu_ptr_to_addr(ptr) \
94 (void __force *)((unsigned long)(ptr) + \
95 (unsigned long)pcpu_base_addr - \
96 (unsigned long)__per_cpu_start)
98 #else /* CONFIG_SMP */
99 /* on UP, it's always identity mapped */
100 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
101 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
102 #endif /* CONFIG_SMP */
105 struct list_head list
; /* linked to pcpu_slot lists */
106 int free_size
; /* free bytes in the chunk */
107 int contig_hint
; /* max contiguous size hint */
108 void *base_addr
; /* base address of this chunk */
110 int map_used
; /* # of map entries used before the sentry */
111 int map_alloc
; /* # of map entries allocated */
112 int *map
; /* allocation map */
113 struct work_struct map_extend_work
;/* async ->map[] extension */
115 void *data
; /* chunk data */
116 int first_free
; /* no free below this */
117 bool immutable
; /* no [de]population allowed */
118 int nr_populated
; /* # of populated pages */
119 unsigned long populated
[]; /* populated bitmap */
122 static int pcpu_unit_pages __read_mostly
;
123 static int pcpu_unit_size __read_mostly
;
124 static int pcpu_nr_units __read_mostly
;
125 static int pcpu_atom_size __read_mostly
;
126 static int pcpu_nr_slots __read_mostly
;
127 static size_t pcpu_chunk_struct_size __read_mostly
;
129 /* cpus with the lowest and highest unit addresses */
130 static unsigned int pcpu_low_unit_cpu __read_mostly
;
131 static unsigned int pcpu_high_unit_cpu __read_mostly
;
133 /* the address of the first chunk which starts with the kernel static area */
134 void *pcpu_base_addr __read_mostly
;
135 EXPORT_SYMBOL_GPL(pcpu_base_addr
);
137 static const int *pcpu_unit_map __read_mostly
; /* cpu -> unit */
138 const unsigned long *pcpu_unit_offsets __read_mostly
; /* cpu -> unit offset */
140 /* group information, used for vm allocation */
141 static int pcpu_nr_groups __read_mostly
;
142 static const unsigned long *pcpu_group_offsets __read_mostly
;
143 static const size_t *pcpu_group_sizes __read_mostly
;
146 * The first chunk which always exists. Note that unlike other
147 * chunks, this one can be allocated and mapped in several different
148 * ways and thus often doesn't live in the vmalloc area.
150 static struct pcpu_chunk
*pcpu_first_chunk
;
153 * Optional reserved chunk. This chunk reserves part of the first
154 * chunk and serves it for reserved allocations. The amount of
155 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
156 * area doesn't exist, the following variables contain NULL and 0
159 static struct pcpu_chunk
*pcpu_reserved_chunk
;
160 static int pcpu_reserved_chunk_limit
;
162 static DEFINE_SPINLOCK(pcpu_lock
); /* all internal data structures */
163 static DEFINE_MUTEX(pcpu_alloc_mutex
); /* chunk create/destroy, [de]pop */
165 static struct list_head
*pcpu_slot __read_mostly
; /* chunk list slots */
168 * The number of empty populated pages, protected by pcpu_lock. The
169 * reserved chunk doesn't contribute to the count.
171 static int pcpu_nr_empty_pop_pages
;
174 * Balance work is used to populate or destroy chunks asynchronously. We
175 * try to keep the number of populated free pages between
176 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
179 static void pcpu_balance_workfn(struct work_struct
*work
);
180 static DECLARE_WORK(pcpu_balance_work
, pcpu_balance_workfn
);
181 static bool pcpu_async_enabled __read_mostly
;
182 static bool pcpu_atomic_alloc_failed
;
184 static void pcpu_schedule_balance_work(void)
186 if (pcpu_async_enabled
)
187 schedule_work(&pcpu_balance_work
);
190 static bool pcpu_addr_in_first_chunk(void *addr
)
192 void *first_start
= pcpu_first_chunk
->base_addr
;
194 return addr
>= first_start
&& addr
< first_start
+ pcpu_unit_size
;
197 static bool pcpu_addr_in_reserved_chunk(void *addr
)
199 void *first_start
= pcpu_first_chunk
->base_addr
;
201 return addr
>= first_start
&&
202 addr
< first_start
+ pcpu_reserved_chunk_limit
;
205 static int __pcpu_size_to_slot(int size
)
207 int highbit
= fls(size
); /* size is in bytes */
208 return max(highbit
- PCPU_SLOT_BASE_SHIFT
+ 2, 1);
211 static int pcpu_size_to_slot(int size
)
213 if (size
== pcpu_unit_size
)
214 return pcpu_nr_slots
- 1;
215 return __pcpu_size_to_slot(size
);
218 static int pcpu_chunk_slot(const struct pcpu_chunk
*chunk
)
220 if (chunk
->free_size
< sizeof(int) || chunk
->contig_hint
< sizeof(int))
223 return pcpu_size_to_slot(chunk
->free_size
);
226 /* set the pointer to a chunk in a page struct */
227 static void pcpu_set_page_chunk(struct page
*page
, struct pcpu_chunk
*pcpu
)
229 page
->index
= (unsigned long)pcpu
;
232 /* obtain pointer to a chunk from a page struct */
233 static struct pcpu_chunk
*pcpu_get_page_chunk(struct page
*page
)
235 return (struct pcpu_chunk
*)page
->index
;
238 static int __maybe_unused
pcpu_page_idx(unsigned int cpu
, int page_idx
)
240 return pcpu_unit_map
[cpu
] * pcpu_unit_pages
+ page_idx
;
243 static unsigned long pcpu_chunk_addr(struct pcpu_chunk
*chunk
,
244 unsigned int cpu
, int page_idx
)
246 return (unsigned long)chunk
->base_addr
+ pcpu_unit_offsets
[cpu
] +
247 (page_idx
<< PAGE_SHIFT
);
250 static void __maybe_unused
pcpu_next_unpop(struct pcpu_chunk
*chunk
,
251 int *rs
, int *re
, int end
)
253 *rs
= find_next_zero_bit(chunk
->populated
, end
, *rs
);
254 *re
= find_next_bit(chunk
->populated
, end
, *rs
+ 1);
257 static void __maybe_unused
pcpu_next_pop(struct pcpu_chunk
*chunk
,
258 int *rs
, int *re
, int end
)
260 *rs
= find_next_bit(chunk
->populated
, end
, *rs
);
261 *re
= find_next_zero_bit(chunk
->populated
, end
, *rs
+ 1);
265 * (Un)populated page region iterators. Iterate over (un)populated
266 * page regions between @start and @end in @chunk. @rs and @re should
267 * be integer variables and will be set to start and end page index of
268 * the current region.
270 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
271 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
273 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
275 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
276 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
278 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
281 * pcpu_mem_zalloc - allocate memory
282 * @size: bytes to allocate
284 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
285 * kzalloc() is used; otherwise, vzalloc() is used. The returned
286 * memory is always zeroed.
289 * Does GFP_KERNEL allocation.
292 * Pointer to the allocated area on success, NULL on failure.
294 static void *pcpu_mem_zalloc(size_t size
)
296 if (WARN_ON_ONCE(!slab_is_available()))
299 if (size
<= PAGE_SIZE
)
300 return kzalloc(size
, GFP_KERNEL
);
302 return vzalloc(size
);
306 * pcpu_mem_free - free memory
307 * @ptr: memory to free
308 * @size: size of the area
310 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
312 static void pcpu_mem_free(void *ptr
, size_t size
)
314 if (size
<= PAGE_SIZE
)
321 * pcpu_count_occupied_pages - count the number of pages an area occupies
322 * @chunk: chunk of interest
323 * @i: index of the area in question
325 * Count the number of pages chunk's @i'th area occupies. When the area's
326 * start and/or end address isn't aligned to page boundary, the straddled
327 * page is included in the count iff the rest of the page is free.
329 static int pcpu_count_occupied_pages(struct pcpu_chunk
*chunk
, int i
)
331 int off
= chunk
->map
[i
] & ~1;
332 int end
= chunk
->map
[i
+ 1] & ~1;
334 if (!PAGE_ALIGNED(off
) && i
> 0) {
335 int prev
= chunk
->map
[i
- 1];
337 if (!(prev
& 1) && prev
<= round_down(off
, PAGE_SIZE
))
338 off
= round_down(off
, PAGE_SIZE
);
341 if (!PAGE_ALIGNED(end
) && i
+ 1 < chunk
->map_used
) {
342 int next
= chunk
->map
[i
+ 1];
343 int nend
= chunk
->map
[i
+ 2] & ~1;
345 if (!(next
& 1) && nend
>= round_up(end
, PAGE_SIZE
))
346 end
= round_up(end
, PAGE_SIZE
);
349 return max_t(int, PFN_DOWN(end
) - PFN_UP(off
), 0);
353 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
354 * @chunk: chunk of interest
355 * @oslot: the previous slot it was on
357 * This function is called after an allocation or free changed @chunk.
