dm verity: skip verity work if I/O error when system is shutting down
[linux/fpc-iii.git] / fs / fs-writeback.c
blob15216b440880a25cfe1c0dfa48c5b5d53c07226a
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
34 * 4MB minimal write chunk size
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38 struct wb_completion {
39 atomic_t cnt;
43 * Passed into wb_writeback(), essentially a subset of writeback_control
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 enum writeback_sync_modes sync_mode;
49 unsigned int tagged_writepages:1;
50 unsigned int for_kupdate:1;
51 unsigned int range_cyclic:1;
52 unsigned int for_background:1;
53 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
54 unsigned int auto_free:1; /* free on completion */
55 enum wb_reason reason; /* why was writeback initiated? */
57 struct list_head list; /* pending work list */
58 struct wb_completion *done; /* set if the caller waits */
62 * If one wants to wait for one or more wb_writeback_works, each work's
63 * ->done should be set to a wb_completion defined using the following
64 * macro. Once all work items are issued with wb_queue_work(), the caller
65 * can wait for the completion of all using wb_wait_for_completion(). Work
66 * items which are waited upon aren't freed automatically on completion.
68 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
69 struct wb_completion cmpl = { \
70 .cnt = ATOMIC_INIT(1), \
75 * If an inode is constantly having its pages dirtied, but then the
76 * updates stop dirtytime_expire_interval seconds in the past, it's
77 * possible for the worst case time between when an inode has its
78 * timestamps updated and when they finally get written out to be two
79 * dirtytime_expire_intervals. We set the default to 12 hours (in
80 * seconds), which means most of the time inodes will have their
81 * timestamps written to disk after 12 hours, but in the worst case a
82 * few inodes might not their timestamps updated for 24 hours.
84 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86 static inline struct inode *wb_inode(struct list_head *head)
88 return list_entry(head, struct inode, i_io_list);
92 * Include the creation of the trace points after defining the
93 * wb_writeback_work structure and inline functions so that the definition
94 * remains local to this file.
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/writeback.h>
99 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 if (wb_has_dirty_io(wb)) {
104 return false;
105 } else {
106 set_bit(WB_has_dirty_io, &wb->state);
107 WARN_ON_ONCE(!wb->avg_write_bandwidth);
108 atomic_long_add(wb->avg_write_bandwidth,
109 &wb->bdi->tot_write_bandwidth);
110 return true;
114 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
117 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
118 clear_bit(WB_has_dirty_io, &wb->state);
119 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
120 &wb->bdi->tot_write_bandwidth) < 0);
125 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
126 * @inode: inode to be moved
127 * @wb: target bdi_writeback
128 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
130 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
131 * Returns %true if @inode is the first occupant of the !dirty_time IO
132 * lists; otherwise, %false.
134 static bool inode_io_list_move_locked(struct inode *inode,
135 struct bdi_writeback *wb,
136 struct list_head *head)
138 assert_spin_locked(&wb->list_lock);
140 list_move(&inode->i_io_list, head);
142 /* dirty_time doesn't count as dirty_io until expiration */
143 if (head != &wb->b_dirty_time)
144 return wb_io_lists_populated(wb);
146 wb_io_lists_depopulated(wb);
147 return false;
151 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
152 * @inode: inode to be removed
153 * @wb: bdi_writeback @inode is being removed from
155 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
156 * clear %WB_has_dirty_io if all are empty afterwards.
158 static void inode_io_list_del_locked(struct inode *inode,
159 struct bdi_writeback *wb)
161 assert_spin_locked(&wb->list_lock);
162 assert_spin_locked(&inode->i_lock);
164 inode->i_state &= ~I_SYNC_QUEUED;
165 list_del_init(&inode->i_io_list);
166 wb_io_lists_depopulated(wb);
169 static void wb_wakeup(struct bdi_writeback *wb)
171 spin_lock_bh(&wb->work_lock);
172 if (test_bit(WB_registered, &wb->state))
173 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 spin_unlock_bh(&wb->work_lock);
177 static void finish_writeback_work(struct bdi_writeback *wb,
178 struct wb_writeback_work *work)
180 struct wb_completion *done = work->done;
182 if (work->auto_free)
183 kfree(work);
184 if (done && atomic_dec_and_test(&done->cnt))
185 wake_up_all(&wb->bdi->wb_waitq);
188 static void wb_queue_work(struct bdi_writeback *wb,
189 struct wb_writeback_work *work)
191 trace_writeback_queue(wb, work);
193 if (work->done)
194 atomic_inc(&work->done->cnt);
196 spin_lock_bh(&wb->work_lock);
198 if (test_bit(WB_registered, &wb->state)) {
199 list_add_tail(&work->list, &wb->work_list);
200 mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 } else
202 finish_writeback_work(wb, work);
204 spin_unlock_bh(&wb->work_lock);
208 * wb_wait_for_completion - wait for completion of bdi_writeback_works
209 * @bdi: bdi work items were issued to
210 * @done: target wb_completion
212 * Wait for one or more work items issued to @bdi with their ->done field
213 * set to @done, which should have been defined with
214 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
215 * work items are completed. Work items which are waited upon aren't freed
216 * automatically on completion.
218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 struct wb_completion *done)
221 atomic_dec(&done->cnt); /* put down the initial count */
222 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
225 #ifdef CONFIG_CGROUP_WRITEBACK
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
233 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 /* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
237 /* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 /* one round can affect upto 5 slots */
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
244 void __inode_attach_wb(struct inode *inode, struct page *page)
246 struct backing_dev_info *bdi = inode_to_bdi(inode);
247 struct bdi_writeback *wb = NULL;
249 if (inode_cgwb_enabled(inode)) {
250 struct cgroup_subsys_state *memcg_css;
252 if (page) {
253 memcg_css = mem_cgroup_css_from_page(page);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 } else {
256 /* must pin memcg_css, see wb_get_create() */
257 memcg_css = task_get_css(current, memory_cgrp_id);
258 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 css_put(memcg_css);
263 if (!wb)
264 wb = &bdi->wb;
267 * There may be multiple instances of this function racing to
268 * update the same inode. Use cmpxchg() to tell the winner.
270 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 wb_put(wb);
273 EXPORT_SYMBOL_GPL(__inode_attach_wb);
276 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277 * @inode: inode of interest with i_lock held
279 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
280 * held on entry and is released on return. The returned wb is guaranteed
281 * to stay @inode's associated wb until its list_lock is released.
283 static struct bdi_writeback *
284 locked_inode_to_wb_and_lock_list(struct inode *inode)
285 __releases(&inode->i_lock)
286 __acquires(&wb->list_lock)
288 while (true) {
289 struct bdi_writeback *wb = inode_to_wb(inode);
292 * inode_to_wb() association is protected by both
293 * @inode->i_lock and @wb->list_lock but list_lock nests
294 * outside i_lock. Drop i_lock and verify that the
295 * association hasn't changed after acquiring list_lock.
297 wb_get(wb);
298 spin_unlock(&inode->i_lock);
299 spin_lock(&wb->list_lock);
301 /* i_wb may have changed inbetween, can't use inode_to_wb() */
302 if (likely(wb == inode->i_wb)) {
303 wb_put(wb); /* @inode already has ref */
304 return wb;
307 spin_unlock(&wb->list_lock);
308 wb_put(wb);
309 cpu_relax();
310 spin_lock(&inode->i_lock);
315 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316 * @inode: inode of interest
318 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319 * on entry.
321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322 __acquires(&wb->list_lock)
324 spin_lock(&inode->i_lock);
325 return locked_inode_to_wb_and_lock_list(inode);
328 struct inode_switch_wbs_context {
329 struct inode *inode;
330 struct bdi_writeback *new_wb;
332 struct rcu_head rcu_head;
333 struct work_struct work;
336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
338 down_write(&bdi->wb_switch_rwsem);
341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
343 up_write(&bdi->wb_switch_rwsem);
346 static void inode_switch_wbs_work_fn(struct work_struct *work)
348 struct inode_switch_wbs_context *isw =
349 container_of(work, struct inode_switch_wbs_context, work);
350 struct inode *inode = isw->inode;
351 struct backing_dev_info *bdi = inode_to_bdi(inode);
352 struct address_space *mapping = inode->i_mapping;
353 struct bdi_writeback *old_wb = inode->i_wb;
354 struct bdi_writeback *new_wb = isw->new_wb;
355 struct radix_tree_iter iter;
356 bool switched = false;
357 void **slot;
360 * If @inode switches cgwb membership while sync_inodes_sb() is
361 * being issued, sync_inodes_sb() might miss it. Synchronize.
363 down_read(&bdi->wb_switch_rwsem);
366 * By the time control reaches here, RCU grace period has passed
367 * since I_WB_SWITCH assertion and all wb stat update transactions
368 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369 * synchronizing against the i_pages lock.
371 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372 * gives us exclusion against all wb related operations on @inode
373 * including IO list manipulations and stat updates.
