4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
34 * 4MB minimal write chunk size
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38 struct wb_completion
{
43 * Passed into wb_writeback(), essentially a subset of writeback_control
45 struct wb_writeback_work
{
47 struct super_block
*sb
;
48 enum writeback_sync_modes sync_mode
;
49 unsigned int tagged_writepages
:1;
50 unsigned int for_kupdate
:1;
51 unsigned int range_cyclic
:1;
52 unsigned int for_background
:1;
53 unsigned int for_sync
:1; /* sync(2) WB_SYNC_ALL writeback */
54 unsigned int auto_free
:1; /* free on completion */
55 enum wb_reason reason
; /* why was writeback initiated? */
57 struct list_head list
; /* pending work list */
58 struct wb_completion
*done
; /* set if the caller waits */
62 * If one wants to wait for one or more wb_writeback_works, each work's
63 * ->done should be set to a wb_completion defined using the following
64 * macro. Once all work items are issued with wb_queue_work(), the caller
65 * can wait for the completion of all using wb_wait_for_completion(). Work
66 * items which are waited upon aren't freed automatically on completion.
68 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
69 struct wb_completion cmpl = { \
70 .cnt = ATOMIC_INIT(1), \
75 * If an inode is constantly having its pages dirtied, but then the
76 * updates stop dirtytime_expire_interval seconds in the past, it's
77 * possible for the worst case time between when an inode has its
78 * timestamps updated and when they finally get written out to be two
79 * dirtytime_expire_intervals. We set the default to 12 hours (in
80 * seconds), which means most of the time inodes will have their
81 * timestamps written to disk after 12 hours, but in the worst case a
82 * few inodes might not their timestamps updated for 24 hours.
84 unsigned int dirtytime_expire_interval
= 12 * 60 * 60;
86 static inline struct inode
*wb_inode(struct list_head
*head
)
88 return list_entry(head
, struct inode
, i_io_list
);
92 * Include the creation of the trace points after defining the
93 * wb_writeback_work structure and inline functions so that the definition
94 * remains local to this file.
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/writeback.h>
99 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage
);
101 static bool wb_io_lists_populated(struct bdi_writeback
*wb
)
103 if (wb_has_dirty_io(wb
)) {
106 set_bit(WB_has_dirty_io
, &wb
->state
);
107 WARN_ON_ONCE(!wb
->avg_write_bandwidth
);
108 atomic_long_add(wb
->avg_write_bandwidth
,
109 &wb
->bdi
->tot_write_bandwidth
);
114 static void wb_io_lists_depopulated(struct bdi_writeback
*wb
)
116 if (wb_has_dirty_io(wb
) && list_empty(&wb
->b_dirty
) &&
117 list_empty(&wb
->b_io
) && list_empty(&wb
->b_more_io
)) {
118 clear_bit(WB_has_dirty_io
, &wb
->state
);
119 WARN_ON_ONCE(atomic_long_sub_return(wb
->avg_write_bandwidth
,
120 &wb
->bdi
->tot_write_bandwidth
) < 0);
125 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
126 * @inode: inode to be moved
127 * @wb: target bdi_writeback
128 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
130 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
131 * Returns %true if @inode is the first occupant of the !dirty_time IO
132 * lists; otherwise, %false.
134 static bool inode_io_list_move_locked(struct inode
*inode
,
135 struct bdi_writeback
*wb
,
136 struct list_head
*head
)
138 assert_spin_locked(&wb
->list_lock
);
140 list_move(&inode
->i_io_list
, head
);
142 /* dirty_time doesn't count as dirty_io until expiration */
143 if (head
!= &wb
->b_dirty_time
)
144 return wb_io_lists_populated(wb
);
146 wb_io_lists_depopulated(wb
);
151 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
152 * @inode: inode to be removed
153 * @wb: bdi_writeback @inode is being removed from
155 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
156 * clear %WB_has_dirty_io if all are empty afterwards.
158 static void inode_io_list_del_locked(struct inode
*inode
,
159 struct bdi_writeback
*wb
)
161 assert_spin_locked(&wb
->list_lock
);
162 assert_spin_locked(&inode
->i_lock
);
164 inode
->i_state
&= ~I_SYNC_QUEUED
;
165 list_del_init(&inode
->i_io_list
);
166 wb_io_lists_depopulated(wb
);
169 static void wb_wakeup(struct bdi_writeback
*wb
)
171 spin_lock_bh(&wb
->work_lock
);
172 if (test_bit(WB_registered
, &wb
->state
))
173 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
174 spin_unlock_bh(&wb
->work_lock
);
177 static void finish_writeback_work(struct bdi_writeback
*wb
,
178 struct wb_writeback_work
*work
)
180 struct wb_completion
*done
= work
->done
;
184 if (done
&& atomic_dec_and_test(&done
->cnt
))
185 wake_up_all(&wb
->bdi
->wb_waitq
);
188 static void wb_queue_work(struct bdi_writeback
*wb
,
189 struct wb_writeback_work
*work
)
191 trace_writeback_queue(wb
, work
);
194 atomic_inc(&work
->done
->cnt
);
196 spin_lock_bh(&wb
->work_lock
);
198 if (test_bit(WB_registered
, &wb
->state
)) {
199 list_add_tail(&work
->list
, &wb
->work_list
);
200 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
202 finish_writeback_work(wb
, work
);
204 spin_unlock_bh(&wb
->work_lock
);
208 * wb_wait_for_completion - wait for completion of bdi_writeback_works
209 * @bdi: bdi work items were issued to
210 * @done: target wb_completion
212 * Wait for one or more work items issued to @bdi with their ->done field
213 * set to @done, which should have been defined with
214 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
215 * work items are completed. Work items which are waited upon aren't freed
216 * automatically on completion.
218 static void wb_wait_for_completion(struct backing_dev_info
*bdi
,
219 struct wb_completion
*done
)
221 atomic_dec(&done
->cnt
); /* put down the initial count */
222 wait_event(bdi
->wb_waitq
, !atomic_read(&done
->cnt
));
225 #ifdef CONFIG_CGROUP_WRITEBACK
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
233 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 /* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
237 /* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 /* one round can affect upto 5 slots */
241 static atomic_t isw_nr_in_flight
= ATOMIC_INIT(0);
242 static struct workqueue_struct
*isw_wq
;
244 void __inode_attach_wb(struct inode
*inode
, struct page
*page
)
246 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
247 struct bdi_writeback
*wb
= NULL
;
249 if (inode_cgwb_enabled(inode
)) {
250 struct cgroup_subsys_state
*memcg_css
;
253 memcg_css
= mem_cgroup_css_from_page(page
);
254 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
256 /* must pin memcg_css, see wb_get_create() */
257 memcg_css
= task_get_css(current
, memory_cgrp_id
);
258 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
267 * There may be multiple instances of this function racing to
268 * update the same inode. Use cmpxchg() to tell the winner.
270 if (unlikely(cmpxchg(&inode
->i_wb
, NULL
, wb
)))
273 EXPORT_SYMBOL_GPL(__inode_attach_wb
);
276 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277 * @inode: inode of interest with i_lock held
279 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
280 * held on entry and is released on return. The returned wb is guaranteed
281 * to stay @inode's associated wb until its list_lock is released.
283 static struct bdi_writeback
*
284 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
285 __releases(&inode
->i_lock
)
286 __acquires(&wb
->list_lock
)
289 struct bdi_writeback
*wb
= inode_to_wb(inode
);
292 * inode_to_wb() association is protected by both
293 * @inode->i_lock and @wb->list_lock but list_lock nests
294 * outside i_lock. Drop i_lock and verify that the
295 * association hasn't changed after acquiring list_lock.
298 spin_unlock(&inode
->i_lock
);
299 spin_lock(&wb
->list_lock
);
301 /* i_wb may have changed inbetween, can't use inode_to_wb() */
302 if (likely(wb
== inode
->i_wb
)) {
303 wb_put(wb
); /* @inode already has ref */
307 spin_unlock(&wb
->list_lock
);
310 spin_lock(&inode
->i_lock
);
315 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316 * @inode: inode of interest
318 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
321 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
322 __acquires(&wb
->list_lock
)
324 spin_lock(&inode
->i_lock
);
325 return locked_inode_to_wb_and_lock_list(inode
);
328 struct inode_switch_wbs_context
{
330 struct bdi_writeback
*new_wb
;
332 struct rcu_head rcu_head
;
333 struct work_struct work
;
336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info
*bdi
)
338 down_write(&bdi
->wb_switch_rwsem
);
341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info
*bdi
)
343 up_write(&bdi
->wb_switch_rwsem
);
346 static void inode_switch_wbs_work_fn(struct work_struct
*work
)
348 struct inode_switch_wbs_context
*isw
=
349 container_of(work
, struct inode_switch_wbs_context
, work
);
350 struct inode
*inode
= isw
->inode
;
351 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
352 struct address_space
*mapping
= inode
->i_mapping
;
353 struct bdi_writeback
*old_wb
= inode
->i_wb
;
354 struct bdi_writeback
*new_wb
= isw
->new_wb
;
355 struct radix_tree_iter iter
;
356 bool switched
= false;
360 * If @inode switches cgwb membership while sync_inodes_sb() is
361 * being issued, sync_inodes_sb() might miss it. Synchronize.