358 * New slot according to the changed state is determined and @chunk is
359 * moved to the slot. Note that the reserved chunk is never put on
365 static void pcpu_chunk_relocate(struct pcpu_chunk
*chunk
, int oslot
)
367 int nslot
= pcpu_chunk_slot(chunk
);
369 if (chunk
!= pcpu_reserved_chunk
&& oslot
!= nslot
) {
371 list_move(&chunk
->list
, &pcpu_slot
[nslot
]);
373 list_move_tail(&chunk
->list
, &pcpu_slot
[nslot
]);
378 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
379 * @chunk: chunk of interest
380 * @is_atomic: the allocation context
382 * Determine whether area map of @chunk needs to be extended. If
383 * @is_atomic, only the amount necessary for a new allocation is
384 * considered; however, async extension is scheduled if the left amount is
385 * low. If !@is_atomic, it aims for more empty space. Combined, this
386 * ensures that the map is likely to have enough available space to
387 * accomodate atomic allocations which can't extend maps directly.
393 * New target map allocation length if extension is necessary, 0
396 static int pcpu_need_to_extend(struct pcpu_chunk
*chunk
, bool is_atomic
)
398 int margin
, new_alloc
;
403 if (chunk
->map_alloc
<
404 chunk
->map_used
+ PCPU_ATOMIC_MAP_MARGIN_LOW
&&
406 schedule_work(&chunk
->map_extend_work
);
408 margin
= PCPU_ATOMIC_MAP_MARGIN_HIGH
;
411 if (chunk
->map_alloc
>= chunk
->map_used
+ margin
)
414 new_alloc
= PCPU_DFL_MAP_ALLOC
;
415 while (new_alloc
< chunk
->map_used
+ margin
)
422 * pcpu_extend_area_map - extend area map of a chunk
423 * @chunk: chunk of interest
424 * @new_alloc: new target allocation length of the area map
426 * Extend area map of @chunk to have @new_alloc entries.
429 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
432 * 0 on success, -errno on failure.
434 static int pcpu_extend_area_map(struct pcpu_chunk
*chunk
, int new_alloc
)
436 int *old
= NULL
, *new = NULL
;
437 size_t old_size
= 0, new_size
= new_alloc
* sizeof(new[0]);
440 new = pcpu_mem_zalloc(new_size
);
444 /* acquire pcpu_lock and switch to new area map */
445 spin_lock_irqsave(&pcpu_lock
, flags
);
447 if (new_alloc
<= chunk
->map_alloc
)
450 old_size
= chunk
->map_alloc
* sizeof(chunk
->map
[0]);
453 memcpy(new, old
, old_size
);
455 chunk
->map_alloc
= new_alloc
;
460 spin_unlock_irqrestore(&pcpu_lock
, flags
);
463 * pcpu_mem_free() might end up calling vfree() which uses
464 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
466 pcpu_mem_free(old
, old_size
);
467 pcpu_mem_free(new, new_size
);
472 static void pcpu_map_extend_workfn(struct work_struct
*work
)
474 struct pcpu_chunk
*chunk
= container_of(work
, struct pcpu_chunk
,
478 spin_lock_irq(&pcpu_lock
);
479 new_alloc
= pcpu_need_to_extend(chunk
, false);
480 spin_unlock_irq(&pcpu_lock
);
483 pcpu_extend_area_map(chunk
, new_alloc
);
487 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
488 * @chunk: chunk the candidate area belongs to
489 * @off: the offset to the start of the candidate area
490 * @this_size: the size of the candidate area
491 * @size: the size of the target allocation
492 * @align: the alignment of the target allocation
493 * @pop_only: only allocate from already populated region
495 * We're trying to allocate @size bytes aligned at @align. @chunk's area
496 * at @off sized @this_size is a candidate. This function determines
497 * whether the target allocation fits in the candidate area and returns the
498 * number of bytes to pad after @off. If the target area doesn't fit, -1
501 * If @pop_only is %true, this function only considers the already
502 * populated part of the candidate area.
504 static int pcpu_fit_in_area(struct pcpu_chunk
*chunk
, int off
, int this_size
,
505 int size
, int align
, bool pop_only
)
510 int head
= ALIGN(cand_off
, align
) - off
;
511 int page_start
, page_end
, rs
, re
;
513 if (this_size
< head
+ size
)
520 * If the first unpopulated page is beyond the end of the
521 * allocation, the whole allocation is populated;
522 * otherwise, retry from the end of the unpopulated area.
524 page_start
= PFN_DOWN(head
+ off
);
525 page_end
= PFN_UP(head
+ off
+ size
);
528 pcpu_next_unpop(chunk
, &rs
, &re
, PFN_UP(off
+ this_size
));
531 cand_off
= re
* PAGE_SIZE
;
536 * pcpu_alloc_area - allocate area from a pcpu_chunk
537 * @chunk: chunk of interest
538 * @size: wanted size in bytes
539 * @align: wanted align
540 * @pop_only: allocate only from the populated area
541 * @occ_pages_p: out param for the number of pages the area occupies
543 * Try to allocate @size bytes area aligned at @align from @chunk.
544 * Note that this function only allocates the offset. It doesn't
545 * populate or map the area.
547 * @chunk->map must have at least two free slots.
553 * Allocated offset in @chunk on success, -1 if no matching area is
556 static int pcpu_alloc_area(struct pcpu_chunk
*chunk
, int size
, int align
,
557 bool pop_only
, int *occ_pages_p
)
559 int oslot
= pcpu_chunk_slot(chunk
);
562 bool seen_free
= false;
565 for (i
= chunk
->first_free
, p
= chunk
->map
+ i
; i
< chunk
->map_used
; i
++, p
++) {
573 this_size
= (p
[1] & ~1) - off
;
575 head
= pcpu_fit_in_area(chunk
, off
, this_size
, size
, align
,
579 chunk
->first_free
= i
;
582 max_contig
= max(this_size
, max_contig
);
587 * If head is small or the previous block is free,
588 * merge'em. Note that 'small' is defined as smaller
589 * than sizeof(int), which is very small but isn't too
590 * uncommon for percpu allocations.
592 if (head
&& (head
< sizeof(int) || !(p
[-1] & 1))) {
595 chunk
->free_size
-= head
;
597 max_contig
= max(*p
- p
[-1], max_contig
);
602 /* if tail is small, just keep it around */
603 tail
= this_size
- head
- size
;
604 if (tail
< sizeof(int)) {
606 size
= this_size
- head
;
609 /* split if warranted */
611 int nr_extra
= !!head
+ !!tail
;
613 /* insert new subblocks */
614 memmove(p
+ nr_extra
+ 1, p
+ 1,
615 sizeof(chunk
->map
[0]) * (chunk
->map_used
- i
));
616 chunk
->map_used
+= nr_extra
;
620 chunk
->first_free
= i
;
625 max_contig
= max(head
, max_contig
);
629 max_contig
= max(tail
, max_contig
);
634 chunk
->first_free
= i
+ 1;
636 /* update hint and mark allocated */
637 if (i
+ 1 == chunk
->map_used
)
638 chunk
->contig_hint
= max_contig
; /* fully scanned */
640 chunk
->contig_hint
= max(chunk
->contig_hint
,
643 chunk
->free_size
-= size
;
646 *occ_pages_p
= pcpu_count_occupied_pages(chunk
, i
);
647 pcpu_chunk_relocate(chunk
, oslot
);
651 chunk
->contig_hint
= max_contig
; /* fully scanned */
652 pcpu_chunk_relocate(chunk
, oslot
);
654 /* tell the upper layer that this chunk has no matching area */
659 * pcpu_free_area - free area to a pcpu_chunk
660 * @chunk: chunk of interest
661 * @freeme: offset of area to free
662 * @occ_pages_p: out param for the number of pages the area occupies
664 * Free area starting from @freeme to @chunk. Note that this function
665 * only modifies the allocation map. It doesn't depopulate or unmap
671 static void pcpu_free_area(struct pcpu_chunk
*chunk
, int freeme
,
674 int oslot
= pcpu_chunk_slot(chunk
);
680 freeme
|= 1; /* we are searching for <given offset, in use> pair */
685 unsigned k
= (i
+ j
) / 2;
689 else if (off
> freeme
)
694 BUG_ON(off
!= freeme
);
696 if (i
< chunk
->first_free
)
697 chunk
->first_free
= i
;
701 chunk
->free_size
+= (p
[1] & ~1) - off
;
703 *occ_pages_p
= pcpu_count_occupied_pages(chunk
, i
);
705 /* merge with next? */
708 /* merge with previous? */
709 if (i
> 0 && !(p
[-1] & 1)) {
715 chunk
->map_used
-= to_free
;
716 memmove(p
+ 1, p
+ 1 + to_free
,
717 (chunk
->map_used
- i
) * sizeof(chunk
->map
[0]));
720 chunk
->contig_hint
= max(chunk
->map
[i
+ 1] - chunk
->map
[i
] - 1, chunk
->contig_hint
);
721 pcpu_chunk_relocate(chunk
, oslot
);
724 static struct pcpu_chunk
*pcpu_alloc_chunk(void)
726 struct pcpu_chunk
*chunk
;
728 chunk
= pcpu_mem_zalloc(pcpu_chunk_struct_size
);
732 chunk
->map
= pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC
*
733 sizeof(chunk
->map
[0]));
735 pcpu_mem_free(chunk
, pcpu_chunk_struct_size
);
739 chunk
->map_alloc
= PCPU_DFL_MAP_ALLOC
;
741 chunk
->map
[1] = pcpu_unit_size
| 1;
744 INIT_LIST_HEAD(&chunk
->list
);
745 INIT_WORK(&chunk
->map_extend_work
, pcpu_map_extend_workfn
);
746 chunk
->free_size
= pcpu_unit_size
;
747 chunk
->contig_hint
= pcpu_unit_size
;
752 static void pcpu_free_chunk(struct pcpu_chunk
*chunk
)
756 pcpu_mem_free(chunk
->map
, chunk
->map_alloc
* sizeof(chunk
->map
[0]));
757 pcpu_mem_free(chunk
, pcpu_chunk_struct_size
);
761 * pcpu_chunk_populated - post-population bookkeeping
762 * @chunk: pcpu_chunk which got populated
763 * @page_start: the start page
764 * @page_end: the end page
766 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
767 * the bookkeeping information accordingly. Must be called after each
768 * successful population.