375 if (old_wb < new_wb) {
376 spin_lock(&old_wb->list_lock);
377 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378 } else {
379 spin_lock(&new_wb->list_lock);
380 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
382 spin_lock(&inode->i_lock);
383 xa_lock_irq(&mapping->i_pages);
386 * Once I_FREEING is visible under i_lock, the eviction path owns
387 * the inode and we shouldn't modify ->i_io_list.
389 if (unlikely(inode->i_state & I_FREEING))
390 goto skip_switch;
393 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
394 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
395 * pages actually under writeback.
397 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
398 PAGECACHE_TAG_DIRTY) {
399 struct page *page = radix_tree_deref_slot_protected(slot,
400 &mapping->i_pages.xa_lock);
401 if (likely(page) && PageDirty(page)) {
402 dec_wb_stat(old_wb, WB_RECLAIMABLE);
403 inc_wb_stat(new_wb, WB_RECLAIMABLE);
407 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
408 PAGECACHE_TAG_WRITEBACK) {
409 struct page *page = radix_tree_deref_slot_protected(slot,
410 &mapping->i_pages.xa_lock);
411 if (likely(page)) {
412 WARN_ON_ONCE(!PageWriteback(page));
413 dec_wb_stat(old_wb, WB_WRITEBACK);
414 inc_wb_stat(new_wb, WB_WRITEBACK);
418 wb_get(new_wb);
421 * Transfer to @new_wb's IO list if necessary. The specific list
422 * @inode was on is ignored and the inode is put on ->b_dirty which
423 * is always correct including from ->b_dirty_time. The transfer
424 * preserves @inode->dirtied_when ordering.
426 if (!list_empty(&inode->i_io_list)) {
427 struct inode *pos;
429 inode_io_list_del_locked(inode, old_wb);
430 inode->i_wb = new_wb;
431 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432 if (time_after_eq(inode->dirtied_when,
433 pos->dirtied_when))
434 break;
435 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
436 } else {
437 inode->i_wb = new_wb;
440 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441 inode->i_wb_frn_winner = 0;
442 inode->i_wb_frn_avg_time = 0;
443 inode->i_wb_frn_history = 0;
444 switched = true;
445 skip_switch:
447 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448 * ensures that the new wb is visible if they see !I_WB_SWITCH.
450 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
452 xa_unlock_irq(&mapping->i_pages);
453 spin_unlock(&inode->i_lock);
454 spin_unlock(&new_wb->list_lock);
455 spin_unlock(&old_wb->list_lock);
457 up_read(&bdi->wb_switch_rwsem);
459 if (switched) {
460 wb_wakeup(new_wb);
461 wb_put(old_wb);
463 wb_put(new_wb);
465 iput(inode);
466 kfree(isw);
468 atomic_dec(&isw_nr_in_flight);
471 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
473 struct inode_switch_wbs_context *isw = container_of(rcu_head,
474 struct inode_switch_wbs_context, rcu_head);
476 /* needs to grab bh-unsafe locks, bounce to work item */
477 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
478 queue_work(isw_wq, &isw->work);
482 * inode_switch_wbs - change the wb association of an inode
483 * @inode: target inode
484 * @new_wb_id: ID of the new wb
486 * Switch @inode's wb association to the wb identified by @new_wb_id. The
487 * switching is performed asynchronously and may fail silently.
489 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
491 struct backing_dev_info *bdi = inode_to_bdi(inode);
492 struct cgroup_subsys_state *memcg_css;
493 struct inode_switch_wbs_context *isw;
495 /* noop if seems to be already in progress */
496 if (inode->i_state & I_WB_SWITCH)
497 return;
500 * Avoid starting new switches while sync_inodes_sb() is in
501 * progress. Otherwise, if the down_write protected issue path
502 * blocks heavily, we might end up starting a large number of
503 * switches which will block on the rwsem.
505 if (!down_read_trylock(&bdi->wb_switch_rwsem))
506 return;
508 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
509 if (!isw)
510 goto out_unlock;
512 /* find and pin the new wb */
513 rcu_read_lock();
514 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
515 if (memcg_css)
516 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
517 rcu_read_unlock();
518 if (!isw->new_wb)
519 goto out_free;
521 /* while holding I_WB_SWITCH, no one else can update the association */
522 spin_lock(&inode->i_lock);
523 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
524 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
525 inode_to_wb(inode) == isw->new_wb) {
526 spin_unlock(&inode->i_lock);
527 goto out_free;
529 inode->i_state |= I_WB_SWITCH;
530 __iget(inode);
531 spin_unlock(&inode->i_lock);
533 isw->inode = inode;
536 * In addition to synchronizing among switchers, I_WB_SWITCH tells
537 * the RCU protected stat update paths to grab the i_page
538 * lock so that stat transfer can synchronize against them.
539 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
541 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
543 atomic_inc(&isw_nr_in_flight);
545 goto out_unlock;
547 out_free:
548 if (isw->new_wb)
549 wb_put(isw->new_wb);
550 kfree(isw);
551 out_unlock:
552 up_read(&bdi->wb_switch_rwsem);
556 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
557 * @wbc: writeback_control of interest
558 * @inode: target inode
560 * @inode is locked and about to be written back under the control of @wbc.
561 * Record @inode's writeback context into @wbc and unlock the i_lock. On
562 * writeback completion, wbc_detach_inode() should be called. This is used
563 * to track the cgroup writeback context.
565 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
566 struct inode *inode)
568 if (!inode_cgwb_enabled(inode)) {
569 spin_unlock(&inode->i_lock);
570 return;
573 wbc->wb = inode_to_wb(inode);
574 wbc->inode = inode;
576 wbc->wb_id = wbc->wb->memcg_css->id;
577 wbc->wb_lcand_id = inode->i_wb_frn_winner;
578 wbc->wb_tcand_id = 0;
579 wbc->wb_bytes = 0;
580 wbc->wb_lcand_bytes = 0;
581 wbc->wb_tcand_bytes = 0;
583 wb_get(wbc->wb);
584 spin_unlock(&inode->i_lock);
587 * A dying wb indicates that either the blkcg associated with the
588 * memcg changed or the associated memcg is dying. In the first
589 * case, a replacement wb should already be available and we should
590 * refresh the wb immediately. In the second case, trying to
591 * refresh will keep failing.
593 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
594 inode_switch_wbs(inode, wbc->wb_id);
598 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
599 * @wbc: writeback_control of the just finished writeback
601 * To be called after a writeback attempt of an inode finishes and undoes
602 * wbc_attach_and_unlock_inode(). Can be called under any context.
604 * As concurrent write sharing of an inode is expected to be very rare and
605 * memcg only tracks page ownership on first-use basis severely confining
606 * the usefulness of such sharing, cgroup writeback tracks ownership
607 * per-inode. While the support for concurrent write sharing of an inode
608 * is deemed unnecessary, an inode being written to by different cgroups at
609 * different points in time is a lot more common, and, more importantly,
610 * charging only by first-use can too readily lead to grossly incorrect
611 * behaviors (single foreign page can lead to gigabytes of writeback to be
612 * incorrectly attributed).
614 * To resolve this issue, cgroup writeback detects the majority dirtier of
615 * an inode and transfers the ownership to it. To avoid unnnecessary
616 * oscillation, the detection mechanism keeps track of history and gives
617 * out the switch verdict only if the foreign usage pattern is stable over
618 * a certain amount of time and/or writeback attempts.
620 * On each writeback attempt, @wbc tries to detect the majority writer
621 * using Boyer-Moore majority vote algorithm. In addition to the byte
622 * count from the majority voting, it also counts the bytes written for the
623 * current wb and the last round's winner wb (max of last round's current
624 * wb, the winner from two rounds ago, and the last round's majority
625 * candidate). Keeping track of the historical winner helps the algorithm
626 * to semi-reliably detect the most active writer even when it's not the
627 * absolute majority.
629 * Once the winner of the round is determined, whether the winner is
630 * foreign or not and how much IO time the round consumed is recorded in
631 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
632 * over a certain threshold, the switch verdict is given.
634 void wbc_detach_inode(struct writeback_control *wbc)
636 struct bdi_writeback *wb = wbc->wb;
637 struct inode *inode = wbc->inode;
638 unsigned long avg_time, max_bytes, max_time;
639 u16 history;
640 int max_id;
642 if (!wb)
643 return;
645 history = inode->i_wb_frn_history;
646 avg_time = inode->i_wb_frn_avg_time;
648 /* pick the winner of this round */
649 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
650 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
651 max_id = wbc->wb_id;
652 max_bytes = wbc->wb_bytes;
653 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
654 max_id = wbc->wb_lcand_id;
655 max_bytes = wbc->wb_lcand_bytes;
656 } else {
657 max_id = wbc->wb_tcand_id;
658 max_bytes = wbc->wb_tcand_bytes;
662 * Calculate the amount of IO time the winner consumed and fold it
663 * into the running average kept per inode. If the consumed IO
664 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
665 * deciding whether to switch or not. This is to prevent one-off
666 * small dirtiers from skewing the verdict.
