2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
27 #include <linux/file.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
54 #define AIO_RING_MAGIC 0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES 1
56 #define AIO_RING_INCOMPAT_FEATURES 0
58 unsigned id
; /* kernel internal index number */
59 unsigned nr
; /* number of io_events */
60 unsigned head
; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
65 unsigned compat_features
;
66 unsigned incompat_features
;
67 unsigned header_length
; /* size of aio_ring */
70 struct io_event io_events
[0];
71 }; /* 128 bytes + ring size */
74 * Plugging is meant to work with larger batches of IOs. If we don't
75 * have more than the below, then don't bother setting up a plug.
77 #define AIO_PLUG_THRESHOLD 2
79 #define AIO_RING_PAGES 8
84 struct kioctx __rcu
*table
[];
88 unsigned reqs_available
;
92 struct completion comp
;
97 struct percpu_ref users
;
100 struct percpu_ref reqs
;
102 unsigned long user_id
;
104 struct __percpu kioctx_cpu
*cpu
;
107 * For percpu reqs_available, number of slots we move to/from global
112 * This is what userspace passed to io_setup(), it's not used for
113 * anything but counting against the global max_reqs quota.
115 * The real limit is nr_events - 1, which will be larger (see
120 /* Size of ringbuffer, in units of struct io_event */
123 unsigned long mmap_base
;
124 unsigned long mmap_size
;
126 struct page
**ring_pages
;
129 struct rcu_work free_rwork
; /* see free_ioctx() */
132 * signals when all in-flight requests are done
134 struct ctx_rq_wait
*rq_wait
;
138 * This counts the number of available slots in the ringbuffer,
139 * so we avoid overflowing it: it's decremented (if positive)
140 * when allocating a kiocb and incremented when the resulting
141 * io_event is pulled off the ringbuffer.
143 * We batch accesses to it with a percpu version.
145 atomic_t reqs_available
;
146 } ____cacheline_aligned_in_smp
;
150 struct list_head active_reqs
; /* used for cancellation */
151 } ____cacheline_aligned_in_smp
;
154 struct mutex ring_lock
;
155 wait_queue_head_t wait
;
156 } ____cacheline_aligned_in_smp
;
160 unsigned completed_events
;
161 spinlock_t completion_lock
;
162 } ____cacheline_aligned_in_smp
;
164 struct page
*internal_pages
[AIO_RING_PAGES
];
165 struct file
*aio_ring_file
;
171 * First field must be the file pointer in all the
172 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
176 struct work_struct work
;
182 struct wait_queue_head
*head
;
186 struct wait_queue_entry wait
;
187 struct work_struct work
;
191 * NOTE! Each of the iocb union members has the file pointer
192 * as the first entry in their struct definition. So you can
193 * access the file pointer through any of the sub-structs,
194 * or directly as just 'ki_filp' in this struct.
198 struct file
*ki_filp
;
200 struct fsync_iocb fsync
;
201 struct poll_iocb poll
;
204 struct kioctx
*ki_ctx
;
205 kiocb_cancel_fn
*ki_cancel
;
207 struct io_event ki_res
;
209 struct list_head ki_list
; /* the aio core uses this
210 * for cancellation */
211 refcount_t ki_refcnt
;
214 * If the aio_resfd field of the userspace iocb is not zero,
215 * this is the underlying eventfd context to deliver events to.
217 struct eventfd_ctx
*ki_eventfd
;
220 /*------ sysctl variables----*/
221 static DEFINE_SPINLOCK(aio_nr_lock
);
222 unsigned long aio_nr
; /* current system wide number of aio requests */
223 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
224 /*----end sysctl variables---*/
226 static struct kmem_cache
*kiocb_cachep
;
227 static struct kmem_cache
*kioctx_cachep
;
229 static struct vfsmount
*aio_mnt
;
231 static const struct file_operations aio_ring_fops
;
232 static const struct address_space_operations aio_ctx_aops
;
234 static struct file
*aio_private_file(struct kioctx
*ctx
, loff_t nr_pages
)
237 struct inode
*inode
= alloc_anon_inode(aio_mnt
->mnt_sb
);
239 return ERR_CAST(inode
);
241 inode
->i_mapping
->a_ops
= &aio_ctx_aops
;
242 inode
->i_mapping
->private_data
= ctx
;
243 inode
->i_size
= PAGE_SIZE
* nr_pages
;
245 file
= alloc_file_pseudo(inode
, aio_mnt
, "[aio]",
246 O_RDWR
, &aio_ring_fops
);
252 static struct dentry
*aio_mount(struct file_system_type
*fs_type
,
253 int flags
, const char *dev_name
, void *data
)
255 struct dentry
*root
= mount_pseudo(fs_type
, "aio:", NULL
, NULL
,
259 root
->d_sb
->s_iflags
|= SB_I_NOEXEC
;
264 * Creates the slab caches used by the aio routines, panic on
265 * failure as this is done early during the boot sequence.
