1 // SPDX-License-Identifier: GPL-2.0
3 * bootmem - A boot-time physical memory allocator and configurator
5 * Copyright (C) 1999 Ingo Molnar
6 * 1999 Kanoj Sarcar, SGI
9 * Access to this subsystem has to be serialized externally (which is true
10 * for the boot process anyway).
12 #include <linux/init.h>
13 #include <linux/pfn.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/kmemleak.h>
17 #include <linux/range.h>
18 #include <linux/bug.h>
20 #include <linux/bootmem.h>
25 * DOC: bootmem overview
27 * Bootmem is a boot-time physical memory allocator and configurator.
29 * It is used early in the boot process before the page allocator is
32 * Bootmem is based on the most basic of allocators, a First Fit
33 * allocator which uses a bitmap to represent memory. If a bit is 1,
34 * the page is allocated and 0 if unallocated. To satisfy allocations
35 * of sizes smaller than a page, the allocator records the Page Frame
36 * Number (PFN) of the last allocation and the offset the allocation
37 * ended at. Subsequent small allocations are merged together and
38 * stored on the same page.
40 * The information used by the bootmem allocator is represented by
41 * :c:type:`struct bootmem_data`. An array to hold up to %MAX_NUMNODES
42 * such structures is statically allocated and then it is discarded
43 * when the system initialization completes. Each entry in this array
44 * corresponds to a node with memory. For UMA systems only entry 0 is
47 * The bootmem allocator is initialized during early architecture
48 * specific setup. Each architecture is required to supply a
49 * :c:func:`setup_arch` function which, among other tasks, is
50 * responsible for acquiring the necessary parameters to initialise
51 * the boot memory allocator. These parameters define limits of usable
54 * * @min_low_pfn - the lowest PFN that is available in the system
55 * * @max_low_pfn - the highest PFN that may be addressed by low
56 * memory (%ZONE_NORMAL)
57 * * @max_pfn - the last PFN available to the system.
59 * After those limits are determined, the :c:func:`init_bootmem` or
60 * :c:func:`init_bootmem_node` function should be called to initialize
61 * the bootmem allocator. The UMA case should use the `init_bootmem`
62 * function. It will initialize ``contig_page_data`` structure that
63 * represents the only memory node in the system. In the NUMA case the
64 * `init_bootmem_node` function should be called to initialize the
65 * bootmem allocator for each node.
67 * Once the allocator is set up, it is possible to use either single
68 * node or NUMA variant of the allocation APIs.
71 #ifndef CONFIG_NEED_MULTIPLE_NODES
72 struct pglist_data __refdata contig_page_data
= {
73 .bdata
= &bootmem_node_data
[0]
75 EXPORT_SYMBOL(contig_page_data
);
78 unsigned long max_low_pfn
;
79 unsigned long min_low_pfn
;
80 unsigned long max_pfn
;
81 unsigned long long max_possible_pfn
;
83 bootmem_data_t bootmem_node_data
[MAX_NUMNODES
] __initdata
;
85 static struct list_head bdata_list __initdata
= LIST_HEAD_INIT(bdata_list
);
87 static int bootmem_debug
;
89 static int __init
bootmem_debug_setup(char *buf
)
94 early_param("bootmem_debug", bootmem_debug_setup
);
96 #define bdebug(fmt, args...) ({ \
97 if (unlikely(bootmem_debug)) \
98 pr_info("bootmem::%s " fmt, \
102 static unsigned long __init
bootmap_bytes(unsigned long pages
)
104 unsigned long bytes
= DIV_ROUND_UP(pages
, BITS_PER_BYTE
);
106 return ALIGN(bytes
, sizeof(long));
110 * bootmem_bootmap_pages - calculate bitmap size in pages
111 * @pages: number of pages the bitmap has to represent
113 * Return: the number of pages needed to hold the bitmap.
