2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
24 /* Structure holding internal timekeeping values. */
26 /* Current clocksource used for timekeeping. */
27 struct clocksource
*clock
;
28 /* The shift value of the current clocksource. */
31 /* Number of clock cycles in one NTP interval. */
32 cycle_t cycle_interval
;
33 /* Number of clock shifted nano seconds in one NTP interval. */
35 /* shifted nano seconds left over when rounding cycle_interval */
37 /* Raw nano seconds accumulated per NTP interval. */
40 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
42 /* Difference between accumulated time and NTP time in ntp
43 * shifted nano seconds. */
45 /* Shift conversion between clock shifted nano seconds and
46 * ntp shifted nano seconds. */
48 /* NTP adjusted clock multiplier */
52 static struct timekeeper timekeeper
;
55 * timekeeper_setup_internals - Set up internals to use clocksource clock.
57 * @clock: Pointer to clocksource.
59 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
60 * pair and interval request.
62 * Unless you're the timekeeping code, you should not be using this!
64 static void timekeeper_setup_internals(struct clocksource
*clock
)
69 timekeeper
.clock
= clock
;
70 clock
->cycle_last
= clock
->read(clock
);
72 /* Do the ns -> cycle conversion first, using original mult */
73 tmp
= NTP_INTERVAL_LENGTH
;
77 do_div(tmp
, clock
->mult
);
81 interval
= (cycle_t
) tmp
;
82 timekeeper
.cycle_interval
= interval
;
84 /* Go back from cycles -> shifted ns */
85 timekeeper
.xtime_interval
= (u64
) interval
* clock
->mult
;
86 timekeeper
.xtime_remainder
= ntpinterval
- timekeeper
.xtime_interval
;
87 timekeeper
.raw_interval
=
88 ((u64
) interval
* clock
->mult
) >> clock
->shift
;
90 timekeeper
.xtime_nsec
= 0;
91 timekeeper
.shift
= clock
->shift
;
93 timekeeper
.ntp_error
= 0;
94 timekeeper
.ntp_error_shift
= NTP_SCALE_SHIFT
- clock
->shift
;
97 * The timekeeper keeps its own mult values for the currently
98 * active clocksource. These value will be adjusted via NTP
99 * to counteract clock drifting.
101 timekeeper
.mult
= clock
->mult
;
104 /* Timekeeper helper functions. */
105 static inline s64
timekeeping_get_ns(void)
107 cycle_t cycle_now
, cycle_delta
;
108 struct clocksource
*clock
;
110 /* read clocksource: */
111 clock
= timekeeper
.clock
;
112 cycle_now
= clock
->read(clock
);
114 /* calculate the delta since the last update_wall_time: */
115 cycle_delta
= (cycle_now
- clock
->cycle_last
) & clock
->mask
;
117 /* return delta convert to nanoseconds using ntp adjusted mult. */
118 return clocksource_cyc2ns(cycle_delta
, timekeeper
.mult
,
122 static inline s64
timekeeping_get_ns_raw(void)
124 cycle_t cycle_now
, cycle_delta
;
125 struct clocksource
*clock
;
127 /* read clocksource: */
128 clock
= timekeeper
.clock
;
129 cycle_now
= clock
->read(clock
);
131 /* calculate the delta since the last update_wall_time: */
132 cycle_delta
= (cycle_now
- clock
->cycle_last
) & clock
->mask
;
134 /* return delta convert to nanoseconds using ntp adjusted mult. */
135 return clocksource_cyc2ns(cycle_delta
, clock
->mult
, clock
->shift
);
139 * This read-write spinlock protects us from races in SMP while
140 * playing with xtime.
142 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(xtime_lock
);
147 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
148 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
149 * at zero at system boot time, so wall_to_monotonic will be negative,
150 * however, we will ALWAYS keep the tv_nsec part positive so we can use
151 * the usual normalization.
153 * wall_to_monotonic is moved after resume from suspend for the monotonic
154 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
155 * to get the real boot based time offset.
157 * - wall_to_monotonic is no longer the boot time, getboottime must be
160 static struct timespec xtime
__attribute__ ((aligned (16)));
161 static struct timespec wall_to_monotonic
__attribute__ ((aligned (16)));
162 static struct timespec total_sleep_time
;
165 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
167 static struct timespec raw_time
;
169 /* flag for if timekeeping is suspended */
170 int __read_mostly timekeeping_suspended
;
172 /* must hold xtime_lock */
173 void timekeeping_leap_insert(int leapsecond
)
175 xtime
.tv_sec
+= leapsecond
;
176 wall_to_monotonic
.tv_sec
-= leapsecond
;
177 update_vsyscall(&xtime
, &wall_to_monotonic
, timekeeper
.clock
,
182 * timekeeping_forward_now - update clock to the current time
184 * Forward the current clock to update its state since the last call to
185 * update_wall_time(). This is useful before significant clock changes,
186 * as it avoids having to deal with this time offset explicitly.