267 static int __init
aio_setup(void)
269 static struct file_system_type aio_fs
= {
272 .kill_sb
= kill_anon_super
,
274 aio_mnt
= kern_mount(&aio_fs
);
276 panic("Failed to create aio fs mount.");
278 kiocb_cachep
= KMEM_CACHE(aio_kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
279 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
282 __initcall(aio_setup
);
284 static void put_aio_ring_file(struct kioctx
*ctx
)
286 struct file
*aio_ring_file
= ctx
->aio_ring_file
;
287 struct address_space
*i_mapping
;
290 truncate_setsize(file_inode(aio_ring_file
), 0);
292 /* Prevent further access to the kioctx from migratepages */
293 i_mapping
= aio_ring_file
->f_mapping
;
294 spin_lock(&i_mapping
->private_lock
);
295 i_mapping
->private_data
= NULL
;
296 ctx
->aio_ring_file
= NULL
;
297 spin_unlock(&i_mapping
->private_lock
);
303 static void aio_free_ring(struct kioctx
*ctx
)
307 /* Disconnect the kiotx from the ring file. This prevents future
308 * accesses to the kioctx from page migration.
310 put_aio_ring_file(ctx
);
312 for (i
= 0; i
< ctx
->nr_pages
; i
++) {
314 pr_debug("pid(%d) [%d] page->count=%d\n", current
->pid
, i
,
315 page_count(ctx
->ring_pages
[i
]));
316 page
= ctx
->ring_pages
[i
];
319 ctx
->ring_pages
[i
] = NULL
;
323 if (ctx
->ring_pages
&& ctx
->ring_pages
!= ctx
->internal_pages
) {
324 kfree(ctx
->ring_pages
);
325 ctx
->ring_pages
= NULL
;
329 static int aio_ring_mremap(struct vm_area_struct
*vma
)
331 struct file
*file
= vma
->vm_file
;
332 struct mm_struct
*mm
= vma
->vm_mm
;
333 struct kioctx_table
*table
;
334 int i
, res
= -EINVAL
;
336 spin_lock(&mm
->ioctx_lock
);
338 table
= rcu_dereference(mm
->ioctx_table
);
339 for (i
= 0; i
< table
->nr
; i
++) {
342 ctx
= rcu_dereference(table
->table
[i
]);
343 if (ctx
&& ctx
->aio_ring_file
== file
) {
344 if (!atomic_read(&ctx
->dead
)) {
345 ctx
->user_id
= ctx
->mmap_base
= vma
->vm_start
;
353 spin_unlock(&mm
->ioctx_lock
);
357 static const struct vm_operations_struct aio_ring_vm_ops
= {
358 .mremap
= aio_ring_mremap
,
359 #if IS_ENABLED(CONFIG_MMU)
360 .fault
= filemap_fault
,
361 .map_pages
= filemap_map_pages
,
362 .page_mkwrite
= filemap_page_mkwrite
,
366 static int aio_ring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
368 vma
->vm_flags
|= VM_DONTEXPAND
;
369 vma
->vm_ops
= &aio_ring_vm_ops
;
373 static const struct file_operations aio_ring_fops
= {
374 .mmap
= aio_ring_mmap
,
377 #if IS_ENABLED(CONFIG_MIGRATION)
378 static int aio_migratepage(struct address_space
*mapping
, struct page
*new,
379 struct page
*old
, enum migrate_mode mode
)
387 * We cannot support the _NO_COPY case here, because copy needs to
388 * happen under the ctx->completion_lock. That does not work with the
389 * migration workflow of MIGRATE_SYNC_NO_COPY.
391 if (mode
== MIGRATE_SYNC_NO_COPY
)
396 /* mapping->private_lock here protects against the kioctx teardown. */
397 spin_lock(&mapping
->private_lock
);
398 ctx
= mapping
->private_data
;
404 /* The ring_lock mutex. The prevents aio_read_events() from writing
405 * to the ring's head, and prevents page migration from mucking in
406 * a partially initialized kiotx.
408 if (!mutex_trylock(&ctx
->ring_lock
)) {
414 if (idx
< (pgoff_t
)ctx
->nr_pages
) {
415 /* Make sure the old page hasn't already been changed */
416 if (ctx
->ring_pages
[idx
] != old
)
424 /* Writeback must be complete */
425 BUG_ON(PageWriteback(old
));
428 rc
= migrate_page_move_mapping(mapping
, new, old
, mode
, 1);
429 if (rc
!= MIGRATEPAGE_SUCCESS
) {
434 /* Take completion_lock to prevent other writes to the ring buffer
435 * while the old page is copied to the new. This prevents new
436 * events from being lost.