115 unsigned long __init
bootmem_bootmap_pages(unsigned long pages
)
117 unsigned long bytes
= bootmap_bytes(pages
);
119 return PAGE_ALIGN(bytes
) >> PAGE_SHIFT
;
123 * link bdata in order
125 static void __init
link_bootmem(bootmem_data_t
*bdata
)
129 list_for_each_entry(ent
, &bdata_list
, list
) {
130 if (bdata
->node_min_pfn
< ent
->node_min_pfn
) {
131 list_add_tail(&bdata
->list
, &ent
->list
);
136 list_add_tail(&bdata
->list
, &bdata_list
);
140 * Called once to set up the allocator itself.
142 static unsigned long __init
init_bootmem_core(bootmem_data_t
*bdata
,
143 unsigned long mapstart
, unsigned long start
, unsigned long end
)
145 unsigned long mapsize
;
147 mminit_validate_memmodel_limits(&start
, &end
);
148 bdata
->node_bootmem_map
= phys_to_virt(PFN_PHYS(mapstart
));
149 bdata
->node_min_pfn
= start
;
150 bdata
->node_low_pfn
= end
;
154 * Initially all pages are reserved - setup_arch() has to
155 * register free RAM areas explicitly.
157 mapsize
= bootmap_bytes(end
- start
);
158 memset(bdata
->node_bootmem_map
, 0xff, mapsize
);
160 bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
161 bdata
- bootmem_node_data
, start
, mapstart
, end
, mapsize
);
167 * init_bootmem_node - register a node as boot memory
168 * @pgdat: node to register
169 * @freepfn: pfn where the bitmap for this node is to be placed
170 * @startpfn: first pfn on the node
171 * @endpfn: first pfn after the node
173 * Return: the number of bytes needed to hold the bitmap for this node.
175 unsigned long __init
init_bootmem_node(pg_data_t
*pgdat
, unsigned long freepfn
,
176 unsigned long startpfn
, unsigned long endpfn
)
178 return init_bootmem_core(pgdat
->bdata
, freepfn
, startpfn
, endpfn
);
182 * init_bootmem - register boot memory
183 * @start: pfn where the bitmap is to be placed
184 * @pages: number of available physical pages
186 * Return: the number of bytes needed to hold the bitmap.
188 unsigned long __init
init_bootmem(unsigned long start
, unsigned long pages
)
192 return init_bootmem_core(NODE_DATA(0)->bdata
, start
, 0, pages
);
195 void __init
free_bootmem_late(unsigned long physaddr
, unsigned long size
)
197 unsigned long cursor
, end
;
199 kmemleak_free_part_phys(physaddr
, size
);
201 cursor
= PFN_UP(physaddr
);
202 end
= PFN_DOWN(physaddr
+ size
);
204 for (; cursor
< end
; cursor
++) {
205 __free_pages_bootmem(pfn_to_page(cursor
), cursor
, 0);
210 static unsigned long __init
free_all_bootmem_core(bootmem_data_t
*bdata
)
213 unsigned long *map
, start
, end
, pages
, cur
, count
= 0;
215 if (!bdata
->node_bootmem_map
)
218 map
= bdata
->node_bootmem_map
;
219 start
= bdata
->node_min_pfn
;
220 end
= bdata
->node_low_pfn
;
222 bdebug("nid=%td start=%lx end=%lx\n",
223 bdata
- bootmem_node_data
, start
, end
);
225 while (start
< end
) {
226 unsigned long idx
, vec
;
229 idx
= start
- bdata
->node_min_pfn
;
230 shift
= idx
& (BITS_PER_LONG
- 1);
232 * vec holds at most BITS_PER_LONG map bits,
233 * bit 0 corresponds to start.
