2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
30 #include <asm/pgtable.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include <linux/page_owner.h>
41 int hugetlb_max_hstate __read_mostly
;
42 unsigned int default_hstate_idx
;
43 struct hstate hstates
[HUGE_MAX_HSTATE
];
45 * Minimum page order among possible hugepage sizes, set to a proper value
48 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
50 __initdata
LIST_HEAD(huge_boot_pages
);
52 /* for command line parsing */
53 static struct hstate
* __initdata parsed_hstate
;
54 static unsigned long __initdata default_hstate_max_huge_pages
;
55 static unsigned long __initdata default_hstate_size
;
56 static bool __initdata parsed_valid_hugepagesz
= true;
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
62 DEFINE_SPINLOCK(hugetlb_lock
);
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 static int num_fault_mutexes
;
69 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
74 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
76 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
78 spin_unlock(&spool
->lock
);
80 /* If no pages are used, and no other handles to the subpool
81 * remain, give up any reservations mased on minimum size and
84 if (spool
->min_hpages
!= -1)
85 hugetlb_acct_memory(spool
->hstate
,
91 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
94 struct hugepage_subpool
*spool
;
96 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
100 spin_lock_init(&spool
->lock
);
102 spool
->max_hpages
= max_hpages
;
104 spool
->min_hpages
= min_hpages
;
106 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
110 spool
->rsv_hpages
= min_hpages
;
115 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
117 spin_lock(&spool
->lock
);
118 BUG_ON(!spool
->count
);
120 unlock_or_release_subpool(spool
);
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
131 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
139 spin_lock(&spool
->lock
);
141 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
142 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
143 spool
->used_hpages
+= delta
;
150 /* minimum size accounting */
151 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
152 if (delta
> spool
->rsv_hpages
) {
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
157 ret
= delta
- spool
->rsv_hpages
;
158 spool
->rsv_hpages
= 0;
160 ret
= 0; /* reserves already accounted for */
161 spool
->rsv_hpages
-= delta
;
166 spin_unlock(&spool
->lock
);
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
176 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
184 spin_lock(&spool
->lock
);
186 if (spool
->max_hpages
!= -1) /* maximum size accounting */
187 spool
->used_hpages
-= delta
;
189 /* minimum size accounting */
190 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
191 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
194 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
196 spool
->rsv_hpages
+= delta
;
197 if (spool
->rsv_hpages
> spool
->min_hpages
)
198 spool
->rsv_hpages
= spool
->min_hpages
;
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
205 unlock_or_release_subpool(spool
);
210 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
212 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
215 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
217 return subpool_inode(file_inode(vma
->vm_file
));
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
240 struct list_head link
;
246 * Add the huge page range represented by [f, t) to the reserve
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
259 static long region_add(struct resv_map
*resv
, long f
, long t
)
261 struct list_head
*head
= &resv
->regions
;
262 struct file_region
*rg
, *nrg
, *trg
;
265 spin_lock(&resv
->lock
);
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg
, head
, link
)
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
277 if (&rg
->link
== head
|| t
< rg
->from
) {
278 VM_BUG_ON(resv
->region_cache_count
<= 0);
280 resv
->region_cache_count
--;
281 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
,
283 list_del(&nrg
->link
);
287 list_add(&nrg
->link
, rg
->link
.prev
);
293 /* Round our left edge to the current segment if it encloses us. */
297 /* Check for and consume any regions we now overlap with. */
299 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
300 if (&rg
->link
== head
)
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
315 add
-= (rg
->to
- rg
->from
);
321 add
+= (nrg
->from
- f
); /* Added to beginning of region */
323 add
+= t
- nrg
->to
; /* Added to end of region */
327 resv
->adds_in_progress
--;
328 spin_unlock(&resv
->lock
);
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
355 static long region_chg(struct resv_map
*resv
, long f
, long t
)
357 struct list_head
*head
= &resv
->regions
;
358 struct file_region
*rg
, *nrg
= NULL
;
362 spin_lock(&resv
->lock
);
364 resv
->adds_in_progress
++;
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
370 if (resv
->adds_in_progress
> resv
->region_cache_count
) {
371 struct file_region
*trg
;
373 VM_BUG_ON(resv
->adds_in_progress
- resv
->region_cache_count
> 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv
->adds_in_progress
--;
376 spin_unlock(&resv
->lock
);
378 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
384 spin_lock(&resv
->lock
);
385 list_add(&trg
->link
, &resv
->region_cache
);
386 resv
->region_cache_count
++;
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg
, head
, link
)
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg
->link
== head
|| t
< rg
->from
) {
400 resv
->adds_in_progress
--;
401 spin_unlock(&resv
->lock
);
402 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
408 INIT_LIST_HEAD(&nrg
->link
);
412 list_add(&nrg
->link
, rg
->link
.prev
);
417 /* Round our left edge to the current segment if it encloses us. */
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
424 if (&rg
->link
== head
)
429 /* We overlap with this area, if it extends further than
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
436 chg
-= rg
->to
- rg
->from
;
440 spin_unlock(&resv
->lock
);
441 /* We already know we raced and no longer need the new region */
445 spin_unlock(&resv
->lock
);
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
460 static void region_abort(struct resv_map
*resv
, long f
, long t
)
462 spin_lock(&resv
->lock
);
463 VM_BUG_ON(!resv
->region_cache_count
);
464 resv
->adds_in_progress
--;
465 spin_unlock(&resv
->lock
);
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
482 static long region_del(struct resv_map
*resv
, long f
, long t
)
484 struct list_head
*head
= &resv
->regions
;
485 struct file_region
*rg
, *trg
;
486 struct file_region
*nrg
= NULL
;
490 spin_lock(&resv
->lock
);
491 list_for_each_entry_safe(rg
, trg
, head
, link
) {
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
499 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
505 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
511 resv
->region_cache_count
> resv
->adds_in_progress
) {
512 nrg
= list_first_entry(&resv
->region_cache
,
515 list_del(&nrg
->link
);
516 resv
->region_cache_count
--;
520 spin_unlock(&resv
->lock
);
521 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
529 /* New entry for end of split region */
532 INIT_LIST_HEAD(&nrg
->link
);
534 /* Original entry is trimmed */
537 list_add(&nrg
->link
, &rg
->link
);
542 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
543 del
+= rg
->to
- rg
->from
;
549 if (f
<= rg
->from
) { /* Trim beginning of region */
552 } else { /* Trim end of region */
558 spin_unlock(&resv
->lock
);
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
572 void hugetlb_fix_reserve_counts(struct inode
*inode
)
574 struct hugepage_subpool
*spool
= subpool_inode(inode
);
577 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
579 struct hstate
*h
= hstate_inode(inode
);
581 hugetlb_acct_memory(h
, 1);
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
589 static long region_count(struct resv_map
*resv
, long f
, long t
)
591 struct list_head
*head
= &resv
->regions
;
592 struct file_region
*rg
;
595 spin_lock(&resv
->lock
);
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg
, head
, link
) {
606 seg_from
= max(rg
->from
, f
);
607 seg_to
= min(rg
->to
, t
);
609 chg
+= seg_to
- seg_from
;
611 spin_unlock(&resv
->lock
);
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
620 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
621 struct vm_area_struct
*vma
, unsigned long address
)
623 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
624 (vma
->vm_pgoff
>> huge_page_order(h
));
627 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
628 unsigned long address
)
630 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
632 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
638 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
640 if (vma
->vm_ops
&& vma
->vm_ops
->pagesize
)
641 return vma
->vm_ops
->pagesize(vma
);
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
649 * architectures where it differs, an architecture-specific 'strong'
650 * version of this symbol is required.
652 __weak
unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
654 return vma_kernel_pagesize(vma
);
658 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
659 * bits of the reservation map pointer, which are always clear due to
662 #define HPAGE_RESV_OWNER (1UL << 0)
663 #define HPAGE_RESV_UNMAPPED (1UL << 1)
664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667 * These helpers are used to track how many pages are reserved for
668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669 * is guaranteed to have their future faults succeed.
671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672 * the reserve counters are updated with the hugetlb_lock held. It is safe
673 * to reset the VMA at fork() time as it is not in use yet and there is no
674 * chance of the global counters getting corrupted as a result of the values.
676 * The private mapping reservation is represented in a subtly different
677 * manner to a shared mapping. A shared mapping has a region map associated
678 * with the underlying file, this region map represents the backing file
679 * pages which have ever had a reservation assigned which this persists even
680 * after the page is instantiated. A private mapping has a region map
681 * associated with the original mmap which is attached to all VMAs which
682 * reference it, this region map represents those offsets which have consumed
683 * reservation ie. where pages have been instantiated.
685 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
687 return (unsigned long)vma
->vm_private_data
;
690 static void set_vma_private_data(struct vm_area_struct
*vma
,
693 vma
->vm_private_data
= (void *)value
;
696 struct resv_map
*resv_map_alloc(void)
698 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
699 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
701 if (!resv_map
|| !rg
) {
707 kref_init(&resv_map
->refs
);
708 spin_lock_init(&resv_map
->lock
);
709 INIT_LIST_HEAD(&resv_map
->regions
);
711 resv_map
->adds_in_progress
= 0;
713 INIT_LIST_HEAD(&resv_map
->region_cache
);
714 list_add(&rg
->link
, &resv_map
->region_cache
);
715 resv_map
->region_cache_count
= 1;
720 void resv_map_release(struct kref
*ref
)
722 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
723 struct list_head
*head
= &resv_map
->region_cache
;
724 struct file_region
*rg
, *trg
;
726 /* Clear out any active regions before we release the map. */
727 region_del(resv_map
, 0, LONG_MAX
);
729 /* ... and any entries left in the cache */
730 list_for_each_entry_safe(rg
, trg
, head
, link
) {
735 VM_BUG_ON(resv_map
->adds_in_progress
);
740 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
742 return inode
->i_mapping
->private_data
;
745 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
747 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
748 if (vma
->vm_flags
& VM_MAYSHARE
) {
749 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
750 struct inode
*inode
= mapping
->host
;
752 return inode_resv_map(inode
);
755 return (struct resv_map
*)(get_vma_private_data(vma
) &
760 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
762 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
763 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
765 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
766 HPAGE_RESV_MASK
) | (unsigned long)map
);
769 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
772 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
774 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
777 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
781 return (get_vma_private_data(vma
) & flag
) != 0;
784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
785 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
788 if (!(vma
->vm_flags
& VM_MAYSHARE
))
789 vma
->vm_private_data
= (void *)0;
792 /* Returns true if the VMA has associated reserve pages */
793 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
795 if (vma
->vm_flags
& VM_NORESERVE
) {
797 * This address is already reserved by other process(chg == 0),
798 * so, we should decrement reserved count. Without decrementing,
799 * reserve count remains after releasing inode, because this
800 * allocated page will go into page cache and is regarded as
801 * coming from reserved pool in releasing step. Currently, we
802 * don't have any other solution to deal with this situation
803 * properly, so add work-around here.
805 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
811 /* Shared mappings always use reserves */
812 if (vma
->vm_flags
& VM_MAYSHARE
) {
814 * We know VM_NORESERVE is not set. Therefore, there SHOULD
815 * be a region map for all pages. The only situation where
816 * there is no region map is if a hole was punched via
817 * fallocate. In this case, there really are no reverves to
818 * use. This situation is indicated if chg != 0.
827 * Only the process that called mmap() has reserves for
830 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
832 * Like the shared case above, a hole punch or truncate
833 * could have been performed on the private mapping.
834 * Examine the value of chg to determine if reserves
835 * actually exist or were previously consumed.
836 * Very Subtle - The value of chg comes from a previous
837 * call to vma_needs_reserves(). The reserve map for
838 * private mappings has different (opposite) semantics
839 * than that of shared mappings. vma_needs_reserves()
840 * has already taken this difference in semantics into
841 * account. Therefore, the meaning of chg is the same
842 * as in the shared case above. Code could easily be
843 * combined, but keeping it separate draws attention to
844 * subtle differences.
855 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
857 int nid
= page_to_nid(page
);
858 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
859 h
->free_huge_pages
++;
860 h
->free_huge_pages_node
[nid
]++;
863 static struct page
*dequeue_huge_page_node_exact(struct hstate
*h
, int nid
)
867 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
868 if (!PageHWPoison(page
))
871 * if 'non-isolated free hugepage' not found on the list,
872 * the allocation fails.
874 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
876 list_move(&page
->lru
, &h
->hugepage_activelist
);
877 set_page_refcounted(page
);
878 h
->free_huge_pages
--;
879 h
->free_huge_pages_node
[nid
]--;
883 static struct page
*dequeue_huge_page_nodemask(struct hstate
*h
, gfp_t gfp_mask
, int nid
,
886 unsigned int cpuset_mems_cookie
;
887 struct zonelist
*zonelist
;
892 zonelist
= node_zonelist(nid
, gfp_mask
);
895 cpuset_mems_cookie
= read_mems_allowed_begin();
896 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nmask
) {
899 if (!cpuset_zone_allowed(zone
, gfp_mask
))
902 * no need to ask again on the same node. Pool is node rather than
905 if (zone_to_nid(zone
) == node
)
907 node
= zone_to_nid(zone
);
909 page
= dequeue_huge_page_node_exact(h
, node
);
913 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie
)))
919 /* Movability of hugepages depends on migration support. */
920 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
922 if (hugepage_migration_supported(h
))
923 return GFP_HIGHUSER_MOVABLE
;
928 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
929 struct vm_area_struct
*vma
,
930 unsigned long address
, int avoid_reserve
,
934 struct mempolicy
*mpol
;
936 nodemask_t
*nodemask
;
940 * A child process with MAP_PRIVATE mappings created by their parent
941 * have no page reserves. This check ensures that reservations are
942 * not "stolen". The child may still get SIGKILLed
944 if (!vma_has_reserves(vma
, chg
) &&
945 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
948 /* If reserves cannot be used, ensure enough pages are in the pool */
949 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
952 gfp_mask
= htlb_alloc_mask(h
);
953 nid
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
954 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, nodemask
);
955 if (page
&& !avoid_reserve
&& vma_has_reserves(vma
, chg
)) {
956 SetPagePrivate(page
);
957 h
->resv_huge_pages
--;
968 * common helper functions for hstate_next_node_to_{alloc|free}.