438 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
439 migrate_page_copy(new, old
);
440 BUG_ON(ctx
->ring_pages
[idx
] != old
);
441 ctx
->ring_pages
[idx
] = new;
442 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
444 /* The old page is no longer accessible. */
448 mutex_unlock(&ctx
->ring_lock
);
450 spin_unlock(&mapping
->private_lock
);
455 static const struct address_space_operations aio_ctx_aops
= {
456 .set_page_dirty
= __set_page_dirty_no_writeback
,
457 #if IS_ENABLED(CONFIG_MIGRATION)
458 .migratepage
= aio_migratepage
,
462 static int aio_setup_ring(struct kioctx
*ctx
, unsigned int nr_events
)
464 struct aio_ring
*ring
;
465 struct mm_struct
*mm
= current
->mm
;
466 unsigned long size
, unused
;
471 /* Compensate for the ring buffer's head/tail overlap entry */
472 nr_events
+= 2; /* 1 is required, 2 for good luck */
474 size
= sizeof(struct aio_ring
);
475 size
+= sizeof(struct io_event
) * nr_events
;
477 nr_pages
= PFN_UP(size
);
481 file
= aio_private_file(ctx
, nr_pages
);
483 ctx
->aio_ring_file
= NULL
;
487 ctx
->aio_ring_file
= file
;
488 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
))
489 / sizeof(struct io_event
);
491 ctx
->ring_pages
= ctx
->internal_pages
;
492 if (nr_pages
> AIO_RING_PAGES
) {
493 ctx
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
495 if (!ctx
->ring_pages
) {
496 put_aio_ring_file(ctx
);
501 for (i
= 0; i
< nr_pages
; i
++) {
503 page
= find_or_create_page(file
->f_mapping
,
504 i
, GFP_HIGHUSER
| __GFP_ZERO
);
507 pr_debug("pid(%d) page[%d]->count=%d\n",
508 current
->pid
, i
, page_count(page
));
509 SetPageUptodate(page
);
512 ctx
->ring_pages
[i
] = page
;
516 if (unlikely(i
!= nr_pages
)) {
521 ctx
->mmap_size
= nr_pages
* PAGE_SIZE
;
522 pr_debug("attempting mmap of %lu bytes\n", ctx
->mmap_size
);
524 if (down_write_killable(&mm
->mmap_sem
)) {
530 ctx
->mmap_base
= do_mmap_pgoff(ctx
->aio_ring_file
, 0, ctx
->mmap_size
,
531 PROT_READ
| PROT_WRITE
,
532 MAP_SHARED
, 0, &unused
, NULL
);
533 up_write(&mm
->mmap_sem
);
534 if (IS_ERR((void *)ctx
->mmap_base
)) {
540 pr_debug("mmap address: 0x%08lx\n", ctx
->mmap_base
);
542 ctx
->user_id
= ctx
->mmap_base
;
543 ctx
->nr_events
= nr_events
; /* trusted copy */
545 ring
= kmap_atomic(ctx
->ring_pages
[0]);
546 ring
->nr
= nr_events
; /* user copy */
548 ring
->head
= ring
->tail
= 0;
549 ring
->magic
= AIO_RING_MAGIC
;
550 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
551 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
552 ring
->header_length
= sizeof(struct aio_ring
);
554 flush_dcache_page(ctx
->ring_pages
[0]);
559 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
560 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
561 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
563 void kiocb_set_cancel_fn(struct kiocb
*iocb
, kiocb_cancel_fn
*cancel
)
565 struct aio_kiocb
*req
= container_of(iocb
, struct aio_kiocb
, rw
);
566 struct kioctx
*ctx
= req
->ki_ctx
;
569 if (WARN_ON_ONCE(!list_empty(&req
->ki_list
)))
572 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
573 list_add_tail(&req
->ki_list
, &ctx
->active_reqs
);
574 req
->ki_cancel
= cancel
;
575 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
577 EXPORT_SYMBOL(kiocb_set_cancel_fn
);
580 * free_ioctx() should be RCU delayed to synchronize against the RCU
581 * protected lookup_ioctx() and also needs process context to call
582 * aio_free_ring(). Use rcu_work.