668 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
669 wb->avg_write_bandwidth);
670 if (avg_time)
671 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
672 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
673 else
674 avg_time = max_time; /* immediate catch up on first run */
676 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
677 int slots;
680 * The switch verdict is reached if foreign wb's consume
681 * more than a certain proportion of IO time in a
682 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
683 * history mask where each bit represents one sixteenth of
684 * the period. Determine the number of slots to shift into
685 * history from @max_time.
687 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
688 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
689 history <<= slots;
690 if (wbc->wb_id != max_id)
691 history |= (1U << slots) - 1;
694 * Switch if the current wb isn't the consistent winner.
695 * If there are multiple closely competing dirtiers, the
696 * inode may switch across them repeatedly over time, which
697 * is okay. The main goal is avoiding keeping an inode on
698 * the wrong wb for an extended period of time.
700 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
701 inode_switch_wbs(inode, max_id);
705 * Multiple instances of this function may race to update the
706 * following fields but we don't mind occassional inaccuracies.
708 inode->i_wb_frn_winner = max_id;
709 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
710 inode->i_wb_frn_history = history;
712 wb_put(wbc->wb);
713 wbc->wb = NULL;
717 * wbc_account_io - account IO issued during writeback
718 * @wbc: writeback_control of the writeback in progress
719 * @page: page being written out
720 * @bytes: number of bytes being written out
722 * @bytes from @page are about to written out during the writeback
723 * controlled by @wbc. Keep the book for foreign inode detection. See
724 * wbc_detach_inode().
726 void wbc_account_io(struct writeback_control *wbc, struct page *page,
727 size_t bytes)
729 struct cgroup_subsys_state *css;
730 int id;
733 * pageout() path doesn't attach @wbc to the inode being written
734 * out. This is intentional as we don't want the function to block
735 * behind a slow cgroup. Ultimately, we want pageout() to kick off
736 * regular writeback instead of writing things out itself.
738 if (!wbc->wb)
739 return;
741 css = mem_cgroup_css_from_page(page);
742 /* dead cgroups shouldn't contribute to inode ownership arbitration */
743 if (!(css->flags & CSS_ONLINE))
744 return;
746 id = css->id;
748 if (id == wbc->wb_id) {
749 wbc->wb_bytes += bytes;
750 return;
753 if (id == wbc->wb_lcand_id)
754 wbc->wb_lcand_bytes += bytes;
756 /* Boyer-Moore majority vote algorithm */
757 if (!wbc->wb_tcand_bytes)
758 wbc->wb_tcand_id = id;
759 if (id == wbc->wb_tcand_id)
760 wbc->wb_tcand_bytes += bytes;
761 else
762 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
764 EXPORT_SYMBOL_GPL(wbc_account_io);
767 * inode_congested - test whether an inode is congested
768 * @inode: inode to test for congestion (may be NULL)
769 * @cong_bits: mask of WB_[a]sync_congested bits to test
771 * Tests whether @inode is congested. @cong_bits is the mask of congestion
772 * bits to test and the return value is the mask of set bits.
774 * If cgroup writeback is enabled for @inode, the congestion state is
775 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
776 * associated with @inode is congested; otherwise, the root wb's congestion
777 * state is used.
779 * @inode is allowed to be NULL as this function is often called on
780 * mapping->host which is NULL for the swapper space.
782 int inode_congested(struct inode *inode, int cong_bits)
785 * Once set, ->i_wb never becomes NULL while the inode is alive.
786 * Start transaction iff ->i_wb is visible.
788 if (inode && inode_to_wb_is_valid(inode)) {
789 struct bdi_writeback *wb;
790 struct wb_lock_cookie lock_cookie = {};
791 bool congested;
793 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
794 congested = wb_congested(wb, cong_bits);
795 unlocked_inode_to_wb_end(inode, &lock_cookie);
796 return congested;
799 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
801 EXPORT_SYMBOL_GPL(inode_congested);
804 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
805 * @wb: target bdi_writeback to split @nr_pages to
806 * @nr_pages: number of pages to write for the whole bdi
808 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
809 * relation to the total write bandwidth of all wb's w/ dirty inodes on
810 * @wb->bdi.
812 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
814 unsigned long this_bw = wb->avg_write_bandwidth;
815 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
817 if (nr_pages == LONG_MAX)
818 return LONG_MAX;
821 * This may be called on clean wb's and proportional distribution
822 * may not make sense, just use the original @nr_pages in those
823 * cases. In general, we wanna err on the side of writing more.
825 if (!tot_bw || this_bw >= tot_bw)
826 return nr_pages;
827 else
828 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
832 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
833 * @bdi: target backing_dev_info
834 * @base_work: wb_writeback_work to issue
835 * @skip_if_busy: skip wb's which already have writeback in progress
837 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
838 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
839 * distributed to the busy wbs according to each wb's proportion in the
840 * total active write bandwidth of @bdi.
842 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
843 struct wb_writeback_work *base_work,
844 bool skip_if_busy)
846 struct bdi_writeback *last_wb = NULL;
847 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
848 struct bdi_writeback, bdi_node);
850 might_sleep();
851 restart:
852 rcu_read_lock();
853 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
854 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
855 struct wb_writeback_work fallback_work;
856 struct wb_writeback_work *work;
857 long nr_pages;
859 if (last_wb) {
860 wb_put(last_wb);
861 last_wb = NULL;
864 /* SYNC_ALL writes out I_DIRTY_TIME too */
865 if (!wb_has_dirty_io(wb) &&
866 (base_work->sync_mode == WB_SYNC_NONE ||
867 list_empty(&wb->b_dirty_time)))
868 continue;
869 if (skip_if_busy && writeback_in_progress(wb))
870 continue;
872 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
874 work = kmalloc(sizeof(*work), GFP_ATOMIC);
875 if (work) {
876 *work = *base_work;
877 work->nr_pages = nr_pages;
878 work->auto_free = 1;
879 wb_queue_work(wb, work);
880 continue;
883 /* alloc failed, execute synchronously using on-stack fallback */
884 work = &fallback_work;
885 *work = *base_work;
886 work->nr_pages = nr_pages;
887 work->auto_free = 0;
888 work->done = &fallback_work_done;
890 wb_queue_work(wb, work);
893 * Pin @wb so that it stays on @bdi->wb_list. This allows
894 * continuing iteration from @wb after dropping and
895 * regrabbing rcu read lock.
897 wb_get(wb);
898 last_wb = wb;
900 rcu_read_unlock();
901 wb_wait_for_completion(bdi, &fallback_work_done);
902 goto restart;
904 rcu_read_unlock();
906 if (last_wb)
907 wb_put(last_wb);
911 * cgroup_writeback_umount - flush inode wb switches for umount
913 * This function is called when a super_block is about to be destroyed and
914 * flushes in-flight inode wb switches. An inode wb switch goes through
915 * RCU and then workqueue, so the two need to be flushed in order to ensure
916 * that all previously scheduled switches are finished. As wb switches are
917 * rare occurrences and synchronize_rcu() can take a while, perform
918 * flushing iff wb switches are in flight.
920 void cgroup_writeback_umount(void)
922 if (atomic_read(&isw_nr_in_flight)) {
924 * Use rcu_barrier() to wait for all pending callbacks to
925 * ensure that all in-flight wb switches are in the workqueue.
927 rcu_barrier();
928 flush_workqueue(isw_wq);
932 static int __init cgroup_writeback_init(void)
934 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
935 if (!isw_wq)
936 return -ENOMEM;
937 return 0;
939 fs_initcall(cgroup_writeback_init);
941 #else /* CONFIG_CGROUP_WRITEBACK */
943 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
944 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
946 static struct bdi_writeback *
947 locked_inode_to_wb_and_lock_list(struct inode *inode)
948 __releases(&inode->i_lock)
949 __acquires(&wb->list_lock)
951 struct bdi_writeback *wb = inode_to_wb(inode);
953 spin_unlock(&inode->i_lock);
954 spin_lock(&wb->list_lock);
955 return wb;
958 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
959 __acquires(&wb->list_lock)
961 struct bdi_writeback *wb = inode_to_wb(inode);
963 spin_lock(&wb->list_lock);
964 return wb;
967 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
969 return nr_pages;
972 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
973 struct wb_writeback_work *base_work,
974 bool skip_if_busy)
976 might_sleep();
978 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
979 base_work->auto_free = 0;
980 wb_queue_work(&bdi->wb, base_work);
984 #endif /* CONFIG_CGROUP_WRITEBACK */
987 * Add in the number of potentially dirty inodes, because each inode
988 * write can dirty pagecache in the underlying blockdev.
990 static unsigned long get_nr_dirty_pages(void)
992 return global_node_page_state(NR_FILE_DIRTY) +
993 global_node_page_state(NR_UNSTABLE_NFS) +
994 get_nr_dirty_inodes();
997 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
999 if (!wb_has_dirty_io(wb))
1000 return;
1003 * All callers of this function want to start writeback of all
1004 * dirty pages. Places like vmscan can call this at a very
1005 * high frequency, causing pointless allocations of tons of
1006 * work items and keeping the flusher threads busy retrieving
1007 * that work. Ensure that we only allow one of them pending and
1008 * inflight at the time.