969 * We may have allocated or freed a huge page based on a different
970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971 * be outside of *nodes_allowed. Ensure that we use an allowed
972 * node for alloc or free.
974 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
976 nid
= next_node_in(nid
, *nodes_allowed
);
977 VM_BUG_ON(nid
>= MAX_NUMNODES
);
982 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
984 if (!node_isset(nid
, *nodes_allowed
))
985 nid
= next_node_allowed(nid
, nodes_allowed
);
990 * returns the previously saved node ["this node"] from which to
991 * allocate a persistent huge page for the pool and advance the
992 * next node from which to allocate, handling wrap at end of node
995 static int hstate_next_node_to_alloc(struct hstate
*h
,
996 nodemask_t
*nodes_allowed
)
1000 VM_BUG_ON(!nodes_allowed
);
1002 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
1003 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
1009 * helper for free_pool_huge_page() - return the previously saved
1010 * node ["this node"] from which to free a huge page. Advance the
1011 * next node id whether or not we find a free huge page to free so
1012 * that the next attempt to free addresses the next node.
1014 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1018 VM_BUG_ON(!nodes_allowed
);
1020 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
1021 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1027 for (nr_nodes = nodes_weight(*mask); \
1029 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1035 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039 static void destroy_compound_gigantic_page(struct page
*page
,
1043 int nr_pages
= 1 << order
;
1044 struct page
*p
= page
+ 1;
1046 atomic_set(compound_mapcount_ptr(page
), 0);
1047 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1048 clear_compound_head(p
);
1049 set_page_refcounted(p
);
1052 set_compound_order(page
, 0);
1053 __ClearPageHead(page
);
1056 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1058 free_contig_range(page_to_pfn(page
), 1 << order
);
1061 static int __alloc_gigantic_page(unsigned long start_pfn
,
1062 unsigned long nr_pages
, gfp_t gfp_mask
)
1064 unsigned long end_pfn
= start_pfn
+ nr_pages
;
1065 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
1069 static bool pfn_range_valid_gigantic(struct zone
*z
,
1070 unsigned long start_pfn
, unsigned long nr_pages
)
1072 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
1075 for (i
= start_pfn
; i
< end_pfn
; i
++) {
1079 page
= pfn_to_page(i
);
1081 if (page_zone(page
) != z
)
1084 if (PageReserved(page
))
1087 if (page_count(page
) > 0)
1097 static bool zone_spans_last_pfn(const struct zone
*zone
,
1098 unsigned long start_pfn
, unsigned long nr_pages
)
1100 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
1101 return zone_spans_pfn(zone
, last_pfn
);
1104 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1105 int nid
, nodemask_t
*nodemask
)
1107 unsigned int order
= huge_page_order(h
);
1108 unsigned long nr_pages
= 1 << order
;
1109 unsigned long ret
, pfn
, flags
;
1110 struct zonelist
*zonelist
;
1114 zonelist
= node_zonelist(nid
, gfp_mask
);
1115 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nodemask
) {
1116 spin_lock_irqsave(&zone
->lock
, flags
);
1118 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
1119 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
1120 if (pfn_range_valid_gigantic(zone
, pfn
, nr_pages
)) {
1122 * We release the zone lock here because
1123 * alloc_contig_range() will also lock the zone
1124 * at some point. If there's an allocation
1125 * spinning on this lock, it may win the race
1126 * and cause alloc_contig_range() to fail...
1128 spin_unlock_irqrestore(&zone
->lock
, flags
);
1129 ret
= __alloc_gigantic_page(pfn
, nr_pages
, gfp_mask
);
1131 return pfn_to_page(pfn
);
1132 spin_lock_irqsave(&zone
->lock
, flags
);
1137 spin_unlock_irqrestore(&zone
->lock
, flags
);
1143 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1144 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1146 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1147 static inline bool gigantic_page_supported(void) { return false; }
1148 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1149 int nid
, nodemask_t
*nodemask
) { return NULL
; }
1150 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1151 static inline void destroy_compound_gigantic_page(struct page
*page
,
1152 unsigned int order
) { }
1155 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1159 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1163 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1164 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1165 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1166 1 << PG_referenced
| 1 << PG_dirty
|
1167 1 << PG_active
| 1 << PG_private
|
1170 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1171 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1172 set_page_refcounted(page
);
1173 if (hstate_is_gigantic(h
)) {
1174 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1175 free_gigantic_page(page
, huge_page_order(h
));
1177 __free_pages(page
, huge_page_order(h
));
1181 struct hstate
*size_to_hstate(unsigned long size
)
1185 for_each_hstate(h
) {
1186 if (huge_page_size(h
) == size
)
1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194 * to hstate->hugepage_activelist.)
1196 * This function can be called for tail pages, but never returns true for them.
1198 bool page_huge_active(struct page
*page
)
1200 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1201 return PageHead(page
) && PagePrivate(&page
[1]);
1204 /* never called for tail page */
1205 static void set_page_huge_active(struct page
*page
)
1207 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1208 SetPagePrivate(&page
[1]);
1211 static void clear_page_huge_active(struct page
*page
)
1213 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1214 ClearPagePrivate(&page
[1]);
1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1221 static inline bool PageHugeTemporary(struct page
*page
)
1223 if (!PageHuge(page
))
1226 return (unsigned long)page
[2].mapping
== -1U;
1229 static inline void SetPageHugeTemporary(struct page
*page
)
1231 page
[2].mapping
= (void *)-1U;
1234 static inline void ClearPageHugeTemporary(struct page
*page
)
1236 page
[2].mapping
= NULL
;
1239 void free_huge_page(struct page
*page
)
1242 * Can't pass hstate in here because it is called from the
1243 * compound page destructor.
1245 struct hstate
*h
= page_hstate(page
);
1246 int nid
= page_to_nid(page
);
1247 struct hugepage_subpool
*spool
=
1248 (struct hugepage_subpool
*)page_private(page
);
1249 bool restore_reserve
;
1251 set_page_private(page
, 0);
1252 page
->mapping
= NULL
;
1253 VM_BUG_ON_PAGE(page_count(page
), page
);
1254 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1255 restore_reserve
= PagePrivate(page
);
1256 ClearPagePrivate(page
);
1259 * A return code of zero implies that the subpool will be under its
1260 * minimum size if the reservation is not restored after page is free.
1261 * Therefore, force restore_reserve operation.
1263 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1264 restore_reserve
= true;
1266 spin_lock(&hugetlb_lock
);
1267 clear_page_huge_active(page
);
1268 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1269 pages_per_huge_page(h
), page
);
1270 if (restore_reserve
)
1271 h
->resv_huge_pages
++;
1273 if (PageHugeTemporary(page
)) {
1274 list_del(&page
->lru
);
1275 ClearPageHugeTemporary(page
);
1276 update_and_free_page(h
, page
);
1277 } else if (h
->surplus_huge_pages_node
[nid
]) {
1278 /* remove the page from active list */
1279 list_del(&page
->lru
);
1280 update_and_free_page(h
, page
);
1281 h
->surplus_huge_pages
--;
1282 h
->surplus_huge_pages_node
[nid
]--;
1284 arch_clear_hugepage_flags(page
);
1285 enqueue_huge_page(h
, page
);
1287 spin_unlock(&hugetlb_lock
);
1290 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1292 INIT_LIST_HEAD(&page
->lru
);
1293 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1294 spin_lock(&hugetlb_lock
);
1295 set_hugetlb_cgroup(page
, NULL
);
1297 h
->nr_huge_pages_node
[nid
]++;
1298 spin_unlock(&hugetlb_lock
);
1301 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1304 int nr_pages
= 1 << order
;
1305 struct page
*p
= page
+ 1;
1307 /* we rely on prep_new_huge_page to set the destructor */
1308 set_compound_order(page
, order
);
1309 __ClearPageReserved(page
);
1310 __SetPageHead(page
);
1311 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1313 * For gigantic hugepages allocated through bootmem at
1314 * boot, it's safer to be consistent with the not-gigantic
1315 * hugepages and clear the PG_reserved bit from all tail pages
1316 * too. Otherwse drivers using get_user_pages() to access tail
1317 * pages may get the reference counting wrong if they see
1318 * PG_reserved set on a tail page (despite the head page not
1319 * having PG_reserved set). Enforcing this consistency between
1320 * head and tail pages allows drivers to optimize away a check
1321 * on the head page when they need know if put_page() is needed
1322 * after get_user_pages().
1324 __ClearPageReserved(p
);
1325 set_page_count(p
, 0);
1326 set_compound_head(p
, page
);
1328 atomic_set(compound_mapcount_ptr(page
), -1);
1332 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1333 * transparent huge pages. See the PageTransHuge() documentation for more
1336 int PageHuge(struct page
*page
)
1338 if (!PageCompound(page
))
1341 page
= compound_head(page
);
1342 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1344 EXPORT_SYMBOL_GPL(PageHuge
);
1347 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1348 * normal or transparent huge pages.
1350 int PageHeadHuge(struct page
*page_head
)
1352 if (!PageHead(page_head
))
1355 return get_compound_page_dtor(page_head
) == free_huge_page
;
1358 pgoff_t
__basepage_index(struct page
*page
)
1360 struct page
*page_head
= compound_head(page
);
1361 pgoff_t index
= page_index(page_head
);
1362 unsigned long compound_idx
;
1364 if (!PageHuge(page_head
))
1365 return page_index(page
);
1367 if (compound_order(page_head
) >= MAX_ORDER
)
1368 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1370 compound_idx
= page
- page_head
;
1372 return (index
<< compound_order(page_head
)) + compound_idx
;
1375 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
1376 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
1378 int order
= huge_page_order(h
);
1381 gfp_mask
|= __GFP_COMP
|__GFP_RETRY_MAYFAIL
|__GFP_NOWARN
;
1382 if (nid
== NUMA_NO_NODE
)
1383 nid
= numa_mem_id();
1384 page
= __alloc_pages_nodemask(gfp_mask
, order
, nid
, nmask
);
1386 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1388 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1394 * Common helper to allocate a fresh hugetlb page. All specific allocators
1395 * should use this function to get new hugetlb pages
1397 static struct page
*alloc_fresh_huge_page(struct hstate
*h
,
1398 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
1402 if (hstate_is_gigantic(h
))
1403 page
= alloc_gigantic_page(h
, gfp_mask
, nid
, nmask
);
1405 page
= alloc_buddy_huge_page(h
, gfp_mask
,
1410 if (hstate_is_gigantic(h
))
1411 prep_compound_gigantic_page(page
, huge_page_order(h
));
1412 prep_new_huge_page(h
, page
, page_to_nid(page
));
1418 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1421 static int alloc_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1425 gfp_t gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
1427 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1428 page
= alloc_fresh_huge_page(h
, gfp_mask
, node
, nodes_allowed
);
1436 put_page(page
); /* free it into the hugepage allocator */
1442 * Free huge page from pool from next node to free.
1443 * Attempt to keep persistent huge pages more or less
1444 * balanced over allowed nodes.
1445 * Called with hugetlb_lock locked.
1447 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1453 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1455 * If we're returning unused surplus pages, only examine
1456 * nodes with surplus pages.
1458 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1459 !list_empty(&h
->hugepage_freelists
[node
])) {
1461 list_entry(h
->hugepage_freelists
[node
].next
,
1463 list_del(&page
->lru
);
1464 h
->free_huge_pages
--;
1465 h
->free_huge_pages_node
[node
]--;
1467 h
->surplus_huge_pages
--;
1468 h
->surplus_huge_pages_node
[node
]--;
1470 update_and_free_page(h
, page
);
1480 * Dissolve a given free hugepage into free buddy pages. This function does
1481 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1482 * dissolution fails because a give page is not a free hugepage, or because
1483 * free hugepages are fully reserved.
1485 int dissolve_free_huge_page(struct page
*page
)
1489 spin_lock(&hugetlb_lock
);
1490 if (PageHuge(page
) && !page_count(page
)) {
1491 struct page
*head
= compound_head(page
);
1492 struct hstate
*h
= page_hstate(head
);
1493 int nid
= page_to_nid(head
);
1494 if (h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1497 * Move PageHWPoison flag from head page to the raw error page,
1498 * which makes any subpages rather than the error page reusable.
1500 if (PageHWPoison(head
) && page
!= head
) {
1501 SetPageHWPoison(page
);
1502 ClearPageHWPoison(head
);
1504 list_del(&head
->lru
);
1505 h
->free_huge_pages
--;
1506 h
->free_huge_pages_node
[nid
]--;
1507 h
->max_huge_pages
--;
1508 update_and_free_page(h
, head
);
1512 spin_unlock(&hugetlb_lock
);
1517 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1518 * make specified memory blocks removable from the system.
1519 * Note that this will dissolve a free gigantic hugepage completely, if any
1520 * part of it lies within the given range.
1521 * Also note that if dissolve_free_huge_page() returns with an error, all
1522 * free hugepages that were dissolved before that error are lost.