770 static void pcpu_chunk_populated(struct pcpu_chunk
*chunk
,
771 int page_start
, int page_end
)
773 int nr
= page_end
- page_start
;
775 lockdep_assert_held(&pcpu_lock
);
777 bitmap_set(chunk
->populated
, page_start
, nr
);
778 chunk
->nr_populated
+= nr
;
779 pcpu_nr_empty_pop_pages
+= nr
;
783 * pcpu_chunk_depopulated - post-depopulation bookkeeping
784 * @chunk: pcpu_chunk which got depopulated
785 * @page_start: the start page
786 * @page_end: the end page
788 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
789 * Update the bookkeeping information accordingly. Must be called after
790 * each successful depopulation.
792 static void pcpu_chunk_depopulated(struct pcpu_chunk
*chunk
,
793 int page_start
, int page_end
)
795 int nr
= page_end
- page_start
;
797 lockdep_assert_held(&pcpu_lock
);
799 bitmap_clear(chunk
->populated
, page_start
, nr
);
800 chunk
->nr_populated
-= nr
;
801 pcpu_nr_empty_pop_pages
-= nr
;
805 * Chunk management implementation.
807 * To allow different implementations, chunk alloc/free and
808 * [de]population are implemented in a separate file which is pulled
809 * into this file and compiled together. The following functions
810 * should be implemented.
812 * pcpu_populate_chunk - populate the specified range of a chunk
813 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
814 * pcpu_create_chunk - create a new chunk
815 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
816 * pcpu_addr_to_page - translate address to physical address
817 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
819 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
);
820 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
);
821 static struct pcpu_chunk
*pcpu_create_chunk(void);
822 static void pcpu_destroy_chunk(struct pcpu_chunk
*chunk
);
823 static struct page
*pcpu_addr_to_page(void *addr
);
824 static int __init
pcpu_verify_alloc_info(const struct pcpu_alloc_info
*ai
);
826 #ifdef CONFIG_NEED_PER_CPU_KM
827 #include "percpu-km.c"
829 #include "percpu-vm.c"
833 * pcpu_chunk_addr_search - determine chunk containing specified address
834 * @addr: address for which the chunk needs to be determined.
837 * The address of the found chunk.
839 static struct pcpu_chunk
*pcpu_chunk_addr_search(void *addr
)
841 /* is it in the first chunk? */
842 if (pcpu_addr_in_first_chunk(addr
)) {
843 /* is it in the reserved area? */
844 if (pcpu_addr_in_reserved_chunk(addr
))
845 return pcpu_reserved_chunk
;
846 return pcpu_first_chunk
;
850 * The address is relative to unit0 which might be unused and
851 * thus unmapped. Offset the address to the unit space of the
852 * current processor before looking it up in the vmalloc
853 * space. Note that any possible cpu id can be used here, so
854 * there's no need to worry about preemption or cpu hotplug.
856 addr
+= pcpu_unit_offsets
[raw_smp_processor_id()];
857 return pcpu_get_page_chunk(pcpu_addr_to_page(addr
));
861 * pcpu_alloc - the percpu allocator
862 * @size: size of area to allocate in bytes
863 * @align: alignment of area (max PAGE_SIZE)
864 * @reserved: allocate from the reserved chunk if available
865 * @gfp: allocation flags
867 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
868 * contain %GFP_KERNEL, the allocation is atomic.
871 * Percpu pointer to the allocated area on success, NULL on failure.
873 static void __percpu
*pcpu_alloc(size_t size
, size_t align
, bool reserved
,
876 static int warn_limit
= 10;
877 struct pcpu_chunk
*chunk
;
879 bool is_atomic
= (gfp
& GFP_KERNEL
) != GFP_KERNEL
;
881 int slot
, off
, new_alloc
, cpu
, ret
;
886 * We want the lowest bit of offset available for in-use/free
887 * indicator, so force >= 16bit alignment and make size even.
889 if (unlikely(align
< 2))
892 size
= ALIGN(size
, 2);
894 if (unlikely(!size
|| size
> PCPU_MIN_UNIT_SIZE
|| align
> PAGE_SIZE
)) {
895 WARN(true, "illegal size (%zu) or align (%zu) for "
896 "percpu allocation\n", size
, align
);
900 spin_lock_irqsave(&pcpu_lock
, flags
);
902 /* serve reserved allocations from the reserved chunk if available */
903 if (reserved
&& pcpu_reserved_chunk
) {
904 chunk
= pcpu_reserved_chunk
;
906 if (size
> chunk
->contig_hint
) {
907 err
= "alloc from reserved chunk failed";
911 while ((new_alloc
= pcpu_need_to_extend(chunk
, is_atomic
))) {
912 spin_unlock_irqrestore(&pcpu_lock
, flags
);
914 pcpu_extend_area_map(chunk
, new_alloc
) < 0) {
915 err
= "failed to extend area map of reserved chunk";
918 spin_lock_irqsave(&pcpu_lock
, flags
);
921 off
= pcpu_alloc_area(chunk
, size
, align
, is_atomic
,
926 err
= "alloc from reserved chunk failed";
931 /* search through normal chunks */
932 for (slot
= pcpu_size_to_slot(size
); slot
< pcpu_nr_slots
; slot
++) {
933 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
934 if (size
> chunk
->contig_hint
)
937 new_alloc
= pcpu_need_to_extend(chunk
, is_atomic
);
941 spin_unlock_irqrestore(&pcpu_lock
, flags
);
942 if (pcpu_extend_area_map(chunk
,
944 err
= "failed to extend area map";
947 spin_lock_irqsave(&pcpu_lock
, flags
);
949 * pcpu_lock has been dropped, need to
950 * restart cpu_slot list walking.
955 off
= pcpu_alloc_area(chunk
, size
, align
, is_atomic
,
962 spin_unlock_irqrestore(&pcpu_lock
, flags
);
965 * No space left. Create a new chunk. We don't want multiple
966 * tasks to create chunks simultaneously. Serialize and create iff
967 * there's still no empty chunk after grabbing the mutex.