188 static void timekeeping_forward_now(void)
190 cycle_t cycle_now
, cycle_delta
;
191 struct clocksource
*clock
;
194 clock
= timekeeper
.clock
;
195 cycle_now
= clock
->read(clock
);
196 cycle_delta
= (cycle_now
- clock
->cycle_last
) & clock
->mask
;
197 clock
->cycle_last
= cycle_now
;
199 nsec
= clocksource_cyc2ns(cycle_delta
, timekeeper
.mult
,
202 /* If arch requires, add in gettimeoffset() */
203 nsec
+= arch_gettimeoffset();
205 timespec_add_ns(&xtime
, nsec
);
207 nsec
= clocksource_cyc2ns(cycle_delta
, clock
->mult
, clock
->shift
);
208 timespec_add_ns(&raw_time
, nsec
);
212 * getnstimeofday - Returns the time of day in a timespec
213 * @ts: pointer to the timespec to be set
215 * Returns the time of day in a timespec.
217 void getnstimeofday(struct timespec
*ts
)
222 WARN_ON(timekeeping_suspended
);
225 seq
= read_seqbegin(&xtime_lock
);
228 nsecs
= timekeeping_get_ns();
230 /* If arch requires, add in gettimeoffset() */
231 nsecs
+= arch_gettimeoffset();
233 } while (read_seqretry(&xtime_lock
, seq
));
235 timespec_add_ns(ts
, nsecs
);
238 EXPORT_SYMBOL(getnstimeofday
);
240 ktime_t
ktime_get(void)
245 WARN_ON(timekeeping_suspended
);
248 seq
= read_seqbegin(&xtime_lock
);
249 secs
= xtime
.tv_sec
+ wall_to_monotonic
.tv_sec
;
250 nsecs
= xtime
.tv_nsec
+ wall_to_monotonic
.tv_nsec
;
251 nsecs
+= timekeeping_get_ns();
252 /* If arch requires, add in gettimeoffset() */
253 nsecs
+= arch_gettimeoffset();
255 } while (read_seqretry(&xtime_lock
, seq
));
257 * Use ktime_set/ktime_add_ns to create a proper ktime on
258 * 32-bit architectures without CONFIG_KTIME_SCALAR.
260 return ktime_add_ns(ktime_set(secs
, 0), nsecs
);
262 EXPORT_SYMBOL_GPL(ktime_get
);
265 * ktime_get_ts - get the monotonic clock in timespec format
266 * @ts: pointer to timespec variable
268 * The function calculates the monotonic clock from the realtime
269 * clock and the wall_to_monotonic offset and stores the result
270 * in normalized timespec format in the variable pointed to by @ts.
272 void ktime_get_ts(struct timespec
*ts
)
274 struct timespec tomono
;
278 WARN_ON(timekeeping_suspended
);
281 seq
= read_seqbegin(&xtime_lock
);
283 tomono
= wall_to_monotonic
;
284 nsecs
= timekeeping_get_ns();
285 /* If arch requires, add in gettimeoffset() */
286 nsecs
+= arch_gettimeoffset();
288 } while (read_seqretry(&xtime_lock
, seq
));
290 set_normalized_timespec(ts
, ts
->tv_sec
+ tomono
.tv_sec
,
291 ts
->tv_nsec
+ tomono
.tv_nsec
+ nsecs
);
293 EXPORT_SYMBOL_GPL(ktime_get_ts
);
295 #ifdef CONFIG_NTP_PPS
298 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
299 * @ts_raw: pointer to the timespec to be set to raw monotonic time
300 * @ts_real: pointer to the timespec to be set to the time of day
302 * This function reads both the time of day and raw monotonic time at the
303 * same time atomically and stores the resulting timestamps in timespec
306 void getnstime_raw_and_real(struct timespec
*ts_raw
, struct timespec
*ts_real
)
309 s64 nsecs_raw
, nsecs_real
;
311 WARN_ON_ONCE(timekeeping_suspended
);
316 seq
= read_seqbegin(&xtime_lock
);
321 nsecs_raw
= timekeeping_get_ns_raw();
322 nsecs_real
= timekeeping_get_ns();
324 /* If arch requires, add in gettimeoffset() */
325 arch_offset
= arch_gettimeoffset();
326 nsecs_raw
+= arch_offset
;
327 nsecs_real
+= arch_offset
;
329 } while (read_seqretry(&xtime_lock
, seq
));
331 timespec_add_ns(ts_raw
, nsecs_raw
);
332 timespec_add_ns(ts_real
, nsecs_real
);
334 EXPORT_SYMBOL(getnstime_raw_and_real
);
336 #endif /* CONFIG_NTP_PPS */
339 * do_gettimeofday - Returns the time of day in a timeval
340 * @tv: pointer to the timeval to be set
342 * NOTE: Users should be converted to using getnstimeofday()