1010 if (test_bit(WB_start_all, &wb->state) ||
1011 test_and_set_bit(WB_start_all, &wb->state))
1012 return;
1014 wb->start_all_reason = reason;
1015 wb_wakeup(wb);
1019 * wb_start_background_writeback - start background writeback
1020 * @wb: bdi_writback to write from
1022 * Description:
1023 * This makes sure WB_SYNC_NONE background writeback happens. When
1024 * this function returns, it is only guaranteed that for given wb
1025 * some IO is happening if we are over background dirty threshold.
1026 * Caller need not hold sb s_umount semaphore.
1028 void wb_start_background_writeback(struct bdi_writeback *wb)
1031 * We just wake up the flusher thread. It will perform background
1032 * writeback as soon as there is no other work to do.
1034 trace_writeback_wake_background(wb);
1035 wb_wakeup(wb);
1039 * Remove the inode from the writeback list it is on.
1041 void inode_io_list_del(struct inode *inode)
1043 struct bdi_writeback *wb;
1045 wb = inode_to_wb_and_lock_list(inode);
1046 spin_lock(&inode->i_lock);
1047 inode_io_list_del_locked(inode, wb);
1048 spin_unlock(&inode->i_lock);
1049 spin_unlock(&wb->list_lock);
1053 * mark an inode as under writeback on the sb
1055 void sb_mark_inode_writeback(struct inode *inode)
1057 struct super_block *sb = inode->i_sb;
1058 unsigned long flags;
1060 if (list_empty(&inode->i_wb_list)) {
1061 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1062 if (list_empty(&inode->i_wb_list)) {
1063 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1064 trace_sb_mark_inode_writeback(inode);
1066 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1071 * clear an inode as under writeback on the sb
1073 void sb_clear_inode_writeback(struct inode *inode)
1075 struct super_block *sb = inode->i_sb;
1076 unsigned long flags;
1078 if (!list_empty(&inode->i_wb_list)) {
1079 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1080 if (!list_empty(&inode->i_wb_list)) {
1081 list_del_init(&inode->i_wb_list);
1082 trace_sb_clear_inode_writeback(inode);
1084 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1089 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1090 * furthest end of its superblock's dirty-inode list.
1092 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1093 * already the most-recently-dirtied inode on the b_dirty list. If that is
1094 * the case then the inode must have been redirtied while it was being written
1095 * out and we don't reset its dirtied_when.
1097 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1099 assert_spin_locked(&inode->i_lock);
1101 if (!list_empty(&wb->b_dirty)) {
1102 struct inode *tail;
1104 tail = wb_inode(wb->b_dirty.next);
1105 if (time_before(inode->dirtied_when, tail->dirtied_when))
1106 inode->dirtied_when = jiffies;
1108 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1109 inode->i_state &= ~I_SYNC_QUEUED;
1112 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1114 spin_lock(&inode->i_lock);
1115 redirty_tail_locked(inode, wb);
1116 spin_unlock(&inode->i_lock);
1120 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1122 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1124 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1127 static void inode_sync_complete(struct inode *inode)
1129 inode->i_state &= ~I_SYNC;
1130 /* If inode is clean an unused, put it into LRU now... */
1131 inode_add_lru(inode);
1132 /* Waiters must see I_SYNC cleared before being woken up */
1133 smp_mb();
1134 wake_up_bit(&inode->i_state, __I_SYNC);
1137 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1139 bool ret = time_after(inode->dirtied_when, t);
1140 #ifndef CONFIG_64BIT
1142 * For inodes being constantly redirtied, dirtied_when can get stuck.
1143 * It _appears_ to be in the future, but is actually in distant past.
1144 * This test is necessary to prevent such wrapped-around relative times
1145 * from permanently stopping the whole bdi writeback.
1147 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1148 #endif
1149 return ret;
1152 #define EXPIRE_DIRTY_ATIME 0x0001
1155 * Move expired (dirtied before dirtied_before) dirty inodes from
1156 * @delaying_queue to @dispatch_queue.
1158 static int move_expired_inodes(struct list_head *delaying_queue,
1159 struct list_head *dispatch_queue,
1160 int flags, unsigned long dirtied_before)
1162 LIST_HEAD(tmp);
1163 struct list_head *pos, *node;
1164 struct super_block *sb = NULL;
1165 struct inode *inode;
1166 int do_sb_sort = 0;
1167 int moved = 0;
1169 while (!list_empty(delaying_queue)) {
1170 inode = wb_inode(delaying_queue->prev);
1171 if (inode_dirtied_after(inode, dirtied_before))
1172 break;
1173 list_move(&inode->i_io_list, &tmp);
1174 moved++;
1175 spin_lock(&inode->i_lock);
1176 if (flags & EXPIRE_DIRTY_ATIME)
1177 inode->i_state |= I_DIRTY_TIME_EXPIRED;
1178 inode->i_state |= I_SYNC_QUEUED;
1179 spin_unlock(&inode->i_lock);
1180 if (sb_is_blkdev_sb(inode->i_sb))
1181 continue;
1182 if (sb && sb != inode->i_sb)
1183 do_sb_sort = 1;
1184 sb = inode->i_sb;
1187 /* just one sb in list, splice to dispatch_queue and we're done */
1188 if (!do_sb_sort) {
1189 list_splice(&tmp, dispatch_queue);
1190 goto out;
1193 /* Move inodes from one superblock together */
1194 while (!list_empty(&tmp)) {
1195 sb = wb_inode(tmp.prev)->i_sb;
1196 list_for_each_prev_safe(pos, node, &tmp) {
1197 inode = wb_inode(pos);
1198 if (inode->i_sb == sb)
1199 list_move(&inode->i_io_list, dispatch_queue);
1202 out:
1203 return moved;
1207 * Queue all expired dirty inodes for io, eldest first.
1208 * Before
1209 * newly dirtied b_dirty b_io b_more_io
1210 * =============> gf edc BA
1211 * After
1212 * newly dirtied b_dirty b_io b_more_io
1213 * =============> g fBAedc
1215 * +--> dequeue for IO
1217 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1218 unsigned long dirtied_before)
1220 int moved;
1221 unsigned long time_expire_jif = dirtied_before;
1223 assert_spin_locked(&wb->list_lock);
1224 list_splice_init(&wb->b_more_io, &wb->b_io);
1225 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, dirtied_before);
1226 if (!work->for_sync)
1227 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1228 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1229 EXPIRE_DIRTY_ATIME, time_expire_jif);
1230 if (moved)
1231 wb_io_lists_populated(wb);
1232 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1235 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1237 int ret;
1239 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1240 trace_writeback_write_inode_start(inode, wbc);
1241 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1242 trace_writeback_write_inode(inode, wbc);
1243 return ret;
1245 return 0;
1249 * Wait for writeback on an inode to complete. Called with i_lock held.
1250 * Caller must make sure inode cannot go away when we drop i_lock.
1252 static void __inode_wait_for_writeback(struct inode *inode)
1253 __releases(inode->i_lock)
1254 __acquires(inode->i_lock)
1256 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1257 wait_queue_head_t *wqh;
1259 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1260 while (inode->i_state & I_SYNC) {
1261 spin_unlock(&inode->i_lock);
1262 __wait_on_bit(wqh, &wq, bit_wait,
1263 TASK_UNINTERRUPTIBLE);
1264 spin_lock(&inode->i_lock);
1269 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1271 void inode_wait_for_writeback(struct inode *inode)
1273 spin_lock(&inode->i_lock);
1274 __inode_wait_for_writeback(inode);
1275 spin_unlock(&inode->i_lock);
1279 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1280 * held and drops it. It is aimed for callers not holding any inode reference
1281 * so once i_lock is dropped, inode can go away.
1283 static void inode_sleep_on_writeback(struct inode *inode)
1284 __releases(inode->i_lock)
1286 DEFINE_WAIT(wait);
1287 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1288 int sleep;
1290 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1291 sleep = inode->i_state & I_SYNC;
1292 spin_unlock(&inode->i_lock);
1293 if (sleep)
1294 schedule();
1295 finish_wait(wqh, &wait);
1299 * Find proper writeback list for the inode depending on its current state and
1300 * possibly also change of its state while we were doing writeback. Here we
1301 * handle things such as livelock prevention or fairness of writeback among
1302 * inodes. This function can be called only by flusher thread - noone else
1303 * processes all inodes in writeback lists and requeueing inodes behind flusher
1304 * thread's back can have unexpected consequences.
1306 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1307 struct writeback_control *wbc)
1309 if (inode->i_state & I_FREEING)
1310 return;
1313 * Sync livelock prevention. Each inode is tagged and synced in one
1314 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1315 * the dirty time to prevent enqueue and sync it again.