972 mutex_lock(&pcpu_alloc_mutex
);
974 if (list_empty(&pcpu_slot
[pcpu_nr_slots
- 1])) {
975 chunk
= pcpu_create_chunk();
977 mutex_unlock(&pcpu_alloc_mutex
);
978 err
= "failed to allocate new chunk";
982 spin_lock_irqsave(&pcpu_lock
, flags
);
983 pcpu_chunk_relocate(chunk
, -1);
985 spin_lock_irqsave(&pcpu_lock
, flags
);
988 mutex_unlock(&pcpu_alloc_mutex
);
992 spin_unlock_irqrestore(&pcpu_lock
, flags
);
994 /* populate if not all pages are already there */
996 int page_start
, page_end
, rs
, re
;
998 mutex_lock(&pcpu_alloc_mutex
);
1000 page_start
= PFN_DOWN(off
);
1001 page_end
= PFN_UP(off
+ size
);
1003 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, page_end
) {
1004 WARN_ON(chunk
->immutable
);
1006 ret
= pcpu_populate_chunk(chunk
, rs
, re
);
1008 spin_lock_irqsave(&pcpu_lock
, flags
);
1010 mutex_unlock(&pcpu_alloc_mutex
);
1011 pcpu_free_area(chunk
, off
, &occ_pages
);
1012 err
= "failed to populate";
1015 pcpu_chunk_populated(chunk
, rs
, re
);
1016 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1019 mutex_unlock(&pcpu_alloc_mutex
);
1022 if (chunk
!= pcpu_reserved_chunk
)
1023 pcpu_nr_empty_pop_pages
-= occ_pages
;
1025 if (pcpu_nr_empty_pop_pages
< PCPU_EMPTY_POP_PAGES_LOW
)
1026 pcpu_schedule_balance_work();
1028 /* clear the areas and return address relative to base address */
1029 for_each_possible_cpu(cpu
)
1030 memset((void *)pcpu_chunk_addr(chunk
, cpu
, 0) + off
, 0, size
);
1032 ptr
= __addr_to_pcpu_ptr(chunk
->base_addr
+ off
);
1033 kmemleak_alloc_percpu(ptr
, size
);
1037 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1039 if (!is_atomic
&& warn_limit
) {
1040 pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1041 size
, align
, is_atomic
, err
);
1044 pr_info("PERCPU: limit reached, disable warning\n");
1047 /* see the flag handling in pcpu_blance_workfn() */
1048 pcpu_atomic_alloc_failed
= true;
1049 pcpu_schedule_balance_work();
1055 * __alloc_percpu_gfp - allocate dynamic percpu area
1056 * @size: size of area to allocate in bytes
1057 * @align: alignment of area (max PAGE_SIZE)
1058 * @gfp: allocation flags
1060 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1061 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1062 * be called from any context but is a lot more likely to fail.
1065 * Percpu pointer to the allocated area on success, NULL on failure.
1067 void __percpu
*__alloc_percpu_gfp(size_t size
, size_t align
, gfp_t gfp
)
1069 return pcpu_alloc(size
, align
, false, gfp
);
1071 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp
);
1074 * __alloc_percpu - allocate dynamic percpu area
1075 * @size: size of area to allocate in bytes
1076 * @align: alignment of area (max PAGE_SIZE)
1078 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1080 void __percpu
*__alloc_percpu(size_t size
, size_t align
)
1082 return pcpu_alloc(size
, align
, false, GFP_KERNEL
);
1084 EXPORT_SYMBOL_GPL(__alloc_percpu
);
1087 * __alloc_reserved_percpu - allocate reserved percpu area
1088 * @size: size of area to allocate in bytes
1089 * @align: alignment of area (max PAGE_SIZE)
1091 * Allocate zero-filled percpu area of @size bytes aligned at @align
1092 * from reserved percpu area if arch has set it up; otherwise,
1093 * allocation is served from the same dynamic area. Might sleep.
1094 * Might trigger writeouts.
1097 * Does GFP_KERNEL allocation.
1100 * Percpu pointer to the allocated area on success, NULL on failure.
1102 void __percpu
*__alloc_reserved_percpu(size_t size
, size_t align
)
1104 return pcpu_alloc(size
, align
, true, GFP_KERNEL
);
1108 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1111 * Reclaim all fully free chunks except for the first one.
1113 static void pcpu_balance_workfn(struct work_struct
*work
)
1116 struct list_head
*free_head
= &pcpu_slot
[pcpu_nr_slots
- 1];
1117 struct pcpu_chunk
*chunk
, *next
;
1118 int slot
, nr_to_pop
, ret
;
1121 * There's no reason to keep around multiple unused chunks and VM
1122 * areas can be scarce. Destroy all free chunks except for one.
1124 mutex_lock(&pcpu_alloc_mutex
);
1125 spin_lock_irq(&pcpu_lock
);
1127 list_for_each_entry_safe(chunk
, next
, free_head
, list
) {
1128 WARN_ON(chunk
->immutable
);
1130 /* spare the first one */
1131 if (chunk
== list_first_entry(free_head
, struct pcpu_chunk
, list
))
1134 list_move(&chunk
->list
, &to_free
);
1137 spin_unlock_irq(&pcpu_lock
);
1139 list_for_each_entry_safe(chunk
, next
, &to_free
, list
) {
1142 pcpu_for_each_pop_region(chunk
, rs
, re
, 0, pcpu_unit_pages
) {
1143 pcpu_depopulate_chunk(chunk
, rs
, re
);
1144 spin_lock_irq(&pcpu_lock
);
1145 pcpu_chunk_depopulated(chunk
, rs
, re
);
1146 spin_unlock_irq(&pcpu_lock
);
1148 pcpu_destroy_chunk(chunk
);
1152 * Ensure there are certain number of free populated pages for
1153 * atomic allocs. Fill up from the most packed so that atomic
1154 * allocs don't increase fragmentation. If atomic allocation
1155 * failed previously, always populate the maximum amount. This
1156 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1157 * failing indefinitely; however, large atomic allocs are not
1158 * something we support properly and can be highly unreliable and
1162 if (pcpu_atomic_alloc_failed
) {
1163 nr_to_pop
= PCPU_EMPTY_POP_PAGES_HIGH
;
1164 /* best effort anyway, don't worry about synchronization */
1165 pcpu_atomic_alloc_failed
= false;
1167 nr_to_pop
= clamp(PCPU_EMPTY_POP_PAGES_HIGH
-
1168 pcpu_nr_empty_pop_pages
,
1169 0, PCPU_EMPTY_POP_PAGES_HIGH
);
1172 for (slot
= pcpu_size_to_slot(PAGE_SIZE
); slot
< pcpu_nr_slots
; slot
++) {
1173 int nr_unpop
= 0, rs
, re
;
1178 spin_lock_irq(&pcpu_lock
);
1179 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
1180 nr_unpop
= pcpu_unit_pages
- chunk
->nr_populated
;
1184 spin_unlock_irq(&pcpu_lock
);
1189 /* @chunk can't go away while pcpu_alloc_mutex is held */
1190 pcpu_for_each_unpop_region(chunk
, rs
, re
, 0, pcpu_unit_pages
) {
1191 int nr
= min(re
- rs
, nr_to_pop
);
1193 ret
= pcpu_populate_chunk(chunk
, rs
, rs
+ nr
);
1196 spin_lock_irq(&pcpu_lock
);
1197 pcpu_chunk_populated(chunk
, rs
, rs
+ nr
);
1198 spin_unlock_irq(&pcpu_lock
);
1209 /* ran out of chunks to populate, create a new one and retry */
1210 chunk
= pcpu_create_chunk();
1212 spin_lock_irq(&pcpu_lock
);
1213 pcpu_chunk_relocate(chunk
, -1);
1214 spin_unlock_irq(&pcpu_lock
);
1219 mutex_unlock(&pcpu_alloc_mutex
);
1223 * free_percpu - free percpu area
1224 * @ptr: pointer to area to free
1226 * Free percpu area @ptr.
1229 * Can be called from atomic context.
1231 void free_percpu(void __percpu
*ptr
)
1234 struct pcpu_chunk
*chunk
;
1235 unsigned long flags
;
1241 kmemleak_free_percpu(ptr
);
1243 addr
= __pcpu_ptr_to_addr(ptr
);
1245 spin_lock_irqsave(&pcpu_lock
, flags
);
1247 chunk
= pcpu_chunk_addr_search(addr
);
1248 off
= addr
- chunk
->base_addr
;
1250 pcpu_free_area(chunk
, off
, &occ_pages
);
1252 if (chunk
!= pcpu_reserved_chunk
)
1253 pcpu_nr_empty_pop_pages
+= occ_pages
;
1255 /* if there are more than one fully free chunks, wake up grim reaper */
1256 if (chunk
->free_size
== pcpu_unit_size
) {
1257 struct pcpu_chunk
*pos
;
1259 list_for_each_entry(pos
, &pcpu_slot
[pcpu_nr_slots
- 1], list
)
1261 pcpu_schedule_balance_work();
1266 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1268 EXPORT_SYMBOL_GPL(free_percpu
);
1271 * is_kernel_percpu_address - test whether address is from static percpu area
1272 * @addr: address to test
1274 * Test whether @addr belongs to in-kernel static percpu area. Module
1275 * static percpu areas are not considered. For those, use
1276 * is_module_percpu_address().
1279 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1281 bool is_kernel_percpu_address(unsigned long addr
)
1284 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
1285 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
1288 for_each_possible_cpu(cpu
) {
1289 void *start
= per_cpu_ptr(base
, cpu
);
1291 if ((void *)addr
>= start
&& (void *)addr
< start
+ static_size
)
1295 /* on UP, can't distinguish from other static vars, always false */
1300 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1301 * @addr: the address to be converted to physical address
1303 * Given @addr which is dereferenceable address obtained via one of
1304 * percpu access macros, this function translates it into its physical
1305 * address. The caller is responsible for ensuring @addr stays valid
1306 * until this function finishes.