363 down_read(&bdi
->wb_switch_rwsem
);
366 * By the time control reaches here, RCU grace period has passed
367 * since I_WB_SWITCH assertion and all wb stat update transactions
368 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369 * synchronizing against the i_pages lock.
371 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372 * gives us exclusion against all wb related operations on @inode
373 * including IO list manipulations and stat updates.
375 if (old_wb
< new_wb
) {
376 spin_lock(&old_wb
->list_lock
);
377 spin_lock_nested(&new_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
379 spin_lock(&new_wb
->list_lock
);
380 spin_lock_nested(&old_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
382 spin_lock(&inode
->i_lock
);
383 xa_lock_irq(&mapping
->i_pages
);
386 * Once I_FREEING is visible under i_lock, the eviction path owns
387 * the inode and we shouldn't modify ->i_io_list.
389 if (unlikely(inode
->i_state
& I_FREEING
))
393 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
394 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
395 * pages actually under writeback.
397 radix_tree_for_each_tagged(slot
, &mapping
->i_pages
, &iter
, 0,
398 PAGECACHE_TAG_DIRTY
) {
399 struct page
*page
= radix_tree_deref_slot_protected(slot
,
400 &mapping
->i_pages
.xa_lock
);
401 if (likely(page
) && PageDirty(page
)) {
402 dec_wb_stat(old_wb
, WB_RECLAIMABLE
);
403 inc_wb_stat(new_wb
, WB_RECLAIMABLE
);
407 radix_tree_for_each_tagged(slot
, &mapping
->i_pages
, &iter
, 0,
408 PAGECACHE_TAG_WRITEBACK
) {
409 struct page
*page
= radix_tree_deref_slot_protected(slot
,
410 &mapping
->i_pages
.xa_lock
);
412 WARN_ON_ONCE(!PageWriteback(page
));
413 dec_wb_stat(old_wb
, WB_WRITEBACK
);
414 inc_wb_stat(new_wb
, WB_WRITEBACK
);
421 * Transfer to @new_wb's IO list if necessary. The specific list
422 * @inode was on is ignored and the inode is put on ->b_dirty which
423 * is always correct including from ->b_dirty_time. The transfer
424 * preserves @inode->dirtied_when ordering.
426 if (!list_empty(&inode
->i_io_list
)) {
429 inode_io_list_del_locked(inode
, old_wb
);
430 inode
->i_wb
= new_wb
;
431 list_for_each_entry(pos
, &new_wb
->b_dirty
, i_io_list
)
432 if (time_after_eq(inode
->dirtied_when
,
435 inode_io_list_move_locked(inode
, new_wb
, pos
->i_io_list
.prev
);
437 inode
->i_wb
= new_wb
;
440 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441 inode
->i_wb_frn_winner
= 0;
442 inode
->i_wb_frn_avg_time
= 0;
443 inode
->i_wb_frn_history
= 0;
447 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448 * ensures that the new wb is visible if they see !I_WB_SWITCH.
450 smp_store_release(&inode
->i_state
, inode
->i_state
& ~I_WB_SWITCH
);
452 xa_unlock_irq(&mapping
->i_pages
);
453 spin_unlock(&inode
->i_lock
);
454 spin_unlock(&new_wb
->list_lock
);
455 spin_unlock(&old_wb
->list_lock
);
457 up_read(&bdi
->wb_switch_rwsem
);
468 atomic_dec(&isw_nr_in_flight
);
471 static void inode_switch_wbs_rcu_fn(struct rcu_head
*rcu_head
)
473 struct inode_switch_wbs_context
*isw
= container_of(rcu_head
,
474 struct inode_switch_wbs_context
, rcu_head
);
476 /* needs to grab bh-unsafe locks, bounce to work item */
477 INIT_WORK(&isw
->work
, inode_switch_wbs_work_fn
);
478 queue_work(isw_wq
, &isw
->work
);
482 * inode_switch_wbs - change the wb association of an inode
483 * @inode: target inode
484 * @new_wb_id: ID of the new wb
486 * Switch @inode's wb association to the wb identified by @new_wb_id. The
487 * switching is performed asynchronously and may fail silently.
489 static void inode_switch_wbs(struct inode
*inode
, int new_wb_id
)
491 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
492 struct cgroup_subsys_state
*memcg_css
;
493 struct inode_switch_wbs_context
*isw
;
495 /* noop if seems to be already in progress */
496 if (inode
->i_state
& I_WB_SWITCH
)
500 * Avoid starting new switches while sync_inodes_sb() is in
501 * progress. Otherwise, if the down_write protected issue path
502 * blocks heavily, we might end up starting a large number of
503 * switches which will block on the rwsem.
505 if (!down_read_trylock(&bdi
->wb_switch_rwsem
))
508 isw
= kzalloc(sizeof(*isw
), GFP_ATOMIC
);
512 /* find and pin the new wb */
514 memcg_css
= css_from_id(new_wb_id
, &memory_cgrp_subsys
);
516 isw
->new_wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
521 /* while holding I_WB_SWITCH, no one else can update the association */
522 spin_lock(&inode
->i_lock
);
523 if (!(inode
->i_sb
->s_flags
& SB_ACTIVE
) ||
524 inode
->i_state
& (I_WB_SWITCH
| I_FREEING
) ||
525 inode_to_wb(inode
) == isw
->new_wb
) {
526 spin_unlock(&inode
->i_lock
);
529 inode
->i_state
|= I_WB_SWITCH
;
531 spin_unlock(&inode
->i_lock
);
536 * In addition to synchronizing among switchers, I_WB_SWITCH tells
537 * the RCU protected stat update paths to grab the i_page
538 * lock so that stat transfer can synchronize against them.
539 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
541 call_rcu(&isw
->rcu_head
, inode_switch_wbs_rcu_fn
);
543 atomic_inc(&isw_nr_in_flight
);
552 up_read(&bdi
->wb_switch_rwsem
);
556 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
557 * @wbc: writeback_control of interest
558 * @inode: target inode
560 * @inode is locked and about to be written back under the control of @wbc.
561 * Record @inode's writeback context into @wbc and unlock the i_lock. On
562 * writeback completion, wbc_detach_inode() should be called. This is used
563 * to track the cgroup writeback context.
565 void wbc_attach_and_unlock_inode(struct writeback_control
*wbc
,
568 if (!inode_cgwb_enabled(inode
)) {
569 spin_unlock(&inode
->i_lock
);
573 wbc
->wb
= inode_to_wb(inode
);
576 wbc
->wb_id
= wbc
->wb
->memcg_css
->id
;
577 wbc
->wb_lcand_id
= inode
->i_wb_frn_winner
;
578 wbc
->wb_tcand_id
= 0;
580 wbc
->wb_lcand_bytes
= 0;
581 wbc
->wb_tcand_bytes
= 0;
584 spin_unlock(&inode
->i_lock
);
587 * A dying wb indicates that either the blkcg associated with the
588 * memcg changed or the associated memcg is dying. In the first
589 * case, a replacement wb should already be available and we should
590 * refresh the wb immediately. In the second case, trying to
591 * refresh will keep failing.
593 if (unlikely(wb_dying(wbc
->wb
) && !css_is_dying(wbc
->wb
->memcg_css
)))
594 inode_switch_wbs(inode
, wbc
->wb_id
);
598 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
599 * @wbc: writeback_control of the just finished writeback
601 * To be called after a writeback attempt of an inode finishes and undoes
602 * wbc_attach_and_unlock_inode(). Can be called under any context.
604 * As concurrent write sharing of an inode is expected to be very rare and
605 * memcg only tracks page ownership on first-use basis severely confining
606 * the usefulness of such sharing, cgroup writeback tracks ownership
607 * per-inode. While the support for concurrent write sharing of an inode
608 * is deemed unnecessary, an inode being written to by different cgroups at
609 * different points in time is a lot more common, and, more importantly,
610 * charging only by first-use can too readily lead to grossly incorrect
611 * behaviors (single foreign page can lead to gigabytes of writeback to be
612 * incorrectly attributed).
614 * To resolve this issue, cgroup writeback detects the majority dirtier of
615 * an inode and transfers the ownership to it. To avoid unnnecessary
616 * oscillation, the detection mechanism keeps track of history and gives
617 * out the switch verdict only if the foreign usage pattern is stable over
618 * a certain amount of time and/or writeback attempts.
620 * On each writeback attempt, @wbc tries to detect the majority writer
621 * using Boyer-Moore majority vote algorithm. In addition to the byte
622 * count from the majority voting, it also counts the bytes written for the
623 * current wb and the last round's winner wb (max of last round's current
624 * wb, the winner from two rounds ago, and the last round's majority
625 * candidate). Keeping track of the historical winner helps the algorithm
626 * to semi-reliably detect the most active writer even when it's not the
629 * Once the winner of the round is determined, whether the winner is
630 * foreign or not and how much IO time the round consumed is recorded in
631 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
632 * over a certain threshold, the switch verdict is given.