584 static void free_ioctx(struct work_struct
*work
)
586 struct kioctx
*ctx
= container_of(to_rcu_work(work
), struct kioctx
,
588 pr_debug("freeing %p\n", ctx
);
591 free_percpu(ctx
->cpu
);
592 percpu_ref_exit(&ctx
->reqs
);
593 percpu_ref_exit(&ctx
->users
);
594 kmem_cache_free(kioctx_cachep
, ctx
);
597 static void free_ioctx_reqs(struct percpu_ref
*ref
)
599 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, reqs
);
601 /* At this point we know that there are no any in-flight requests */
602 if (ctx
->rq_wait
&& atomic_dec_and_test(&ctx
->rq_wait
->count
))
603 complete(&ctx
->rq_wait
->comp
);
605 /* Synchronize against RCU protected table->table[] dereferences */
606 INIT_RCU_WORK(&ctx
->free_rwork
, free_ioctx
);
607 queue_rcu_work(system_wq
, &ctx
->free_rwork
);
611 * When this function runs, the kioctx has been removed from the "hash table"
612 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
613 * now it's safe to cancel any that need to be.
615 static void free_ioctx_users(struct percpu_ref
*ref
)
617 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, users
);
618 struct aio_kiocb
*req
;
620 spin_lock_irq(&ctx
->ctx_lock
);
622 while (!list_empty(&ctx
->active_reqs
)) {
623 req
= list_first_entry(&ctx
->active_reqs
,
624 struct aio_kiocb
, ki_list
);
625 req
->ki_cancel(&req
->rw
);
626 list_del_init(&req
->ki_list
);
629 spin_unlock_irq(&ctx
->ctx_lock
);
631 percpu_ref_kill(&ctx
->reqs
);
632 percpu_ref_put(&ctx
->reqs
);
635 static int ioctx_add_table(struct kioctx
*ctx
, struct mm_struct
*mm
)
638 struct kioctx_table
*table
, *old
;
639 struct aio_ring
*ring
;
641 spin_lock(&mm
->ioctx_lock
);
642 table
= rcu_dereference_raw(mm
->ioctx_table
);
646 for (i
= 0; i
< table
->nr
; i
++)
647 if (!rcu_access_pointer(table
->table
[i
])) {
649 rcu_assign_pointer(table
->table
[i
], ctx
);
650 spin_unlock(&mm
->ioctx_lock
);
652 /* While kioctx setup is in progress,
653 * we are protected from page migration
654 * changes ring_pages by ->ring_lock.
656 ring
= kmap_atomic(ctx
->ring_pages
[0]);
662 new_nr
= (table
? table
->nr
: 1) * 4;
663 spin_unlock(&mm
->ioctx_lock
);
665 table
= kzalloc(sizeof(*table
) + sizeof(struct kioctx
*) *
672 spin_lock(&mm
->ioctx_lock
);
673 old
= rcu_dereference_raw(mm
->ioctx_table
);
676 rcu_assign_pointer(mm
->ioctx_table
, table
);
677 } else if (table
->nr
> old
->nr
) {
678 memcpy(table
->table
, old
->table
,
679 old
->nr
* sizeof(struct kioctx
*));
681 rcu_assign_pointer(mm
->ioctx_table
, table
);
690 static void aio_nr_sub(unsigned nr
)
692 spin_lock(&aio_nr_lock
);
693 if (WARN_ON(aio_nr
- nr
> aio_nr
))
697 spin_unlock(&aio_nr_lock
);
701 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
703 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
705 struct mm_struct
*mm
= current
->mm
;
710 * Store the original nr_events -- what userspace passed to io_setup(),
711 * for counting against the global limit -- before it changes.
713 unsigned int max_reqs
= nr_events
;
716 * We keep track of the number of available ringbuffer slots, to prevent
717 * overflow (reqs_available), and we also use percpu counters for this.