1308 * percpu allocator has special setup for the first chunk, which currently
1309 * supports either embedding in linear address space or vmalloc mapping,
1310 * and, from the second one, the backing allocator (currently either vm or
1311 * km) provides translation.
1313 * The addr can be tranlated simply without checking if it falls into the
1314 * first chunk. But the current code reflects better how percpu allocator
1315 * actually works, and the verification can discover both bugs in percpu
1316 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1320 * The physical address for @addr.
1322 phys_addr_t
per_cpu_ptr_to_phys(void *addr
)
1324 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
1325 bool in_first_chunk
= false;
1326 unsigned long first_low
, first_high
;
1330 * The following test on unit_low/high isn't strictly
1331 * necessary but will speed up lookups of addresses which
1332 * aren't in the first chunk.
1334 first_low
= pcpu_chunk_addr(pcpu_first_chunk
, pcpu_low_unit_cpu
, 0);
1335 first_high
= pcpu_chunk_addr(pcpu_first_chunk
, pcpu_high_unit_cpu
,
1337 if ((unsigned long)addr
>= first_low
&&
1338 (unsigned long)addr
< first_high
) {
1339 for_each_possible_cpu(cpu
) {
1340 void *start
= per_cpu_ptr(base
, cpu
);
1342 if (addr
>= start
&& addr
< start
+ pcpu_unit_size
) {
1343 in_first_chunk
= true;
1349 if (in_first_chunk
) {
1350 if (!is_vmalloc_addr(addr
))
1353 return page_to_phys(vmalloc_to_page(addr
)) +
1354 offset_in_page(addr
);
1356 return page_to_phys(pcpu_addr_to_page(addr
)) +
1357 offset_in_page(addr
);
1361 * pcpu_alloc_alloc_info - allocate percpu allocation info
1362 * @nr_groups: the number of groups
1363 * @nr_units: the number of units
1365 * Allocate ai which is large enough for @nr_groups groups containing
1366 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1367 * cpu_map array which is long enough for @nr_units and filled with
1368 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1369 * pointer of other groups.
1372 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1375 struct pcpu_alloc_info
* __init
pcpu_alloc_alloc_info(int nr_groups
,
1378 struct pcpu_alloc_info
*ai
;
1379 size_t base_size
, ai_size
;
1383 base_size
= ALIGN(sizeof(*ai
) + nr_groups
* sizeof(ai
->groups
[0]),
1384 __alignof__(ai
->groups
[0].cpu_map
[0]));
1385 ai_size
= base_size
+ nr_units
* sizeof(ai
->groups
[0].cpu_map
[0]);
1387 ptr
= memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size
), 0);
1393 ai
->groups
[0].cpu_map
= ptr
;
1395 for (unit
= 0; unit
< nr_units
; unit
++)
1396 ai
->groups
[0].cpu_map
[unit
] = NR_CPUS
;
1398 ai
->nr_groups
= nr_groups
;
1399 ai
->__ai_size
= PFN_ALIGN(ai_size
);
1405 * pcpu_free_alloc_info - free percpu allocation info
1406 * @ai: pcpu_alloc_info to free
1408 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1410 void __init
pcpu_free_alloc_info(struct pcpu_alloc_info
*ai
)
1412 memblock_free_early(__pa(ai
), ai
->__ai_size
);
1416 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1418 * @ai: allocation info to dump
1420 * Print out information about @ai using loglevel @lvl.
1422 static void pcpu_dump_alloc_info(const char *lvl
,
1423 const struct pcpu_alloc_info
*ai
)
1425 int group_width
= 1, cpu_width
= 1, width
;
1426 char empty_str
[] = "--------";
1427 int alloc
= 0, alloc_end
= 0;
1429 int upa
, apl
; /* units per alloc, allocs per line */
1435 v
= num_possible_cpus();
1438 empty_str
[min_t(int, cpu_width
, sizeof(empty_str
) - 1)] = '\0';
1440 upa
= ai
->alloc_size
/ ai
->unit_size
;
1441 width
= upa
* (cpu_width
+ 1) + group_width
+ 3;
1442 apl
= rounddown_pow_of_two(max(60 / width
, 1));
1444 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1445 lvl
, ai
->static_size
, ai
->reserved_size
, ai
->dyn_size
,
1446 ai
->unit_size
, ai
->alloc_size
/ ai
->atom_size
, ai
->atom_size
);
1448 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1449 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1450 int unit
= 0, unit_end
= 0;
1452 BUG_ON(gi
->nr_units
% upa
);
1453 for (alloc_end
+= gi
->nr_units
/ upa
;
1454 alloc
< alloc_end
; alloc
++) {
1455 if (!(alloc
% apl
)) {
1456 printk(KERN_CONT
"\n");
1457 printk("%spcpu-alloc: ", lvl
);
1459 printk(KERN_CONT
"[%0*d] ", group_width
, group
);
1461 for (unit_end
+= upa
; unit
< unit_end
; unit
++)
1462 if (gi
->cpu_map
[unit
] != NR_CPUS
)
1463 printk(KERN_CONT
"%0*d ", cpu_width
,
1466 printk(KERN_CONT
"%s ", empty_str
);
1469 printk(KERN_CONT
"\n");
1473 * pcpu_setup_first_chunk - initialize the first percpu chunk
1474 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1475 * @base_addr: mapped address
1477 * Initialize the first percpu chunk which contains the kernel static
1478 * perpcu area. This function is to be called from arch percpu area
1481 * @ai contains all information necessary to initialize the first
1482 * chunk and prime the dynamic percpu allocator.
1484 * @ai->static_size is the size of static percpu area.
1486 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1487 * reserve after the static area in the first chunk. This reserves
1488 * the first chunk such that it's available only through reserved
1489 * percpu allocation. This is primarily used to serve module percpu
1490 * static areas on architectures where the addressing model has
1491 * limited offset range for symbol relocations to guarantee module
1492 * percpu symbols fall inside the relocatable range.
1494 * @ai->dyn_size determines the number of bytes available for dynamic
1495 * allocation in the first chunk. The area between @ai->static_size +
1496 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1498 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1499 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1502 * @ai->atom_size is the allocation atom size and used as alignment
1505 * @ai->alloc_size is the allocation size and always multiple of
1506 * @ai->atom_size. This is larger than @ai->atom_size if
1507 * @ai->unit_size is larger than @ai->atom_size.
1509 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1510 * percpu areas. Units which should be colocated are put into the
1511 * same group. Dynamic VM areas will be allocated according to these
1512 * groupings. If @ai->nr_groups is zero, a single group containing
1513 * all units is assumed.
1515 * The caller should have mapped the first chunk at @base_addr and
1516 * copied static data to each unit.
1518 * If the first chunk ends up with both reserved and dynamic areas, it
1519 * is served by two chunks - one to serve the core static and reserved
1520 * areas and the other for the dynamic area. They share the same vm
1521 * and page map but uses different area allocation map to stay away
1522 * from each other. The latter chunk is circulated in the chunk slots
1523 * and available for dynamic allocation like any other chunks.
1526 * 0 on success, -errno on failure.