235 vec
= ~map
[idx
/ BITS_PER_LONG
];
239 if (end
- start
>= BITS_PER_LONG
)
240 vec
|= ~map
[idx
/ BITS_PER_LONG
+ 1] <<
241 (BITS_PER_LONG
- shift
);
244 * If we have a properly aligned and fully unreserved
245 * BITS_PER_LONG block of pages in front of us, free
248 if (IS_ALIGNED(start
, BITS_PER_LONG
) && vec
== ~0UL) {
249 int order
= ilog2(BITS_PER_LONG
);
251 __free_pages_bootmem(pfn_to_page(start
), start
, order
);
252 count
+= BITS_PER_LONG
;
253 start
+= BITS_PER_LONG
;
257 start
= ALIGN(start
+ 1, BITS_PER_LONG
);
258 while (vec
&& cur
!= start
) {
260 page
= pfn_to_page(cur
);
261 __free_pages_bootmem(page
, cur
, 0);
270 cur
= bdata
->node_min_pfn
;
271 page
= virt_to_page(bdata
->node_bootmem_map
);
272 pages
= bdata
->node_low_pfn
- bdata
->node_min_pfn
;
273 pages
= bootmem_bootmap_pages(pages
);
276 __free_pages_bootmem(page
++, cur
++, 0);
277 bdata
->node_bootmem_map
= NULL
;
279 bdebug("nid=%td released=%lx\n", bdata
- bootmem_node_data
, count
);
284 static int reset_managed_pages_done __initdata
;
286 void reset_node_managed_pages(pg_data_t
*pgdat
)
290 for (z
= pgdat
->node_zones
; z
< pgdat
->node_zones
+ MAX_NR_ZONES
; z
++)
291 z
->managed_pages
= 0;
294 void __init
reset_all_zones_managed_pages(void)
296 struct pglist_data
*pgdat
;
298 if (reset_managed_pages_done
)
301 for_each_online_pgdat(pgdat
)
302 reset_node_managed_pages(pgdat
);
304 reset_managed_pages_done
= 1;
307 unsigned long __init
free_all_bootmem(void)
309 unsigned long total_pages
= 0;
310 bootmem_data_t
*bdata
;
312 reset_all_zones_managed_pages();
314 list_for_each_entry(bdata
, &bdata_list
, list
)
315 total_pages
+= free_all_bootmem_core(bdata
);
317 totalram_pages
+= total_pages
;
322 static void __init
__free(bootmem_data_t
*bdata
,
323 unsigned long sidx
, unsigned long eidx
)
327 bdebug("nid=%td start=%lx end=%lx\n", bdata
- bootmem_node_data
,
328 sidx
+ bdata
->node_min_pfn
,
329 eidx
+ bdata
->node_min_pfn
);
331 if (WARN_ON(bdata
->node_bootmem_map
== NULL
))
334 if (bdata
->hint_idx
> sidx
)
335 bdata
->hint_idx
= sidx
;
337 for (idx
= sidx
; idx
< eidx
; idx
++)
338 if (!test_and_clear_bit(idx
, bdata
->node_bootmem_map
))
342 static int __init
__reserve(bootmem_data_t
*bdata
, unsigned long sidx
,
343 unsigned long eidx
, int flags
)
346 int exclusive
= flags
& BOOTMEM_EXCLUSIVE
;
348 bdebug("nid=%td start=%lx end=%lx flags=%x\n",
349 bdata
- bootmem_node_data
,
350 sidx
+ bdata
->node_min_pfn
,
351 eidx
+ bdata
->node_min_pfn
,
354 if (WARN_ON(bdata
->node_bootmem_map
== NULL
))
357 for (idx
= sidx
; idx
< eidx
; idx
++)
358 if (test_and_set_bit(idx
, bdata
->node_bootmem_map
)) {
360 __free(bdata
, sidx
, idx
);
363 bdebug("silent double reserve of PFN %lx\n",
364 idx
+ bdata
->node_min_pfn
);
369 static int __init
mark_bootmem_node(bootmem_data_t
*bdata
,
370 unsigned long start
, unsigned long end
,
371 int reserve
, int flags
)
373 unsigned long sidx
, eidx
;