1317 if ((inode->i_state & I_DIRTY) &&
1318 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1319 inode->dirtied_when = jiffies;
1321 if (wbc->pages_skipped) {
1323 * writeback is not making progress due to locked
1324 * buffers. Skip this inode for now.
1326 redirty_tail_locked(inode, wb);
1327 return;
1330 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1332 * We didn't write back all the pages. nfs_writepages()
1333 * sometimes bales out without doing anything.
1335 if (wbc->nr_to_write <= 0) {
1336 /* Slice used up. Queue for next turn. */
1337 requeue_io(inode, wb);
1338 } else {
1340 * Writeback blocked by something other than
1341 * congestion. Delay the inode for some time to
1342 * avoid spinning on the CPU (100% iowait)
1343 * retrying writeback of the dirty page/inode
1344 * that cannot be performed immediately.
1346 redirty_tail_locked(inode, wb);
1348 } else if (inode->i_state & I_DIRTY) {
1350 * Filesystems can dirty the inode during writeback operations,
1351 * such as delayed allocation during submission or metadata
1352 * updates after data IO completion.
1354 redirty_tail_locked(inode, wb);
1355 } else if (inode->i_state & I_DIRTY_TIME) {
1356 inode->dirtied_when = jiffies;
1357 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1358 inode->i_state &= ~I_SYNC_QUEUED;
1359 } else {
1360 /* The inode is clean. Remove from writeback lists. */
1361 inode_io_list_del_locked(inode, wb);
1366 * Write out an inode and its dirty pages. Do not update the writeback list
1367 * linkage. That is left to the caller. The caller is also responsible for
1368 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1370 static int
1371 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1373 struct address_space *mapping = inode->i_mapping;
1374 long nr_to_write = wbc->nr_to_write;
1375 unsigned dirty;
1376 int ret;
1378 WARN_ON(!(inode->i_state & I_SYNC));
1380 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1382 ret = do_writepages(mapping, wbc);
1385 * Make sure to wait on the data before writing out the metadata.
1386 * This is important for filesystems that modify metadata on data
1387 * I/O completion. We don't do it for sync(2) writeback because it has a
1388 * separate, external IO completion path and ->sync_fs for guaranteeing
1389 * inode metadata is written back correctly.
1391 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1392 int err = filemap_fdatawait(mapping);
1393 if (ret == 0)
1394 ret = err;
1398 * Some filesystems may redirty the inode during the writeback
1399 * due to delalloc, clear dirty metadata flags right before
1400 * write_inode()
1402 spin_lock(&inode->i_lock);
1404 dirty = inode->i_state & I_DIRTY;
1405 if (inode->i_state & I_DIRTY_TIME) {
1406 if ((dirty & I_DIRTY_INODE) ||
1407 wbc->sync_mode == WB_SYNC_ALL ||
1408 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1409 unlikely(time_after(jiffies,
1410 (inode->dirtied_time_when +
1411 dirtytime_expire_interval * HZ)))) {
1412 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1413 trace_writeback_lazytime(inode);
1415 } else
1416 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1417 inode->i_state &= ~dirty;
1420 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1421 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1422 * either they see the I_DIRTY bits cleared or we see the dirtied
1423 * inode.
1425 * I_DIRTY_PAGES is always cleared together above even if @mapping
1426 * still has dirty pages. The flag is reinstated after smp_mb() if
1427 * necessary. This guarantees that either __mark_inode_dirty()
1428 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1430 smp_mb();
1432 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1433 inode->i_state |= I_DIRTY_PAGES;
1435 spin_unlock(&inode->i_lock);
1437 if (dirty & I_DIRTY_TIME)
1438 mark_inode_dirty_sync(inode);
1439 /* Don't write the inode if only I_DIRTY_PAGES was set */
1440 if (dirty & ~I_DIRTY_PAGES) {
1441 int err = write_inode(inode, wbc);
1442 if (ret == 0)
1443 ret = err;
1445 trace_writeback_single_inode(inode, wbc, nr_to_write);
1446 return ret;
1450 * Write out an inode's dirty pages. Either the caller has an active reference
1451 * on the inode or the inode has I_WILL_FREE set.
1453 * This function is designed to be called for writing back one inode which
1454 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1455 * and does more profound writeback list handling in writeback_sb_inodes().
1457 static int writeback_single_inode(struct inode *inode,
1458 struct writeback_control *wbc)
1460 struct bdi_writeback *wb;
1461 int ret = 0;
1463 spin_lock(&inode->i_lock);
1464 if (!atomic_read(&inode->i_count))
1465 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1466 else
1467 WARN_ON(inode->i_state & I_WILL_FREE);
1469 if (inode->i_state & I_SYNC) {
1470 if (wbc->sync_mode != WB_SYNC_ALL)
1471 goto out;
1473 * It's a data-integrity sync. We must wait. Since callers hold
1474 * inode reference or inode has I_WILL_FREE set, it cannot go
1475 * away under us.
1477 __inode_wait_for_writeback(inode);
1479 WARN_ON(inode->i_state & I_SYNC);
1481 * Skip inode if it is clean and we have no outstanding writeback in
1482 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1483 * function since flusher thread may be doing for example sync in
1484 * parallel and if we move the inode, it could get skipped. So here we
1485 * make sure inode is on some writeback list and leave it there unless
1486 * we have completely cleaned the inode.
1488 if (!(inode->i_state & I_DIRTY_ALL) &&
1489 (wbc->sync_mode != WB_SYNC_ALL ||
1490 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1491 goto out;
1492 inode->i_state |= I_SYNC;
1493 wbc_attach_and_unlock_inode(wbc, inode);
1495 ret = __writeback_single_inode(inode, wbc);
1497 wbc_detach_inode(wbc);
1499 wb = inode_to_wb_and_lock_list(inode);
1500 spin_lock(&inode->i_lock);
1502 * If inode is clean, remove it from writeback lists. Otherwise don't
1503 * touch it. See comment above for explanation.
1505 if (!(inode->i_state & I_DIRTY_ALL))
1506 inode_io_list_del_locked(inode, wb);
1507 spin_unlock(&wb->list_lock);
1508 inode_sync_complete(inode);
1509 out:
1510 spin_unlock(&inode->i_lock);
1511 return ret;
1514 static long writeback_chunk_size(struct bdi_writeback *wb,
1515 struct wb_writeback_work *work)
1517 long pages;
1520 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1521 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1522 * here avoids calling into writeback_inodes_wb() more than once.
1524 * The intended call sequence for WB_SYNC_ALL writeback is:
1526 * wb_writeback()
1527 * writeback_sb_inodes() <== called only once
1528 * write_cache_pages() <== called once for each inode
1529 * (quickly) tag currently dirty pages
1530 * (maybe slowly) sync all tagged pages
1532 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1533 pages = LONG_MAX;
1534 else {
1535 pages = min(wb->avg_write_bandwidth / 2,
1536 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1537 pages = min(pages, work->nr_pages);
1538 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1539 MIN_WRITEBACK_PAGES);
1542 return pages;
1546 * Write a portion of b_io inodes which belong to @sb.
1548 * Return the number of pages and/or inodes written.
1550 * NOTE! This is called with wb->list_lock held, and will
1551 * unlock and relock that for each inode it ends up doing
1552 * IO for.
1554 static long writeback_sb_inodes(struct super_block *sb,
1555 struct bdi_writeback *wb,
1556 struct wb_writeback_work *work)
1558 struct writeback_control wbc = {
1559 .sync_mode = work->sync_mode,
1560 .tagged_writepages = work->tagged_writepages,
1561 .for_kupdate = work->for_kupdate,
1562 .for_background = work->for_background,
1563 .for_sync = work->for_sync,
1564 .range_cyclic = work->range_cyclic,
1565 .range_start = 0,
1566 .range_end = LLONG_MAX,
1568 unsigned long start_time = jiffies;
1569 long write_chunk;
1570 long wrote = 0; /* count both pages and inodes */
1572 while (!list_empty(&wb->b_io)) {
1573 struct inode *inode = wb_inode(wb->b_io.prev);
1574 struct bdi_writeback *tmp_wb;
1576 if (inode->i_sb != sb) {
1577 if (work->sb) {
1579 * We only want to write back data for this
1580 * superblock, move all inodes not belonging
1581 * to it back onto the dirty list.
1583 redirty_tail(inode, wb);
1584 continue;
1588 * The inode belongs to a different superblock.
1589 * Bounce back to the caller to unpin this and
1590 * pin the next superblock.
1592 break;
1596 * Don't bother with new inodes or inodes being freed, first
1597 * kind does not need periodic writeout yet, and for the latter
1598 * kind writeout is handled by the freer.
1600 spin_lock(&inode->i_lock);
1601 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1602 redirty_tail_locked(inode, wb);
1603 spin_unlock(&inode->i_lock);
1604 continue;
1606 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1608 * If this inode is locked for writeback and we are not
1609 * doing writeback-for-data-integrity, move it to
1610 * b_more_io so that writeback can proceed with the
1611 * other inodes on s_io.