1528 int __init
pcpu_setup_first_chunk(const struct pcpu_alloc_info
*ai
,
1531 static char cpus_buf
[4096] __initdata
;
1532 static int smap
[PERCPU_DYNAMIC_EARLY_SLOTS
] __initdata
;
1533 static int dmap
[PERCPU_DYNAMIC_EARLY_SLOTS
] __initdata
;
1534 size_t dyn_size
= ai
->dyn_size
;
1535 size_t size_sum
= ai
->static_size
+ ai
->reserved_size
+ dyn_size
;
1536 struct pcpu_chunk
*schunk
, *dchunk
= NULL
;
1537 unsigned long *group_offsets
;
1538 size_t *group_sizes
;
1539 unsigned long *unit_off
;
1544 cpumask_scnprintf(cpus_buf
, sizeof(cpus_buf
), cpu_possible_mask
);
1546 #define PCPU_SETUP_BUG_ON(cond) do { \
1547 if (unlikely(cond)) { \
1548 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1549 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1550 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1556 PCPU_SETUP_BUG_ON(ai
->nr_groups
<= 0);
1558 PCPU_SETUP_BUG_ON(!ai
->static_size
);
1559 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start
& ~PAGE_MASK
);
1561 PCPU_SETUP_BUG_ON(!base_addr
);
1562 PCPU_SETUP_BUG_ON((unsigned long)base_addr
& ~PAGE_MASK
);
1563 PCPU_SETUP_BUG_ON(ai
->unit_size
< size_sum
);
1564 PCPU_SETUP_BUG_ON(ai
->unit_size
& ~PAGE_MASK
);
1565 PCPU_SETUP_BUG_ON(ai
->unit_size
< PCPU_MIN_UNIT_SIZE
);
1566 PCPU_SETUP_BUG_ON(ai
->dyn_size
< PERCPU_DYNAMIC_EARLY_SIZE
);
1567 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai
) < 0);
1569 /* process group information and build config tables accordingly */
1570 group_offsets
= memblock_virt_alloc(ai
->nr_groups
*
1571 sizeof(group_offsets
[0]), 0);
1572 group_sizes
= memblock_virt_alloc(ai
->nr_groups
*
1573 sizeof(group_sizes
[0]), 0);
1574 unit_map
= memblock_virt_alloc(nr_cpu_ids
* sizeof(unit_map
[0]), 0);
1575 unit_off
= memblock_virt_alloc(nr_cpu_ids
* sizeof(unit_off
[0]), 0);
1577 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++)
1578 unit_map
[cpu
] = UINT_MAX
;
1580 pcpu_low_unit_cpu
= NR_CPUS
;
1581 pcpu_high_unit_cpu
= NR_CPUS
;
1583 for (group
= 0, unit
= 0; group
< ai
->nr_groups
; group
++, unit
+= i
) {
1584 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1586 group_offsets
[group
] = gi
->base_offset
;
1587 group_sizes
[group
] = gi
->nr_units
* ai
->unit_size
;
1589 for (i
= 0; i
< gi
->nr_units
; i
++) {
1590 cpu
= gi
->cpu_map
[i
];
1594 PCPU_SETUP_BUG_ON(cpu
>= nr_cpu_ids
);
1595 PCPU_SETUP_BUG_ON(!cpu_possible(cpu
));
1596 PCPU_SETUP_BUG_ON(unit_map
[cpu
] != UINT_MAX
);
1598 unit_map
[cpu
] = unit
+ i
;
1599 unit_off
[cpu
] = gi
->base_offset
+ i
* ai
->unit_size
;
1601 /* determine low/high unit_cpu */
1602 if (pcpu_low_unit_cpu
== NR_CPUS
||
1603 unit_off
[cpu
] < unit_off
[pcpu_low_unit_cpu
])
1604 pcpu_low_unit_cpu
= cpu
;
1605 if (pcpu_high_unit_cpu
== NR_CPUS
||
1606 unit_off
[cpu
] > unit_off
[pcpu_high_unit_cpu
])
1607 pcpu_high_unit_cpu
= cpu
;
1610 pcpu_nr_units
= unit
;
1612 for_each_possible_cpu(cpu
)
1613 PCPU_SETUP_BUG_ON(unit_map
[cpu
] == UINT_MAX
);
1615 /* we're done parsing the input, undefine BUG macro and dump config */
1616 #undef PCPU_SETUP_BUG_ON
1617 pcpu_dump_alloc_info(KERN_DEBUG
, ai
);
1619 pcpu_nr_groups
= ai
->nr_groups
;
1620 pcpu_group_offsets
= group_offsets
;
1621 pcpu_group_sizes
= group_sizes
;
1622 pcpu_unit_map
= unit_map
;
1623 pcpu_unit_offsets
= unit_off
;
1625 /* determine basic parameters */
1626 pcpu_unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
1627 pcpu_unit_size
= pcpu_unit_pages
<< PAGE_SHIFT
;
1628 pcpu_atom_size
= ai
->atom_size
;
1629 pcpu_chunk_struct_size
= sizeof(struct pcpu_chunk
) +
1630 BITS_TO_LONGS(pcpu_unit_pages
) * sizeof(unsigned long);
1633 * Allocate chunk slots. The additional last slot is for
1636 pcpu_nr_slots
= __pcpu_size_to_slot(pcpu_unit_size
) + 2;
1637 pcpu_slot
= memblock_virt_alloc(
1638 pcpu_nr_slots
* sizeof(pcpu_slot
[0]), 0);
1639 for (i
= 0; i
< pcpu_nr_slots
; i
++)
1640 INIT_LIST_HEAD(&pcpu_slot
[i
]);
1643 * Initialize static chunk. If reserved_size is zero, the
1644 * static chunk covers static area + dynamic allocation area
1645 * in the first chunk. If reserved_size is not zero, it
1646 * covers static area + reserved area (mostly used for module
1647 * static percpu allocation).
1649 schunk
= memblock_virt_alloc(pcpu_chunk_struct_size
, 0);
1650 INIT_LIST_HEAD(&schunk
->list
);
1651 INIT_WORK(&schunk
->map_extend_work
, pcpu_map_extend_workfn
);
1652 schunk
->base_addr
= base_addr
;
1654 schunk
->map_alloc
= ARRAY_SIZE(smap
);
1655 schunk
->immutable
= true;
1656 bitmap_fill(schunk
->populated
, pcpu_unit_pages
);
1657 schunk
->nr_populated
= pcpu_unit_pages
;
1659 if (ai
->reserved_size
) {
1660 schunk
->free_size
= ai
->reserved_size
;
1661 pcpu_reserved_chunk
= schunk
;
1662 pcpu_reserved_chunk_limit
= ai
->static_size
+ ai
->reserved_size
;
1664 schunk
->free_size
= dyn_size
;
1665 dyn_size
= 0; /* dynamic area covered */
1667 schunk
->contig_hint
= schunk
->free_size
;
1670 schunk
->map
[1] = ai
->static_size
;
1671 schunk
->map_used
= 1;
1672 if (schunk
->free_size
)
1673 schunk
->map
[++schunk
->map_used
] = 1 | (ai
->static_size
+ schunk
->free_size
);
1675 schunk
->map
[1] |= 1;
1677 /* init dynamic chunk if necessary */
1679 dchunk
= memblock_virt_alloc(pcpu_chunk_struct_size
, 0);
1680 INIT_LIST_HEAD(&dchunk
->list
);
1681 INIT_WORK(&dchunk
->map_extend_work
, pcpu_map_extend_workfn
);
1682 dchunk
->base_addr
= base_addr
;
1684 dchunk
->map_alloc
= ARRAY_SIZE(dmap
);
1685 dchunk
->immutable
= true;
1686 bitmap_fill(dchunk
->populated
, pcpu_unit_pages
);
1687 dchunk
->nr_populated
= pcpu_unit_pages
;
1689 dchunk
->contig_hint
= dchunk
->free_size
= dyn_size
;
1691 dchunk
->map
[1] = pcpu_reserved_chunk_limit
;
1692 dchunk
->map
[2] = (pcpu_reserved_chunk_limit
+ dchunk
->free_size
) | 1;
1693 dchunk
->map_used
= 2;
1696 /* link the first chunk in */
1697 pcpu_first_chunk
= dchunk
?: schunk
;
1698 pcpu_nr_empty_pop_pages
+=
1699 pcpu_count_occupied_pages(pcpu_first_chunk
, 1);
1700 pcpu_chunk_relocate(pcpu_first_chunk
, -1);
1703 pcpu_base_addr
= base_addr
;
1709 const char * const pcpu_fc_names
[PCPU_FC_NR
] __initconst
= {
1710 [PCPU_FC_AUTO
] = "auto",
1711 [PCPU_FC_EMBED
] = "embed",
1712 [PCPU_FC_PAGE
] = "page",
1715 enum pcpu_fc pcpu_chosen_fc __initdata
= PCPU_FC_AUTO
;
1717 static int __init
percpu_alloc_setup(char *str
)
1724 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1725 else if (!strcmp(str
, "embed"))
1726 pcpu_chosen_fc
= PCPU_FC_EMBED
;
1728 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1729 else if (!strcmp(str
, "page"))
1730 pcpu_chosen_fc
= PCPU_FC_PAGE
;
1733 pr_warning("PERCPU: unknown allocator %s specified\n", str
);
1737 early_param("percpu_alloc", percpu_alloc_setup
);
1740 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1741 * Build it if needed by the arch config or the generic setup is going
1744 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1745 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1746 #define BUILD_EMBED_FIRST_CHUNK
1749 /* build pcpu_page_first_chunk() iff needed by the arch config */
1750 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1751 #define BUILD_PAGE_FIRST_CHUNK
1754 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1755 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1757 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1758 * @reserved_size: the size of reserved percpu area in bytes
1759 * @dyn_size: minimum free size for dynamic allocation in bytes
1760 * @atom_size: allocation atom size
1761 * @cpu_distance_fn: callback to determine distance between cpus, optional
1763 * This function determines grouping of units, their mappings to cpus
1764 * and other parameters considering needed percpu size, allocation
1765 * atom size and distances between CPUs.
1767 * Groups are always mutliples of atom size and CPUs which are of
1768 * LOCAL_DISTANCE both ways are grouped together and share space for
1769 * units in the same group. The returned configuration is guaranteed
1770 * to have CPUs on different nodes on different groups and >=75% usage
1771 * of allocated virtual address space.
1774 * On success, pointer to the new allocation_info is returned. On
1775 * failure, ERR_PTR value is returned.