634 void wbc_detach_inode(struct writeback_control
*wbc
)
636 struct bdi_writeback
*wb
= wbc
->wb
;
637 struct inode
*inode
= wbc
->inode
;
638 unsigned long avg_time
, max_bytes
, max_time
;
645 history
= inode
->i_wb_frn_history
;
646 avg_time
= inode
->i_wb_frn_avg_time
;
648 /* pick the winner of this round */
649 if (wbc
->wb_bytes
>= wbc
->wb_lcand_bytes
&&
650 wbc
->wb_bytes
>= wbc
->wb_tcand_bytes
) {
652 max_bytes
= wbc
->wb_bytes
;
653 } else if (wbc
->wb_lcand_bytes
>= wbc
->wb_tcand_bytes
) {
654 max_id
= wbc
->wb_lcand_id
;
655 max_bytes
= wbc
->wb_lcand_bytes
;
657 max_id
= wbc
->wb_tcand_id
;
658 max_bytes
= wbc
->wb_tcand_bytes
;
662 * Calculate the amount of IO time the winner consumed and fold it
663 * into the running average kept per inode. If the consumed IO
664 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
665 * deciding whether to switch or not. This is to prevent one-off
666 * small dirtiers from skewing the verdict.
668 max_time
= DIV_ROUND_UP((max_bytes
>> PAGE_SHIFT
) << WB_FRN_TIME_SHIFT
,
669 wb
->avg_write_bandwidth
);
671 avg_time
+= (max_time
>> WB_FRN_TIME_AVG_SHIFT
) -
672 (avg_time
>> WB_FRN_TIME_AVG_SHIFT
);
674 avg_time
= max_time
; /* immediate catch up on first run */
676 if (max_time
>= avg_time
/ WB_FRN_TIME_CUT_DIV
) {
680 * The switch verdict is reached if foreign wb's consume
681 * more than a certain proportion of IO time in a
682 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
683 * history mask where each bit represents one sixteenth of
684 * the period. Determine the number of slots to shift into
685 * history from @max_time.
687 slots
= min(DIV_ROUND_UP(max_time
, WB_FRN_HIST_UNIT
),
688 (unsigned long)WB_FRN_HIST_MAX_SLOTS
);
690 if (wbc
->wb_id
!= max_id
)
691 history
|= (1U << slots
) - 1;
694 * Switch if the current wb isn't the consistent winner.
695 * If there are multiple closely competing dirtiers, the
696 * inode may switch across them repeatedly over time, which
697 * is okay. The main goal is avoiding keeping an inode on
698 * the wrong wb for an extended period of time.
700 if (hweight32(history
) > WB_FRN_HIST_THR_SLOTS
)
701 inode_switch_wbs(inode
, max_id
);
705 * Multiple instances of this function may race to update the
706 * following fields but we don't mind occassional inaccuracies.
708 inode
->i_wb_frn_winner
= max_id
;
709 inode
->i_wb_frn_avg_time
= min(avg_time
, (unsigned long)U16_MAX
);
710 inode
->i_wb_frn_history
= history
;
717 * wbc_account_io - account IO issued during writeback
718 * @wbc: writeback_control of the writeback in progress
719 * @page: page being written out
720 * @bytes: number of bytes being written out
722 * @bytes from @page are about to written out during the writeback
723 * controlled by @wbc. Keep the book for foreign inode detection. See
724 * wbc_detach_inode().
726 void wbc_account_io(struct writeback_control
*wbc
, struct page
*page
,
729 struct cgroup_subsys_state
*css
;
733 * pageout() path doesn't attach @wbc to the inode being written
734 * out. This is intentional as we don't want the function to block
735 * behind a slow cgroup. Ultimately, we want pageout() to kick off
736 * regular writeback instead of writing things out itself.
741 css
= mem_cgroup_css_from_page(page
);
742 /* dead cgroups shouldn't contribute to inode ownership arbitration */
743 if (!(css
->flags
& CSS_ONLINE
))
748 if (id
== wbc
->wb_id
) {
749 wbc
->wb_bytes
+= bytes
;
753 if (id
== wbc
->wb_lcand_id
)
754 wbc
->wb_lcand_bytes
+= bytes
;
756 /* Boyer-Moore majority vote algorithm */
757 if (!wbc
->wb_tcand_bytes
)
758 wbc
->wb_tcand_id
= id
;
759 if (id
== wbc
->wb_tcand_id
)
760 wbc
->wb_tcand_bytes
+= bytes
;
762 wbc
->wb_tcand_bytes
-= min(bytes
, wbc
->wb_tcand_bytes
);
764 EXPORT_SYMBOL_GPL(wbc_account_io
);
767 * inode_congested - test whether an inode is congested
768 * @inode: inode to test for congestion (may be NULL)
769 * @cong_bits: mask of WB_[a]sync_congested bits to test
771 * Tests whether @inode is congested. @cong_bits is the mask of congestion
772 * bits to test and the return value is the mask of set bits.
774 * If cgroup writeback is enabled for @inode, the congestion state is
775 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
776 * associated with @inode is congested; otherwise, the root wb's congestion
779 * @inode is allowed to be NULL as this function is often called on
780 * mapping->host which is NULL for the swapper space.
782 int inode_congested(struct inode
*inode
, int cong_bits
)
785 * Once set, ->i_wb never becomes NULL while the inode is alive.
786 * Start transaction iff ->i_wb is visible.
788 if (inode
&& inode_to_wb_is_valid(inode
)) {
789 struct bdi_writeback
*wb
;
790 struct wb_lock_cookie lock_cookie
= {};
793 wb
= unlocked_inode_to_wb_begin(inode
, &lock_cookie
);
794 congested
= wb_congested(wb
, cong_bits
);
795 unlocked_inode_to_wb_end(inode
, &lock_cookie
);
799 return wb_congested(&inode_to_bdi(inode
)->wb
, cong_bits
);
801 EXPORT_SYMBOL_GPL(inode_congested
);
804 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
805 * @wb: target bdi_writeback to split @nr_pages to
806 * @nr_pages: number of pages to write for the whole bdi
808 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
809 * relation to the total write bandwidth of all wb's w/ dirty inodes on
812 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
814 unsigned long this_bw
= wb
->avg_write_bandwidth
;
815 unsigned long tot_bw
= atomic_long_read(&wb
->bdi
->tot_write_bandwidth
);
817 if (nr_pages
== LONG_MAX
)
821 * This may be called on clean wb's and proportional distribution
822 * may not make sense, just use the original @nr_pages in those
823 * cases. In general, we wanna err on the side of writing more.
825 if (!tot_bw
|| this_bw
>= tot_bw
)
828 return DIV_ROUND_UP_ULL((u64
)nr_pages
* this_bw
, tot_bw
);
832 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
833 * @bdi: target backing_dev_info
834 * @base_work: wb_writeback_work to issue
835 * @skip_if_busy: skip wb's which already have writeback in progress
837 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
838 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
839 * distributed to the busy wbs according to each wb's proportion in the
840 * total active write bandwidth of @bdi.
842 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
843 struct wb_writeback_work
*base_work
,
846 struct bdi_writeback
*last_wb
= NULL
;
847 struct bdi_writeback
*wb
= list_entry(&bdi
->wb_list
,
848 struct bdi_writeback
, bdi_node
);
853 list_for_each_entry_continue_rcu(wb
, &bdi
->wb_list
, bdi_node
) {
854 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done
);
855 struct wb_writeback_work fallback_work
;
856 struct wb_writeback_work
*work
;
864 /* SYNC_ALL writes out I_DIRTY_TIME too */
865 if (!wb_has_dirty_io(wb
) &&
866 (base_work
->sync_mode
== WB_SYNC_NONE
||
867 list_empty(&wb
->b_dirty_time
)))
869 if (skip_if_busy
&& writeback_in_progress(wb
))
872 nr_pages
= wb_split_bdi_pages(wb
, base_work
->nr_pages
);
874 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
877 work
->nr_pages
= nr_pages
;
879 wb_queue_work(wb
, work
);
883 /* alloc failed, execute synchronously using on-stack fallback */
884 work
= &fallback_work
;
886 work
->nr_pages
= nr_pages
;
888 work
->done
= &fallback_work_done
;
890 wb_queue_work(wb
, work
);
893 * Pin @wb so that it stays on @bdi->wb_list. This allows
894 * continuing iteration from @wb after dropping and
895 * regrabbing rcu read lock.
901 wb_wait_for_completion(bdi
, &fallback_work_done
);
911 * cgroup_writeback_umount - flush inode wb switches for umount
913 * This function is called when a super_block is about to be destroyed and
914 * flushes in-flight inode wb switches. An inode wb switch goes through
915 * RCU and then workqueue, so the two need to be flushed in order to ensure
916 * that all previously scheduled switches are finished. As wb switches are
917 * rare occurrences and synchronize_rcu() can take a while, perform
918 * flushing iff wb switches are in flight.
920 void cgroup_writeback_umount(void)
922 if (atomic_read(&isw_nr_in_flight
)) {
924 * Use rcu_barrier() to wait for all pending callbacks to
925 * ensure that all in-flight wb switches are in the workqueue.
928 flush_workqueue(isw_wq
);
932 static int __init
cgroup_writeback_init(void)
934 isw_wq
= alloc_workqueue("inode_switch_wbs", 0, 0);
939 fs_initcall(cgroup_writeback_init
);
941 #else /* CONFIG_CGROUP_WRITEBACK */
943 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info
*bdi
) { }
944 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info
*bdi
) { }
946 static struct bdi_writeback
*
947 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
948 __releases(&inode
->i_lock
)
949 __acquires(&wb
->list_lock
)
951 struct bdi_writeback
*wb
= inode_to_wb(inode
);
953 spin_unlock(&inode
->i_lock
);
954 spin_lock(&wb
->list_lock
);
958 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
959 __acquires(&wb
->list_lock
)
961 struct bdi_writeback
*wb
= inode_to_wb(inode
);
963 spin_lock(&wb
->list_lock
);
967 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
972 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
973 struct wb_writeback_work
*base_work
,
978 if (!skip_if_busy
|| !writeback_in_progress(&bdi
->wb
)) {
979 base_work
->auto_free
= 0;
980 wb_queue_work(&bdi
->wb
, base_work
);
984 #endif /* CONFIG_CGROUP_WRITEBACK */
987 * Add in the number of potentially dirty inodes, because each inode
988 * write can dirty pagecache in the underlying blockdev.