1524 int dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1530 if (!hugepages_supported())
1533 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
) {
1534 page
= pfn_to_page(pfn
);
1535 if (PageHuge(page
) && !page_count(page
)) {
1536 rc
= dissolve_free_huge_page(page
);
1546 * Allocates a fresh surplus page from the page allocator.
1548 static struct page
*alloc_surplus_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1549 int nid
, nodemask_t
*nmask
)
1551 struct page
*page
= NULL
;
1553 if (hstate_is_gigantic(h
))
1556 spin_lock(&hugetlb_lock
);
1557 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
)
1559 spin_unlock(&hugetlb_lock
);
1561 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
);
1565 spin_lock(&hugetlb_lock
);
1567 * We could have raced with the pool size change.
1568 * Double check that and simply deallocate the new page
1569 * if we would end up overcommiting the surpluses. Abuse
1570 * temporary page to workaround the nasty free_huge_page
1573 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1574 SetPageHugeTemporary(page
);
1578 h
->surplus_huge_pages
++;
1579 h
->surplus_huge_pages_node
[page_to_nid(page
)]++;
1583 spin_unlock(&hugetlb_lock
);
1588 static struct page
*alloc_migrate_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1589 int nid
, nodemask_t
*nmask
)
1593 if (hstate_is_gigantic(h
))
1596 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
);
1601 * We do not account these pages as surplus because they are only
1602 * temporary and will be released properly on the last reference
1604 SetPageHugeTemporary(page
);
1610 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1613 struct page
*alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1614 struct vm_area_struct
*vma
, unsigned long addr
)
1617 struct mempolicy
*mpol
;
1618 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1620 nodemask_t
*nodemask
;
1622 nid
= huge_node(vma
, addr
, gfp_mask
, &mpol
, &nodemask
);
1623 page
= alloc_surplus_huge_page(h
, gfp_mask
, nid
, nodemask
);
1624 mpol_cond_put(mpol
);
1629 /* page migration callback function */
1630 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1632 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1633 struct page
*page
= NULL
;
1635 if (nid
!= NUMA_NO_NODE
)
1636 gfp_mask
|= __GFP_THISNODE
;
1638 spin_lock(&hugetlb_lock
);
1639 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1640 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, NULL
);
1641 spin_unlock(&hugetlb_lock
);
1644 page
= alloc_migrate_huge_page(h
, gfp_mask
, nid
, NULL
);
1649 /* page migration callback function */
1650 struct page
*alloc_huge_page_nodemask(struct hstate
*h
, int preferred_nid
,
1653 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1655 spin_lock(&hugetlb_lock
);
1656 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0) {
1659 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, preferred_nid
, nmask
);
1661 spin_unlock(&hugetlb_lock
);
1665 spin_unlock(&hugetlb_lock
);
1667 return alloc_migrate_huge_page(h
, gfp_mask
, preferred_nid
, nmask
);
1670 /* mempolicy aware migration callback */
1671 struct page
*alloc_huge_page_vma(struct hstate
*h
, struct vm_area_struct
*vma
,
1672 unsigned long address
)
1674 struct mempolicy
*mpol
;
1675 nodemask_t
*nodemask
;
1680 gfp_mask
= htlb_alloc_mask(h
);
1681 node
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
1682 page
= alloc_huge_page_nodemask(h
, node
, nodemask
);
1683 mpol_cond_put(mpol
);
1689 * Increase the hugetlb pool such that it can accommodate a reservation
1692 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1694 struct list_head surplus_list
;
1695 struct page
*page
, *tmp
;
1697 int needed
, allocated
;
1698 bool alloc_ok
= true;
1700 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1702 h
->resv_huge_pages
+= delta
;
1707 INIT_LIST_HEAD(&surplus_list
);
1711 spin_unlock(&hugetlb_lock
);
1712 for (i
= 0; i
< needed
; i
++) {
1713 page
= alloc_surplus_huge_page(h
, htlb_alloc_mask(h
),
1714 NUMA_NO_NODE
, NULL
);
1719 list_add(&page
->lru
, &surplus_list
);
1725 * After retaking hugetlb_lock, we need to recalculate 'needed'
1726 * because either resv_huge_pages or free_huge_pages may have changed.
1728 spin_lock(&hugetlb_lock
);
1729 needed
= (h
->resv_huge_pages
+ delta
) -
1730 (h
->free_huge_pages
+ allocated
);
1735 * We were not able to allocate enough pages to
1736 * satisfy the entire reservation so we free what
1737 * we've allocated so far.
1742 * The surplus_list now contains _at_least_ the number of extra pages
1743 * needed to accommodate the reservation. Add the appropriate number
1744 * of pages to the hugetlb pool and free the extras back to the buddy
1745 * allocator. Commit the entire reservation here to prevent another
1746 * process from stealing the pages as they are added to the pool but
1747 * before they are reserved.
1749 needed
+= allocated
;
1750 h
->resv_huge_pages
+= delta
;
1753 /* Free the needed pages to the hugetlb pool */
1754 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1758 * This page is now managed by the hugetlb allocator and has
1759 * no users -- drop the buddy allocator's reference.
1761 put_page_testzero(page
);
1762 VM_BUG_ON_PAGE(page_count(page
), page
);
1763 enqueue_huge_page(h
, page
);
1766 spin_unlock(&hugetlb_lock
);
1768 /* Free unnecessary surplus pages to the buddy allocator */
1769 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1771 spin_lock(&hugetlb_lock
);
1777 * This routine has two main purposes:
1778 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1779 * in unused_resv_pages. This corresponds to the prior adjustments made
1780 * to the associated reservation map.
1781 * 2) Free any unused surplus pages that may have been allocated to satisfy
1782 * the reservation. As many as unused_resv_pages may be freed.
1784 * Called with hugetlb_lock held. However, the lock could be dropped (and
1785 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1786 * we must make sure nobody else can claim pages we are in the process of
1787 * freeing. Do this by ensuring resv_huge_page always is greater than the
1788 * number of huge pages we plan to free when dropping the lock.
1790 static void return_unused_surplus_pages(struct hstate
*h
,
1791 unsigned long unused_resv_pages
)
1793 unsigned long nr_pages
;
1795 /* Cannot return gigantic pages currently */
1796 if (hstate_is_gigantic(h
))
1800 * Part (or even all) of the reservation could have been backed
1801 * by pre-allocated pages. Only free surplus pages.
1803 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1806 * We want to release as many surplus pages as possible, spread
1807 * evenly across all nodes with memory. Iterate across these nodes
1808 * until we can no longer free unreserved surplus pages. This occurs
1809 * when the nodes with surplus pages have no free pages.
1810 * free_pool_huge_page() will balance the the freed pages across the
1811 * on-line nodes with memory and will handle the hstate accounting.
1813 * Note that we decrement resv_huge_pages as we free the pages. If
1814 * we drop the lock, resv_huge_pages will still be sufficiently large
1815 * to cover subsequent pages we may free.
1817 while (nr_pages
--) {
1818 h
->resv_huge_pages
--;
1819 unused_resv_pages
--;
1820 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1822 cond_resched_lock(&hugetlb_lock
);
1826 /* Fully uncommit the reservation */
1827 h
->resv_huge_pages
-= unused_resv_pages
;
1832 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1833 * are used by the huge page allocation routines to manage reservations.
1835 * vma_needs_reservation is called to determine if the huge page at addr
1836 * within the vma has an associated reservation. If a reservation is
1837 * needed, the value 1 is returned. The caller is then responsible for
1838 * managing the global reservation and subpool usage counts. After
1839 * the huge page has been allocated, vma_commit_reservation is called
1840 * to add the page to the reservation map. If the page allocation fails,
1841 * the reservation must be ended instead of committed. vma_end_reservation
1842 * is called in such cases.
1844 * In the normal case, vma_commit_reservation returns the same value
1845 * as the preceding vma_needs_reservation call. The only time this
1846 * is not the case is if a reserve map was changed between calls. It
1847 * is the responsibility of the caller to notice the difference and
1848 * take appropriate action.
1850 * vma_add_reservation is used in error paths where a reservation must
1851 * be restored when a newly allocated huge page must be freed. It is
1852 * to be called after calling vma_needs_reservation to determine if a
1853 * reservation exists.
1855 enum vma_resv_mode
{
1861 static long __vma_reservation_common(struct hstate
*h
,
1862 struct vm_area_struct
*vma
, unsigned long addr
,
1863 enum vma_resv_mode mode
)
1865 struct resv_map
*resv
;
1869 resv
= vma_resv_map(vma
);
1873 idx
= vma_hugecache_offset(h
, vma
, addr
);
1875 case VMA_NEEDS_RESV
:
1876 ret
= region_chg(resv
, idx
, idx
+ 1);
1878 case VMA_COMMIT_RESV
:
1879 ret
= region_add(resv
, idx
, idx
+ 1);
1882 region_abort(resv
, idx
, idx
+ 1);
1886 if (vma
->vm_flags
& VM_MAYSHARE
)
1887 ret
= region_add(resv
, idx
, idx
+ 1);
1889 region_abort(resv
, idx
, idx
+ 1);
1890 ret
= region_del(resv
, idx
, idx
+ 1);
1897 if (vma
->vm_flags
& VM_MAYSHARE
)
1899 else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) && ret
>= 0) {
1901 * In most cases, reserves always exist for private mappings.
1902 * However, a file associated with mapping could have been
1903 * hole punched or truncated after reserves were consumed.
1904 * As subsequent fault on such a range will not use reserves.
1905 * Subtle - The reserve map for private mappings has the
1906 * opposite meaning than that of shared mappings. If NO
1907 * entry is in the reserve map, it means a reservation exists.
1908 * If an entry exists in the reserve map, it means the
1909 * reservation has already been consumed. As a result, the
1910 * return value of this routine is the opposite of the
1911 * value returned from reserve map manipulation routines above.
1919 return ret
< 0 ? ret
: 0;
1922 static long vma_needs_reservation(struct hstate
*h
,
1923 struct vm_area_struct
*vma
, unsigned long addr
)
1925 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
1928 static long vma_commit_reservation(struct hstate
*h
,
1929 struct vm_area_struct
*vma
, unsigned long addr
)
1931 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
1934 static void vma_end_reservation(struct hstate
*h
,
1935 struct vm_area_struct
*vma
, unsigned long addr
)
1937 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
1940 static long vma_add_reservation(struct hstate
*h
,
1941 struct vm_area_struct
*vma
, unsigned long addr
)
1943 return __vma_reservation_common(h
, vma
, addr
, VMA_ADD_RESV
);
1947 * This routine is called to restore a reservation on error paths. In the
1948 * specific error paths, a huge page was allocated (via alloc_huge_page)
1949 * and is about to be freed. If a reservation for the page existed,
1950 * alloc_huge_page would have consumed the reservation and set PagePrivate
1951 * in the newly allocated page. When the page is freed via free_huge_page,
1952 * the global reservation count will be incremented if PagePrivate is set.
1953 * However, free_huge_page can not adjust the reserve map. Adjust the
1954 * reserve map here to be consistent with global reserve count adjustments
1955 * to be made by free_huge_page.
1957 static void restore_reserve_on_error(struct hstate
*h
,
1958 struct vm_area_struct
*vma
, unsigned long address
,
1961 if (unlikely(PagePrivate(page
))) {
1962 long rc
= vma_needs_reservation(h
, vma
, address
);
1964 if (unlikely(rc
< 0)) {
1966 * Rare out of memory condition in reserve map
1967 * manipulation. Clear PagePrivate so that
1968 * global reserve count will not be incremented
1969 * by free_huge_page. This will make it appear
1970 * as though the reservation for this page was
1971 * consumed. This may prevent the task from
1972 * faulting in the page at a later time. This
1973 * is better than inconsistent global huge page
1974 * accounting of reserve counts.
1976 ClearPagePrivate(page
);
1978 rc
= vma_add_reservation(h
, vma
, address
);
1979 if (unlikely(rc
< 0))
1981 * See above comment about rare out of
1984 ClearPagePrivate(page
);
1986 vma_end_reservation(h
, vma
, address
);
1990 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1991 unsigned long addr
, int avoid_reserve
)
1993 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1994 struct hstate
*h
= hstate_vma(vma
);
1996 long map_chg
, map_commit
;
1999 struct hugetlb_cgroup
*h_cg
;
2001 idx
= hstate_index(h
);
2003 * Examine the region/reserve map to determine if the process
2004 * has a reservation for the page to be allocated. A return
2005 * code of zero indicates a reservation exists (no change).
2007 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
2009 return ERR_PTR(-ENOMEM
);
2012 * Processes that did not create the mapping will have no
2013 * reserves as indicated by the region/reserve map. Check
2014 * that the allocation will not exceed the subpool limit.
2015 * Allocations for MAP_NORESERVE mappings also need to be
2016 * checked against any subpool limit.
2018 if (map_chg
|| avoid_reserve
) {
2019 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
2021 vma_end_reservation(h
, vma
, addr
);
2022 return ERR_PTR(-ENOSPC
);
2026 * Even though there was no reservation in the region/reserve
2027 * map, there could be reservations associated with the
2028 * subpool that can be used. This would be indicated if the
2029 * return value of hugepage_subpool_get_pages() is zero.
2030 * However, if avoid_reserve is specified we still avoid even
2031 * the subpool reservations.
2037 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
2039 goto out_subpool_put
;
2041 spin_lock(&hugetlb_lock
);
2043 * glb_chg is passed to indicate whether or not a page must be taken
2044 * from the global free pool (global change). gbl_chg == 0 indicates
2045 * a reservation exists for the allocation.