1777 static struct pcpu_alloc_info
* __init
pcpu_build_alloc_info(
1778 size_t reserved_size
, size_t dyn_size
,
1780 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
)
1782 static int group_map
[NR_CPUS
] __initdata
;
1783 static int group_cnt
[NR_CPUS
] __initdata
;
1784 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
1785 int nr_groups
= 1, nr_units
= 0;
1786 size_t size_sum
, min_unit_size
, alloc_size
;
1787 int upa
, max_upa
, uninitialized_var(best_upa
); /* units_per_alloc */
1788 int last_allocs
, group
, unit
;
1789 unsigned int cpu
, tcpu
;
1790 struct pcpu_alloc_info
*ai
;
1791 unsigned int *cpu_map
;
1793 /* this function may be called multiple times */
1794 memset(group_map
, 0, sizeof(group_map
));
1795 memset(group_cnt
, 0, sizeof(group_cnt
));
1797 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1798 size_sum
= PFN_ALIGN(static_size
+ reserved_size
+
1799 max_t(size_t, dyn_size
, PERCPU_DYNAMIC_EARLY_SIZE
));
1800 dyn_size
= size_sum
- static_size
- reserved_size
;
1803 * Determine min_unit_size, alloc_size and max_upa such that
1804 * alloc_size is multiple of atom_size and is the smallest
1805 * which can accommodate 4k aligned segments which are equal to
1806 * or larger than min_unit_size.
1808 min_unit_size
= max_t(size_t, size_sum
, PCPU_MIN_UNIT_SIZE
);
1810 alloc_size
= roundup(min_unit_size
, atom_size
);
1811 upa
= alloc_size
/ min_unit_size
;
1812 while (alloc_size
% upa
|| ((alloc_size
/ upa
) & ~PAGE_MASK
))
1816 /* group cpus according to their proximity */
1817 for_each_possible_cpu(cpu
) {
1820 for_each_possible_cpu(tcpu
) {
1823 if (group_map
[tcpu
] == group
&& cpu_distance_fn
&&
1824 (cpu_distance_fn(cpu
, tcpu
) > LOCAL_DISTANCE
||
1825 cpu_distance_fn(tcpu
, cpu
) > LOCAL_DISTANCE
)) {
1827 nr_groups
= max(nr_groups
, group
+ 1);
1831 group_map
[cpu
] = group
;
1836 * Expand unit size until address space usage goes over 75%
1837 * and then as much as possible without using more address
1840 last_allocs
= INT_MAX
;
1841 for (upa
= max_upa
; upa
; upa
--) {
1842 int allocs
= 0, wasted
= 0;
1844 if (alloc_size
% upa
|| ((alloc_size
/ upa
) & ~PAGE_MASK
))
1847 for (group
= 0; group
< nr_groups
; group
++) {
1848 int this_allocs
= DIV_ROUND_UP(group_cnt
[group
], upa
);
1849 allocs
+= this_allocs
;
1850 wasted
+= this_allocs
* upa
- group_cnt
[group
];
1854 * Don't accept if wastage is over 1/3. The
1855 * greater-than comparison ensures upa==1 always
1856 * passes the following check.
1858 if (wasted
> num_possible_cpus() / 3)
1861 /* and then don't consume more memory */
1862 if (allocs
> last_allocs
)
1864 last_allocs
= allocs
;
1869 /* allocate and fill alloc_info */
1870 for (group
= 0; group
< nr_groups
; group
++)
1871 nr_units
+= roundup(group_cnt
[group
], upa
);
1873 ai
= pcpu_alloc_alloc_info(nr_groups
, nr_units
);
1875 return ERR_PTR(-ENOMEM
);
1876 cpu_map
= ai
->groups
[0].cpu_map
;
1878 for (group
= 0; group
< nr_groups
; group
++) {
1879 ai
->groups
[group
].cpu_map
= cpu_map
;
1880 cpu_map
+= roundup(group_cnt
[group
], upa
);
1883 ai
->static_size
= static_size
;
1884 ai
->reserved_size
= reserved_size
;
1885 ai
->dyn_size
= dyn_size
;
1886 ai
->unit_size
= alloc_size
/ upa
;
1887 ai
->atom_size
= atom_size
;
1888 ai
->alloc_size
= alloc_size
;
1890 for (group
= 0, unit
= 0; group_cnt
[group
]; group
++) {
1891 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1894 * Initialize base_offset as if all groups are located
1895 * back-to-back. The caller should update this to
1896 * reflect actual allocation.
1898 gi
->base_offset
= unit
* ai
->unit_size
;
1900 for_each_possible_cpu(cpu
)
1901 if (group_map
[cpu
] == group
)
1902 gi
->cpu_map
[gi
->nr_units
++] = cpu
;
1903 gi
->nr_units
= roundup(gi
->nr_units
, upa
);
1904 unit
+= gi
->nr_units
;
1906 BUG_ON(unit
!= nr_units
);
1910 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1912 #if defined(BUILD_EMBED_FIRST_CHUNK)
1914 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1915 * @reserved_size: the size of reserved percpu area in bytes
1916 * @dyn_size: minimum free size for dynamic allocation in bytes
1917 * @atom_size: allocation atom size
1918 * @cpu_distance_fn: callback to determine distance between cpus, optional
1919 * @alloc_fn: function to allocate percpu page
1920 * @free_fn: function to free percpu page
1922 * This is a helper to ease setting up embedded first percpu chunk and
1923 * can be called where pcpu_setup_first_chunk() is expected.
1925 * If this function is used to setup the first chunk, it is allocated
1926 * by calling @alloc_fn and used as-is without being mapped into
1927 * vmalloc area. Allocations are always whole multiples of @atom_size
1928 * aligned to @atom_size.
1930 * This enables the first chunk to piggy back on the linear physical
1931 * mapping which often uses larger page size. Please note that this
1932 * can result in very sparse cpu->unit mapping on NUMA machines thus
1933 * requiring large vmalloc address space. Don't use this allocator if
1934 * vmalloc space is not orders of magnitude larger than distances
1935 * between node memory addresses (ie. 32bit NUMA machines).
1937 * @dyn_size specifies the minimum dynamic area size.
1939 * If the needed size is smaller than the minimum or specified unit
1940 * size, the leftover is returned using @free_fn.
1943 * 0 on success, -errno on failure.
1945 int __init
pcpu_embed_first_chunk(size_t reserved_size
, size_t dyn_size
,
1947 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
,
1948 pcpu_fc_alloc_fn_t alloc_fn
,
1949 pcpu_fc_free_fn_t free_fn
)
1951 void *base
= (void *)ULONG_MAX
;
1952 void **areas
= NULL
;
1953 struct pcpu_alloc_info
*ai
;
1954 size_t size_sum
, areas_size
, max_distance
;
1957 ai
= pcpu_build_alloc_info(reserved_size
, dyn_size
, atom_size
,
1962 size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
1963 areas_size
= PFN_ALIGN(ai
->nr_groups
* sizeof(void *));
1965 areas
= memblock_virt_alloc_nopanic(areas_size
, 0);
1971 /* allocate, copy and determine base address */
1972 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1973 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1974 unsigned int cpu
= NR_CPUS
;
1977 for (i
= 0; i
< gi
->nr_units
&& cpu
== NR_CPUS
; i
++)
1978 cpu
= gi
->cpu_map
[i
];
1979 BUG_ON(cpu
== NR_CPUS
);
1981 /* allocate space for the whole group */
1982 ptr
= alloc_fn(cpu
, gi
->nr_units
* ai
->unit_size
, atom_size
);
1985 goto out_free_areas
;
1987 /* kmemleak tracks the percpu allocations separately */
1991 base
= min(ptr
, base
);
1995 * Copy data and free unused parts. This should happen after all
1996 * allocations are complete; otherwise, we may end up with
1997 * overlapping groups.