990 static unsigned long get_nr_dirty_pages(void)
992 return global_node_page_state(NR_FILE_DIRTY
) +
993 global_node_page_state(NR_UNSTABLE_NFS
) +
994 get_nr_dirty_inodes();
997 static void wb_start_writeback(struct bdi_writeback
*wb
, enum wb_reason reason
)
999 if (!wb_has_dirty_io(wb
))
1003 * All callers of this function want to start writeback of all
1004 * dirty pages. Places like vmscan can call this at a very
1005 * high frequency, causing pointless allocations of tons of
1006 * work items and keeping the flusher threads busy retrieving
1007 * that work. Ensure that we only allow one of them pending and
1008 * inflight at the time.
1010 if (test_bit(WB_start_all
, &wb
->state
) ||
1011 test_and_set_bit(WB_start_all
, &wb
->state
))
1014 wb
->start_all_reason
= reason
;
1019 * wb_start_background_writeback - start background writeback
1020 * @wb: bdi_writback to write from
1023 * This makes sure WB_SYNC_NONE background writeback happens. When
1024 * this function returns, it is only guaranteed that for given wb
1025 * some IO is happening if we are over background dirty threshold.
1026 * Caller need not hold sb s_umount semaphore.
1028 void wb_start_background_writeback(struct bdi_writeback
*wb
)
1031 * We just wake up the flusher thread. It will perform background
1032 * writeback as soon as there is no other work to do.
1034 trace_writeback_wake_background(wb
);
1039 * Remove the inode from the writeback list it is on.
1041 void inode_io_list_del(struct inode
*inode
)
1043 struct bdi_writeback
*wb
;
1045 wb
= inode_to_wb_and_lock_list(inode
);
1046 spin_lock(&inode
->i_lock
);
1047 inode_io_list_del_locked(inode
, wb
);
1048 spin_unlock(&inode
->i_lock
);
1049 spin_unlock(&wb
->list_lock
);
1053 * mark an inode as under writeback on the sb
1055 void sb_mark_inode_writeback(struct inode
*inode
)
1057 struct super_block
*sb
= inode
->i_sb
;
1058 unsigned long flags
;
1060 if (list_empty(&inode
->i_wb_list
)) {
1061 spin_lock_irqsave(&sb
->s_inode_wblist_lock
, flags
);
1062 if (list_empty(&inode
->i_wb_list
)) {
1063 list_add_tail(&inode
->i_wb_list
, &sb
->s_inodes_wb
);
1064 trace_sb_mark_inode_writeback(inode
);
1066 spin_unlock_irqrestore(&sb
->s_inode_wblist_lock
, flags
);
1071 * clear an inode as under writeback on the sb
1073 void sb_clear_inode_writeback(struct inode
*inode
)
1075 struct super_block
*sb
= inode
->i_sb
;
1076 unsigned long flags
;
1078 if (!list_empty(&inode
->i_wb_list
)) {
1079 spin_lock_irqsave(&sb
->s_inode_wblist_lock
, flags
);
1080 if (!list_empty(&inode
->i_wb_list
)) {
1081 list_del_init(&inode
->i_wb_list
);
1082 trace_sb_clear_inode_writeback(inode
);
1084 spin_unlock_irqrestore(&sb
->s_inode_wblist_lock
, flags
);
1089 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1090 * furthest end of its superblock's dirty-inode list.
1092 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1093 * already the most-recently-dirtied inode on the b_dirty list. If that is
1094 * the case then the inode must have been redirtied while it was being written
1095 * out and we don't reset its dirtied_when.
1097 static void redirty_tail_locked(struct inode
*inode
, struct bdi_writeback
*wb
)
1099 assert_spin_locked(&inode
->i_lock
);
1101 if (!list_empty(&wb
->b_dirty
)) {
1104 tail
= wb_inode(wb
->b_dirty
.next
);
1105 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
1106 inode
->dirtied_when
= jiffies
;
1108 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty
);
1109 inode
->i_state
&= ~I_SYNC_QUEUED
;
1112 static void redirty_tail(struct inode
*inode
, struct bdi_writeback
*wb
)
1114 spin_lock(&inode
->i_lock
);
1115 redirty_tail_locked(inode
, wb
);
1116 spin_unlock(&inode
->i_lock
);
1120 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1122 static void requeue_io(struct inode
*inode
, struct bdi_writeback
*wb
)
1124 inode_io_list_move_locked(inode
, wb
, &wb
->b_more_io
);
1127 static void inode_sync_complete(struct inode
*inode
)
1129 inode
->i_state
&= ~I_SYNC
;
1130 /* If inode is clean an unused, put it into LRU now... */
1131 inode_add_lru(inode
);
1132 /* Waiters must see I_SYNC cleared before being woken up */
1134 wake_up_bit(&inode
->i_state
, __I_SYNC
);
1137 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
1139 bool ret
= time_after(inode
->dirtied_when
, t
);
1140 #ifndef CONFIG_64BIT
1142 * For inodes being constantly redirtied, dirtied_when can get stuck.
1143 * It _appears_ to be in the future, but is actually in distant past.
1144 * This test is necessary to prevent such wrapped-around relative times
1145 * from permanently stopping the whole bdi writeback.
1147 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
1152 #define EXPIRE_DIRTY_ATIME 0x0001
1155 * Move expired (dirtied before dirtied_before) dirty inodes from
1156 * @delaying_queue to @dispatch_queue.
1158 static int move_expired_inodes(struct list_head
*delaying_queue
,
1159 struct list_head
*dispatch_queue
,
1160 int flags
, unsigned long dirtied_before
)
1163 struct list_head
*pos
, *node
;
1164 struct super_block
*sb
= NULL
;
1165 struct inode
*inode
;
1169 while (!list_empty(delaying_queue
)) {
1170 inode
= wb_inode(delaying_queue
->prev
);
1171 if (inode_dirtied_after(inode
, dirtied_before
))
1173 list_move(&inode
->i_io_list
, &tmp
);
1175 spin_lock(&inode
->i_lock
);
1176 if (flags
& EXPIRE_DIRTY_ATIME
)
1177 inode
->i_state
|= I_DIRTY_TIME_EXPIRED
;
1178 inode
->i_state
|= I_SYNC_QUEUED
;
1179 spin_unlock(&inode
->i_lock
);
1180 if (sb_is_blkdev_sb(inode
->i_sb
))
1182 if (sb
&& sb
!= inode
->i_sb
)
1187 /* just one sb in list, splice to dispatch_queue and we're done */
1189 list_splice(&tmp
, dispatch_queue
);
1193 /* Move inodes from one superblock together */
1194 while (!list_empty(&tmp
)) {
1195 sb
= wb_inode(tmp
.prev
)->i_sb
;
1196 list_for_each_prev_safe(pos
, node
, &tmp
) {
1197 inode
= wb_inode(pos
);
1198 if (inode
->i_sb
== sb
)
1199 list_move(&inode
->i_io_list
, dispatch_queue
);
1207 * Queue all expired dirty inodes for io, eldest first.
1209 * newly dirtied b_dirty b_io b_more_io
1210 * =============> gf edc BA
1212 * newly dirtied b_dirty b_io b_more_io
1213 * =============> g fBAedc
1215 * +--> dequeue for IO
1217 static void queue_io(struct bdi_writeback
*wb
, struct wb_writeback_work
*work
,
1218 unsigned long dirtied_before
)
1221 unsigned long time_expire_jif
= dirtied_before
;
1223 assert_spin_locked(&wb
->list_lock
);
1224 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
1225 moved
= move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, 0, dirtied_before
);
1226 if (!work
->for_sync
)
1227 time_expire_jif
= jiffies
- dirtytime_expire_interval
* HZ
;
1228 moved
+= move_expired_inodes(&wb
->b_dirty_time
, &wb
->b_io
,
1229 EXPIRE_DIRTY_ATIME
, time_expire_jif
);
1231 wb_io_lists_populated(wb
);
1232 trace_writeback_queue_io(wb
, work
, dirtied_before
, moved
);
1235 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1239 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
)) {
1240 trace_writeback_write_inode_start(inode
, wbc
);
1241 ret
= inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
1242 trace_writeback_write_inode(inode
, wbc
);
1249 * Wait for writeback on an inode to complete. Called with i_lock held.
1250 * Caller must make sure inode cannot go away when we drop i_lock.
1252 static void __inode_wait_for_writeback(struct inode
*inode
)
1253 __releases(inode
->i_lock
)
1254 __acquires(inode
->i_lock
)
1256 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
1257 wait_queue_head_t
*wqh
;
1259 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1260 while (inode
->i_state
& I_SYNC
) {
1261 spin_unlock(&inode
->i_lock
);
1262 __wait_on_bit(wqh
, &wq
, bit_wait
,
1263 TASK_UNINTERRUPTIBLE
);
1264 spin_lock(&inode
->i_lock
);
1269 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1271 void inode_wait_for_writeback(struct inode
*inode
)
1273 spin_lock(&inode
->i_lock
);
1274 __inode_wait_for_writeback(inode
);
1275 spin_unlock(&inode
->i_lock
);
1279 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1280 * held and drops it. It is aimed for callers not holding any inode reference
1281 * so once i_lock is dropped, inode can go away.