344 void do_gettimeofday(struct timeval
*tv
)
348 getnstimeofday(&now
);
349 tv
->tv_sec
= now
.tv_sec
;
350 tv
->tv_usec
= now
.tv_nsec
/1000;
353 EXPORT_SYMBOL(do_gettimeofday
);
355 * do_settimeofday - Sets the time of day
356 * @tv: pointer to the timespec variable containing the new time
358 * Sets the time of day to the new time and update NTP and notify hrtimers
360 int do_settimeofday(const struct timespec
*tv
)
362 struct timespec ts_delta
;
365 if ((unsigned long)tv
->tv_nsec
>= NSEC_PER_SEC
)
368 write_seqlock_irqsave(&xtime_lock
, flags
);
370 timekeeping_forward_now();
372 ts_delta
.tv_sec
= tv
->tv_sec
- xtime
.tv_sec
;
373 ts_delta
.tv_nsec
= tv
->tv_nsec
- xtime
.tv_nsec
;
374 wall_to_monotonic
= timespec_sub(wall_to_monotonic
, ts_delta
);
378 timekeeper
.ntp_error
= 0;
381 update_vsyscall(&xtime
, &wall_to_monotonic
, timekeeper
.clock
,
384 write_sequnlock_irqrestore(&xtime_lock
, flags
);
386 /* signal hrtimers about time change */
392 EXPORT_SYMBOL(do_settimeofday
);
396 * timekeeping_inject_offset - Adds or subtracts from the current time.
397 * @tv: pointer to the timespec variable containing the offset
399 * Adds or subtracts an offset value from the current time.
401 int timekeeping_inject_offset(struct timespec
*ts
)
405 if ((unsigned long)ts
->tv_nsec
>= NSEC_PER_SEC
)
408 write_seqlock_irqsave(&xtime_lock
, flags
);
410 timekeeping_forward_now();
412 xtime
= timespec_add(xtime
, *ts
);
413 wall_to_monotonic
= timespec_sub(wall_to_monotonic
, *ts
);
415 timekeeper
.ntp_error
= 0;
418 update_vsyscall(&xtime
, &wall_to_monotonic
, timekeeper
.clock
,
421 write_sequnlock_irqrestore(&xtime_lock
, flags
);
423 /* signal hrtimers about time change */
428 EXPORT_SYMBOL(timekeeping_inject_offset
);
431 * change_clocksource - Swaps clocksources if a new one is available
433 * Accumulates current time interval and initializes new clocksource
435 static int change_clocksource(void *data
)
437 struct clocksource
*new, *old
;
439 new = (struct clocksource
*) data
;
441 timekeeping_forward_now();
442 if (!new->enable
|| new->enable(new) == 0) {
443 old
= timekeeper
.clock
;
444 timekeeper_setup_internals(new);
452 * timekeeping_notify - Install a new clock source
453 * @clock: pointer to the clock source
455 * This function is called from clocksource.c after a new, better clock
456 * source has been registered. The caller holds the clocksource_mutex.
458 void timekeeping_notify(struct clocksource
*clock
)
460 if (timekeeper
.clock
== clock
)
462 stop_machine(change_clocksource
, clock
, NULL
);
467 * ktime_get_real - get the real (wall-) time in ktime_t format
469 * returns the time in ktime_t format
471 ktime_t
ktime_get_real(void)
475 getnstimeofday(&now
);
477 return timespec_to_ktime(now
);
479 EXPORT_SYMBOL_GPL(ktime_get_real
);
482 * getrawmonotonic - Returns the raw monotonic time in a timespec
483 * @ts: pointer to the timespec to be set
485 * Returns the raw monotonic time (completely un-modified by ntp)
487 void getrawmonotonic(struct timespec
*ts
)
493 seq
= read_seqbegin(&xtime_lock
);
494 nsecs
= timekeeping_get_ns_raw();
497 } while (read_seqretry(&xtime_lock
, seq
));
499 timespec_add_ns(ts
, nsecs
);
501 EXPORT_SYMBOL(getrawmonotonic
);
505 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
507 int timekeeping_valid_for_hres(void)
513 seq
= read_seqbegin(&xtime_lock
);
515 ret
= timekeeper
.clock
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
;
517 } while (read_seqretry(&xtime_lock
, seq
));
523 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
525 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
526 * ensure that the clocksource does not change!