2047 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
2049 spin_unlock(&hugetlb_lock
);
2050 page
= alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
2052 goto out_uncharge_cgroup
;
2053 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
2054 SetPagePrivate(page
);
2055 h
->resv_huge_pages
--;
2057 spin_lock(&hugetlb_lock
);
2058 list_move(&page
->lru
, &h
->hugepage_activelist
);
2061 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
2062 spin_unlock(&hugetlb_lock
);
2064 set_page_private(page
, (unsigned long)spool
);
2066 map_commit
= vma_commit_reservation(h
, vma
, addr
);
2067 if (unlikely(map_chg
> map_commit
)) {
2069 * The page was added to the reservation map between
2070 * vma_needs_reservation and vma_commit_reservation.
2071 * This indicates a race with hugetlb_reserve_pages.
2072 * Adjust for the subpool count incremented above AND
2073 * in hugetlb_reserve_pages for the same page. Also,
2074 * the reservation count added in hugetlb_reserve_pages
2075 * no longer applies.
2079 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
2080 hugetlb_acct_memory(h
, -rsv_adjust
);
2084 out_uncharge_cgroup
:
2085 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
2087 if (map_chg
|| avoid_reserve
)
2088 hugepage_subpool_put_pages(spool
, 1);
2089 vma_end_reservation(h
, vma
, addr
);
2090 return ERR_PTR(-ENOSPC
);
2093 int alloc_bootmem_huge_page(struct hstate
*h
)
2094 __attribute__ ((weak
, alias("__alloc_bootmem_huge_page")));
2095 int __alloc_bootmem_huge_page(struct hstate
*h
)
2097 struct huge_bootmem_page
*m
;
2100 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
2103 addr
= memblock_virt_alloc_try_nid_raw(
2104 huge_page_size(h
), huge_page_size(h
),
2105 0, BOOTMEM_ALLOC_ACCESSIBLE
, node
);
2108 * Use the beginning of the huge page to store the
2109 * huge_bootmem_page struct (until gather_bootmem
2110 * puts them into the mem_map).
2119 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
2120 /* Put them into a private list first because mem_map is not up yet */
2121 INIT_LIST_HEAD(&m
->list
);
2122 list_add(&m
->list
, &huge_boot_pages
);
2127 static void __init
prep_compound_huge_page(struct page
*page
,
2130 if (unlikely(order
> (MAX_ORDER
- 1)))
2131 prep_compound_gigantic_page(page
, order
);
2133 prep_compound_page(page
, order
);
2136 /* Put bootmem huge pages into the standard lists after mem_map is up */
2137 static void __init
gather_bootmem_prealloc(void)
2139 struct huge_bootmem_page
*m
;
2141 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2142 struct page
*page
= virt_to_page(m
);
2143 struct hstate
*h
= m
->hstate
;
2145 WARN_ON(page_count(page
) != 1);
2146 prep_compound_huge_page(page
, h
->order
);
2147 WARN_ON(PageReserved(page
));
2148 prep_new_huge_page(h
, page
, page_to_nid(page
));
2149 put_page(page
); /* free it into the hugepage allocator */
2152 * If we had gigantic hugepages allocated at boot time, we need
2153 * to restore the 'stolen' pages to totalram_pages in order to
2154 * fix confusing memory reports from free(1) and another
2155 * side-effects, like CommitLimit going negative.
2157 if (hstate_is_gigantic(h
))
2158 adjust_managed_page_count(page
, 1 << h
->order
);
2163 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2167 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2168 if (hstate_is_gigantic(h
)) {
2169 if (!alloc_bootmem_huge_page(h
))
2171 } else if (!alloc_pool_huge_page(h
,
2172 &node_states
[N_MEMORY
]))
2176 if (i
< h
->max_huge_pages
) {
2179 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2180 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2181 h
->max_huge_pages
, buf
, i
);
2182 h
->max_huge_pages
= i
;
2186 static void __init
hugetlb_init_hstates(void)
2190 for_each_hstate(h
) {
2191 if (minimum_order
> huge_page_order(h
))
2192 minimum_order
= huge_page_order(h
);
2194 /* oversize hugepages were init'ed in early boot */
2195 if (!hstate_is_gigantic(h
))
2196 hugetlb_hstate_alloc_pages(h
);
2198 VM_BUG_ON(minimum_order
== UINT_MAX
);
2201 static void __init
report_hugepages(void)
2205 for_each_hstate(h
) {
2208 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2209 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2210 buf
, h
->free_huge_pages
);
2214 #ifdef CONFIG_HIGHMEM
2215 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2216 nodemask_t
*nodes_allowed
)
2220 if (hstate_is_gigantic(h
))
2223 for_each_node_mask(i
, *nodes_allowed
) {
2224 struct page
*page
, *next
;
2225 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2226 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2227 if (count
>= h
->nr_huge_pages
)
2229 if (PageHighMem(page
))
2231 list_del(&page
->lru
);
2232 update_and_free_page(h
, page
);
2233 h
->free_huge_pages
--;
2234 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2239 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2240 nodemask_t
*nodes_allowed
)
2246 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2247 * balanced by operating on them in a round-robin fashion.
2248 * Returns 1 if an adjustment was made.
2250 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2255 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2258 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2259 if (h
->surplus_huge_pages_node
[node
])
2263 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2264 if (h
->surplus_huge_pages_node
[node
] <
2265 h
->nr_huge_pages_node
[node
])
2272 h
->surplus_huge_pages
+= delta
;
2273 h
->surplus_huge_pages_node
[node
] += delta
;
2277 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2278 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
2279 nodemask_t
*nodes_allowed
)
2281 unsigned long min_count
, ret
;
2283 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
2284 return h
->max_huge_pages
;
2287 * Increase the pool size
2288 * First take pages out of surplus state. Then make up the
2289 * remaining difference by allocating fresh huge pages.
2291 * We might race with alloc_surplus_huge_page() here and be unable
2292 * to convert a surplus huge page to a normal huge page. That is
2293 * not critical, though, it just means the overall size of the
2294 * pool might be one hugepage larger than it needs to be, but
2295 * within all the constraints specified by the sysctls.
2297 spin_lock(&hugetlb_lock
);
2298 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2299 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2303 while (count
> persistent_huge_pages(h
)) {
2305 * If this allocation races such that we no longer need the
2306 * page, free_huge_page will handle it by freeing the page
2307 * and reducing the surplus.
2309 spin_unlock(&hugetlb_lock
);
2311 /* yield cpu to avoid soft lockup */
2314 ret
= alloc_pool_huge_page(h
, nodes_allowed
);
2315 spin_lock(&hugetlb_lock
);
2319 /* Bail for signals. Probably ctrl-c from user */
2320 if (signal_pending(current
))
2325 * Decrease the pool size
2326 * First return free pages to the buddy allocator (being careful
2327 * to keep enough around to satisfy reservations). Then place
2328 * pages into surplus state as needed so the pool will shrink
2329 * to the desired size as pages become free.
2331 * By placing pages into the surplus state independent of the
2332 * overcommit value, we are allowing the surplus pool size to
2333 * exceed overcommit. There are few sane options here. Since
2334 * alloc_surplus_huge_page() is checking the global counter,
2335 * though, we'll note that we're not allowed to exceed surplus
2336 * and won't grow the pool anywhere else. Not until one of the
2337 * sysctls are changed, or the surplus pages go out of use.
2339 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2340 min_count
= max(count
, min_count
);
2341 try_to_free_low(h
, min_count
, nodes_allowed
);
2342 while (min_count
< persistent_huge_pages(h
)) {
2343 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2345 cond_resched_lock(&hugetlb_lock
);
2347 while (count
< persistent_huge_pages(h
)) {
2348 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2352 ret
= persistent_huge_pages(h
);
2353 spin_unlock(&hugetlb_lock
);
2357 #define HSTATE_ATTR_RO(_name) \
2358 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2360 #define HSTATE_ATTR(_name) \
2361 static struct kobj_attribute _name##_attr = \
2362 __ATTR(_name, 0644, _name##_show, _name##_store)
2364 static struct kobject
*hugepages_kobj
;
2365 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2367 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2369 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2373 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2374 if (hstate_kobjs
[i
] == kobj
) {
2376 *nidp
= NUMA_NO_NODE
;
2380 return kobj_to_node_hstate(kobj
, nidp
);
2383 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2384 struct kobj_attribute
*attr
, char *buf
)
2387 unsigned long nr_huge_pages
;
2390 h
= kobj_to_hstate(kobj
, &nid
);
2391 if (nid
== NUMA_NO_NODE
)
2392 nr_huge_pages
= h
->nr_huge_pages
;
2394 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2396 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2399 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2400 struct hstate
*h
, int nid
,
2401 unsigned long count
, size_t len
)
2404 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
2406 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
2411 if (nid
== NUMA_NO_NODE
) {
2413 * global hstate attribute
2415 if (!(obey_mempolicy
&&
2416 init_nodemask_of_mempolicy(nodes_allowed
))) {
2417 NODEMASK_FREE(nodes_allowed
);
2418 nodes_allowed
= &node_states
[N_MEMORY
];
2420 } else if (nodes_allowed
) {
2422 * per node hstate attribute: adjust count to global,
2423 * but restrict alloc/free to the specified node.
2425 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2426 init_nodemask_of_node(nodes_allowed
, nid
);
2428 nodes_allowed
= &node_states
[N_MEMORY
];
2430 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
2432 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2433 NODEMASK_FREE(nodes_allowed
);
2437 NODEMASK_FREE(nodes_allowed
);
2441 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2442 struct kobject
*kobj
, const char *buf
,
2446 unsigned long count
;
2450 err
= kstrtoul(buf
, 10, &count
);
2454 h
= kobj_to_hstate(kobj
, &nid
);
2455 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2458 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2459 struct kobj_attribute
*attr
, char *buf
)
2461 return nr_hugepages_show_common(kobj
, attr
, buf
);
2464 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2465 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2467 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2469 HSTATE_ATTR(nr_hugepages
);
2474 * hstate attribute for optionally mempolicy-based constraint on persistent
2475 * huge page alloc/free.
2477 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2478 struct kobj_attribute
*attr
, char *buf
)
2480 return nr_hugepages_show_common(kobj
, attr
, buf
);
2483 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2484 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2486 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2488 HSTATE_ATTR(nr_hugepages_mempolicy
);
2492 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2493 struct kobj_attribute
*attr
, char *buf
)
2495 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2496 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2499 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2500 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2503 unsigned long input
;
2504 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2506 if (hstate_is_gigantic(h
))
2509 err
= kstrtoul(buf
, 10, &input
);
2513 spin_lock(&hugetlb_lock
);
2514 h
->nr_overcommit_huge_pages
= input
;
2515 spin_unlock(&hugetlb_lock
);
2519 HSTATE_ATTR(nr_overcommit_hugepages
);
2521 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2522 struct kobj_attribute
*attr
, char *buf
)
2525 unsigned long free_huge_pages
;
2528 h
= kobj_to_hstate(kobj
, &nid
);
2529 if (nid
== NUMA_NO_NODE
)
2530 free_huge_pages
= h
->free_huge_pages
;
2532 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2534 return sprintf(buf
, "%lu\n", free_huge_pages
);
2536 HSTATE_ATTR_RO(free_hugepages
);
2538 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2539 struct kobj_attribute
*attr
, char *buf
)
2541 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2542 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2544 HSTATE_ATTR_RO(resv_hugepages
);
2546 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2547 struct kobj_attribute
*attr
, char *buf
)
2550 unsigned long surplus_huge_pages
;
2553 h
= kobj_to_hstate(kobj
, &nid
);
2554 if (nid
== NUMA_NO_NODE
)
2555 surplus_huge_pages
= h
->surplus_huge_pages
;
2557 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2559 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2561 HSTATE_ATTR_RO(surplus_hugepages
);
2563 static struct attribute
*hstate_attrs
[] = {
2564 &nr_hugepages_attr
.attr
,
2565 &nr_overcommit_hugepages_attr
.attr
,
2566 &free_hugepages_attr
.attr
,
2567 &resv_hugepages_attr
.attr
,
2568 &surplus_hugepages_attr
.attr
,
2570 &nr_hugepages_mempolicy_attr
.attr
,
2575 static const struct attribute_group hstate_attr_group
= {
2576 .attrs
= hstate_attrs
,
2579 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2580 struct kobject
**hstate_kobjs
,
2581 const struct attribute_group
*hstate_attr_group
)
2584 int hi
= hstate_index(h
);
2586 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2587 if (!hstate_kobjs
[hi
])
2590 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2592 kobject_put(hstate_kobjs
[hi
]);
2597 static void __init
hugetlb_sysfs_init(void)
2602 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2603 if (!hugepages_kobj
)
2606 for_each_hstate(h
) {
2607 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2608 hstate_kobjs
, &hstate_attr_group
);
2610 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2617 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2618 * with node devices in node_devices[] using a parallel array. The array
2619 * index of a node device or _hstate == node id.
2620 * This is here to avoid any static dependency of the node device driver, in
2621 * the base kernel, on the hugetlb module.
2623 struct node_hstate
{
2624 struct kobject
*hugepages_kobj
;
2625 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2627 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2630 * A subset of global hstate attributes for node devices
2632 static struct attribute
*per_node_hstate_attrs
[] = {
2633 &nr_hugepages_attr
.attr
,
2634 &free_hugepages_attr
.attr
,
2635 &surplus_hugepages_attr
.attr
,
2639 static const struct attribute_group per_node_hstate_attr_group
= {
2640 .attrs
= per_node_hstate_attrs
,
2644 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2645 * Returns node id via non-NULL nidp.