1283 static void inode_sleep_on_writeback(struct inode
*inode
)
1284 __releases(inode
->i_lock
)
1287 wait_queue_head_t
*wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1290 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
1291 sleep
= inode
->i_state
& I_SYNC
;
1292 spin_unlock(&inode
->i_lock
);
1295 finish_wait(wqh
, &wait
);
1299 * Find proper writeback list for the inode depending on its current state and
1300 * possibly also change of its state while we were doing writeback. Here we
1301 * handle things such as livelock prevention or fairness of writeback among
1302 * inodes. This function can be called only by flusher thread - noone else
1303 * processes all inodes in writeback lists and requeueing inodes behind flusher
1304 * thread's back can have unexpected consequences.
1306 static void requeue_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
1307 struct writeback_control
*wbc
)
1309 if (inode
->i_state
& I_FREEING
)
1313 * Sync livelock prevention. Each inode is tagged and synced in one
1314 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1315 * the dirty time to prevent enqueue and sync it again.
1317 if ((inode
->i_state
& I_DIRTY
) &&
1318 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
1319 inode
->dirtied_when
= jiffies
;
1321 if (wbc
->pages_skipped
) {
1323 * writeback is not making progress due to locked
1324 * buffers. Skip this inode for now.
1326 redirty_tail_locked(inode
, wb
);
1330 if (mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
1332 * We didn't write back all the pages. nfs_writepages()
1333 * sometimes bales out without doing anything.
1335 if (wbc
->nr_to_write
<= 0) {
1336 /* Slice used up. Queue for next turn. */
1337 requeue_io(inode
, wb
);
1340 * Writeback blocked by something other than
1341 * congestion. Delay the inode for some time to
1342 * avoid spinning on the CPU (100% iowait)
1343 * retrying writeback of the dirty page/inode
1344 * that cannot be performed immediately.
1346 redirty_tail_locked(inode
, wb
);
1348 } else if (inode
->i_state
& I_DIRTY
) {
1350 * Filesystems can dirty the inode during writeback operations,
1351 * such as delayed allocation during submission or metadata
1352 * updates after data IO completion.
1354 redirty_tail_locked(inode
, wb
);
1355 } else if (inode
->i_state
& I_DIRTY_TIME
) {
1356 inode
->dirtied_when
= jiffies
;
1357 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty_time
);
1358 inode
->i_state
&= ~I_SYNC_QUEUED
;
1360 /* The inode is clean. Remove from writeback lists. */
1361 inode_io_list_del_locked(inode
, wb
);
1366 * Write out an inode and its dirty pages. Do not update the writeback list
1367 * linkage. That is left to the caller. The caller is also responsible for
1368 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1371 __writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1373 struct address_space
*mapping
= inode
->i_mapping
;
1374 long nr_to_write
= wbc
->nr_to_write
;
1378 WARN_ON(!(inode
->i_state
& I_SYNC
));
1380 trace_writeback_single_inode_start(inode
, wbc
, nr_to_write
);
1382 ret
= do_writepages(mapping
, wbc
);
1385 * Make sure to wait on the data before writing out the metadata.
1386 * This is important for filesystems that modify metadata on data
1387 * I/O completion. We don't do it for sync(2) writeback because it has a
1388 * separate, external IO completion path and ->sync_fs for guaranteeing
1389 * inode metadata is written back correctly.
1391 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
) {
1392 int err
= filemap_fdatawait(mapping
);
1398 * Some filesystems may redirty the inode during the writeback
1399 * due to delalloc, clear dirty metadata flags right before
1402 spin_lock(&inode
->i_lock
);
1404 dirty
= inode
->i_state
& I_DIRTY
;
1405 if (inode
->i_state
& I_DIRTY_TIME
) {
1406 if ((dirty
& I_DIRTY_INODE
) ||
1407 wbc
->sync_mode
== WB_SYNC_ALL
||
1408 unlikely(inode
->i_state
& I_DIRTY_TIME_EXPIRED
) ||
1409 unlikely(time_after(jiffies
,
1410 (inode
->dirtied_time_when
+
1411 dirtytime_expire_interval
* HZ
)))) {
1412 dirty
|= I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
;
1413 trace_writeback_lazytime(inode
);
1416 inode
->i_state
&= ~I_DIRTY_TIME_EXPIRED
;
1417 inode
->i_state
&= ~dirty
;
1420 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1421 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1422 * either they see the I_DIRTY bits cleared or we see the dirtied
1425 * I_DIRTY_PAGES is always cleared together above even if @mapping
1426 * still has dirty pages. The flag is reinstated after smp_mb() if
1427 * necessary. This guarantees that either __mark_inode_dirty()
1428 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1432 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
1433 inode
->i_state
|= I_DIRTY_PAGES
;
1435 spin_unlock(&inode
->i_lock
);
1437 if (dirty
& I_DIRTY_TIME
)
1438 mark_inode_dirty_sync(inode
);
1439 /* Don't write the inode if only I_DIRTY_PAGES was set */
1440 if (dirty
& ~I_DIRTY_PAGES
) {
1441 int err
= write_inode(inode
, wbc
);
1445 trace_writeback_single_inode(inode
, wbc
, nr_to_write
);
1450 * Write out an inode's dirty pages. Either the caller has an active reference
1451 * on the inode or the inode has I_WILL_FREE set.
1453 * This function is designed to be called for writing back one inode which
1454 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1455 * and does more profound writeback list handling in writeback_sb_inodes().
1457 static int writeback_single_inode(struct inode
*inode
,
1458 struct writeback_control
*wbc
)
1460 struct bdi_writeback
*wb
;
1463 spin_lock(&inode
->i_lock
);
1464 if (!atomic_read(&inode
->i_count
))
1465 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
1467 WARN_ON(inode
->i_state
& I_WILL_FREE
);
1469 if (inode
->i_state
& I_SYNC
) {
1470 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
1473 * It's a data-integrity sync. We must wait. Since callers hold
1474 * inode reference or inode has I_WILL_FREE set, it cannot go
1477 __inode_wait_for_writeback(inode
);
1479 WARN_ON(inode
->i_state
& I_SYNC
);
1481 * Skip inode if it is clean and we have no outstanding writeback in
1482 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1483 * function since flusher thread may be doing for example sync in
1484 * parallel and if we move the inode, it could get skipped. So here we
1485 * make sure inode is on some writeback list and leave it there unless
1486 * we have completely cleaned the inode.
1488 if (!(inode
->i_state
& I_DIRTY_ALL
) &&
1489 (wbc
->sync_mode
!= WB_SYNC_ALL
||
1490 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_WRITEBACK
)))
1492 inode
->i_state
|= I_SYNC
;
1493 wbc_attach_and_unlock_inode(wbc
, inode
);
1495 ret
= __writeback_single_inode(inode
, wbc
);
1497 wbc_detach_inode(wbc
);
1499 wb
= inode_to_wb_and_lock_list(inode
);
1500 spin_lock(&inode
->i_lock
);
1502 * If inode is clean, remove it from writeback lists. Otherwise don't
1503 * touch it. See comment above for explanation.
1505 if (!(inode
->i_state
& I_DIRTY_ALL
))
1506 inode_io_list_del_locked(inode
, wb
);
1507 spin_unlock(&wb
->list_lock
);
1508 inode_sync_complete(inode
);
1510 spin_unlock(&inode
->i_lock
);
1514 static long writeback_chunk_size(struct bdi_writeback
*wb
,
1515 struct wb_writeback_work
*work
)
1520 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1521 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1522 * here avoids calling into writeback_inodes_wb() more than once.
1524 * The intended call sequence for WB_SYNC_ALL writeback is:
1527 * writeback_sb_inodes() <== called only once
1528 * write_cache_pages() <== called once for each inode
1529 * (quickly) tag currently dirty pages
1530 * (maybe slowly) sync all tagged pages
1532 if (work
->sync_mode
== WB_SYNC_ALL
|| work
->tagged_writepages
)
1535 pages
= min(wb
->avg_write_bandwidth
/ 2,
1536 global_wb_domain
.dirty_limit
/ DIRTY_SCOPE
);
1537 pages
= min(pages
, work
->nr_pages
);
1538 pages
= round_down(pages
+ MIN_WRITEBACK_PAGES
,
1539 MIN_WRITEBACK_PAGES
);
1546 * Write a portion of b_io inodes which belong to @sb.
1548 * Return the number of pages and/or inodes written.