528 u64
timekeeping_max_deferment(void)
530 return timekeeper
.clock
->max_idle_ns
;
534 * read_persistent_clock - Return time from the persistent clock.
536 * Weak dummy function for arches that do not yet support it.
537 * Reads the time from the battery backed persistent clock.
538 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
540 * XXX - Do be sure to remove it once all arches implement it.
542 void __attribute__((weak
)) read_persistent_clock(struct timespec
*ts
)
549 * read_boot_clock - Return time of the system start.
551 * Weak dummy function for arches that do not yet support it.
552 * Function to read the exact time the system has been started.
553 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
555 * XXX - Do be sure to remove it once all arches implement it.
557 void __attribute__((weak
)) read_boot_clock(struct timespec
*ts
)
564 * timekeeping_init - Initializes the clocksource and common timekeeping values
566 void __init
timekeeping_init(void)
568 struct clocksource
*clock
;
570 struct timespec now
, boot
;
572 read_persistent_clock(&now
);
573 read_boot_clock(&boot
);
575 write_seqlock_irqsave(&xtime_lock
, flags
);
579 clock
= clocksource_default_clock();
581 clock
->enable(clock
);
582 timekeeper_setup_internals(clock
);
584 xtime
.tv_sec
= now
.tv_sec
;
585 xtime
.tv_nsec
= now
.tv_nsec
;
587 raw_time
.tv_nsec
= 0;
588 if (boot
.tv_sec
== 0 && boot
.tv_nsec
== 0) {
589 boot
.tv_sec
= xtime
.tv_sec
;
590 boot
.tv_nsec
= xtime
.tv_nsec
;
592 set_normalized_timespec(&wall_to_monotonic
,
593 -boot
.tv_sec
, -boot
.tv_nsec
);
594 total_sleep_time
.tv_sec
= 0;
595 total_sleep_time
.tv_nsec
= 0;
596 write_sequnlock_irqrestore(&xtime_lock
, flags
);
599 /* time in seconds when suspend began */
600 static struct timespec timekeeping_suspend_time
;
603 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
604 * @delta: pointer to a timespec delta value
606 * Takes a timespec offset measuring a suspend interval and properly
607 * adds the sleep offset to the timekeeping variables.
609 static void __timekeeping_inject_sleeptime(struct timespec
*delta
)
611 if (!timespec_valid(delta
)) {
612 printk(KERN_WARNING
"__timekeeping_inject_sleeptime: Invalid "
613 "sleep delta value!\n");
617 xtime
= timespec_add(xtime
, *delta
);
618 wall_to_monotonic
= timespec_sub(wall_to_monotonic
, *delta
);
619 total_sleep_time
= timespec_add(total_sleep_time
, *delta
);
624 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
625 * @delta: pointer to a timespec delta value
627 * This hook is for architectures that cannot support read_persistent_clock
628 * because their RTC/persistent clock is only accessible when irqs are enabled.
630 * This function should only be called by rtc_resume(), and allows
631 * a suspend offset to be injected into the timekeeping values.
633 void timekeeping_inject_sleeptime(struct timespec
*delta
)
638 /* Make sure we don't set the clock twice */
639 read_persistent_clock(&ts
);
640 if (!(ts
.tv_sec
== 0 && ts
.tv_nsec
== 0))
643 write_seqlock_irqsave(&xtime_lock
, flags
);
644 timekeeping_forward_now();
646 __timekeeping_inject_sleeptime(delta
);
648 timekeeper
.ntp_error
= 0;
650 update_vsyscall(&xtime
, &wall_to_monotonic
, timekeeper
.clock
,
653 write_sequnlock_irqrestore(&xtime_lock
, flags
);
655 /* signal hrtimers about time change */
661 * timekeeping_resume - Resumes the generic timekeeping subsystem.
663 * This is for the generic clocksource timekeeping.
664 * xtime/wall_to_monotonic/jiffies/etc are
665 * still managed by arch specific suspend/resume code.