2647 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2651 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2652 struct node_hstate
*nhs
= &node_hstates
[nid
];
2654 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2655 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2667 * Unregister hstate attributes from a single node device.
2668 * No-op if no hstate attributes attached.
2670 static void hugetlb_unregister_node(struct node
*node
)
2673 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2675 if (!nhs
->hugepages_kobj
)
2676 return; /* no hstate attributes */
2678 for_each_hstate(h
) {
2679 int idx
= hstate_index(h
);
2680 if (nhs
->hstate_kobjs
[idx
]) {
2681 kobject_put(nhs
->hstate_kobjs
[idx
]);
2682 nhs
->hstate_kobjs
[idx
] = NULL
;
2686 kobject_put(nhs
->hugepages_kobj
);
2687 nhs
->hugepages_kobj
= NULL
;
2692 * Register hstate attributes for a single node device.
2693 * No-op if attributes already registered.
2695 static void hugetlb_register_node(struct node
*node
)
2698 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2701 if (nhs
->hugepages_kobj
)
2702 return; /* already allocated */
2704 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2706 if (!nhs
->hugepages_kobj
)
2709 for_each_hstate(h
) {
2710 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2712 &per_node_hstate_attr_group
);
2714 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2715 h
->name
, node
->dev
.id
);
2716 hugetlb_unregister_node(node
);
2723 * hugetlb init time: register hstate attributes for all registered node
2724 * devices of nodes that have memory. All on-line nodes should have
2725 * registered their associated device by this time.
2727 static void __init
hugetlb_register_all_nodes(void)
2731 for_each_node_state(nid
, N_MEMORY
) {
2732 struct node
*node
= node_devices
[nid
];
2733 if (node
->dev
.id
== nid
)
2734 hugetlb_register_node(node
);
2738 * Let the node device driver know we're here so it can
2739 * [un]register hstate attributes on node hotplug.
2741 register_hugetlbfs_with_node(hugetlb_register_node
,
2742 hugetlb_unregister_node
);
2744 #else /* !CONFIG_NUMA */
2746 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2754 static void hugetlb_register_all_nodes(void) { }
2758 static int __init
hugetlb_init(void)
2762 if (!hugepages_supported())
2765 if (!size_to_hstate(default_hstate_size
)) {
2766 if (default_hstate_size
!= 0) {
2767 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2768 default_hstate_size
, HPAGE_SIZE
);
2771 default_hstate_size
= HPAGE_SIZE
;
2772 if (!size_to_hstate(default_hstate_size
))
2773 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2775 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2776 if (default_hstate_max_huge_pages
) {
2777 if (!default_hstate
.max_huge_pages
)
2778 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2781 hugetlb_init_hstates();
2782 gather_bootmem_prealloc();
2785 hugetlb_sysfs_init();
2786 hugetlb_register_all_nodes();
2787 hugetlb_cgroup_file_init();
2790 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2792 num_fault_mutexes
= 1;
2794 hugetlb_fault_mutex_table
=
2795 kmalloc_array(num_fault_mutexes
, sizeof(struct mutex
),
2797 BUG_ON(!hugetlb_fault_mutex_table
);
2799 for (i
= 0; i
< num_fault_mutexes
; i
++)
2800 mutex_init(&hugetlb_fault_mutex_table
[i
]);
2803 subsys_initcall(hugetlb_init
);
2805 /* Should be called on processing a hugepagesz=... option */
2806 void __init
hugetlb_bad_size(void)
2808 parsed_valid_hugepagesz
= false;
2811 void __init
hugetlb_add_hstate(unsigned int order
)
2816 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2817 pr_warn("hugepagesz= specified twice, ignoring\n");
2820 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2822 h
= &hstates
[hugetlb_max_hstate
++];
2824 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2825 h
->nr_huge_pages
= 0;
2826 h
->free_huge_pages
= 0;
2827 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2828 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2829 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2830 h
->next_nid_to_alloc
= first_memory_node
;
2831 h
->next_nid_to_free
= first_memory_node
;
2832 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2833 huge_page_size(h
)/1024);
2838 static int __init
hugetlb_nrpages_setup(char *s
)
2841 static unsigned long *last_mhp
;
2843 if (!parsed_valid_hugepagesz
) {
2844 pr_warn("hugepages = %s preceded by "
2845 "an unsupported hugepagesz, ignoring\n", s
);
2846 parsed_valid_hugepagesz
= true;
2850 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2851 * so this hugepages= parameter goes to the "default hstate".
2853 else if (!hugetlb_max_hstate
)
2854 mhp
= &default_hstate_max_huge_pages
;
2856 mhp
= &parsed_hstate
->max_huge_pages
;
2858 if (mhp
== last_mhp
) {
2859 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2863 if (sscanf(s
, "%lu", mhp
) <= 0)
2867 * Global state is always initialized later in hugetlb_init.
2868 * But we need to allocate >= MAX_ORDER hstates here early to still
2869 * use the bootmem allocator.
2871 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2872 hugetlb_hstate_alloc_pages(parsed_hstate
);
2878 __setup("hugepages=", hugetlb_nrpages_setup
);
2880 static int __init
hugetlb_default_setup(char *s
)
2882 default_hstate_size
= memparse(s
, &s
);
2885 __setup("default_hugepagesz=", hugetlb_default_setup
);
2887 static unsigned int cpuset_mems_nr(unsigned int *array
)
2890 unsigned int nr
= 0;
2892 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2898 #ifdef CONFIG_SYSCTL
2899 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2900 struct ctl_table
*table
, int write
,
2901 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2903 struct hstate
*h
= &default_hstate
;
2904 unsigned long tmp
= h
->max_huge_pages
;
2907 if (!hugepages_supported())
2911 table
->maxlen
= sizeof(unsigned long);
2912 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2917 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2918 NUMA_NO_NODE
, tmp
, *length
);
2923 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2924 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2927 return hugetlb_sysctl_handler_common(false, table
, write
,
2928 buffer
, length
, ppos
);
2932 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2933 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2935 return hugetlb_sysctl_handler_common(true, table
, write
,
2936 buffer
, length
, ppos
);
2938 #endif /* CONFIG_NUMA */
2940 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2941 void __user
*buffer
,
2942 size_t *length
, loff_t
*ppos
)
2944 struct hstate
*h
= &default_hstate
;
2948 if (!hugepages_supported())
2951 tmp
= h
->nr_overcommit_huge_pages
;
2953 if (write
&& hstate_is_gigantic(h
))
2957 table
->maxlen
= sizeof(unsigned long);
2958 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2963 spin_lock(&hugetlb_lock
);
2964 h
->nr_overcommit_huge_pages
= tmp
;
2965 spin_unlock(&hugetlb_lock
);
2971 #endif /* CONFIG_SYSCTL */
2973 void hugetlb_report_meminfo(struct seq_file
*m
)
2976 unsigned long total
= 0;
2978 if (!hugepages_supported())
2981 for_each_hstate(h
) {
2982 unsigned long count
= h
->nr_huge_pages
;
2984 total
+= (PAGE_SIZE
<< huge_page_order(h
)) * count
;
2986 if (h
== &default_hstate
)
2988 "HugePages_Total: %5lu\n"
2989 "HugePages_Free: %5lu\n"
2990 "HugePages_Rsvd: %5lu\n"
2991 "HugePages_Surp: %5lu\n"
2992 "Hugepagesize: %8lu kB\n",
2996 h
->surplus_huge_pages
,
2997 (PAGE_SIZE
<< huge_page_order(h
)) / 1024);
3000 seq_printf(m
, "Hugetlb: %8lu kB\n", total
/ 1024);
3003 int hugetlb_report_node_meminfo(int nid
, char *buf
)
3005 struct hstate
*h
= &default_hstate
;
3006 if (!hugepages_supported())
3009 "Node %d HugePages_Total: %5u\n"
3010 "Node %d HugePages_Free: %5u\n"
3011 "Node %d HugePages_Surp: %5u\n",
3012 nid
, h
->nr_huge_pages_node
[nid
],
3013 nid
, h
->free_huge_pages_node
[nid
],
3014 nid
, h
->surplus_huge_pages_node
[nid
]);
3017 void hugetlb_show_meminfo(void)
3022 if (!hugepages_supported())
3025 for_each_node_state(nid
, N_MEMORY
)
3027 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3029 h
->nr_huge_pages_node
[nid
],
3030 h
->free_huge_pages_node
[nid
],
3031 h
->surplus_huge_pages_node
[nid
],
3032 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
3035 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
3037 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
3038 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
3041 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3042 unsigned long hugetlb_total_pages(void)
3045 unsigned long nr_total_pages
= 0;
3048 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
3049 return nr_total_pages
;
3052 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
3056 spin_lock(&hugetlb_lock
);
3058 * When cpuset is configured, it breaks the strict hugetlb page
3059 * reservation as the accounting is done on a global variable. Such
3060 * reservation is completely rubbish in the presence of cpuset because
3061 * the reservation is not checked against page availability for the
3062 * current cpuset. Application can still potentially OOM'ed by kernel
3063 * with lack of free htlb page in cpuset that the task is in.
3064 * Attempt to enforce strict accounting with cpuset is almost
3065 * impossible (or too ugly) because cpuset is too fluid that
3066 * task or memory node can be dynamically moved between cpusets.
3068 * The change of semantics for shared hugetlb mapping with cpuset is
3069 * undesirable. However, in order to preserve some of the semantics,
3070 * we fall back to check against current free page availability as
3071 * a best attempt and hopefully to minimize the impact of changing
3072 * semantics that cpuset has.
3075 if (gather_surplus_pages(h
, delta
) < 0)
3078 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
3079 return_unused_surplus_pages(h
, delta
);
3086 return_unused_surplus_pages(h
, (unsigned long) -delta
);
3089 spin_unlock(&hugetlb_lock
);
3093 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
3095 struct resv_map
*resv
= vma_resv_map(vma
);
3098 * This new VMA should share its siblings reservation map if present.
3099 * The VMA will only ever have a valid reservation map pointer where
3100 * it is being copied for another still existing VMA. As that VMA
3101 * has a reference to the reservation map it cannot disappear until
3102 * after this open call completes. It is therefore safe to take a
3103 * new reference here without additional locking.
3105 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3106 kref_get(&resv
->refs
);
3109 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
3111 struct hstate
*h
= hstate_vma(vma
);
3112 struct resv_map
*resv
= vma_resv_map(vma
);
3113 struct hugepage_subpool
*spool
= subpool_vma(vma
);
3114 unsigned long reserve
, start
, end
;
3117 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3120 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
3121 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
3123 reserve
= (end
- start
) - region_count(resv
, start
, end
);
3125 kref_put(&resv
->refs
, resv_map_release
);
3129 * Decrement reserve counts. The global reserve count may be
3130 * adjusted if the subpool has a minimum size.
3132 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3133 hugetlb_acct_memory(h
, -gbl_reserve
);
3137 static int hugetlb_vm_op_split(struct vm_area_struct
*vma
, unsigned long addr
)
3139 if (addr
& ~(huge_page_mask(hstate_vma(vma
))))
3144 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct
*vma
)
3146 struct hstate
*hstate
= hstate_vma(vma
);
3148 return 1UL << huge_page_shift(hstate
);
3152 * We cannot handle pagefaults against hugetlb pages at all. They cause
3153 * handle_mm_fault() to try to instantiate regular-sized pages in the
3154 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3157 static vm_fault_t
hugetlb_vm_op_fault(struct vm_fault
*vmf
)
3164 * When a new function is introduced to vm_operations_struct and added
3165 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3166 * This is because under System V memory model, mappings created via
3167 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3168 * their original vm_ops are overwritten with shm_vm_ops.
3170 const struct vm_operations_struct hugetlb_vm_ops
= {
3171 .fault
= hugetlb_vm_op_fault
,
3172 .open
= hugetlb_vm_op_open
,
3173 .close
= hugetlb_vm_op_close
,
3174 .split
= hugetlb_vm_op_split
,
3175 .pagesize
= hugetlb_vm_op_pagesize
,
3178 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3184 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3185 vma
->vm_page_prot
)));
3187 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3188 vma
->vm_page_prot
));
3190 entry
= pte_mkyoung(entry
);
3191 entry
= pte_mkhuge(entry
);
3192 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3197 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3198 unsigned long address
, pte_t
*ptep
)
3202 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3203 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3204 update_mmu_cache(vma
, address
, ptep
);
3207 bool is_hugetlb_entry_migration(pte_t pte
)
3211 if (huge_pte_none(pte
) || pte_present(pte
))
3213 swp
= pte_to_swp_entry(pte
);
3214 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3220 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3224 if (huge_pte_none(pte
) || pte_present(pte
))
3226 swp
= pte_to_swp_entry(pte
);
3227 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3233 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3234 struct vm_area_struct
*vma
)
3236 pte_t
*src_pte
, *dst_pte
, entry
, dst_entry
;
3237 struct page
*ptepage
;
3240 struct hstate
*h
= hstate_vma(vma
);
3241 unsigned long sz
= huge_page_size(h
);
3242 unsigned long mmun_start
; /* For mmu_notifiers */
3243 unsigned long mmun_end
; /* For mmu_notifiers */
3246 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3248 mmun_start
= vma
->vm_start
;
3249 mmun_end
= vma
->vm_end
;
3251 mmu_notifier_invalidate_range_start(src
, mmun_start
, mmun_end
);
3253 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3254 spinlock_t
*src_ptl
, *dst_ptl
;
3255 src_pte
= huge_pte_offset(src
, addr
, sz
);
3258 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3265 * If the pagetables are shared don't copy or take references.
3266 * dst_pte == src_pte is the common case of src/dest sharing.