1550 * NOTE! This is called with wb->list_lock held, and will
1551 * unlock and relock that for each inode it ends up doing
1554 static long writeback_sb_inodes(struct super_block
*sb
,
1555 struct bdi_writeback
*wb
,
1556 struct wb_writeback_work
*work
)
1558 struct writeback_control wbc
= {
1559 .sync_mode
= work
->sync_mode
,
1560 .tagged_writepages
= work
->tagged_writepages
,
1561 .for_kupdate
= work
->for_kupdate
,
1562 .for_background
= work
->for_background
,
1563 .for_sync
= work
->for_sync
,
1564 .range_cyclic
= work
->range_cyclic
,
1566 .range_end
= LLONG_MAX
,
1568 unsigned long start_time
= jiffies
;
1570 long wrote
= 0; /* count both pages and inodes */
1572 while (!list_empty(&wb
->b_io
)) {
1573 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1574 struct bdi_writeback
*tmp_wb
;
1576 if (inode
->i_sb
!= sb
) {
1579 * We only want to write back data for this
1580 * superblock, move all inodes not belonging
1581 * to it back onto the dirty list.
1583 redirty_tail(inode
, wb
);
1588 * The inode belongs to a different superblock.
1589 * Bounce back to the caller to unpin this and
1590 * pin the next superblock.
1596 * Don't bother with new inodes or inodes being freed, first
1597 * kind does not need periodic writeout yet, and for the latter
1598 * kind writeout is handled by the freer.
1600 spin_lock(&inode
->i_lock
);
1601 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
1602 redirty_tail_locked(inode
, wb
);
1603 spin_unlock(&inode
->i_lock
);
1606 if ((inode
->i_state
& I_SYNC
) && wbc
.sync_mode
!= WB_SYNC_ALL
) {
1608 * If this inode is locked for writeback and we are not
1609 * doing writeback-for-data-integrity, move it to
1610 * b_more_io so that writeback can proceed with the
1611 * other inodes on s_io.
1613 * We'll have another go at writing back this inode
1614 * when we completed a full scan of b_io.
1616 spin_unlock(&inode
->i_lock
);
1617 requeue_io(inode
, wb
);
1618 trace_writeback_sb_inodes_requeue(inode
);
1621 spin_unlock(&wb
->list_lock
);
1624 * We already requeued the inode if it had I_SYNC set and we
1625 * are doing WB_SYNC_NONE writeback. So this catches only the
1628 if (inode
->i_state
& I_SYNC
) {
1629 /* Wait for I_SYNC. This function drops i_lock... */
1630 inode_sleep_on_writeback(inode
);
1631 /* Inode may be gone, start again */
1632 spin_lock(&wb
->list_lock
);
1635 inode
->i_state
|= I_SYNC
;
1636 wbc_attach_and_unlock_inode(&wbc
, inode
);
1638 write_chunk
= writeback_chunk_size(wb
, work
);
1639 wbc
.nr_to_write
= write_chunk
;
1640 wbc
.pages_skipped
= 0;
1643 * We use I_SYNC to pin the inode in memory. While it is set
1644 * evict_inode() will wait so the inode cannot be freed.
1646 __writeback_single_inode(inode
, &wbc
);
1648 wbc_detach_inode(&wbc
);
1649 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
1650 wrote
+= write_chunk
- wbc
.nr_to_write
;
1652 if (need_resched()) {
1654 * We're trying to balance between building up a nice
1655 * long list of IOs to improve our merge rate, and
1656 * getting those IOs out quickly for anyone throttling
1657 * in balance_dirty_pages(). cond_resched() doesn't
1658 * unplug, so get our IOs out the door before we
1661 blk_flush_plug(current
);
1666 * Requeue @inode if still dirty. Be careful as @inode may
1667 * have been switched to another wb in the meantime.
1669 tmp_wb
= inode_to_wb_and_lock_list(inode
);
1670 spin_lock(&inode
->i_lock
);
1671 if (!(inode
->i_state
& I_DIRTY_ALL
))
1673 requeue_inode(inode
, tmp_wb
, &wbc
);
1674 inode_sync_complete(inode
);
1675 spin_unlock(&inode
->i_lock
);
1677 if (unlikely(tmp_wb
!= wb
)) {
1678 spin_unlock(&tmp_wb
->list_lock
);
1679 spin_lock(&wb
->list_lock
);
1683 * bail out to wb_writeback() often enough to check
1684 * background threshold and other termination conditions.
1687 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1689 if (work
->nr_pages
<= 0)
1696 static long __writeback_inodes_wb(struct bdi_writeback
*wb
,
1697 struct wb_writeback_work
*work
)
1699 unsigned long start_time
= jiffies
;
1702 while (!list_empty(&wb
->b_io
)) {
1703 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1704 struct super_block
*sb
= inode
->i_sb
;
1706 if (!trylock_super(sb
)) {
1708 * trylock_super() may fail consistently due to
1709 * s_umount being grabbed by someone else. Don't use
1710 * requeue_io() to avoid busy retrying the inode/sb.
1712 redirty_tail(inode
, wb
);
1715 wrote
+= writeback_sb_inodes(sb
, wb
, work
);
1716 up_read(&sb
->s_umount
);
1718 /* refer to the same tests at the end of writeback_sb_inodes */
1720 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1722 if (work
->nr_pages
<= 0)
1726 /* Leave any unwritten inodes on b_io */
1730 static long writeback_inodes_wb(struct bdi_writeback
*wb
, long nr_pages
,
1731 enum wb_reason reason
)
1733 struct wb_writeback_work work
= {
1734 .nr_pages
= nr_pages
,
1735 .sync_mode
= WB_SYNC_NONE
,
1739 struct blk_plug plug
;
1741 blk_start_plug(&plug
);
1742 spin_lock(&wb
->list_lock
);
1743 if (list_empty(&wb
->b_io
))
1744 queue_io(wb
, &work
, jiffies
);
1745 __writeback_inodes_wb(wb
, &work
);
1746 spin_unlock(&wb
->list_lock
);
1747 blk_finish_plug(&plug
);
1749 return nr_pages
- work
.nr_pages
;
1753 * Explicit flushing or periodic writeback of "old" data.
1755 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1756 * dirtying-time in the inode's address_space. So this periodic writeback code
1757 * just walks the superblock inode list, writing back any inodes which are
1758 * older than a specific point in time.
1760 * Try to run once per dirty_writeback_interval. But if a writeback event
1761 * takes longer than a dirty_writeback_interval interval, then leave a
1764 * dirtied_before takes precedence over nr_to_write. So we'll only write back
1765 * all dirty pages if they are all attached to "old" mappings.
1767 static long wb_writeback(struct bdi_writeback
*wb
,
1768 struct wb_writeback_work
*work
)
1770 unsigned long wb_start
= jiffies
;
1771 long nr_pages
= work
->nr_pages
;
1772 unsigned long dirtied_before
= jiffies
;
1773 struct inode
*inode
;
1775 struct blk_plug plug
;
1777 blk_start_plug(&plug
);
1778 spin_lock(&wb
->list_lock
);
1781 * Stop writeback when nr_pages has been consumed
1783 if (work
->nr_pages
<= 0)
1787 * Background writeout and kupdate-style writeback may
1788 * run forever. Stop them if there is other work to do
1789 * so that e.g. sync can proceed. They'll be restarted
1790 * after the other works are all done.
1792 if ((work
->for_background
|| work
->for_kupdate
) &&
1793 !list_empty(&wb
->work_list
))
1797 * For background writeout, stop when we are below the
1798 * background dirty threshold
1800 if (work
->for_background
&& !wb_over_bg_thresh(wb
))
1804 * Kupdate and background works are special and we want to
1805 * include all inodes that need writing. Livelock avoidance is
1806 * handled by these works yielding to any other work so we are
1809 if (work
->for_kupdate
) {
1810 dirtied_before
= jiffies
-
1811 msecs_to_jiffies(dirty_expire_interval
* 10);
1812 } else if (work
->for_background
)
1813 dirtied_before
= jiffies
;
1815 trace_writeback_start(wb
, work
);
1816 if (list_empty(&wb
->b_io
))
1817 queue_io(wb
, work
, dirtied_before
);
1819 progress
= writeback_sb_inodes(work
->sb
, wb
, work
);
1821 progress
= __writeback_inodes_wb(wb
, work
);
1822 trace_writeback_written(wb
, work
);
1824 wb_update_bandwidth(wb
, wb_start
);
1827 * Did we write something? Try for more
1829 * Dirty inodes are moved to b_io for writeback in batches.
1830 * The completion of the current batch does not necessarily
1831 * mean the overall work is done. So we keep looping as long
1832 * as made some progress on cleaning pages or inodes.
1837 * No more inodes for IO, bail
1839 if (list_empty(&wb
->b_more_io
))
1842 * Nothing written. Wait for some inode to
1843 * become available for writeback. Otherwise
1844 * we'll just busyloop.
1846 trace_writeback_wait(wb
, work
);
1847 inode
= wb_inode(wb
->b_more_io
.prev
);
1848 spin_lock(&inode
->i_lock
);
1849 spin_unlock(&wb
->list_lock
);
1850 /* This function drops i_lock... */
1851 inode_sleep_on_writeback(inode
);
1852 spin_lock(&wb
->list_lock
);
1854 spin_unlock(&wb
->list_lock
);
1855 blk_finish_plug(&plug
);
1857 return nr_pages
- work
->nr_pages
;
1861 * Return the next wb_writeback_work struct that hasn't been processed yet.