375 bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
376 bdata
- bootmem_node_data
, start
, end
, reserve
, flags
);
378 BUG_ON(start
< bdata
->node_min_pfn
);
379 BUG_ON(end
> bdata
->node_low_pfn
);
381 sidx
= start
- bdata
->node_min_pfn
;
382 eidx
= end
- bdata
->node_min_pfn
;
385 return __reserve(bdata
, sidx
, eidx
, flags
);
387 __free(bdata
, sidx
, eidx
);
391 static int __init
mark_bootmem(unsigned long start
, unsigned long end
,
392 int reserve
, int flags
)
395 bootmem_data_t
*bdata
;
398 list_for_each_entry(bdata
, &bdata_list
, list
) {
402 if (pos
< bdata
->node_min_pfn
||
403 pos
>= bdata
->node_low_pfn
) {
404 BUG_ON(pos
!= start
);
408 max
= min(bdata
->node_low_pfn
, end
);
410 err
= mark_bootmem_node(bdata
, pos
, max
, reserve
, flags
);
411 if (reserve
&& err
) {
412 mark_bootmem(start
, pos
, 0, 0);
418 pos
= bdata
->node_low_pfn
;
423 void __init
free_bootmem_node(pg_data_t
*pgdat
, unsigned long physaddr
,
426 unsigned long start
, end
;
428 kmemleak_free_part_phys(physaddr
, size
);
430 start
= PFN_UP(physaddr
);
431 end
= PFN_DOWN(physaddr
+ size
);
433 mark_bootmem_node(pgdat
->bdata
, start
, end
, 0, 0);
436 void __init
free_bootmem(unsigned long physaddr
, unsigned long size
)
438 unsigned long start
, end
;
440 kmemleak_free_part_phys(physaddr
, size
);
442 start
= PFN_UP(physaddr
);
443 end
= PFN_DOWN(physaddr
+ size
);
445 mark_bootmem(start
, end
, 0, 0);
449 * reserve_bootmem_node - mark a page range as reserved
450 * @pgdat: node the range resides on
451 * @physaddr: starting address of the range
452 * @size: size of the range in bytes
453 * @flags: reservation flags (see linux/bootmem.h)
455 * Partial pages will be reserved.
457 * The range must reside completely on the specified node.
459 * Return: 0 on success, -errno on failure.
461 int __init
reserve_bootmem_node(pg_data_t
*pgdat
, unsigned long physaddr
,
462 unsigned long size
, int flags
)
464 unsigned long start
, end
;
466 start
= PFN_DOWN(physaddr
);
467 end
= PFN_UP(physaddr
+ size
);
469 return mark_bootmem_node(pgdat
->bdata
, start
, end
, 1, flags
);
473 * reserve_bootmem - mark a page range as reserved
474 * @addr: starting address of the range
475 * @size: size of the range in bytes
476 * @flags: reservation flags (see linux/bootmem.h)
478 * Partial pages will be reserved.
480 * The range must be contiguous but may span node boundaries.
482 * Return: 0 on success, -errno on failure.
484 int __init
reserve_bootmem(unsigned long addr
, unsigned long size
,
487 unsigned long start
, end
;
489 start
= PFN_DOWN(addr
);
490 end
= PFN_UP(addr
+ size
);
492 return mark_bootmem(start
, end
, 1, flags
);
495 static unsigned long __init
align_idx(struct bootmem_data
*bdata
,
496 unsigned long idx
, unsigned long step
)
498 unsigned long base
= bdata
->node_min_pfn
;
501 * Align the index with respect to the node start so that the
502 * combination of both satisfies the requested alignment.