719 * So since up to half the slots might be on other cpu's percpu counters
720 * and unavailable, double nr_events so userspace sees what they
721 * expected: additionally, we move req_batch slots to/from percpu
722 * counters at a time, so make sure that isn't 0:
724 nr_events
= max(nr_events
, num_possible_cpus() * 4);
727 /* Prevent overflows */
728 if (nr_events
> (0x10000000U
/ sizeof(struct io_event
))) {
729 pr_debug("ENOMEM: nr_events too high\n");
730 return ERR_PTR(-EINVAL
);
733 if (!nr_events
|| (unsigned long)max_reqs
> aio_max_nr
)
734 return ERR_PTR(-EAGAIN
);
736 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
738 return ERR_PTR(-ENOMEM
);
740 ctx
->max_reqs
= max_reqs
;
742 spin_lock_init(&ctx
->ctx_lock
);
743 spin_lock_init(&ctx
->completion_lock
);
744 mutex_init(&ctx
->ring_lock
);
745 /* Protect against page migration throughout kiotx setup by keeping
746 * the ring_lock mutex held until setup is complete. */
747 mutex_lock(&ctx
->ring_lock
);
748 init_waitqueue_head(&ctx
->wait
);
750 INIT_LIST_HEAD(&ctx
->active_reqs
);
752 if (percpu_ref_init(&ctx
->users
, free_ioctx_users
, 0, GFP_KERNEL
))
755 if (percpu_ref_init(&ctx
->reqs
, free_ioctx_reqs
, 0, GFP_KERNEL
))
758 ctx
->cpu
= alloc_percpu(struct kioctx_cpu
);
762 err
= aio_setup_ring(ctx
, nr_events
);
766 atomic_set(&ctx
->reqs_available
, ctx
->nr_events
- 1);
767 ctx
->req_batch
= (ctx
->nr_events
- 1) / (num_possible_cpus() * 4);
768 if (ctx
->req_batch
< 1)
771 /* limit the number of system wide aios */
772 spin_lock(&aio_nr_lock
);
773 if (aio_nr
+ ctx
->max_reqs
> aio_max_nr
||
774 aio_nr
+ ctx
->max_reqs
< aio_nr
) {
775 spin_unlock(&aio_nr_lock
);
779 aio_nr
+= ctx
->max_reqs
;
780 spin_unlock(&aio_nr_lock
);
782 percpu_ref_get(&ctx
->users
); /* io_setup() will drop this ref */
783 percpu_ref_get(&ctx
->reqs
); /* free_ioctx_users() will drop this */
785 err
= ioctx_add_table(ctx
, mm
);
789 /* Release the ring_lock mutex now that all setup is complete. */
790 mutex_unlock(&ctx
->ring_lock
);
792 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
793 ctx
, ctx
->user_id
, mm
, ctx
->nr_events
);
797 aio_nr_sub(ctx
->max_reqs
);
799 atomic_set(&ctx
->dead
, 1);
801 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
804 mutex_unlock(&ctx
->ring_lock
);
805 free_percpu(ctx
->cpu
);
806 percpu_ref_exit(&ctx
->reqs
);
807 percpu_ref_exit(&ctx
->users
);
808 kmem_cache_free(kioctx_cachep
, ctx
);
809 pr_debug("error allocating ioctx %d\n", err
);
814 * Cancels all outstanding aio requests on an aio context. Used
815 * when the processes owning a context have all exited to encourage
816 * the rapid destruction of the kioctx.
818 static int kill_ioctx(struct mm_struct
*mm
, struct kioctx
*ctx
,
819 struct ctx_rq_wait
*wait
)
821 struct kioctx_table
*table
;
823 spin_lock(&mm
->ioctx_lock
);
824 if (atomic_xchg(&ctx
->dead
, 1)) {
825 spin_unlock(&mm
->ioctx_lock
);
829 table
= rcu_dereference_raw(mm
->ioctx_table
);
830 WARN_ON(ctx
!= rcu_access_pointer(table
->table
[ctx
->id
]));
831 RCU_INIT_POINTER(table
->table
[ctx
->id
], NULL
);
832 spin_unlock(&mm
->ioctx_lock
);
834 /* free_ioctx_reqs() will do the necessary RCU synchronization */
835 wake_up_all(&ctx
->wait
);
838 * It'd be more correct to do this in free_ioctx(), after all
839 * the outstanding kiocbs have finished - but by then io_destroy
840 * has already returned, so io_setup() could potentially return
841 * -EAGAIN with no ioctxs actually in use (as far as userspace
844 aio_nr_sub(ctx
->max_reqs
);
847 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
850 percpu_ref_kill(&ctx
->users
);
855 * exit_aio: called when the last user of mm goes away. At this point, there is
856 * no way for any new requests to be submited or any of the io_* syscalls to be
857 * called on the context.
859 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
862 void exit_aio(struct mm_struct
*mm
)
864 struct kioctx_table
*table
= rcu_dereference_raw(mm
->ioctx_table
);
865 struct ctx_rq_wait wait
;
871 atomic_set(&wait
.count
, table
->nr
);
872 init_completion(&wait
.comp
);
875 for (i
= 0; i
< table
->nr
; ++i
) {
877 rcu_dereference_protected(table
->table
[i
], true);
885 * We don't need to bother with munmap() here - exit_mmap(mm)
886 * is coming and it'll unmap everything. And we simply can't,
887 * this is not necessarily our ->mm.
888 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
889 * that it needs to unmap the area, just set it to 0.