667 static void timekeeping_resume(void)
672 read_persistent_clock(&ts
);
674 clocksource_resume();
676 write_seqlock_irqsave(&xtime_lock
, flags
);
678 if (timespec_compare(&ts
, &timekeeping_suspend_time
) > 0) {
679 ts
= timespec_sub(ts
, timekeeping_suspend_time
);
680 __timekeeping_inject_sleeptime(&ts
);
682 /* re-base the last cycle value */
683 timekeeper
.clock
->cycle_last
= timekeeper
.clock
->read(timekeeper
.clock
);
684 timekeeper
.ntp_error
= 0;
685 timekeeping_suspended
= 0;
686 write_sequnlock_irqrestore(&xtime_lock
, flags
);
688 touch_softlockup_watchdog();
690 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME
, NULL
);
692 /* Resume hrtimers */
696 static int timekeeping_suspend(void)
699 struct timespec delta
, delta_delta
;
700 static struct timespec old_delta
;
702 read_persistent_clock(&timekeeping_suspend_time
);
704 write_seqlock_irqsave(&xtime_lock
, flags
);
705 timekeeping_forward_now();
706 timekeeping_suspended
= 1;
709 * To avoid drift caused by repeated suspend/resumes,
710 * which each can add ~1 second drift error,
711 * try to compensate so the difference in system time
712 * and persistent_clock time stays close to constant.
714 delta
= timespec_sub(xtime
, timekeeping_suspend_time
);
715 delta_delta
= timespec_sub(delta
, old_delta
);
716 if (abs(delta_delta
.tv_sec
) >= 2) {
718 * if delta_delta is too large, assume time correction
719 * has occured and set old_delta to the current delta.
723 /* Otherwise try to adjust old_system to compensate */
724 timekeeping_suspend_time
=
725 timespec_add(timekeeping_suspend_time
, delta_delta
);
727 write_sequnlock_irqrestore(&xtime_lock
, flags
);
729 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND
, NULL
);
730 clocksource_suspend();
735 /* sysfs resume/suspend bits for timekeeping */
736 static struct syscore_ops timekeeping_syscore_ops
= {
737 .resume
= timekeeping_resume
,
738 .suspend
= timekeeping_suspend
,
741 static int __init
timekeeping_init_ops(void)
743 register_syscore_ops(&timekeeping_syscore_ops
);
747 device_initcall(timekeeping_init_ops
);
750 * If the error is already larger, we look ahead even further
751 * to compensate for late or lost adjustments.
753 static __always_inline
int timekeeping_bigadjust(s64 error
, s64
*interval
,
761 * Use the current error value to determine how much to look ahead.
762 * The larger the error the slower we adjust for it to avoid problems
763 * with losing too many ticks, otherwise we would overadjust and
764 * produce an even larger error. The smaller the adjustment the
765 * faster we try to adjust for it, as lost ticks can do less harm
766 * here. This is tuned so that an error of about 1 msec is adjusted
767 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
769 error2
= timekeeper
.ntp_error
>> (NTP_SCALE_SHIFT
+ 22 - 2 * SHIFT_HZ
);
770 error2
= abs(error2
);
771 for (look_ahead
= 0; error2
> 0; look_ahead
++)
775 * Now calculate the error in (1 << look_ahead) ticks, but first
776 * remove the single look ahead already included in the error.
778 tick_error
= tick_length
>> (timekeeper
.ntp_error_shift
+ 1);
779 tick_error
-= timekeeper
.xtime_interval
>> 1;
780 error
= ((error
- tick_error
) >> look_ahead
) + tick_error
;
782 /* Finally calculate the adjustment shift value. */
787 *interval
= -*interval
;
791 for (adj
= 0; error
> i
; adj
++)
800 * Adjust the multiplier to reduce the error value,
801 * this is optimized for the most common adjustments of -1,0,1,
802 * for other values we can do a bit more work.
804 static void timekeeping_adjust(s64 offset
)
806 s64 error
, interval
= timekeeper
.cycle_interval
;
810 * The point of this is to check if the error is greater then half
813 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
815 * Note we subtract one in the shift, so that error is really error*2.
816 * This "saves" dividing(shifting) intererval twice, but keeps the
817 * (error > interval) comparision as still measuring if error is
818 * larger then half an interval.
820 * Note: It does not "save" on aggrivation when reading the code.
822 error
= timekeeper
.ntp_error
>> (timekeeper
.ntp_error_shift
- 1);
823 if (error
> interval
) {
825 * We now divide error by 4(via shift), which checks if
826 * the error is greater then twice the interval.
827 * If it is greater, we need a bigadjust, if its smaller,
828 * we can adjust by 1.
832 * XXX - In update_wall_time, we round up to the next
833 * nanosecond, and store the amount rounded up into
834 * the error. This causes the likely below to be unlikely.