3268 * However, src could have 'unshared' and dst shares with
3269 * another vma. If dst_pte !none, this implies sharing.
3270 * Check here before taking page table lock, and once again
3271 * after taking the lock below.
3273 dst_entry
= huge_ptep_get(dst_pte
);
3274 if ((dst_pte
== src_pte
) || !huge_pte_none(dst_entry
))
3277 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3278 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3279 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3280 entry
= huge_ptep_get(src_pte
);
3281 dst_entry
= huge_ptep_get(dst_pte
);
3282 if (huge_pte_none(entry
) || !huge_pte_none(dst_entry
)) {
3284 * Skip if src entry none. Also, skip in the
3285 * unlikely case dst entry !none as this implies
3286 * sharing with another vma.
3289 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3290 is_hugetlb_entry_hwpoisoned(entry
))) {
3291 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3293 if (is_write_migration_entry(swp_entry
) && cow
) {
3295 * COW mappings require pages in both
3296 * parent and child to be set to read.
3298 make_migration_entry_read(&swp_entry
);
3299 entry
= swp_entry_to_pte(swp_entry
);
3300 set_huge_swap_pte_at(src
, addr
, src_pte
,
3303 set_huge_swap_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
3307 * No need to notify as we are downgrading page
3308 * table protection not changing it to point
3311 * See Documentation/vm/mmu_notifier.rst
3313 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3315 entry
= huge_ptep_get(src_pte
);
3316 ptepage
= pte_page(entry
);
3318 page_dup_rmap(ptepage
, true);
3319 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3320 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3322 spin_unlock(src_ptl
);
3323 spin_unlock(dst_ptl
);
3327 mmu_notifier_invalidate_range_end(src
, mmun_start
, mmun_end
);
3332 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3333 unsigned long start
, unsigned long end
,
3334 struct page
*ref_page
)
3336 struct mm_struct
*mm
= vma
->vm_mm
;
3337 unsigned long address
;
3342 struct hstate
*h
= hstate_vma(vma
);
3343 unsigned long sz
= huge_page_size(h
);
3344 unsigned long mmun_start
= start
; /* For mmu_notifiers */
3345 unsigned long mmun_end
= end
; /* For mmu_notifiers */
3347 WARN_ON(!is_vm_hugetlb_page(vma
));
3348 BUG_ON(start
& ~huge_page_mask(h
));
3349 BUG_ON(end
& ~huge_page_mask(h
));
3352 * This is a hugetlb vma, all the pte entries should point
3355 tlb_remove_check_page_size_change(tlb
, sz
);
3356 tlb_start_vma(tlb
, vma
);
3359 * If sharing possible, alert mmu notifiers of worst case.
3361 adjust_range_if_pmd_sharing_possible(vma
, &mmun_start
, &mmun_end
);
3362 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3364 for (; address
< end
; address
+= sz
) {
3365 ptep
= huge_pte_offset(mm
, address
, sz
);
3369 ptl
= huge_pte_lock(h
, mm
, ptep
);
3370 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3373 * We just unmapped a page of PMDs by clearing a PUD.
3374 * The caller's TLB flush range should cover this area.
3379 pte
= huge_ptep_get(ptep
);
3380 if (huge_pte_none(pte
)) {
3386 * Migrating hugepage or HWPoisoned hugepage is already
3387 * unmapped and its refcount is dropped, so just clear pte here.
3389 if (unlikely(!pte_present(pte
))) {
3390 huge_pte_clear(mm
, address
, ptep
, sz
);
3395 page
= pte_page(pte
);
3397 * If a reference page is supplied, it is because a specific
3398 * page is being unmapped, not a range. Ensure the page we
3399 * are about to unmap is the actual page of interest.
3402 if (page
!= ref_page
) {
3407 * Mark the VMA as having unmapped its page so that
3408 * future faults in this VMA will fail rather than
3409 * looking like data was lost
3411 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3414 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3415 tlb_remove_huge_tlb_entry(h
, tlb
, ptep
, address
);
3416 if (huge_pte_dirty(pte
))
3417 set_page_dirty(page
);
3419 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3420 page_remove_rmap(page
, true);
3423 tlb_remove_page_size(tlb
, page
, huge_page_size(h
));
3425 * Bail out after unmapping reference page if supplied
3430 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3431 tlb_end_vma(tlb
, vma
);
3434 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3435 struct vm_area_struct
*vma
, unsigned long start
,
3436 unsigned long end
, struct page
*ref_page
)
3438 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3441 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3442 * test will fail on a vma being torn down, and not grab a page table
3443 * on its way out. We're lucky that the flag has such an appropriate
3444 * name, and can in fact be safely cleared here. We could clear it
3445 * before the __unmap_hugepage_range above, but all that's necessary
3446 * is to clear it before releasing the i_mmap_rwsem. This works
3447 * because in the context this is called, the VMA is about to be
3448 * destroyed and the i_mmap_rwsem is held.
3450 vma
->vm_flags
&= ~VM_MAYSHARE
;
3453 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3454 unsigned long end
, struct page
*ref_page
)
3456 struct mm_struct
*mm
;
3457 struct mmu_gather tlb
;
3458 unsigned long tlb_start
= start
;
3459 unsigned long tlb_end
= end
;
3462 * If shared PMDs were possibly used within this vma range, adjust
3463 * start/end for worst case tlb flushing.
3464 * Note that we can not be sure if PMDs are shared until we try to
3465 * unmap pages. However, we want to make sure TLB flushing covers
3466 * the largest possible range.
3468 adjust_range_if_pmd_sharing_possible(vma
, &tlb_start
, &tlb_end
);
3472 tlb_gather_mmu(&tlb
, mm
, tlb_start
, tlb_end
);
3473 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3474 tlb_finish_mmu(&tlb
, tlb_start
, tlb_end
);
3478 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3479 * mappping it owns the reserve page for. The intention is to unmap the page
3480 * from other VMAs and let the children be SIGKILLed if they are faulting the
3483 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3484 struct page
*page
, unsigned long address
)
3486 struct hstate
*h
= hstate_vma(vma
);
3487 struct vm_area_struct
*iter_vma
;
3488 struct address_space
*mapping
;
3492 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3493 * from page cache lookup which is in HPAGE_SIZE units.
3495 address
= address
& huge_page_mask(h
);
3496 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
3498 mapping
= vma
->vm_file
->f_mapping
;
3501 * Take the mapping lock for the duration of the table walk. As
3502 * this mapping should be shared between all the VMAs,
3503 * __unmap_hugepage_range() is called as the lock is already held
3505 i_mmap_lock_write(mapping
);
3506 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
3507 /* Do not unmap the current VMA */
3508 if (iter_vma
== vma
)
3512 * Shared VMAs have their own reserves and do not affect
3513 * MAP_PRIVATE accounting but it is possible that a shared
3514 * VMA is using the same page so check and skip such VMAs.
3516 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
3520 * Unmap the page from other VMAs without their own reserves.
3521 * They get marked to be SIGKILLed if they fault in these
3522 * areas. This is because a future no-page fault on this VMA
3523 * could insert a zeroed page instead of the data existing
3524 * from the time of fork. This would look like data corruption
3526 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
3527 unmap_hugepage_range(iter_vma
, address
,
3528 address
+ huge_page_size(h
), page
);
3530 i_mmap_unlock_write(mapping
);
3534 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3535 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3536 * cannot race with other handlers or page migration.
3537 * Keep the pte_same checks anyway to make transition from the mutex easier.
3539 static vm_fault_t
hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3540 unsigned long address
, pte_t
*ptep
,
3541 struct page
*pagecache_page
, spinlock_t
*ptl
)
3544 struct hstate
*h
= hstate_vma(vma
);
3545 struct page
*old_page
, *new_page
;
3546 int outside_reserve
= 0;
3548 unsigned long mmun_start
; /* For mmu_notifiers */
3549 unsigned long mmun_end
; /* For mmu_notifiers */
3550 unsigned long haddr
= address
& huge_page_mask(h
);
3552 pte
= huge_ptep_get(ptep
);
3553 old_page
= pte_page(pte
);
3556 /* If no-one else is actually using this page, avoid the copy
3557 * and just make the page writable */
3558 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
3559 page_move_anon_rmap(old_page
, vma
);
3560 set_huge_ptep_writable(vma
, haddr
, ptep
);
3565 * If the process that created a MAP_PRIVATE mapping is about to
3566 * perform a COW due to a shared page count, attempt to satisfy
3567 * the allocation without using the existing reserves. The pagecache
3568 * page is used to determine if the reserve at this address was
3569 * consumed or not. If reserves were used, a partial faulted mapping
3570 * at the time of fork() could consume its reserves on COW instead
3571 * of the full address range.
3573 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
3574 old_page
!= pagecache_page
)
3575 outside_reserve
= 1;
3580 * Drop page table lock as buddy allocator may be called. It will
3581 * be acquired again before returning to the caller, as expected.
3584 new_page
= alloc_huge_page(vma
, haddr
, outside_reserve
);
3586 if (IS_ERR(new_page
)) {
3588 * If a process owning a MAP_PRIVATE mapping fails to COW,
3589 * it is due to references held by a child and an insufficient
3590 * huge page pool. To guarantee the original mappers
3591 * reliability, unmap the page from child processes. The child
3592 * may get SIGKILLed if it later faults.
3594 if (outside_reserve
) {
3596 BUG_ON(huge_pte_none(pte
));
3597 unmap_ref_private(mm
, vma
, old_page
, haddr
);
3598 BUG_ON(huge_pte_none(pte
));
3600 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3602 pte_same(huge_ptep_get(ptep
), pte
)))
3603 goto retry_avoidcopy
;
3605 * race occurs while re-acquiring page table
3606 * lock, and our job is done.
3611 ret
= vmf_error(PTR_ERR(new_page
));
3612 goto out_release_old
;
3616 * When the original hugepage is shared one, it does not have
3617 * anon_vma prepared.
3619 if (unlikely(anon_vma_prepare(vma
))) {
3621 goto out_release_all
;
3624 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3625 pages_per_huge_page(h
));
3626 __SetPageUptodate(new_page
);
3627 set_page_huge_active(new_page
);
3630 mmun_end
= mmun_start
+ huge_page_size(h
);
3631 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3634 * Retake the page table lock to check for racing updates
3635 * before the page tables are altered
3638 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3639 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3640 ClearPagePrivate(new_page
);
3643 huge_ptep_clear_flush(vma
, haddr
, ptep
);
3644 mmu_notifier_invalidate_range(mm
, mmun_start
, mmun_end
);
3645 set_huge_pte_at(mm
, haddr
, ptep
,
3646 make_huge_pte(vma
, new_page
, 1));
3647 page_remove_rmap(old_page
, true);
3648 hugepage_add_new_anon_rmap(new_page
, vma
, haddr
);
3649 /* Make the old page be freed below */
3650 new_page
= old_page
;
3653 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3655 restore_reserve_on_error(h
, vma
, haddr
, new_page
);
3660 spin_lock(ptl
); /* Caller expects lock to be held */
3664 /* Return the pagecache page at a given address within a VMA */
3665 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3666 struct vm_area_struct
*vma
, unsigned long address
)
3668 struct address_space
*mapping
;
3671 mapping
= vma
->vm_file
->f_mapping
;
3672 idx
= vma_hugecache_offset(h
, vma
, address
);
3674 return find_lock_page(mapping
, idx
);
3678 * Return whether there is a pagecache page to back given address within VMA.
3679 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3681 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3682 struct vm_area_struct
*vma
, unsigned long address
)
3684 struct address_space
*mapping
;
3688 mapping
= vma
->vm_file
->f_mapping
;
3689 idx
= vma_hugecache_offset(h
, vma
, address
);
3691 page
= find_get_page(mapping
, idx
);
3694 return page
!= NULL
;
3697 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
3700 struct inode
*inode
= mapping
->host
;
3701 struct hstate
*h
= hstate_inode(inode
);
3702 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3706 ClearPagePrivate(page
);
3709 * set page dirty so that it will not be removed from cache/file
3710 * by non-hugetlbfs specific code paths.
3712 set_page_dirty(page
);
3714 spin_lock(&inode
->i_lock
);
3715 inode
->i_blocks
+= blocks_per_huge_page(h
);
3716 spin_unlock(&inode
->i_lock
);
3720 static vm_fault_t
hugetlb_no_page(struct mm_struct
*mm
,
3721 struct vm_area_struct
*vma
,
3722 struct address_space
*mapping
, pgoff_t idx
,
3723 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3725 struct hstate
*h
= hstate_vma(vma
);
3726 vm_fault_t ret
= VM_FAULT_SIGBUS
;
3732 unsigned long haddr
= address
& huge_page_mask(h
);
3735 * Currently, we are forced to kill the process in the event the
3736 * original mapper has unmapped pages from the child due to a failed
3737 * COW. Warn that such a situation has occurred as it may not be obvious
3739 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3740 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3746 * Use page lock to guard against racing truncation
3747 * before we get page_table_lock.
3750 page
= find_lock_page(mapping
, idx
);
3752 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3757 * Check for page in userfault range
3759 if (userfaultfd_missing(vma
)) {
3761 struct vm_fault vmf
= {
3766 * Hard to debug if it ends up being
3767 * used by a callee that assumes
3768 * something about the other
3769 * uninitialized fields... same as in
3775 * hugetlb_fault_mutex must be dropped before
3776 * handling userfault. Reacquire after handling
3777 * fault to make calling code simpler.