892 kill_ioctx(mm
, ctx
, &wait
);
895 if (!atomic_sub_and_test(skipped
, &wait
.count
)) {
896 /* Wait until all IO for the context are done. */
897 wait_for_completion(&wait
.comp
);
900 RCU_INIT_POINTER(mm
->ioctx_table
, NULL
);
904 static void put_reqs_available(struct kioctx
*ctx
, unsigned nr
)
906 struct kioctx_cpu
*kcpu
;
909 local_irq_save(flags
);
910 kcpu
= this_cpu_ptr(ctx
->cpu
);
911 kcpu
->reqs_available
+= nr
;
913 while (kcpu
->reqs_available
>= ctx
->req_batch
* 2) {
914 kcpu
->reqs_available
-= ctx
->req_batch
;
915 atomic_add(ctx
->req_batch
, &ctx
->reqs_available
);
918 local_irq_restore(flags
);
921 static bool __get_reqs_available(struct kioctx
*ctx
)
923 struct kioctx_cpu
*kcpu
;
927 local_irq_save(flags
);
928 kcpu
= this_cpu_ptr(ctx
->cpu
);
929 if (!kcpu
->reqs_available
) {
930 int old
, avail
= atomic_read(&ctx
->reqs_available
);
933 if (avail
< ctx
->req_batch
)
937 avail
= atomic_cmpxchg(&ctx
->reqs_available
,
938 avail
, avail
- ctx
->req_batch
);
939 } while (avail
!= old
);
941 kcpu
->reqs_available
+= ctx
->req_batch
;
945 kcpu
->reqs_available
--;
947 local_irq_restore(flags
);
951 /* refill_reqs_available
952 * Updates the reqs_available reference counts used for tracking the
953 * number of free slots in the completion ring. This can be called
954 * from aio_complete() (to optimistically update reqs_available) or
955 * from aio_get_req() (the we're out of events case). It must be
956 * called holding ctx->completion_lock.
958 static void refill_reqs_available(struct kioctx
*ctx
, unsigned head
,
961 unsigned events_in_ring
, completed
;
963 /* Clamp head since userland can write to it. */
964 head
%= ctx
->nr_events
;
966 events_in_ring
= tail
- head
;
968 events_in_ring
= ctx
->nr_events
- (head
- tail
);
970 completed
= ctx
->completed_events
;
971 if (events_in_ring
< completed
)
972 completed
-= events_in_ring
;
979 ctx
->completed_events
-= completed
;
980 put_reqs_available(ctx
, completed
);
983 /* user_refill_reqs_available
984 * Called to refill reqs_available when aio_get_req() encounters an
985 * out of space in the completion ring.
987 static void user_refill_reqs_available(struct kioctx
*ctx
)
989 spin_lock_irq(&ctx
->completion_lock
);
990 if (ctx
->completed_events
) {
991 struct aio_ring
*ring
;
994 /* Access of ring->head may race with aio_read_events_ring()
995 * here, but that's okay since whether we read the old version
996 * or the new version, and either will be valid. The important
997 * part is that head cannot pass tail since we prevent
998 * aio_complete() from updating tail by holding
999 * ctx->completion_lock. Even if head is invalid, the check
1000 * against ctx->completed_events below will make sure we do the
1003 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1005 kunmap_atomic(ring
);
1007 refill_reqs_available(ctx
, head
, ctx
->tail
);
1010 spin_unlock_irq(&ctx
->completion_lock
);
1013 static bool get_reqs_available(struct kioctx
*ctx
)
1015 if (__get_reqs_available(ctx
))
1017 user_refill_reqs_available(ctx
);
1018 return __get_reqs_available(ctx
);
1022 * Allocate a slot for an aio request.
1023 * Returns NULL if no requests are free.
1025 * The refcount is initialized to 2 - one for the async op completion,
1026 * one for the synchronous code that does this.
1028 static inline struct aio_kiocb
*aio_get_req(struct kioctx
*ctx
)
1030 struct aio_kiocb
*req
;
1032 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
1036 if (unlikely(!get_reqs_available(ctx
))) {
1037 kmem_cache_free(kiocb_cachep
, req
);
1041 percpu_ref_get(&ctx
->reqs
);
1043 INIT_LIST_HEAD(&req
->ki_list
);
1044 refcount_set(&req
->ki_refcnt
, 2);
1045 req
->ki_eventfd
= NULL
;
1049 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
1051 struct aio_ring __user
*ring
= (void __user
*)ctx_id
;
1052 struct mm_struct
*mm
= current
->mm
;
1053 struct kioctx
*ctx
, *ret
= NULL
;
1054 struct kioctx_table
*table
;
1057 if (get_user(id
, &ring
->id
))
1061 table
= rcu_dereference(mm
->ioctx_table
);
1063 if (!table
|| id
>= table
->nr
)
1066 id
= array_index_nospec(id
, table
->nr
);
1067 ctx
= rcu_dereference(table
->table
[id
]);
1068 if (ctx
&& ctx
->user_id
== ctx_id
) {
1069 if (percpu_ref_tryget_live(&ctx
->users
))
1077 static inline void iocb_destroy(struct aio_kiocb
*iocb
)
1079 if (iocb
->ki_eventfd
)
1080 eventfd_ctx_put(iocb
->ki_eventfd
);
1082 fput(iocb
->ki_filp
);
1083 percpu_ref_put(&iocb
->ki_ctx
->reqs
);
1084 kmem_cache_free(kiocb_cachep
, iocb
);
1088 * Called when the io request on the given iocb is complete.