1613 * We'll have another go at writing back this inode
1614 * when we completed a full scan of b_io.
1616 spin_unlock(&inode->i_lock);
1617 requeue_io(inode, wb);
1618 trace_writeback_sb_inodes_requeue(inode);
1619 continue;
1621 spin_unlock(&wb->list_lock);
1624 * We already requeued the inode if it had I_SYNC set and we
1625 * are doing WB_SYNC_NONE writeback. So this catches only the
1626 * WB_SYNC_ALL case.
1628 if (inode->i_state & I_SYNC) {
1629 /* Wait for I_SYNC. This function drops i_lock... */
1630 inode_sleep_on_writeback(inode);
1631 /* Inode may be gone, start again */
1632 spin_lock(&wb->list_lock);
1633 continue;
1635 inode->i_state |= I_SYNC;
1636 wbc_attach_and_unlock_inode(&wbc, inode);
1638 write_chunk = writeback_chunk_size(wb, work);
1639 wbc.nr_to_write = write_chunk;
1640 wbc.pages_skipped = 0;
1643 * We use I_SYNC to pin the inode in memory. While it is set
1644 * evict_inode() will wait so the inode cannot be freed.
1646 __writeback_single_inode(inode, &wbc);
1648 wbc_detach_inode(&wbc);
1649 work->nr_pages -= write_chunk - wbc.nr_to_write;
1650 wrote += write_chunk - wbc.nr_to_write;
1652 if (need_resched()) {
1654 * We're trying to balance between building up a nice
1655 * long list of IOs to improve our merge rate, and
1656 * getting those IOs out quickly for anyone throttling
1657 * in balance_dirty_pages(). cond_resched() doesn't
1658 * unplug, so get our IOs out the door before we
1659 * give up the CPU.
1661 blk_flush_plug(current);
1662 cond_resched();
1666 * Requeue @inode if still dirty. Be careful as @inode may
1667 * have been switched to another wb in the meantime.
1669 tmp_wb = inode_to_wb_and_lock_list(inode);
1670 spin_lock(&inode->i_lock);
1671 if (!(inode->i_state & I_DIRTY_ALL))
1672 wrote++;
1673 requeue_inode(inode, tmp_wb, &wbc);
1674 inode_sync_complete(inode);
1675 spin_unlock(&inode->i_lock);
1677 if (unlikely(tmp_wb != wb)) {
1678 spin_unlock(&tmp_wb->list_lock);
1679 spin_lock(&wb->list_lock);
1683 * bail out to wb_writeback() often enough to check
1684 * background threshold and other termination conditions.
1686 if (wrote) {
1687 if (time_is_before_jiffies(start_time + HZ / 10UL))
1688 break;
1689 if (work->nr_pages <= 0)
1690 break;
1693 return wrote;
1696 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1697 struct wb_writeback_work *work)
1699 unsigned long start_time = jiffies;
1700 long wrote = 0;
1702 while (!list_empty(&wb->b_io)) {
1703 struct inode *inode = wb_inode(wb->b_io.prev);
1704 struct super_block *sb = inode->i_sb;
1706 if (!trylock_super(sb)) {
1708 * trylock_super() may fail consistently due to
1709 * s_umount being grabbed by someone else. Don't use
1710 * requeue_io() to avoid busy retrying the inode/sb.
1712 redirty_tail(inode, wb);
1713 continue;
1715 wrote += writeback_sb_inodes(sb, wb, work);
1716 up_read(&sb->s_umount);
1718 /* refer to the same tests at the end of writeback_sb_inodes */
1719 if (wrote) {
1720 if (time_is_before_jiffies(start_time + HZ / 10UL))
1721 break;
1722 if (work->nr_pages <= 0)
1723 break;
1726 /* Leave any unwritten inodes on b_io */
1727 return wrote;
1730 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1731 enum wb_reason reason)
1733 struct wb_writeback_work work = {
1734 .nr_pages = nr_pages,
1735 .sync_mode = WB_SYNC_NONE,
1736 .range_cyclic = 1,
1737 .reason = reason,
1739 struct blk_plug plug;
1741 blk_start_plug(&plug);
1742 spin_lock(&wb->list_lock);
1743 if (list_empty(&wb->b_io))
1744 queue_io(wb, &work, jiffies);
1745 __writeback_inodes_wb(wb, &work);
1746 spin_unlock(&wb->list_lock);
1747 blk_finish_plug(&plug);
1749 return nr_pages - work.nr_pages;
1753 * Explicit flushing or periodic writeback of "old" data.
1755 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1756 * dirtying-time in the inode's address_space. So this periodic writeback code
1757 * just walks the superblock inode list, writing back any inodes which are
1758 * older than a specific point in time.
1760 * Try to run once per dirty_writeback_interval. But if a writeback event
1761 * takes longer than a dirty_writeback_interval interval, then leave a
1762 * one-second gap.
1764 * dirtied_before takes precedence over nr_to_write. So we'll only write back
1765 * all dirty pages if they are all attached to "old" mappings.
1767 static long wb_writeback(struct bdi_writeback *wb,
1768 struct wb_writeback_work *work)
1770 unsigned long wb_start = jiffies;
1771 long nr_pages = work->nr_pages;
1772 unsigned long dirtied_before = jiffies;
1773 struct inode *inode;
1774 long progress;
1775 struct blk_plug plug;
1777 blk_start_plug(&plug);
1778 spin_lock(&wb->list_lock);
1779 for (;;) {
1781 * Stop writeback when nr_pages has been consumed
1783 if (work->nr_pages <= 0)
1784 break;
1787 * Background writeout and kupdate-style writeback may
1788 * run forever. Stop them if there is other work to do
1789 * so that e.g. sync can proceed. They'll be restarted
1790 * after the other works are all done.
1792 if ((work->for_background || work->for_kupdate) &&
1793 !list_empty(&wb->work_list))
1794 break;
1797 * For background writeout, stop when we are below the
1798 * background dirty threshold
1800 if (work->for_background && !wb_over_bg_thresh(wb))
1801 break;
1804 * Kupdate and background works are special and we want to
1805 * include all inodes that need writing. Livelock avoidance is
1806 * handled by these works yielding to any other work so we are
1807 * safe.
1809 if (work->for_kupdate) {
1810 dirtied_before = jiffies -
1811 msecs_to_jiffies(dirty_expire_interval * 10);
1812 } else if (work->for_background)
1813 dirtied_before = jiffies;
1815 trace_writeback_start(wb, work);
1816 if (list_empty(&wb->b_io))
1817 queue_io(wb, work, dirtied_before);
1818 if (work->sb)
1819 progress = writeback_sb_inodes(work->sb, wb, work);
1820 else
1821 progress = __writeback_inodes_wb(wb, work);
1822 trace_writeback_written(wb, work);
1824 wb_update_bandwidth(wb, wb_start);
1827 * Did we write something? Try for more
1829 * Dirty inodes are moved to b_io for writeback in batches.
1830 * The completion of the current batch does not necessarily
1831 * mean the overall work is done. So we keep looping as long
1832 * as made some progress on cleaning pages or inodes.
1834 if (progress)
1835 continue;
1837 * No more inodes for IO, bail
1839 if (list_empty(&wb->b_more_io))
1840 break;
1842 * Nothing written. Wait for some inode to
1843 * become available for writeback. Otherwise
1844 * we'll just busyloop.
1846 trace_writeback_wait(wb, work);
1847 inode = wb_inode(wb->b_more_io.prev);
1848 spin_lock(&inode->i_lock);
1849 spin_unlock(&wb->list_lock);
1850 /* This function drops i_lock... */
1851 inode_sleep_on_writeback(inode);
1852 spin_lock(&wb->list_lock);
1854 spin_unlock(&wb->list_lock);
1855 blk_finish_plug(&plug);
1857 return nr_pages - work->nr_pages;
1861 * Return the next wb_writeback_work struct that hasn't been processed yet.