1863 static struct wb_writeback_work
*get_next_work_item(struct bdi_writeback
*wb
)
1865 struct wb_writeback_work
*work
= NULL
;
1867 spin_lock_bh(&wb
->work_lock
);
1868 if (!list_empty(&wb
->work_list
)) {
1869 work
= list_entry(wb
->work_list
.next
,
1870 struct wb_writeback_work
, list
);
1871 list_del_init(&work
->list
);
1873 spin_unlock_bh(&wb
->work_lock
);
1877 static long wb_check_background_flush(struct bdi_writeback
*wb
)
1879 if (wb_over_bg_thresh(wb
)) {
1881 struct wb_writeback_work work
= {
1882 .nr_pages
= LONG_MAX
,
1883 .sync_mode
= WB_SYNC_NONE
,
1884 .for_background
= 1,
1886 .reason
= WB_REASON_BACKGROUND
,
1889 return wb_writeback(wb
, &work
);
1895 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
1897 unsigned long expired
;
1901 * When set to zero, disable periodic writeback
1903 if (!dirty_writeback_interval
)
1906 expired
= wb
->last_old_flush
+
1907 msecs_to_jiffies(dirty_writeback_interval
* 10);
1908 if (time_before(jiffies
, expired
))
1911 wb
->last_old_flush
= jiffies
;
1912 nr_pages
= get_nr_dirty_pages();
1915 struct wb_writeback_work work
= {
1916 .nr_pages
= nr_pages
,
1917 .sync_mode
= WB_SYNC_NONE
,
1920 .reason
= WB_REASON_PERIODIC
,
1923 return wb_writeback(wb
, &work
);
1929 static long wb_check_start_all(struct bdi_writeback
*wb
)
1933 if (!test_bit(WB_start_all
, &wb
->state
))
1936 nr_pages
= get_nr_dirty_pages();
1938 struct wb_writeback_work work
= {
1939 .nr_pages
= wb_split_bdi_pages(wb
, nr_pages
),
1940 .sync_mode
= WB_SYNC_NONE
,
1942 .reason
= wb
->start_all_reason
,
1945 nr_pages
= wb_writeback(wb
, &work
);
1948 clear_bit(WB_start_all
, &wb
->state
);
1954 * Retrieve work items and do the writeback they describe
1956 static long wb_do_writeback(struct bdi_writeback
*wb
)
1958 struct wb_writeback_work
*work
;
1961 set_bit(WB_writeback_running
, &wb
->state
);
1962 while ((work
= get_next_work_item(wb
)) != NULL
) {
1963 trace_writeback_exec(wb
, work
);
1964 wrote
+= wb_writeback(wb
, work
);
1965 finish_writeback_work(wb
, work
);
1969 * Check for a flush-everything request
1971 wrote
+= wb_check_start_all(wb
);
1974 * Check for periodic writeback, kupdated() style
1976 wrote
+= wb_check_old_data_flush(wb
);
1977 wrote
+= wb_check_background_flush(wb
);
1978 clear_bit(WB_writeback_running
, &wb
->state
);
1984 * Handle writeback of dirty data for the device backed by this bdi. Also
1985 * reschedules periodically and does kupdated style flushing.
1987 void wb_workfn(struct work_struct
*work
)
1989 struct bdi_writeback
*wb
= container_of(to_delayed_work(work
),
1990 struct bdi_writeback
, dwork
);
1993 set_worker_desc("flush-%s", dev_name(wb
->bdi
->dev
));
1994 current
->flags
|= PF_SWAPWRITE
;
1996 if (likely(!current_is_workqueue_rescuer() ||
1997 !test_bit(WB_registered
, &wb
->state
))) {
1999 * The normal path. Keep writing back @wb until its
2000 * work_list is empty. Note that this path is also taken
2001 * if @wb is shutting down even when we're running off the
2002 * rescuer as work_list needs to be drained.
2005 pages_written
= wb_do_writeback(wb
);
2006 trace_writeback_pages_written(pages_written
);
2007 } while (!list_empty(&wb
->work_list
));
2010 * bdi_wq can't get enough workers and we're running off
2011 * the emergency worker. Don't hog it. Hopefully, 1024 is
2012 * enough for efficient IO.
2014 pages_written
= writeback_inodes_wb(wb
, 1024,
2015 WB_REASON_FORKER_THREAD
);
2016 trace_writeback_pages_written(pages_written
);
2019 if (!list_empty(&wb
->work_list
))
2021 else if (wb_has_dirty_io(wb
) && dirty_writeback_interval
)
2022 wb_wakeup_delayed(wb
);
2024 current
->flags
&= ~PF_SWAPWRITE
;
2028 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2029 * write back the whole world.
2031 static void __wakeup_flusher_threads_bdi(struct backing_dev_info
*bdi
,
2032 enum wb_reason reason
)
2034 struct bdi_writeback
*wb
;
2036 if (!bdi_has_dirty_io(bdi
))
2039 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
2040 wb_start_writeback(wb
, reason
);
2043 void wakeup_flusher_threads_bdi(struct backing_dev_info
*bdi
,
2044 enum wb_reason reason
)
2047 __wakeup_flusher_threads_bdi(bdi
, reason
);
2052 * Wakeup the flusher threads to start writeback of all currently dirty pages
2054 void wakeup_flusher_threads(enum wb_reason reason
)
2056 struct backing_dev_info
*bdi
;
2059 * If we are expecting writeback progress we must submit plugged IO.
2061 if (blk_needs_flush_plug(current
))
2062 blk_schedule_flush_plug(current
);
2065 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
2066 __wakeup_flusher_threads_bdi(bdi
, reason
);
2071 * Wake up bdi's periodically to make sure dirtytime inodes gets
2072 * written back periodically. We deliberately do *not* check the
2073 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2074 * kernel to be constantly waking up once there are any dirtytime
2075 * inodes on the system. So instead we define a separate delayed work
2076 * function which gets called much more rarely. (By default, only
2077 * once every 12 hours.)
2079 * If there is any other write activity going on in the file system,
2080 * this function won't be necessary. But if the only thing that has
2081 * happened on the file system is a dirtytime inode caused by an atime
2082 * update, we need this infrastructure below to make sure that inode
2083 * eventually gets pushed out to disk.
2085 static void wakeup_dirtytime_writeback(struct work_struct
*w
);
2086 static DECLARE_DELAYED_WORK(dirtytime_work
, wakeup_dirtytime_writeback
);
2088 static void wakeup_dirtytime_writeback(struct work_struct
*w
)
2090 struct backing_dev_info
*bdi
;
2093 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
2094 struct bdi_writeback
*wb
;
2096 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
2097 if (!list_empty(&wb
->b_dirty_time
))
2101 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
2104 static int __init
start_dirtytime_writeback(void)
2106 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
2109 __initcall(start_dirtytime_writeback
);
2111 int dirtytime_interval_handler(struct ctl_table
*table
, int write
,
2112 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2116 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
2117 if (ret
== 0 && write
)
2118 mod_delayed_work(system_wq
, &dirtytime_work
, 0);
2122 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
2124 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
2125 struct dentry
*dentry
;
2126 const char *name
= "?";
2128 dentry
= d_find_alias(inode
);
2130 spin_lock(&dentry
->d_lock
);
2131 name
= (const char *) dentry
->d_name
.name
;
2134 "%s(%d): dirtied inode %lu (%s) on %s\n",
2135 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
2136 name
, inode
->i_sb
->s_id
);
2138 spin_unlock(&dentry
->d_lock
);
2145 * __mark_inode_dirty - internal function
2147 * @inode: inode to mark
2148 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2150 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2151 * mark_inode_dirty_sync.
2153 * Put the inode on the super block's dirty list.
2155 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2156 * dirty list only if it is hashed or if it refers to a blockdev.
2157 * If it was not hashed, it will never be added to the dirty list
2158 * even if it is later hashed, as it will have been marked dirty already.
2160 * In short, make sure you hash any inodes _before_ you start marking
2163 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2164 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2165 * the kernel-internal blockdev inode represents the dirtying time of the
2166 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2167 * page->mapping->host, so the page-dirtying time is recorded in the internal
2170 void __mark_inode_dirty(struct inode
*inode
, int flags
)
2172 struct super_block
*sb
= inode
->i_sb
;
2175 trace_writeback_mark_inode_dirty(inode
, flags
);
2178 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2179 * dirty the inode itself
2181 if (flags
& (I_DIRTY_INODE
| I_DIRTY_TIME
)) {
2182 trace_writeback_dirty_inode_start(inode
, flags
);
2184 if (sb
->s_op
->dirty_inode
)
2185 sb
->s_op
->dirty_inode(inode
, flags
);
2187 trace_writeback_dirty_inode(inode
, flags
);
2189 if (flags
& I_DIRTY_INODE
)
2190 flags
&= ~I_DIRTY_TIME
;
2191 dirtytime
= flags
& I_DIRTY_TIME
;
2194 * Paired with smp_mb() in __writeback_single_inode() for the
2195 * following lockless i_state test. See there for details.
2199 if (((inode
->i_state
& flags
) == flags
) ||
2200 (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
)))
2203 if (unlikely(block_dump
))
2204 block_dump___mark_inode_dirty(inode
);
2206 spin_lock(&inode
->i_lock
);
2207 if (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
))
2208 goto out_unlock_inode
;
2209 if ((inode
->i_state
& flags
) != flags
) {
2210 const int was_dirty
= inode
->i_state
& I_DIRTY
;
2212 inode_attach_wb(inode
, NULL
);
2214 if (flags
& I_DIRTY_INODE
)
2215 inode
->i_state
&= ~I_DIRTY_TIME
;
2216 inode
->i_state
|= flags
;
2219 * If the inode is queued for writeback by flush worker, just
2220 * update its dirty state. Once the flush worker is done with
2221 * the inode it will place it on the appropriate superblock
2222 * list, based upon its state.