836 * The properfix is to avoid rounding up by using
837 * the high precision timekeeper.xtime_nsec instead of
838 * xtime.tv_nsec everywhere. Fixing this will take some
841 if (likely(error
<= interval
))
844 adj
= timekeeping_bigadjust(error
, &interval
, &offset
);
845 } else if (error
< -interval
) {
846 /* See comment above, this is just switched for the negative */
848 if (likely(error
>= -interval
)) {
850 interval
= -interval
;
853 adj
= timekeeping_bigadjust(error
, &interval
, &offset
);
854 } else /* No adjustment needed */
857 WARN_ONCE(timekeeper
.clock
->maxadj
&&
858 (timekeeper
.mult
+ adj
> timekeeper
.clock
->mult
+
859 timekeeper
.clock
->maxadj
),
860 "Adjusting %s more then 11%% (%ld vs %ld)\n",
861 timekeeper
.clock
->name
, (long)timekeeper
.mult
+ adj
,
862 (long)timekeeper
.clock
->mult
+
863 timekeeper
.clock
->maxadj
);
865 * So the following can be confusing.
867 * To keep things simple, lets assume adj == 1 for now.
869 * When adj != 1, remember that the interval and offset values
870 * have been appropriately scaled so the math is the same.
872 * The basic idea here is that we're increasing the multiplier
873 * by one, this causes the xtime_interval to be incremented by
874 * one cycle_interval. This is because:
875 * xtime_interval = cycle_interval * mult
876 * So if mult is being incremented by one:
877 * xtime_interval = cycle_interval * (mult + 1)
879 * xtime_interval = (cycle_interval * mult) + cycle_interval
880 * Which can be shortened to:
881 * xtime_interval += cycle_interval
883 * So offset stores the non-accumulated cycles. Thus the current
884 * time (in shifted nanoseconds) is:
885 * now = (offset * adj) + xtime_nsec
886 * Now, even though we're adjusting the clock frequency, we have
887 * to keep time consistent. In other words, we can't jump back
888 * in time, and we also want to avoid jumping forward in time.
890 * So given the same offset value, we need the time to be the same
891 * both before and after the freq adjustment.
892 * now = (offset * adj_1) + xtime_nsec_1
893 * now = (offset * adj_2) + xtime_nsec_2
895 * (offset * adj_1) + xtime_nsec_1 =
896 * (offset * adj_2) + xtime_nsec_2
900 * (offset * adj_1) + xtime_nsec_1 =
901 * (offset * (adj_1+1)) + xtime_nsec_2
902 * (offset * adj_1) + xtime_nsec_1 =
903 * (offset * adj_1) + offset + xtime_nsec_2
904 * Canceling the sides:
905 * xtime_nsec_1 = offset + xtime_nsec_2
907 * xtime_nsec_2 = xtime_nsec_1 - offset
908 * Which simplfies to:
909 * xtime_nsec -= offset
911 * XXX - TODO: Doc ntp_error calculation.
913 timekeeper
.mult
+= adj
;
914 timekeeper
.xtime_interval
+= interval
;
915 timekeeper
.xtime_nsec
-= offset
;
916 timekeeper
.ntp_error
-= (interval
- offset
) <<
917 timekeeper
.ntp_error_shift
;
922 * logarithmic_accumulation - shifted accumulation of cycles
924 * This functions accumulates a shifted interval of cycles into
925 * into a shifted interval nanoseconds. Allows for O(log) accumulation
928 * Returns the unconsumed cycles.
930 static cycle_t
logarithmic_accumulation(cycle_t offset
, int shift
)
932 u64 nsecps
= (u64
)NSEC_PER_SEC
<< timekeeper
.shift
;
935 /* If the offset is smaller then a shifted interval, do nothing */
936 if (offset
< timekeeper
.cycle_interval
<<shift
)
939 /* Accumulate one shifted interval */
940 offset
-= timekeeper
.cycle_interval
<< shift
;
941 timekeeper
.clock
->cycle_last
+= timekeeper
.cycle_interval
<< shift
;
943 timekeeper
.xtime_nsec
+= timekeeper
.xtime_interval
<< shift
;
944 while (timekeeper
.xtime_nsec
>= nsecps
) {
945 timekeeper
.xtime_nsec
-= nsecps
;
950 /* Accumulate raw time */
951 raw_nsecs
= timekeeper
.raw_interval
<< shift
;
952 raw_nsecs
+= raw_time
.tv_nsec
;
953 if (raw_nsecs
>= NSEC_PER_SEC
) {
954 u64 raw_secs
= raw_nsecs
;
955 raw_nsecs
= do_div(raw_secs
, NSEC_PER_SEC
);
956 raw_time
.tv_sec
+= raw_secs
;
958 raw_time
.tv_nsec
= raw_nsecs
;
960 /* Accumulate error between NTP and clock interval */
961 timekeeper
.ntp_error
+= tick_length
<< shift
;
962 timekeeper
.ntp_error
-=
963 (timekeeper
.xtime_interval
+ timekeeper
.xtime_remainder
) <<
964 (timekeeper
.ntp_error_shift
+ shift
);
971 * update_wall_time - Uses the current clocksource to increment the wall time
973 * Called from the timer interrupt, must hold a write on xtime_lock.