1863 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1865 struct wb_writeback_work *work = NULL;
1867 spin_lock_bh(&wb->work_lock);
1868 if (!list_empty(&wb->work_list)) {
1869 work = list_entry(wb->work_list.next,
1870 struct wb_writeback_work, list);
1871 list_del_init(&work->list);
1873 spin_unlock_bh(&wb->work_lock);
1874 return work;
1877 static long wb_check_background_flush(struct bdi_writeback *wb)
1879 if (wb_over_bg_thresh(wb)) {
1881 struct wb_writeback_work work = {
1882 .nr_pages = LONG_MAX,
1883 .sync_mode = WB_SYNC_NONE,
1884 .for_background = 1,
1885 .range_cyclic = 1,
1886 .reason = WB_REASON_BACKGROUND,
1889 return wb_writeback(wb, &work);
1892 return 0;
1895 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1897 unsigned long expired;
1898 long nr_pages;
1901 * When set to zero, disable periodic writeback
1903 if (!dirty_writeback_interval)
1904 return 0;
1906 expired = wb->last_old_flush +
1907 msecs_to_jiffies(dirty_writeback_interval * 10);
1908 if (time_before(jiffies, expired))
1909 return 0;
1911 wb->last_old_flush = jiffies;
1912 nr_pages = get_nr_dirty_pages();
1914 if (nr_pages) {
1915 struct wb_writeback_work work = {
1916 .nr_pages = nr_pages,
1917 .sync_mode = WB_SYNC_NONE,
1918 .for_kupdate = 1,
1919 .range_cyclic = 1,
1920 .reason = WB_REASON_PERIODIC,
1923 return wb_writeback(wb, &work);
1926 return 0;
1929 static long wb_check_start_all(struct bdi_writeback *wb)
1931 long nr_pages;
1933 if (!test_bit(WB_start_all, &wb->state))
1934 return 0;
1936 nr_pages = get_nr_dirty_pages();
1937 if (nr_pages) {
1938 struct wb_writeback_work work = {
1939 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1940 .sync_mode = WB_SYNC_NONE,
1941 .range_cyclic = 1,
1942 .reason = wb->start_all_reason,
1945 nr_pages = wb_writeback(wb, &work);
1948 clear_bit(WB_start_all, &wb->state);
1949 return nr_pages;
1954 * Retrieve work items and do the writeback they describe
1956 static long wb_do_writeback(struct bdi_writeback *wb)
1958 struct wb_writeback_work *work;
1959 long wrote = 0;
1961 set_bit(WB_writeback_running, &wb->state);
1962 while ((work = get_next_work_item(wb)) != NULL) {
1963 trace_writeback_exec(wb, work);
1964 wrote += wb_writeback(wb, work);
1965 finish_writeback_work(wb, work);
1969 * Check for a flush-everything request
1971 wrote += wb_check_start_all(wb);
1974 * Check for periodic writeback, kupdated() style
1976 wrote += wb_check_old_data_flush(wb);
1977 wrote += wb_check_background_flush(wb);
1978 clear_bit(WB_writeback_running, &wb->state);
1980 return wrote;
1984 * Handle writeback of dirty data for the device backed by this bdi. Also
1985 * reschedules periodically and does kupdated style flushing.
1987 void wb_workfn(struct work_struct *work)
1989 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1990 struct bdi_writeback, dwork);
1991 long pages_written;
1993 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1994 current->flags |= PF_SWAPWRITE;
1996 if (likely(!current_is_workqueue_rescuer() ||
1997 !test_bit(WB_registered, &wb->state))) {
1999 * The normal path. Keep writing back @wb until its
2000 * work_list is empty. Note that this path is also taken
2001 * if @wb is shutting down even when we're running off the
2002 * rescuer as work_list needs to be drained.
2004 do {
2005 pages_written = wb_do_writeback(wb);
2006 trace_writeback_pages_written(pages_written);
2007 } while (!list_empty(&wb->work_list));
2008 } else {
2010 * bdi_wq can't get enough workers and we're running off
2011 * the emergency worker. Don't hog it. Hopefully, 1024 is
2012 * enough for efficient IO.
2014 pages_written = writeback_inodes_wb(wb, 1024,
2015 WB_REASON_FORKER_THREAD);
2016 trace_writeback_pages_written(pages_written);
2019 if (!list_empty(&wb->work_list))
2020 wb_wakeup(wb);
2021 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2022 wb_wakeup_delayed(wb);
2024 current->flags &= ~PF_SWAPWRITE;
2028 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2029 * write back the whole world.
2031 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2032 enum wb_reason reason)
2034 struct bdi_writeback *wb;
2036 if (!bdi_has_dirty_io(bdi))
2037 return;
2039 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2040 wb_start_writeback(wb, reason);
2043 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2044 enum wb_reason reason)
2046 rcu_read_lock();
2047 __wakeup_flusher_threads_bdi(bdi, reason);
2048 rcu_read_unlock();
2052 * Wakeup the flusher threads to start writeback of all currently dirty pages
2054 void wakeup_flusher_threads(enum wb_reason reason)
2056 struct backing_dev_info *bdi;
2059 * If we are expecting writeback progress we must submit plugged IO.
2061 if (blk_needs_flush_plug(current))
2062 blk_schedule_flush_plug(current);
2064 rcu_read_lock();
2065 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2066 __wakeup_flusher_threads_bdi(bdi, reason);
2067 rcu_read_unlock();
2071 * Wake up bdi's periodically to make sure dirtytime inodes gets
2072 * written back periodically. We deliberately do *not* check the
2073 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2074 * kernel to be constantly waking up once there are any dirtytime
2075 * inodes on the system. So instead we define a separate delayed work
2076 * function which gets called much more rarely. (By default, only
2077 * once every 12 hours.)
2079 * If there is any other write activity going on in the file system,
2080 * this function won't be necessary. But if the only thing that has
2081 * happened on the file system is a dirtytime inode caused by an atime
2082 * update, we need this infrastructure below to make sure that inode
2083 * eventually gets pushed out to disk.
2085 static void wakeup_dirtytime_writeback(struct work_struct *w);
2086 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2088 static void wakeup_dirtytime_writeback(struct work_struct *w)
2090 struct backing_dev_info *bdi;
2092 rcu_read_lock();
2093 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2094 struct bdi_writeback *wb;
2096 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2097 if (!list_empty(&wb->b_dirty_time))
2098 wb_wakeup(wb);
2100 rcu_read_unlock();
2101 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2104 static int __init start_dirtytime_writeback(void)
2106 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2107 return 0;
2109 __initcall(start_dirtytime_writeback);
2111 int dirtytime_interval_handler(struct ctl_table *table, int write,
2112 void __user *buffer, size_t *lenp, loff_t *ppos)
2114 int ret;
2116 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2117 if (ret == 0 && write)
2118 mod_delayed_work(system_wq, &dirtytime_work, 0);
2119 return ret;
2122 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2124 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2125 struct dentry *dentry;
2126 const char *name = "?";
2128 dentry = d_find_alias(inode);
2129 if (dentry) {
2130 spin_lock(&dentry->d_lock);
2131 name = (const char *) dentry->d_name.name;
2133 printk(KERN_DEBUG
2134 "%s(%d): dirtied inode %lu (%s) on %s\n",
2135 current->comm, task_pid_nr(current), inode->i_ino,
2136 name, inode->i_sb->s_id);
2137 if (dentry) {
2138 spin_unlock(&dentry->d_lock);
2139 dput(dentry);
2145 * __mark_inode_dirty - internal function
2147 * @inode: inode to mark
2148 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2150 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2151 * mark_inode_dirty_sync.
2153 * Put the inode on the super block's dirty list.
2155 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2156 * dirty list only if it is hashed or if it refers to a blockdev.
2157 * If it was not hashed, it will never be added to the dirty list
2158 * even if it is later hashed, as it will have been marked dirty already.
2160 * In short, make sure you hash any inodes _before_ you start marking
2161 * them dirty.
2163 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2164 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2165 * the kernel-internal blockdev inode represents the dirtying time of the
2166 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2167 * page->mapping->host, so the page-dirtying time is recorded in the internal
2168 * blockdev inode.
2170 void __mark_inode_dirty(struct inode *inode, int flags)
2172 struct super_block *sb = inode->i_sb;
2173 int dirtytime;
2175 trace_writeback_mark_inode_dirty(inode, flags);
2178 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2179 * dirty the inode itself
2181 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2182 trace_writeback_dirty_inode_start(inode, flags);
2184 if (sb->s_op->dirty_inode)
2185 sb->s_op->dirty_inode(inode, flags);
2187 trace_writeback_dirty_inode(inode, flags);
2189 if (flags & I_DIRTY_INODE)
2190 flags &= ~I_DIRTY_TIME;
2191 dirtytime = flags & I_DIRTY_TIME;
2194 * Paired with smp_mb() in __writeback_single_inode() for the
2195 * following lockless i_state test. See there for details.
2197 smp_mb();
2199 if (((inode->i_state & flags) == flags) ||
2200 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2201 return;
2203 if (unlikely(block_dump))
2204 block_dump___mark_inode_dirty(inode);
2206 spin_lock(&inode->i_lock);
2207 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2208 goto out_unlock_inode;
2209 if ((inode->i_state & flags) != flags) {
2210 const int was_dirty = inode->i_state & I_DIRTY;
2212 inode_attach_wb(inode, NULL);
2214 if (flags & I_DIRTY_INODE)
2215 inode->i_state &= ~I_DIRTY_TIME;
2216 inode->i_state |= flags;
2219 * If the inode is queued for writeback by flush worker, just
2220 * update its dirty state. Once the flush worker is done with
2221 * the inode it will place it on the appropriate superblock
2222 * list, based upon its state.
2224 if (inode->i_state & I_SYNC_QUEUED)
2225 goto out_unlock_inode;
2228 * Only add valid (hashed) inodes to the superblock's
2229 * dirty list. Add blockdev inodes as well.