505 return ALIGN(base
+ idx
, step
) - base
;
508 static unsigned long __init
align_off(struct bootmem_data
*bdata
,
509 unsigned long off
, unsigned long align
)
511 unsigned long base
= PFN_PHYS(bdata
->node_min_pfn
);
513 /* Same as align_idx for byte offsets */
515 return ALIGN(base
+ off
, align
) - base
;
518 static void * __init
alloc_bootmem_bdata(struct bootmem_data
*bdata
,
519 unsigned long size
, unsigned long align
,
520 unsigned long goal
, unsigned long limit
)
522 unsigned long fallback
= 0;
523 unsigned long min
, max
, start
, sidx
, midx
, step
;
525 bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
526 bdata
- bootmem_node_data
, size
, PAGE_ALIGN(size
) >> PAGE_SHIFT
,
530 BUG_ON(align
& (align
- 1));
531 BUG_ON(limit
&& goal
+ size
> limit
);
533 if (!bdata
->node_bootmem_map
)
536 min
= bdata
->node_min_pfn
;
537 max
= bdata
->node_low_pfn
;
540 limit
>>= PAGE_SHIFT
;
542 if (limit
&& max
> limit
)
547 step
= max(align
>> PAGE_SHIFT
, 1UL);
549 if (goal
&& min
< goal
&& goal
< max
)
550 start
= ALIGN(goal
, step
);
552 start
= ALIGN(min
, step
);
554 sidx
= start
- bdata
->node_min_pfn
;
555 midx
= max
- bdata
->node_min_pfn
;
557 if (bdata
->hint_idx
> sidx
) {
559 * Handle the valid case of sidx being zero and still
560 * catch the fallback below.
563 sidx
= align_idx(bdata
, bdata
->hint_idx
, step
);
569 unsigned long eidx
, i
, start_off
, end_off
;
571 sidx
= find_next_zero_bit(bdata
->node_bootmem_map
, midx
, sidx
);
572 sidx
= align_idx(bdata
, sidx
, step
);
573 eidx
= sidx
+ PFN_UP(size
);
575 if (sidx
>= midx
|| eidx
> midx
)
578 for (i
= sidx
; i
< eidx
; i
++)
579 if (test_bit(i
, bdata
->node_bootmem_map
)) {
580 sidx
= align_idx(bdata
, i
, step
);
586 if (bdata
->last_end_off
& (PAGE_SIZE
- 1) &&
587 PFN_DOWN(bdata
->last_end_off
) + 1 == sidx
)
588 start_off
= align_off(bdata
, bdata
->last_end_off
, align
);
590 start_off
= PFN_PHYS(sidx
);
592 merge
= PFN_DOWN(start_off
) < sidx
;
593 end_off
= start_off
+ size
;
595 bdata
->last_end_off
= end_off
;
596 bdata
->hint_idx
= PFN_UP(end_off
);
599 * Reserve the area now:
601 if (__reserve(bdata
, PFN_DOWN(start_off
) + merge
,
602 PFN_UP(end_off
), BOOTMEM_EXCLUSIVE
))
605 region
= phys_to_virt(PFN_PHYS(bdata
->node_min_pfn
) +
607 memset(region
, 0, size
);
609 * The min_count is set to 0 so that bootmem allocated blocks
610 * are never reported as leaks.
612 kmemleak_alloc(region
, size
, 0, 0);
617 sidx
= align_idx(bdata
, fallback
- 1, step
);
625 static void * __init
alloc_bootmem_core(unsigned long size
,
630 bootmem_data_t
*bdata
;
633 if (WARN_ON_ONCE(slab_is_available()))
634 return kzalloc(size
, GFP_NOWAIT
);
636 list_for_each_entry(bdata
, &bdata_list
, list
) {
637 if (goal
&& bdata
->node_low_pfn
<= PFN_DOWN(goal
))
639 if (limit
&& bdata
->node_min_pfn
>= PFN_DOWN(limit
))
642 region
= alloc_bootmem_bdata(bdata
, size
, align
, goal
, limit
);
650 static void * __init
___alloc_bootmem_nopanic(unsigned long size
,
658 ptr
= alloc_bootmem_core(size
, align
, goal
, limit
);
669 void * __init
__alloc_bootmem_nopanic(unsigned long size
, unsigned long align
,
672 unsigned long limit
= 0;
674 return ___alloc_bootmem_nopanic(size
, align
, goal
, limit
);
677 static void * __init
___alloc_bootmem(unsigned long size
, unsigned long align
,
678 unsigned long goal
, unsigned long limit
)
680 void *mem
= ___alloc_bootmem_nopanic(size
, align
, goal
, limit
);
685 * Whoops, we cannot satisfy the allocation request.