3779 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
,
3781 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3782 ret
= handle_userfault(&vmf
, VM_UFFD_MISSING
);
3783 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3787 page
= alloc_huge_page(vma
, haddr
, 0);
3789 ret
= vmf_error(PTR_ERR(page
));
3792 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3793 __SetPageUptodate(page
);
3794 set_page_huge_active(page
);
3796 if (vma
->vm_flags
& VM_MAYSHARE
) {
3797 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
3806 if (unlikely(anon_vma_prepare(vma
))) {
3808 goto backout_unlocked
;
3814 * If memory error occurs between mmap() and fault, some process
3815 * don't have hwpoisoned swap entry for errored virtual address.
3816 * So we need to block hugepage fault by PG_hwpoison bit check.
3818 if (unlikely(PageHWPoison(page
))) {
3819 ret
= VM_FAULT_HWPOISON
|
3820 VM_FAULT_SET_HINDEX(hstate_index(h
));
3821 goto backout_unlocked
;
3826 * If we are going to COW a private mapping later, we examine the
3827 * pending reservations for this page now. This will ensure that
3828 * any allocations necessary to record that reservation occur outside
3831 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3832 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
3834 goto backout_unlocked
;
3836 /* Just decrements count, does not deallocate */
3837 vma_end_reservation(h
, vma
, haddr
);
3840 ptl
= huge_pte_lock(h
, mm
, ptep
);
3841 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3846 if (!huge_pte_none(huge_ptep_get(ptep
)))
3850 ClearPagePrivate(page
);
3851 hugepage_add_new_anon_rmap(page
, vma
, haddr
);
3853 page_dup_rmap(page
, true);
3854 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3855 && (vma
->vm_flags
& VM_SHARED
)));
3856 set_huge_pte_at(mm
, haddr
, ptep
, new_pte
);
3858 hugetlb_count_add(pages_per_huge_page(h
), mm
);
3859 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3860 /* Optimization, do the COW without a second fault */
3861 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, page
, ptl
);
3873 restore_reserve_on_error(h
, vma
, haddr
, page
);
3879 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3880 struct vm_area_struct
*vma
,
3881 struct address_space
*mapping
,
3882 pgoff_t idx
, unsigned long address
)
3884 unsigned long key
[2];
3887 if (vma
->vm_flags
& VM_SHARED
) {
3888 key
[0] = (unsigned long) mapping
;
3891 key
[0] = (unsigned long) mm
;
3892 key
[1] = address
>> huge_page_shift(h
);
3895 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3897 return hash
& (num_fault_mutexes
- 1);
3901 * For uniprocesor systems we always use a single mutex, so just
3902 * return 0 and avoid the hashing overhead.
3904 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3905 struct vm_area_struct
*vma
,
3906 struct address_space
*mapping
,
3907 pgoff_t idx
, unsigned long address
)
3913 vm_fault_t
hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3914 unsigned long address
, unsigned int flags
)
3921 struct page
*page
= NULL
;
3922 struct page
*pagecache_page
= NULL
;
3923 struct hstate
*h
= hstate_vma(vma
);
3924 struct address_space
*mapping
;
3925 int need_wait_lock
= 0;
3926 unsigned long haddr
= address
& huge_page_mask(h
);
3928 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3930 entry
= huge_ptep_get(ptep
);
3931 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3932 migration_entry_wait_huge(vma
, mm
, ptep
);
3934 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3935 return VM_FAULT_HWPOISON_LARGE
|
3936 VM_FAULT_SET_HINDEX(hstate_index(h
));
3938 ptep
= huge_pte_alloc(mm
, haddr
, huge_page_size(h
));
3940 return VM_FAULT_OOM
;
3943 mapping
= vma
->vm_file
->f_mapping
;
3944 idx
= vma_hugecache_offset(h
, vma
, haddr
);
3947 * Serialize hugepage allocation and instantiation, so that we don't
3948 * get spurious allocation failures if two CPUs race to instantiate
3949 * the same page in the page cache.
3951 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, haddr
);
3952 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3954 entry
= huge_ptep_get(ptep
);
3955 if (huge_pte_none(entry
)) {
3956 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3963 * entry could be a migration/hwpoison entry at this point, so this
3964 * check prevents the kernel from going below assuming that we have
3965 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3966 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3969 if (!pte_present(entry
))
3973 * If we are going to COW the mapping later, we examine the pending
3974 * reservations for this page now. This will ensure that any
3975 * allocations necessary to record that reservation occur outside the
3976 * spinlock. For private mappings, we also lookup the pagecache
3977 * page now as it is used to determine if a reservation has been
3980 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3981 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
3985 /* Just decrements count, does not deallocate */
3986 vma_end_reservation(h
, vma
, haddr
);
3988 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3989 pagecache_page
= hugetlbfs_pagecache_page(h
,
3993 ptl
= huge_pte_lock(h
, mm
, ptep
);
3995 /* Check for a racing update before calling hugetlb_cow */
3996 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
4000 * hugetlb_cow() requires page locks of pte_page(entry) and
4001 * pagecache_page, so here we need take the former one
4002 * when page != pagecache_page or !pagecache_page.
4004 page
= pte_page(entry
);
4005 if (page
!= pagecache_page
)
4006 if (!trylock_page(page
)) {
4013 if (flags
& FAULT_FLAG_WRITE
) {
4014 if (!huge_pte_write(entry
)) {
4015 ret
= hugetlb_cow(mm
, vma
, address
, ptep
,
4016 pagecache_page
, ptl
);
4019 entry
= huge_pte_mkdirty(entry
);
4021 entry
= pte_mkyoung(entry
);
4022 if (huge_ptep_set_access_flags(vma
, haddr
, ptep
, entry
,
4023 flags
& FAULT_FLAG_WRITE
))
4024 update_mmu_cache(vma
, haddr
, ptep
);
4026 if (page
!= pagecache_page
)
4032 if (pagecache_page
) {
4033 unlock_page(pagecache_page
);
4034 put_page(pagecache_page
);
4037 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
4039 * Generally it's safe to hold refcount during waiting page lock. But
4040 * here we just wait to defer the next page fault to avoid busy loop and
4041 * the page is not used after unlocked before returning from the current
4042 * page fault. So we are safe from accessing freed page, even if we wait
4043 * here without taking refcount.
4046 wait_on_page_locked(page
);
4051 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4052 * modifications for huge pages.
4054 int hugetlb_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
4056 struct vm_area_struct
*dst_vma
,
4057 unsigned long dst_addr
,
4058 unsigned long src_addr
,
4059 struct page
**pagep
)
4061 struct address_space
*mapping
;
4064 int vm_shared
= dst_vma
->vm_flags
& VM_SHARED
;
4065 struct hstate
*h
= hstate_vma(dst_vma
);
4073 page
= alloc_huge_page(dst_vma
, dst_addr
, 0);
4077 ret
= copy_huge_page_from_user(page
,
4078 (const void __user
*) src_addr
,
4079 pages_per_huge_page(h
), false);
4081 /* fallback to copy_from_user outside mmap_sem */
4082 if (unlikely(ret
)) {
4085 /* don't free the page */
4094 * The memory barrier inside __SetPageUptodate makes sure that
4095 * preceding stores to the page contents become visible before
4096 * the set_pte_at() write.
4098 __SetPageUptodate(page
);
4099 set_page_huge_active(page
);
4101 mapping
= dst_vma
->vm_file
->f_mapping
;
4102 idx
= vma_hugecache_offset(h
, dst_vma
, dst_addr
);
4105 * If shared, add to page cache
4108 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4111 goto out_release_nounlock
;
4114 * Serialization between remove_inode_hugepages() and
4115 * huge_add_to_page_cache() below happens through the
4116 * hugetlb_fault_mutex_table that here must be hold by
4119 ret
= huge_add_to_page_cache(page
, mapping
, idx
);
4121 goto out_release_nounlock
;
4124 ptl
= huge_pte_lockptr(h
, dst_mm
, dst_pte
);
4128 * Recheck the i_size after holding PT lock to make sure not
4129 * to leave any page mapped (as page_mapped()) beyond the end
4130 * of the i_size (remove_inode_hugepages() is strict about
4131 * enforcing that). If we bail out here, we'll also leave a
4132 * page in the radix tree in the vm_shared case beyond the end
4133 * of the i_size, but remove_inode_hugepages() will take care
4134 * of it as soon as we drop the hugetlb_fault_mutex_table.
4136 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4139 goto out_release_unlock
;
4142 if (!huge_pte_none(huge_ptep_get(dst_pte
)))
4143 goto out_release_unlock
;
4146 page_dup_rmap(page
, true);
4148 ClearPagePrivate(page
);
4149 hugepage_add_new_anon_rmap(page
, dst_vma
, dst_addr
);
4152 _dst_pte
= make_huge_pte(dst_vma
, page
, dst_vma
->vm_flags
& VM_WRITE
);
4153 if (dst_vma
->vm_flags
& VM_WRITE
)
4154 _dst_pte
= huge_pte_mkdirty(_dst_pte
);
4155 _dst_pte
= pte_mkyoung(_dst_pte
);
4157 set_huge_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
4159 (void)huge_ptep_set_access_flags(dst_vma
, dst_addr
, dst_pte
, _dst_pte
,
4160 dst_vma
->vm_flags
& VM_WRITE
);
4161 hugetlb_count_add(pages_per_huge_page(h
), dst_mm
);
4163 /* No need to invalidate - it was non-present before */
4164 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
4176 out_release_nounlock
:
4181 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4182 struct page
**pages
, struct vm_area_struct
**vmas
,
4183 unsigned long *position
, unsigned long *nr_pages
,
4184 long i
, unsigned int flags
, int *nonblocking
)
4186 unsigned long pfn_offset
;
4187 unsigned long vaddr
= *position
;
4188 unsigned long remainder
= *nr_pages
;
4189 struct hstate
*h
= hstate_vma(vma
);
4192 while (vaddr
< vma
->vm_end
&& remainder
) {
4194 spinlock_t
*ptl
= NULL
;
4199 * If we have a pending SIGKILL, don't keep faulting pages and
4200 * potentially allocating memory.
4202 if (unlikely(fatal_signal_pending(current
))) {
4208 * Some archs (sparc64, sh*) have multiple pte_ts to
4209 * each hugepage. We have to make sure we get the
4210 * first, for the page indexing below to work.
4212 * Note that page table lock is not held when pte is null.
4214 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
),
4217 ptl
= huge_pte_lock(h
, mm
, pte
);
4218 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
4221 * When coredumping, it suits get_dump_page if we just return
4222 * an error where there's an empty slot with no huge pagecache
4223 * to back it. This way, we avoid allocating a hugepage, and
4224 * the sparse dumpfile avoids allocating disk blocks, but its
4225 * huge holes still show up with zeroes where they need to be.
4227 if (absent
&& (flags
& FOLL_DUMP
) &&
4228 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
4236 * We need call hugetlb_fault for both hugepages under migration
4237 * (in which case hugetlb_fault waits for the migration,) and
4238 * hwpoisoned hugepages (in which case we need to prevent the
4239 * caller from accessing to them.) In order to do this, we use
4240 * here is_swap_pte instead of is_hugetlb_entry_migration and
4241 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4242 * both cases, and because we can't follow correct pages
4243 * directly from any kind of swap entries.
4245 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
4246 ((flags
& FOLL_WRITE
) &&
4247 !huge_pte_write(huge_ptep_get(pte
)))) {
4249 unsigned int fault_flags
= 0;
4253 if (flags
& FOLL_WRITE
)
4254 fault_flags
|= FAULT_FLAG_WRITE
;
4256 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
4257 if (flags
& FOLL_NOWAIT
)
4258 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4259 FAULT_FLAG_RETRY_NOWAIT
;
4260 if (flags
& FOLL_TRIED
) {
4261 VM_WARN_ON_ONCE(fault_flags
&
4262 FAULT_FLAG_ALLOW_RETRY
);
4263 fault_flags
|= FAULT_FLAG_TRIED
;
4265 ret
= hugetlb_fault(mm
, vma
, vaddr
, fault_flags
);
4266 if (ret
& VM_FAULT_ERROR
) {
4267 err
= vm_fault_to_errno(ret
, flags
);
4271 if (ret
& VM_FAULT_RETRY
) {
4276 * VM_FAULT_RETRY must not return an
4277 * error, it will return zero
4280 * No need to update "position" as the
4281 * caller will not check it after
4282 * *nr_pages is set to 0.
4289 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
4290 page
= pte_page(huge_ptep_get(pte
));
4293 pages
[i
] = mem_map_offset(page
, pfn_offset
);
4304 if (vaddr
< vma
->vm_end
&& remainder
&&
4305 pfn_offset
< pages_per_huge_page(h
)) {
4307 * We use pfn_offset to avoid touching the pageframes
4308 * of this compound page.
4314 *nr_pages
= remainder
;
4316 * setting position is actually required only if remainder is
4317 * not zero but it's faster not to add a "if (remainder)"
4325 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4327 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4330 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4333 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
4334 unsigned long address
, unsigned long end
, pgprot_t newprot
)
4336 struct mm_struct
*mm
= vma
->vm_mm
;
4337 unsigned long start
= address
;
4340 struct hstate
*h
= hstate_vma(vma
);
4341 unsigned long pages
= 0;
4342 unsigned long f_start
= start
;
4343 unsigned long f_end
= end
;
4344 bool shared_pmd
= false;
4347 * In the case of shared PMDs, the area to flush could be beyond
4348 * start/end. Set f_start/f_end to cover the maximum possible
4349 * range if PMD sharing is possible.