975 static void update_wall_time(void)
977 struct clocksource
*clock
;
979 int shift
= 0, maxshift
;
981 /* Make sure we're fully resumed: */
982 if (unlikely(timekeeping_suspended
))
985 clock
= timekeeper
.clock
;
987 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
988 offset
= timekeeper
.cycle_interval
;
990 offset
= (clock
->read(clock
) - clock
->cycle_last
) & clock
->mask
;
992 timekeeper
.xtime_nsec
= (s64
)xtime
.tv_nsec
<< timekeeper
.shift
;
995 * With NO_HZ we may have to accumulate many cycle_intervals
996 * (think "ticks") worth of time at once. To do this efficiently,
997 * we calculate the largest doubling multiple of cycle_intervals
998 * that is smaller then the offset. We then accumulate that
999 * chunk in one go, and then try to consume the next smaller
1002 shift
= ilog2(offset
) - ilog2(timekeeper
.cycle_interval
);
1003 shift
= max(0, shift
);
1004 /* Bound shift to one less then what overflows tick_length */
1005 maxshift
= (8*sizeof(tick_length
) - (ilog2(tick_length
)+1)) - 1;
1006 shift
= min(shift
, maxshift
);
1007 while (offset
>= timekeeper
.cycle_interval
) {
1008 offset
= logarithmic_accumulation(offset
, shift
);
1009 if(offset
< timekeeper
.cycle_interval
<<shift
)
1013 /* correct the clock when NTP error is too big */
1014 timekeeping_adjust(offset
);
1017 * Since in the loop above, we accumulate any amount of time
1018 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1019 * xtime_nsec to be fairly small after the loop. Further, if we're
1020 * slightly speeding the clocksource up in timekeeping_adjust(),
1021 * its possible the required corrective factor to xtime_nsec could
1022 * cause it to underflow.
1024 * Now, we cannot simply roll the accumulated second back, since
1025 * the NTP subsystem has been notified via second_overflow. So
1026 * instead we push xtime_nsec forward by the amount we underflowed,
1027 * and add that amount into the error.
1029 * We'll correct this error next time through this function, when
1030 * xtime_nsec is not as small.
1032 if (unlikely((s64
)timekeeper
.xtime_nsec
< 0)) {
1033 s64 neg
= -(s64
)timekeeper
.xtime_nsec
;
1034 timekeeper
.xtime_nsec
= 0;
1035 timekeeper
.ntp_error
+= neg
<< timekeeper
.ntp_error_shift
;
1040 * Store full nanoseconds into xtime after rounding it up and
1041 * add the remainder to the error difference.
1043 xtime
.tv_nsec
= ((s64
) timekeeper
.xtime_nsec
>> timekeeper
.shift
) + 1;
1044 timekeeper
.xtime_nsec
-= (s64
) xtime
.tv_nsec
<< timekeeper
.shift
;
1045 timekeeper
.ntp_error
+= timekeeper
.xtime_nsec
<<
1046 timekeeper
.ntp_error_shift
;
1049 * Finally, make sure that after the rounding
1050 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
1052 if (unlikely(xtime
.tv_nsec
>= NSEC_PER_SEC
)) {
1053 xtime
.tv_nsec
-= NSEC_PER_SEC
;
1058 /* check to see if there is a new clocksource to use */
1059 update_vsyscall(&xtime
, &wall_to_monotonic
, timekeeper
.clock
,
1064 * getboottime - Return the real time of system boot.
1065 * @ts: pointer to the timespec to be set
1067 * Returns the wall-time of boot in a timespec.
1069 * This is based on the wall_to_monotonic offset and the total suspend
1070 * time. Calls to settimeofday will affect the value returned (which
1071 * basically means that however wrong your real time clock is at boot time,
1072 * you get the right time here).