1999 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2000 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2001 void *ptr
= areas
[group
];
2003 for (i
= 0; i
< gi
->nr_units
; i
++, ptr
+= ai
->unit_size
) {
2004 if (gi
->cpu_map
[i
] == NR_CPUS
) {
2005 /* unused unit, free whole */
2006 free_fn(ptr
, ai
->unit_size
);
2009 /* copy and return the unused part */
2010 memcpy(ptr
, __per_cpu_load
, ai
->static_size
);
2011 free_fn(ptr
+ size_sum
, ai
->unit_size
- size_sum
);
2015 /* base address is now known, determine group base offsets */
2017 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2018 ai
->groups
[group
].base_offset
= areas
[group
] - base
;
2019 max_distance
= max_t(size_t, max_distance
,
2020 ai
->groups
[group
].base_offset
);
2022 max_distance
+= ai
->unit_size
;
2024 /* warn if maximum distance is further than 75% of vmalloc space */
2025 if (max_distance
> VMALLOC_TOTAL
* 3 / 4) {
2026 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
2027 "space 0x%lx\n", max_distance
,
2029 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2030 /* and fail if we have fallback */
2036 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2037 PFN_DOWN(size_sum
), base
, ai
->static_size
, ai
->reserved_size
,
2038 ai
->dyn_size
, ai
->unit_size
);
2040 rc
= pcpu_setup_first_chunk(ai
, base
);
2044 for (group
= 0; group
< ai
->nr_groups
; group
++)
2046 free_fn(areas
[group
],
2047 ai
->groups
[group
].nr_units
* ai
->unit_size
);
2049 pcpu_free_alloc_info(ai
);
2051 memblock_free_early(__pa(areas
), areas_size
);
2054 #endif /* BUILD_EMBED_FIRST_CHUNK */
2056 #ifdef BUILD_PAGE_FIRST_CHUNK
2058 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2059 * @reserved_size: the size of reserved percpu area in bytes
2060 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2061 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2062 * @populate_pte_fn: function to populate pte
2064 * This is a helper to ease setting up page-remapped first percpu
2065 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2067 * This is the basic allocator. Static percpu area is allocated
2068 * page-by-page into vmalloc area.
2071 * 0 on success, -errno on failure.
2073 int __init
pcpu_page_first_chunk(size_t reserved_size
,
2074 pcpu_fc_alloc_fn_t alloc_fn
,
2075 pcpu_fc_free_fn_t free_fn
,
2076 pcpu_fc_populate_pte_fn_t populate_pte_fn
)
2078 static struct vm_struct vm
;
2079 struct pcpu_alloc_info
*ai
;
2083 struct page
**pages
;
2086 snprintf(psize_str
, sizeof(psize_str
), "%luK", PAGE_SIZE
>> 10);
2088 ai
= pcpu_build_alloc_info(reserved_size
, 0, PAGE_SIZE
, NULL
);
2091 BUG_ON(ai
->nr_groups
!= 1);
2092 BUG_ON(ai
->groups
[0].nr_units
!= num_possible_cpus());
2094 unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
2096 /* unaligned allocations can't be freed, round up to page size */
2097 pages_size
= PFN_ALIGN(unit_pages
* num_possible_cpus() *
2099 pages
= memblock_virt_alloc(pages_size
, 0);
2101 /* allocate pages */
2103 for (unit
= 0; unit
< num_possible_cpus(); unit
++)
2104 for (i
= 0; i
< unit_pages
; i
++) {
2105 unsigned int cpu
= ai
->groups
[0].cpu_map
[unit
];
2108 ptr
= alloc_fn(cpu
, PAGE_SIZE
, PAGE_SIZE
);
2110 pr_warning("PERCPU: failed to allocate %s page "
2111 "for cpu%u\n", psize_str
, cpu
);
2114 /* kmemleak tracks the percpu allocations separately */
2116 pages
[j
++] = virt_to_page(ptr
);
2119 /* allocate vm area, map the pages and copy static data */
2120 vm
.flags
= VM_ALLOC
;
2121 vm
.size
= num_possible_cpus() * ai
->unit_size
;
2122 vm_area_register_early(&vm
, PAGE_SIZE
);
2124 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
2125 unsigned long unit_addr
=
2126 (unsigned long)vm
.addr
+ unit
* ai
->unit_size
;
2128 for (i
= 0; i
< unit_pages
; i
++)
2129 populate_pte_fn(unit_addr
+ (i
<< PAGE_SHIFT
));
2131 /* pte already populated, the following shouldn't fail */
2132 rc
= __pcpu_map_pages(unit_addr
, &pages
[unit
* unit_pages
],
2135 panic("failed to map percpu area, err=%d\n", rc
);
2138 * FIXME: Archs with virtual cache should flush local
2139 * cache for the linear mapping here - something
2140 * equivalent to flush_cache_vmap() on the local cpu.
2141 * flush_cache_vmap() can't be used as most supporting
2142 * data structures are not set up yet.
2145 /* copy static data */
2146 memcpy((void *)unit_addr
, __per_cpu_load
, ai
->static_size
);
2149 /* we're ready, commit */
2150 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2151 unit_pages
, psize_str
, vm
.addr
, ai
->static_size
,
2152 ai
->reserved_size
, ai
->dyn_size
);
2154 rc
= pcpu_setup_first_chunk(ai
, vm
.addr
);
2159 free_fn(page_address(pages
[j
]), PAGE_SIZE
);
2162 memblock_free_early(__pa(pages
), pages_size
);
2163 pcpu_free_alloc_info(ai
);
2166 #endif /* BUILD_PAGE_FIRST_CHUNK */
2168 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2170 * Generic SMP percpu area setup.
2172 * The embedding helper is used because its behavior closely resembles
2173 * the original non-dynamic generic percpu area setup. This is
2174 * important because many archs have addressing restrictions and might
2175 * fail if the percpu area is located far away from the previous
2176 * location. As an added bonus, in non-NUMA cases, embedding is
2177 * generally a good idea TLB-wise because percpu area can piggy back
2178 * on the physical linear memory mapping which uses large page
2179 * mappings on applicable archs.
2181 unsigned long __per_cpu_offset
[NR_CPUS
] __read_mostly
;
2182 EXPORT_SYMBOL(__per_cpu_offset
);
2184 static void * __init
pcpu_dfl_fc_alloc(unsigned int cpu
, size_t size
,
2187 return memblock_virt_alloc_from_nopanic(
2188 size
, align
, __pa(MAX_DMA_ADDRESS
));
2191 static void __init
pcpu_dfl_fc_free(void *ptr
, size_t size
)
2193 memblock_free_early(__pa(ptr
), size
);
2196 void __init
setup_per_cpu_areas(void)
2198 unsigned long delta
;
2203 * Always reserve area for module percpu variables. That's
2204 * what the legacy allocator did.
2206 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
,
2207 PERCPU_DYNAMIC_RESERVE
, PAGE_SIZE
, NULL
,
2208 pcpu_dfl_fc_alloc
, pcpu_dfl_fc_free
);
2210 panic("Failed to initialize percpu areas.");
2212 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
2213 for_each_possible_cpu(cpu
)
2214 __per_cpu_offset
[cpu
] = delta
+ pcpu_unit_offsets
[cpu
];
2216 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2218 #else /* CONFIG_SMP */
2221 * UP percpu area setup.
2223 * UP always uses km-based percpu allocator with identity mapping.
2224 * Static percpu variables are indistinguishable from the usual static
2225 * variables and don't require any special preparation.
2227 void __init
setup_per_cpu_areas(void)
2229 const size_t unit_size
=
2230 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE
,
2231 PERCPU_DYNAMIC_RESERVE
));
2232 struct pcpu_alloc_info
*ai
;
2235 ai
= pcpu_alloc_alloc_info(1, 1);
2236 fc
= memblock_virt_alloc_from_nopanic(unit_size
,
2238 __pa(MAX_DMA_ADDRESS
));
2240 panic("Failed to allocate memory for percpu areas.");
2241 /* kmemleak tracks the percpu allocations separately */
2244 ai
->dyn_size
= unit_size
;
2245 ai
->unit_size
= unit_size
;
2246 ai
->atom_size
= unit_size
;
2247 ai
->alloc_size
= unit_size
;
2248 ai
->groups
[0].nr_units
= 1;
2249 ai
->groups
[0].cpu_map
[0] = 0;
2251 if (pcpu_setup_first_chunk(ai
, fc
) < 0)
2252 panic("Failed to initialize percpu areas.");
2255 #endif /* CONFIG_SMP */
2258 * First and reserved chunks are initialized with temporary allocation
2259 * map in initdata so that they can be used before slab is online.
2260 * This function is called after slab is brought up and replaces those
2261 * with properly allocated maps.
2263 void __init
percpu_init_late(void)
2265 struct pcpu_chunk
*target_chunks
[] =
2266 { pcpu_first_chunk
, pcpu_reserved_chunk
, NULL
};
2267 struct pcpu_chunk
*chunk
;
2268 unsigned long flags
;
2271 for (i
= 0; (chunk
= target_chunks
[i
]); i
++) {
2273 const size_t size
= PERCPU_DYNAMIC_EARLY_SLOTS
* sizeof(map
[0]);
2275 BUILD_BUG_ON(size
> PAGE_SIZE
);
2277 map
= pcpu_mem_zalloc(size
);
2280 spin_lock_irqsave(&pcpu_lock
, flags
);
2281 memcpy(map
, chunk
->map
, size
);
2283 spin_unlock_irqrestore(&pcpu_lock
, flags
);
2288 * Percpu allocator is initialized early during boot when neither slab or
2289 * workqueue is available. Plug async management until everything is up
2292 static int __init
percpu_enable_async(void)
2294 pcpu_async_enabled
= true;
2297 subsys_initcall(percpu_enable_async
);