4351 adjust_range_if_pmd_sharing_possible(vma
, &f_start
, &f_end
);
4353 BUG_ON(address
>= end
);
4354 flush_cache_range(vma
, f_start
, f_end
);
4356 mmu_notifier_invalidate_range_start(mm
, f_start
, f_end
);
4357 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
4358 for (; address
< end
; address
+= huge_page_size(h
)) {
4360 ptep
= huge_pte_offset(mm
, address
, huge_page_size(h
));
4363 ptl
= huge_pte_lock(h
, mm
, ptep
);
4364 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
4370 pte
= huge_ptep_get(ptep
);
4371 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
4375 if (unlikely(is_hugetlb_entry_migration(pte
))) {
4376 swp_entry_t entry
= pte_to_swp_entry(pte
);
4378 if (is_write_migration_entry(entry
)) {
4381 make_migration_entry_read(&entry
);
4382 newpte
= swp_entry_to_pte(entry
);
4383 set_huge_swap_pte_at(mm
, address
, ptep
,
4384 newpte
, huge_page_size(h
));
4390 if (!huge_pte_none(pte
)) {
4391 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
4392 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
4393 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
4394 set_huge_pte_at(mm
, address
, ptep
, pte
);
4400 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4401 * may have cleared our pud entry and done put_page on the page table:
4402 * once we release i_mmap_rwsem, another task can do the final put_page
4403 * and that page table be reused and filled with junk. If we actually
4404 * did unshare a page of pmds, flush the range corresponding to the pud.
4407 flush_hugetlb_tlb_range(vma
, f_start
, f_end
);
4409 flush_hugetlb_tlb_range(vma
, start
, end
);
4411 * No need to call mmu_notifier_invalidate_range() we are downgrading
4412 * page table protection not changing it to point to a new page.
4414 * See Documentation/vm/mmu_notifier.rst
4416 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
4417 mmu_notifier_invalidate_range_end(mm
, f_start
, f_end
);
4419 return pages
<< h
->order
;
4422 int hugetlb_reserve_pages(struct inode
*inode
,
4424 struct vm_area_struct
*vma
,
4425 vm_flags_t vm_flags
)
4428 struct hstate
*h
= hstate_inode(inode
);
4429 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4430 struct resv_map
*resv_map
;
4433 /* This should never happen */
4435 VM_WARN(1, "%s called with a negative range\n", __func__
);
4440 * Only apply hugepage reservation if asked. At fault time, an
4441 * attempt will be made for VM_NORESERVE to allocate a page
4442 * without using reserves
4444 if (vm_flags
& VM_NORESERVE
)
4448 * Shared mappings base their reservation on the number of pages that
4449 * are already allocated on behalf of the file. Private mappings need
4450 * to reserve the full area even if read-only as mprotect() may be
4451 * called to make the mapping read-write. Assume !vma is a shm mapping
4453 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4454 resv_map
= inode_resv_map(inode
);
4456 chg
= region_chg(resv_map
, from
, to
);
4459 resv_map
= resv_map_alloc();
4465 set_vma_resv_map(vma
, resv_map
);
4466 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
4475 * There must be enough pages in the subpool for the mapping. If
4476 * the subpool has a minimum size, there may be some global
4477 * reservations already in place (gbl_reserve).
4479 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
4480 if (gbl_reserve
< 0) {
4486 * Check enough hugepages are available for the reservation.
4487 * Hand the pages back to the subpool if there are not
4489 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
4491 /* put back original number of pages, chg */
4492 (void)hugepage_subpool_put_pages(spool
, chg
);
4497 * Account for the reservations made. Shared mappings record regions
4498 * that have reservations as they are shared by multiple VMAs.
4499 * When the last VMA disappears, the region map says how much
4500 * the reservation was and the page cache tells how much of
4501 * the reservation was consumed. Private mappings are per-VMA and
4502 * only the consumed reservations are tracked. When the VMA
4503 * disappears, the original reservation is the VMA size and the
4504 * consumed reservations are stored in the map. Hence, nothing
4505 * else has to be done for private mappings here
4507 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4508 long add
= region_add(resv_map
, from
, to
);
4510 if (unlikely(chg
> add
)) {
4512 * pages in this range were added to the reserve
4513 * map between region_chg and region_add. This
4514 * indicates a race with alloc_huge_page. Adjust
4515 * the subpool and reserve counts modified above
4516 * based on the difference.
4520 rsv_adjust
= hugepage_subpool_put_pages(spool
,
4522 hugetlb_acct_memory(h
, -rsv_adjust
);
4527 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
4528 /* Don't call region_abort if region_chg failed */
4530 region_abort(resv_map
, from
, to
);
4531 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
4532 kref_put(&resv_map
->refs
, resv_map_release
);
4536 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
4539 struct hstate
*h
= hstate_inode(inode
);
4540 struct resv_map
*resv_map
= inode_resv_map(inode
);
4542 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4546 chg
= region_del(resv_map
, start
, end
);
4548 * region_del() can fail in the rare case where a region
4549 * must be split and another region descriptor can not be
4550 * allocated. If end == LONG_MAX, it will not fail.
4556 spin_lock(&inode
->i_lock
);
4557 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
4558 spin_unlock(&inode
->i_lock
);
4561 * If the subpool has a minimum size, the number of global
4562 * reservations to be released may be adjusted.
4564 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
4565 hugetlb_acct_memory(h
, -gbl_reserve
);
4570 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4571 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
4572 struct vm_area_struct
*vma
,
4573 unsigned long addr
, pgoff_t idx
)
4575 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
4577 unsigned long sbase
= saddr
& PUD_MASK
;
4578 unsigned long s_end
= sbase
+ PUD_SIZE
;
4580 /* Allow segments to share if only one is marked locked */
4581 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4582 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4585 * match the virtual addresses, permission and the alignment of the
4588 if (pmd_index(addr
) != pmd_index(saddr
) ||
4589 vm_flags
!= svm_flags
||
4590 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
4596 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
4598 unsigned long base
= addr
& PUD_MASK
;
4599 unsigned long end
= base
+ PUD_SIZE
;
4602 * check on proper vm_flags and page table alignment
4604 if (vma
->vm_flags
& VM_MAYSHARE
&& range_in_vma(vma
, base
, end
))
4610 * Determine if start,end range within vma could be mapped by shared pmd.
4611 * If yes, adjust start and end to cover range associated with possible
4612 * shared pmd mappings.
4614 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
4615 unsigned long *start
, unsigned long *end
)
4617 unsigned long check_addr
= *start
;
4619 if (!(vma
->vm_flags
& VM_MAYSHARE
))
4622 for (check_addr
= *start
; check_addr
< *end
; check_addr
+= PUD_SIZE
) {
4623 unsigned long a_start
= check_addr
& PUD_MASK
;
4624 unsigned long a_end
= a_start
+ PUD_SIZE
;
4627 * If sharing is possible, adjust start/end if necessary.
4629 if (range_in_vma(vma
, a_start
, a_end
)) {
4630 if (a_start
< *start
)
4639 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4640 * and returns the corresponding pte. While this is not necessary for the
4641 * !shared pmd case because we can allocate the pmd later as well, it makes the
4642 * code much cleaner. pmd allocation is essential for the shared case because
4643 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4644 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4645 * bad pmd for sharing.
4647 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4649 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
4650 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4651 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
4653 struct vm_area_struct
*svma
;
4654 unsigned long saddr
;
4659 if (!vma_shareable(vma
, addr
))
4660 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4662 i_mmap_lock_write(mapping
);
4663 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
4667 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
4669 spte
= huge_pte_offset(svma
->vm_mm
, saddr
,
4670 vma_mmu_pagesize(svma
));
4672 get_page(virt_to_page(spte
));
4681 ptl
= huge_pte_lock(hstate_vma(vma
), mm
, spte
);
4682 if (pud_none(*pud
)) {
4683 pud_populate(mm
, pud
,
4684 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
4687 put_page(virt_to_page(spte
));
4691 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4692 i_mmap_unlock_write(mapping
);
4697 * unmap huge page backed by shared pte.
4699 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4700 * indicated by page_count > 1, unmap is achieved by clearing pud and
4701 * decrementing the ref count. If count == 1, the pte page is not shared.
4703 * called with page table lock held.
4705 * returns: 1 successfully unmapped a shared pte page
4706 * 0 the underlying pte page is not shared, or it is the last user
4708 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4710 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
4711 p4d_t
*p4d
= p4d_offset(pgd
, *addr
);
4712 pud_t
*pud
= pud_offset(p4d
, *addr
);
4714 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
4715 if (page_count(virt_to_page(ptep
)) == 1)
4719 put_page(virt_to_page(ptep
));
4721 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
4724 #define want_pmd_share() (1)
4725 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4726 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4731 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4736 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
4737 unsigned long *start
, unsigned long *end
)
4740 #define want_pmd_share() (0)
4741 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4743 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4744 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
4745 unsigned long addr
, unsigned long sz
)
4752 pgd
= pgd_offset(mm
, addr
);
4753 p4d
= p4d_alloc(mm
, pgd
, addr
);
4756 pud
= pud_alloc(mm
, p4d
, addr
);
4758 if (sz
== PUD_SIZE
) {
4761 BUG_ON(sz
!= PMD_SIZE
);
4762 if (want_pmd_share() && pud_none(*pud
))
4763 pte
= huge_pmd_share(mm
, addr
, pud
);
4765 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4768 BUG_ON(pte
&& pte_present(*pte
) && !pte_huge(*pte
));
4774 * huge_pte_offset() - Walk the page table to resolve the hugepage
4775 * entry at address @addr
4777 * Return: Pointer to page table or swap entry (PUD or PMD) for
4778 * address @addr, or NULL if a p*d_none() entry is encountered and the
4779 * size @sz doesn't match the hugepage size at this level of the page
4782 pte_t
*huge_pte_offset(struct mm_struct
*mm
,
4783 unsigned long addr
, unsigned long sz
)
4790 pgd
= pgd_offset(mm
, addr
);
4791 if (!pgd_present(*pgd
))
4793 p4d
= p4d_offset(pgd
, addr
);
4794 if (!p4d_present(*p4d
))
4797 pud
= pud_offset(p4d
, addr
);
4798 if (sz
!= PUD_SIZE
&& pud_none(*pud
))
4800 /* hugepage or swap? */
4801 if (pud_huge(*pud
) || !pud_present(*pud
))
4802 return (pte_t
*)pud
;
4804 pmd
= pmd_offset(pud
, addr
);
4805 if (sz
!= PMD_SIZE
&& pmd_none(*pmd
))
4807 /* hugepage or swap? */
4808 if (pmd_huge(*pmd
) || !pmd_present(*pmd
))
4809 return (pte_t
*)pmd
;
4814 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4817 * These functions are overwritable if your architecture needs its own
4820 struct page
* __weak
4821 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
4824 return ERR_PTR(-EINVAL
);
4827 struct page
* __weak
4828 follow_huge_pd(struct vm_area_struct
*vma
,
4829 unsigned long address
, hugepd_t hpd
, int flags
, int pdshift
)
4831 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4835 struct page
* __weak
4836 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
4837 pmd_t
*pmd
, int flags
)
4839 struct page
*page
= NULL
;
4843 ptl
= pmd_lockptr(mm
, pmd
);
4846 * make sure that the address range covered by this pmd is not
4847 * unmapped from other threads.
4849 if (!pmd_huge(*pmd
))
4851 pte
= huge_ptep_get((pte_t
*)pmd
);
4852 if (pte_present(pte
)) {
4853 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
4854 if (flags
& FOLL_GET
)
4857 if (is_hugetlb_entry_migration(pte
)) {
4859 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
4863 * hwpoisoned entry is treated as no_page_table in
4864 * follow_page_mask().
4872 struct page
* __weak
4873 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
4874 pud_t
*pud
, int flags
)
4876 if (flags
& FOLL_GET
)
4879 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
4882 struct page
* __weak
4883 follow_huge_pgd(struct mm_struct
*mm
, unsigned long address
, pgd_t
*pgd
, int flags
)
4885 if (flags
& FOLL_GET
)
4888 return pte_page(*(pte_t
*)pgd
) + ((address
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
4891 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
4895 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4896 spin_lock(&hugetlb_lock
);
4897 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
4901 clear_page_huge_active(page
);
4902 list_move_tail(&page
->lru
, list
);
4904 spin_unlock(&hugetlb_lock
);
4908 void putback_active_hugepage(struct page
*page
)
4910 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4911 spin_lock(&hugetlb_lock
);
4912 set_page_huge_active(page
);
4913 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
4914 spin_unlock(&hugetlb_lock
);
4918 void move_hugetlb_state(struct page
*oldpage
, struct page
*newpage
, int reason
)
4920 struct hstate
*h
= page_hstate(oldpage
);
4922 hugetlb_cgroup_migrate(oldpage
, newpage
);
4923 set_page_owner_migrate_reason(newpage
, reason
);
4926 * transfer temporary state of the new huge page. This is
4927 * reverse to other transitions because the newpage is going to
4928 * be final while the old one will be freed so it takes over
4929 * the temporary status.
4931 * Also note that we have to transfer the per-node surplus state
4932 * here as well otherwise the global surplus count will not match
4935 if (PageHugeTemporary(newpage
)) {
4936 int old_nid
= page_to_nid(oldpage
);
4937 int new_nid
= page_to_nid(newpage
);
4939 SetPageHugeTemporary(oldpage
);
4940 ClearPageHugeTemporary(newpage
);
4942 spin_lock(&hugetlb_lock
);
4943 if (h
->surplus_huge_pages_node
[old_nid
]) {
4944 h
->surplus_huge_pages_node
[old_nid
]--;
4945 h
->surplus_huge_pages_node
[new_nid
]++;
4947 spin_unlock(&hugetlb_lock
);