1090 static void aio_complete(struct aio_kiocb
*iocb
)
1092 struct kioctx
*ctx
= iocb
->ki_ctx
;
1093 struct aio_ring
*ring
;
1094 struct io_event
*ev_page
, *event
;
1095 unsigned tail
, pos
, head
;
1096 unsigned long flags
;
1099 * Add a completion event to the ring buffer. Must be done holding
1100 * ctx->completion_lock to prevent other code from messing with the tail
1101 * pointer since we might be called from irq context.
1103 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
1106 pos
= tail
+ AIO_EVENTS_OFFSET
;
1108 if (++tail
>= ctx
->nr_events
)
1111 ev_page
= kmap_atomic(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1112 event
= ev_page
+ pos
% AIO_EVENTS_PER_PAGE
;
1114 *event
= iocb
->ki_res
;
1116 kunmap_atomic(ev_page
);
1117 flush_dcache_page(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1119 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx
, tail
, iocb
,
1120 (void __user
*)(unsigned long)iocb
->ki_res
.obj
,
1121 iocb
->ki_res
.data
, iocb
->ki_res
.res
, iocb
->ki_res
.res2
);
1123 /* after flagging the request as done, we
1124 * must never even look at it again
1126 smp_wmb(); /* make event visible before updating tail */
1130 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1133 kunmap_atomic(ring
);
1134 flush_dcache_page(ctx
->ring_pages
[0]);
1136 ctx
->completed_events
++;
1137 if (ctx
->completed_events
> 1)
1138 refill_reqs_available(ctx
, head
, tail
);
1139 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1141 pr_debug("added to ring %p at [%u]\n", iocb
, tail
);
1144 * Check if the user asked us to deliver the result through an
1145 * eventfd. The eventfd_signal() function is safe to be called
1148 if (iocb
->ki_eventfd
)
1149 eventfd_signal(iocb
->ki_eventfd
, 1);
1152 * We have to order our ring_info tail store above and test
1153 * of the wait list below outside the wait lock. This is
1154 * like in wake_up_bit() where clearing a bit has to be
1155 * ordered with the unlocked test.
1159 if (waitqueue_active(&ctx
->wait
))
1160 wake_up(&ctx
->wait
);
1163 static inline void iocb_put(struct aio_kiocb
*iocb
)
1165 if (refcount_dec_and_test(&iocb
->ki_refcnt
)) {
1171 /* aio_read_events_ring
1172 * Pull an event off of the ioctx's event ring. Returns the number of
1175 static long aio_read_events_ring(struct kioctx
*ctx
,
1176 struct io_event __user
*event
, long nr
)
1178 struct aio_ring
*ring
;
1179 unsigned head
, tail
, pos
;
1184 * The mutex can block and wake us up and that will cause
1185 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1186 * and repeat. This should be rare enough that it doesn't cause
1187 * peformance issues. See the comment in read_events() for more detail.
1189 sched_annotate_sleep();
1190 mutex_lock(&ctx
->ring_lock
);
1192 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1193 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1196 kunmap_atomic(ring
);
1199 * Ensure that once we've read the current tail pointer, that
1200 * we also see the events that were stored up to the tail.
1204 pr_debug("h%u t%u m%u\n", head
, tail
, ctx
->nr_events
);
1209 head
%= ctx
->nr_events
;
1210 tail
%= ctx
->nr_events
;
1214 struct io_event
*ev
;
1217 avail
= (head
<= tail
? tail
: ctx
->nr_events
) - head
;
1221 pos
= head
+ AIO_EVENTS_OFFSET
;
1222 page
= ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
];
1223 pos
%= AIO_EVENTS_PER_PAGE
;
1225 avail
= min(avail
, nr
- ret
);
1226 avail
= min_t(long, avail
, AIO_EVENTS_PER_PAGE
- pos
);
1229 copy_ret
= copy_to_user(event
+ ret
, ev
+ pos
,
1230 sizeof(*ev
) * avail
);
1233 if (unlikely(copy_ret
)) {
1240 head
%= ctx
->nr_events
;
1243 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1245 kunmap_atomic(ring
);
1246 flush_dcache_page(ctx
->ring_pages
[0]);
1248 pr_debug("%li h%u t%u\n", ret
, head
, tail
);
1250 mutex_unlock(&ctx
->ring_lock
);
1255 static bool aio_read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1256 struct io_event __user
*event
, long *i
)
1258 long ret
= aio_read_events_ring(ctx
, event
+ *i
, nr
- *i
);
1263 if (unlikely(atomic_read(&ctx
->dead
)))
1269 return ret
< 0 || *i
>= min_nr
;
1272 static long read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1273 struct io_event __user
*event
,
1279 * Note that aio_read_events() is being called as the conditional - i.e.