1074 void getboottime(struct timespec
*ts
)
1076 struct timespec boottime
= {
1077 .tv_sec
= wall_to_monotonic
.tv_sec
+ total_sleep_time
.tv_sec
,
1078 .tv_nsec
= wall_to_monotonic
.tv_nsec
+ total_sleep_time
.tv_nsec
1081 set_normalized_timespec(ts
, -boottime
.tv_sec
, -boottime
.tv_nsec
);
1083 EXPORT_SYMBOL_GPL(getboottime
);
1087 * get_monotonic_boottime - Returns monotonic time since boot
1088 * @ts: pointer to the timespec to be set
1090 * Returns the monotonic time since boot in a timespec.
1092 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1093 * includes the time spent in suspend.
1095 void get_monotonic_boottime(struct timespec
*ts
)
1097 struct timespec tomono
, sleep
;
1101 WARN_ON(timekeeping_suspended
);
1104 seq
= read_seqbegin(&xtime_lock
);
1106 tomono
= wall_to_monotonic
;
1107 sleep
= total_sleep_time
;
1108 nsecs
= timekeeping_get_ns();
1110 } while (read_seqretry(&xtime_lock
, seq
));
1112 set_normalized_timespec(ts
, ts
->tv_sec
+ tomono
.tv_sec
+ sleep
.tv_sec
,
1113 ts
->tv_nsec
+ tomono
.tv_nsec
+ sleep
.tv_nsec
+ nsecs
);
1115 EXPORT_SYMBOL_GPL(get_monotonic_boottime
);
1118 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1120 * Returns the monotonic time since boot in a ktime
1122 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1123 * includes the time spent in suspend.
1125 ktime_t
ktime_get_boottime(void)
1129 get_monotonic_boottime(&ts
);
1130 return timespec_to_ktime(ts
);
1132 EXPORT_SYMBOL_GPL(ktime_get_boottime
);
1135 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1136 * @ts: pointer to the timespec to be converted
1138 void monotonic_to_bootbased(struct timespec
*ts
)
1140 *ts
= timespec_add(*ts
, total_sleep_time
);
1142 EXPORT_SYMBOL_GPL(monotonic_to_bootbased
);
1144 unsigned long get_seconds(void)
1146 return xtime
.tv_sec
;
1148 EXPORT_SYMBOL(get_seconds
);
1150 struct timespec
__current_kernel_time(void)
1155 struct timespec
current_kernel_time(void)
1157 struct timespec now
;
1161 seq
= read_seqbegin(&xtime_lock
);
1164 } while (read_seqretry(&xtime_lock
, seq
));
1168 EXPORT_SYMBOL(current_kernel_time
);
1170 struct timespec
get_monotonic_coarse(void)
1172 struct timespec now
, mono
;
1176 seq
= read_seqbegin(&xtime_lock
);
1179 mono
= wall_to_monotonic
;
1180 } while (read_seqretry(&xtime_lock
, seq
));
1182 set_normalized_timespec(&now
, now
.tv_sec
+ mono
.tv_sec
,
1183 now
.tv_nsec
+ mono
.tv_nsec
);
1188 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1189 * without sampling the sequence number in xtime_lock.
1190 * jiffies is defined in the linker script...
1192 void do_timer(unsigned long ticks
)
1194 jiffies_64
+= ticks
;
1196 calc_global_load(ticks
);
1200 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1201 * and sleep offsets.
1202 * @xtim: pointer to timespec to be set with xtime
1203 * @wtom: pointer to timespec to be set with wall_to_monotonic
1204 * @sleep: pointer to timespec to be set with time in suspend
1206 void get_xtime_and_monotonic_and_sleep_offset(struct timespec
*xtim
,
1207 struct timespec
*wtom
, struct timespec
*sleep
)
1212 seq
= read_seqbegin(&xtime_lock
);
1214 *wtom
= wall_to_monotonic
;
1215 *sleep
= total_sleep_time
;
1216 } while (read_seqretry(&xtime_lock
, seq
));
1220 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1222 ktime_t
ktime_get_monotonic_offset(void)
1225 struct timespec wtom
;
1228 seq
= read_seqbegin(&xtime_lock
);
1229 wtom
= wall_to_monotonic
;
1230 } while (read_seqretry(&xtime_lock
, seq
));
1231 return timespec_to_ktime(wtom
);
1235 * xtime_update() - advances the timekeeping infrastructure
1236 * @ticks: number of ticks, that have elapsed since the last call.
1238 * Must be called with interrupts disabled.
1240 void xtime_update(unsigned long ticks
)
1242 write_seqlock(&xtime_lock
);
1244 write_sequnlock(&xtime_lock
);