2231 if (!S_ISBLK(inode->i_mode)) {
2232 if (inode_unhashed(inode))
2233 goto out_unlock_inode;
2235 if (inode->i_state & I_FREEING)
2236 goto out_unlock_inode;
2239 * If the inode was already on b_dirty/b_io/b_more_io, don't
2240 * reposition it (that would break b_dirty time-ordering).
2242 if (!was_dirty) {
2243 struct bdi_writeback *wb;
2244 struct list_head *dirty_list;
2245 bool wakeup_bdi = false;
2247 wb = locked_inode_to_wb_and_lock_list(inode);
2249 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2250 !test_bit(WB_registered, &wb->state),
2251 "bdi-%s not registered\n", wb->bdi->name);
2253 inode->dirtied_when = jiffies;
2254 if (dirtytime)
2255 inode->dirtied_time_when = jiffies;
2257 if (inode->i_state & I_DIRTY)
2258 dirty_list = &wb->b_dirty;
2259 else
2260 dirty_list = &wb->b_dirty_time;
2262 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2263 dirty_list);
2265 spin_unlock(&wb->list_lock);
2266 trace_writeback_dirty_inode_enqueue(inode);
2269 * If this is the first dirty inode for this bdi,
2270 * we have to wake-up the corresponding bdi thread
2271 * to make sure background write-back happens
2272 * later.
2274 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2275 wb_wakeup_delayed(wb);
2276 return;
2279 out_unlock_inode:
2280 spin_unlock(&inode->i_lock);
2282 EXPORT_SYMBOL(__mark_inode_dirty);
2285 * The @s_sync_lock is used to serialise concurrent sync operations
2286 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2287 * Concurrent callers will block on the s_sync_lock rather than doing contending
2288 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2289 * has been issued up to the time this function is enter is guaranteed to be
2290 * completed by the time we have gained the lock and waited for all IO that is
2291 * in progress regardless of the order callers are granted the lock.
2293 static void wait_sb_inodes(struct super_block *sb)
2295 LIST_HEAD(sync_list);
2298 * We need to be protected against the filesystem going from
2299 * r/o to r/w or vice versa.
2301 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2303 mutex_lock(&sb->s_sync_lock);
2306 * Splice the writeback list onto a temporary list to avoid waiting on
2307 * inodes that have started writeback after this point.
2309 * Use rcu_read_lock() to keep the inodes around until we have a
2310 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2311 * the local list because inodes can be dropped from either by writeback
2312 * completion.
2314 rcu_read_lock();
2315 spin_lock_irq(&sb->s_inode_wblist_lock);
2316 list_splice_init(&sb->s_inodes_wb, &sync_list);
2319 * Data integrity sync. Must wait for all pages under writeback, because
2320 * there may have been pages dirtied before our sync call, but which had
2321 * writeout started before we write it out. In which case, the inode
2322 * may not be on the dirty list, but we still have to wait for that
2323 * writeout.
2325 while (!list_empty(&sync_list)) {
2326 struct inode *inode = list_first_entry(&sync_list, struct inode,
2327 i_wb_list);
2328 struct address_space *mapping = inode->i_mapping;
2331 * Move each inode back to the wb list before we drop the lock
2332 * to preserve consistency between i_wb_list and the mapping
2333 * writeback tag. Writeback completion is responsible to remove
2334 * the inode from either list once the writeback tag is cleared.
2336 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2339 * The mapping can appear untagged while still on-list since we
2340 * do not have the mapping lock. Skip it here, wb completion
2341 * will remove it.
2343 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2344 continue;
2346 spin_unlock_irq(&sb->s_inode_wblist_lock);
2348 spin_lock(&inode->i_lock);
2349 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2350 spin_unlock(&inode->i_lock);
2352 spin_lock_irq(&sb->s_inode_wblist_lock);
2353 continue;
2355 __iget(inode);
2356 spin_unlock(&inode->i_lock);
2357 rcu_read_unlock();
2360 * We keep the error status of individual mapping so that
2361 * applications can catch the writeback error using fsync(2).
2362 * See filemap_fdatawait_keep_errors() for details.
2364 filemap_fdatawait_keep_errors(mapping);
2366 cond_resched();
2368 iput(inode);
2370 rcu_read_lock();
2371 spin_lock_irq(&sb->s_inode_wblist_lock);
2373 spin_unlock_irq(&sb->s_inode_wblist_lock);
2374 rcu_read_unlock();
2375 mutex_unlock(&sb->s_sync_lock);
2378 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2379 enum wb_reason reason, bool skip_if_busy)
2381 DEFINE_WB_COMPLETION_ONSTACK(done);
2382 struct wb_writeback_work work = {
2383 .sb = sb,
2384 .sync_mode = WB_SYNC_NONE,
2385 .tagged_writepages = 1,
2386 .done = &done,
2387 .nr_pages = nr,
2388 .reason = reason,
2390 struct backing_dev_info *bdi = sb->s_bdi;
2392 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2393 return;
2394 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2396 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2397 wb_wait_for_completion(bdi, &done);
2401 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2402 * @sb: the superblock
2403 * @nr: the number of pages to write
2404 * @reason: reason why some writeback work initiated
2406 * Start writeback on some inodes on this super_block. No guarantees are made
2407 * on how many (if any) will be written, and this function does not wait
2408 * for IO completion of submitted IO.
2410 void writeback_inodes_sb_nr(struct super_block *sb,
2411 unsigned long nr,
2412 enum wb_reason reason)
2414 __writeback_inodes_sb_nr(sb, nr, reason, false);
2416 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2419 * writeback_inodes_sb - writeback dirty inodes from given super_block
2420 * @sb: the superblock
2421 * @reason: reason why some writeback work was initiated
2423 * Start writeback on some inodes on this super_block. No guarantees are made
2424 * on how many (if any) will be written, and this function does not wait
2425 * for IO completion of submitted IO.
2427 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2429 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2431 EXPORT_SYMBOL(writeback_inodes_sb);
2434 * try_to_writeback_inodes_sb - try to start writeback if none underway
2435 * @sb: the superblock
2436 * @reason: reason why some writeback work was initiated
2438 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2440 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2442 if (!down_read_trylock(&sb->s_umount))
2443 return;
2445 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2446 up_read(&sb->s_umount);
2448 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2451 * sync_inodes_sb - sync sb inode pages
2452 * @sb: the superblock
2454 * This function writes and waits on any dirty inode belonging to this
2455 * super_block.
2457 void sync_inodes_sb(struct super_block *sb)
2459 DEFINE_WB_COMPLETION_ONSTACK(done);
2460 struct wb_writeback_work work = {
2461 .sb = sb,
2462 .sync_mode = WB_SYNC_ALL,
2463 .nr_pages = LONG_MAX,
2464 .range_cyclic = 0,
2465 .done = &done,
2466 .reason = WB_REASON_SYNC,
2467 .for_sync = 1,
2469 struct backing_dev_info *bdi = sb->s_bdi;
2472 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2473 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2474 * bdi_has_dirty() need to be written out too.
2476 if (bdi == &noop_backing_dev_info)
2477 return;
2478 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2480 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2481 bdi_down_write_wb_switch_rwsem(bdi);
2482 bdi_split_work_to_wbs(bdi, &work, false);
2483 wb_wait_for_completion(bdi, &done);
2484 bdi_up_write_wb_switch_rwsem(bdi);
2486 wait_sb_inodes(sb);
2488 EXPORT_SYMBOL(sync_inodes_sb);
2491 * write_inode_now - write an inode to disk
2492 * @inode: inode to write to disk
2493 * @sync: whether the write should be synchronous or not
2495 * This function commits an inode to disk immediately if it is dirty. This is
2496 * primarily needed by knfsd.
2498 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2500 int write_inode_now(struct inode *inode, int sync)
2502 struct writeback_control wbc = {
2503 .nr_to_write = LONG_MAX,
2504 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2505 .range_start = 0,
2506 .range_end = LLONG_MAX,
2509 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2510 wbc.nr_to_write = 0;
2512 might_sleep();
2513 return writeback_single_inode(inode, &wbc);
2515 EXPORT_SYMBOL(write_inode_now);
2518 * sync_inode - write an inode and its pages to disk.
2519 * @inode: the inode to sync
2520 * @wbc: controls the writeback mode
2522 * sync_inode() will write an inode and its pages to disk. It will also
2523 * correctly update the inode on its superblock's dirty inode lists and will
2524 * update inode->i_state.
2526 * The caller must have a ref on the inode.
2528 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2530 return writeback_single_inode(inode, wbc);
2532 EXPORT_SYMBOL(sync_inode);
2535 * sync_inode_metadata - write an inode to disk
2536 * @inode: the inode to sync
2537 * @wait: wait for I/O to complete.
2539 * Write an inode to disk and adjust its dirty state after completion.
2541 * Note: only writes the actual inode, no associated data or other metadata.
2543 int sync_inode_metadata(struct inode *inode, int wait)
2545 struct writeback_control wbc = {
2546 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2547 .nr_to_write = 0, /* metadata-only */
2550 return sync_inode(inode, &wbc);
2552 EXPORT_SYMBOL(sync_inode_metadata);