2224 if (inode
->i_state
& I_SYNC_QUEUED
)
2225 goto out_unlock_inode
;
2228 * Only add valid (hashed) inodes to the superblock's
2229 * dirty list. Add blockdev inodes as well.
2231 if (!S_ISBLK(inode
->i_mode
)) {
2232 if (inode_unhashed(inode
))
2233 goto out_unlock_inode
;
2235 if (inode
->i_state
& I_FREEING
)
2236 goto out_unlock_inode
;
2239 * If the inode was already on b_dirty/b_io/b_more_io, don't
2240 * reposition it (that would break b_dirty time-ordering).
2243 struct bdi_writeback
*wb
;
2244 struct list_head
*dirty_list
;
2245 bool wakeup_bdi
= false;
2247 wb
= locked_inode_to_wb_and_lock_list(inode
);
2249 WARN(bdi_cap_writeback_dirty(wb
->bdi
) &&
2250 !test_bit(WB_registered
, &wb
->state
),
2251 "bdi-%s not registered\n", wb
->bdi
->name
);
2253 inode
->dirtied_when
= jiffies
;
2255 inode
->dirtied_time_when
= jiffies
;
2257 if (inode
->i_state
& I_DIRTY
)
2258 dirty_list
= &wb
->b_dirty
;
2260 dirty_list
= &wb
->b_dirty_time
;
2262 wakeup_bdi
= inode_io_list_move_locked(inode
, wb
,
2265 spin_unlock(&wb
->list_lock
);
2266 trace_writeback_dirty_inode_enqueue(inode
);
2269 * If this is the first dirty inode for this bdi,
2270 * we have to wake-up the corresponding bdi thread
2271 * to make sure background write-back happens
2274 if (bdi_cap_writeback_dirty(wb
->bdi
) && wakeup_bdi
)
2275 wb_wakeup_delayed(wb
);
2280 spin_unlock(&inode
->i_lock
);
2282 EXPORT_SYMBOL(__mark_inode_dirty
);
2285 * The @s_sync_lock is used to serialise concurrent sync operations
2286 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2287 * Concurrent callers will block on the s_sync_lock rather than doing contending
2288 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2289 * has been issued up to the time this function is enter is guaranteed to be
2290 * completed by the time we have gained the lock and waited for all IO that is
2291 * in progress regardless of the order callers are granted the lock.
2293 static void wait_sb_inodes(struct super_block
*sb
)
2295 LIST_HEAD(sync_list
);
2298 * We need to be protected against the filesystem going from
2299 * r/o to r/w or vice versa.
2301 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2303 mutex_lock(&sb
->s_sync_lock
);
2306 * Splice the writeback list onto a temporary list to avoid waiting on
2307 * inodes that have started writeback after this point.
2309 * Use rcu_read_lock() to keep the inodes around until we have a
2310 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2311 * the local list because inodes can be dropped from either by writeback
2315 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2316 list_splice_init(&sb
->s_inodes_wb
, &sync_list
);
2319 * Data integrity sync. Must wait for all pages under writeback, because
2320 * there may have been pages dirtied before our sync call, but which had
2321 * writeout started before we write it out. In which case, the inode
2322 * may not be on the dirty list, but we still have to wait for that
2325 while (!list_empty(&sync_list
)) {
2326 struct inode
*inode
= list_first_entry(&sync_list
, struct inode
,
2328 struct address_space
*mapping
= inode
->i_mapping
;
2331 * Move each inode back to the wb list before we drop the lock
2332 * to preserve consistency between i_wb_list and the mapping
2333 * writeback tag. Writeback completion is responsible to remove
2334 * the inode from either list once the writeback tag is cleared.
2336 list_move_tail(&inode
->i_wb_list
, &sb
->s_inodes_wb
);
2339 * The mapping can appear untagged while still on-list since we
2340 * do not have the mapping lock. Skip it here, wb completion
2343 if (!mapping_tagged(mapping
, PAGECACHE_TAG_WRITEBACK
))
2346 spin_unlock_irq(&sb
->s_inode_wblist_lock
);
2348 spin_lock(&inode
->i_lock
);
2349 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) {
2350 spin_unlock(&inode
->i_lock
);
2352 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2356 spin_unlock(&inode
->i_lock
);
2360 * We keep the error status of individual mapping so that
2361 * applications can catch the writeback error using fsync(2).
2362 * See filemap_fdatawait_keep_errors() for details.
2364 filemap_fdatawait_keep_errors(mapping
);
2371 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2373 spin_unlock_irq(&sb
->s_inode_wblist_lock
);
2375 mutex_unlock(&sb
->s_sync_lock
);
2378 static void __writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2379 enum wb_reason reason
, bool skip_if_busy
)
2381 DEFINE_WB_COMPLETION_ONSTACK(done
);
2382 struct wb_writeback_work work
= {
2384 .sync_mode
= WB_SYNC_NONE
,
2385 .tagged_writepages
= 1,
2390 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2392 if (!bdi_has_dirty_io(bdi
) || bdi
== &noop_backing_dev_info
)
2394 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2396 bdi_split_work_to_wbs(sb
->s_bdi
, &work
, skip_if_busy
);
2397 wb_wait_for_completion(bdi
, &done
);
2401 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2402 * @sb: the superblock
2403 * @nr: the number of pages to write
2404 * @reason: reason why some writeback work initiated
2406 * Start writeback on some inodes on this super_block. No guarantees are made
2407 * on how many (if any) will be written, and this function does not wait
2408 * for IO completion of submitted IO.
2410 void writeback_inodes_sb_nr(struct super_block
*sb
,
2412 enum wb_reason reason
)
2414 __writeback_inodes_sb_nr(sb
, nr
, reason
, false);
2416 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
2419 * writeback_inodes_sb - writeback dirty inodes from given super_block
2420 * @sb: the superblock
2421 * @reason: reason why some writeback work was initiated
2423 * Start writeback on some inodes on this super_block. No guarantees are made
2424 * on how many (if any) will be written, and this function does not wait
2425 * for IO completion of submitted IO.
2427 void writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2429 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2431 EXPORT_SYMBOL(writeback_inodes_sb
);
2434 * try_to_writeback_inodes_sb - try to start writeback if none underway
2435 * @sb: the superblock
2436 * @reason: reason why some writeback work was initiated
2438 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2440 void try_to_writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2442 if (!down_read_trylock(&sb
->s_umount
))
2445 __writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
, true);
2446 up_read(&sb
->s_umount
);
2448 EXPORT_SYMBOL(try_to_writeback_inodes_sb
);
2451 * sync_inodes_sb - sync sb inode pages
2452 * @sb: the superblock
2454 * This function writes and waits on any dirty inode belonging to this
2457 void sync_inodes_sb(struct super_block
*sb
)
2459 DEFINE_WB_COMPLETION_ONSTACK(done
);
2460 struct wb_writeback_work work
= {
2462 .sync_mode
= WB_SYNC_ALL
,
2463 .nr_pages
= LONG_MAX
,
2466 .reason
= WB_REASON_SYNC
,
2469 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2472 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2473 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2474 * bdi_has_dirty() need to be written out too.
2476 if (bdi
== &noop_backing_dev_info
)
2478 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2480 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2481 bdi_down_write_wb_switch_rwsem(bdi
);
2482 bdi_split_work_to_wbs(bdi
, &work
, false);
2483 wb_wait_for_completion(bdi
, &done
);
2484 bdi_up_write_wb_switch_rwsem(bdi
);
2488 EXPORT_SYMBOL(sync_inodes_sb
);
2491 * write_inode_now - write an inode to disk
2492 * @inode: inode to write to disk
2493 * @sync: whether the write should be synchronous or not
2495 * This function commits an inode to disk immediately if it is dirty. This is
2496 * primarily needed by knfsd.
2498 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2500 int write_inode_now(struct inode
*inode
, int sync
)
2502 struct writeback_control wbc
= {
2503 .nr_to_write
= LONG_MAX
,
2504 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2506 .range_end
= LLONG_MAX
,
2509 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
2510 wbc
.nr_to_write
= 0;
2513 return writeback_single_inode(inode
, &wbc
);
2515 EXPORT_SYMBOL(write_inode_now
);
2518 * sync_inode - write an inode and its pages to disk.
2519 * @inode: the inode to sync
2520 * @wbc: controls the writeback mode
2522 * sync_inode() will write an inode and its pages to disk. It will also
2523 * correctly update the inode on its superblock's dirty inode lists and will
2524 * update inode->i_state.
2526 * The caller must have a ref on the inode.
2528 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
2530 return writeback_single_inode(inode
, wbc
);
2532 EXPORT_SYMBOL(sync_inode
);
2535 * sync_inode_metadata - write an inode to disk
2536 * @inode: the inode to sync
2537 * @wait: wait for I/O to complete.
2539 * Write an inode to disk and adjust its dirty state after completion.
2541 * Note: only writes the actual inode, no associated data or other metadata.
2543 int sync_inode_metadata(struct inode
*inode
, int wait
)
2545 struct writeback_control wbc
= {
2546 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2547 .nr_to_write
= 0, /* metadata-only */
2550 return sync_inode(inode
, &wbc
);
2552 EXPORT_SYMBOL(sync_inode_metadata
);