687 pr_alert("bootmem alloc of %lu bytes failed!\n", size
);
688 panic("Out of memory");
692 void * __init
__alloc_bootmem(unsigned long size
, unsigned long align
,
695 unsigned long limit
= 0;
697 return ___alloc_bootmem(size
, align
, goal
, limit
);
700 void * __init
___alloc_bootmem_node_nopanic(pg_data_t
*pgdat
,
701 unsigned long size
, unsigned long align
,
702 unsigned long goal
, unsigned long limit
)
706 if (WARN_ON_ONCE(slab_is_available()))
707 return kzalloc_node(size
, GFP_NOWAIT
, pgdat
->node_id
);
710 /* do not panic in alloc_bootmem_bdata() */
711 if (limit
&& goal
+ size
> limit
)
714 ptr
= alloc_bootmem_bdata(pgdat
->bdata
, size
, align
, goal
, limit
);
718 ptr
= alloc_bootmem_core(size
, align
, goal
, limit
);
730 void * __init
__alloc_bootmem_node_nopanic(pg_data_t
*pgdat
, unsigned long size
,
731 unsigned long align
, unsigned long goal
)
733 return ___alloc_bootmem_node_nopanic(pgdat
, size
, align
, goal
, 0);
736 void * __init
___alloc_bootmem_node(pg_data_t
*pgdat
, unsigned long size
,
737 unsigned long align
, unsigned long goal
,
742 ptr
= ___alloc_bootmem_node_nopanic(pgdat
, size
, align
, goal
, 0);
746 pr_alert("bootmem alloc of %lu bytes failed!\n", size
);
747 panic("Out of memory");
751 void * __init
__alloc_bootmem_node(pg_data_t
*pgdat
, unsigned long size
,
752 unsigned long align
, unsigned long goal
)
754 if (WARN_ON_ONCE(slab_is_available()))
755 return kzalloc_node(size
, GFP_NOWAIT
, pgdat
->node_id
);
757 return ___alloc_bootmem_node(pgdat
, size
, align
, goal
, 0);
760 void * __init
__alloc_bootmem_node_high(pg_data_t
*pgdat
, unsigned long size
,
761 unsigned long align
, unsigned long goal
)
764 unsigned long end_pfn
;
766 if (WARN_ON_ONCE(slab_is_available()))
767 return kzalloc_node(size
, GFP_NOWAIT
, pgdat
->node_id
);
769 /* update goal according ...MAX_DMA32_PFN */
770 end_pfn
= pgdat_end_pfn(pgdat
);
772 if (end_pfn
> MAX_DMA32_PFN
+ (128 >> (20 - PAGE_SHIFT
)) &&
773 (goal
>> PAGE_SHIFT
) < MAX_DMA32_PFN
) {
775 unsigned long new_goal
;
777 new_goal
= MAX_DMA32_PFN
<< PAGE_SHIFT
;
778 ptr
= alloc_bootmem_bdata(pgdat
->bdata
, size
, align
,
785 return __alloc_bootmem_node(pgdat
, size
, align
, goal
);
789 void * __init
__alloc_bootmem_low(unsigned long size
, unsigned long align
,
792 return ___alloc_bootmem(size
, align
, goal
, ARCH_LOW_ADDRESS_LIMIT
);
795 void * __init
__alloc_bootmem_low_nopanic(unsigned long size
,
799 return ___alloc_bootmem_nopanic(size
, align
, goal
,
800 ARCH_LOW_ADDRESS_LIMIT
);
803 void * __init
__alloc_bootmem_low_node(pg_data_t
*pgdat
, unsigned long size
,
804 unsigned long align
, unsigned long goal
)
806 if (WARN_ON_ONCE(slab_is_available()))
807 return kzalloc_node(size
, GFP_NOWAIT
, pgdat
->node_id
);
809 return ___alloc_bootmem_node(pgdat
, size
, align
,
810 goal
, ARCH_LOW_ADDRESS_LIMIT
);