1280 * we're calling it after prepare_to_wait() has set task state to
1281 * TASK_INTERRUPTIBLE.
1283 * But aio_read_events() can block, and if it blocks it's going to flip
1284 * the task state back to TASK_RUNNING.
1286 * This should be ok, provided it doesn't flip the state back to
1287 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1288 * will only happen if the mutex_lock() call blocks, and we then find
1289 * the ringbuffer empty. So in practice we should be ok, but it's
1290 * something to be aware of when touching this code.
1293 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
);
1295 wait_event_interruptible_hrtimeout(ctx
->wait
,
1296 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
),
1302 * Create an aio_context capable of receiving at least nr_events.
1303 * ctxp must not point to an aio_context that already exists, and
1304 * must be initialized to 0 prior to the call. On successful
1305 * creation of the aio_context, *ctxp is filled in with the resulting
1306 * handle. May fail with -EINVAL if *ctxp is not initialized,
1307 * if the specified nr_events exceeds internal limits. May fail
1308 * with -EAGAIN if the specified nr_events exceeds the user's limit
1309 * of available events. May fail with -ENOMEM if insufficient kernel
1310 * resources are available. May fail with -EFAULT if an invalid
1311 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1314 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1316 struct kioctx
*ioctx
= NULL
;
1320 ret
= get_user(ctx
, ctxp
);
1325 if (unlikely(ctx
|| nr_events
== 0)) {
1326 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1331 ioctx
= ioctx_alloc(nr_events
);
1332 ret
= PTR_ERR(ioctx
);
1333 if (!IS_ERR(ioctx
)) {
1334 ret
= put_user(ioctx
->user_id
, ctxp
);
1336 kill_ioctx(current
->mm
, ioctx
, NULL
);
1337 percpu_ref_put(&ioctx
->users
);
1344 #ifdef CONFIG_COMPAT
1345 COMPAT_SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, u32 __user
*, ctx32p
)
1347 struct kioctx
*ioctx
= NULL
;
1351 ret
= get_user(ctx
, ctx32p
);
1356 if (unlikely(ctx
|| nr_events
== 0)) {
1357 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1362 ioctx
= ioctx_alloc(nr_events
);
1363 ret
= PTR_ERR(ioctx
);
1364 if (!IS_ERR(ioctx
)) {
1365 /* truncating is ok because it's a user address */
1366 ret
= put_user((u32
)ioctx
->user_id
, ctx32p
);
1368 kill_ioctx(current
->mm
, ioctx
, NULL
);
1369 percpu_ref_put(&ioctx
->users
);
1378 * Destroy the aio_context specified. May cancel any outstanding
1379 * AIOs and block on completion. Will fail with -ENOSYS if not
1380 * implemented. May fail with -EINVAL if the context pointed to
1383 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1385 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1386 if (likely(NULL
!= ioctx
)) {
1387 struct ctx_rq_wait wait
;
1390 init_completion(&wait
.comp
);
1391 atomic_set(&wait
.count
, 1);
1393 /* Pass requests_done to kill_ioctx() where it can be set
1394 * in a thread-safe way. If we try to set it here then we have
1395 * a race condition if two io_destroy() called simultaneously.
1397 ret
= kill_ioctx(current
->mm
, ioctx
, &wait
);
1398 percpu_ref_put(&ioctx
->users
);
1400 /* Wait until all IO for the context are done. Otherwise kernel
1401 * keep using user-space buffers even if user thinks the context
1405 wait_for_completion(&wait
.comp
);
1409 pr_debug("EINVAL: invalid context id\n");
1413 static void aio_remove_iocb(struct aio_kiocb
*iocb
)
1415 struct kioctx
*ctx
= iocb
->ki_ctx
;
1416 unsigned long flags
;
1418 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
1419 list_del(&iocb
->ki_list
);
1420 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1423 static void aio_complete_rw(struct kiocb
*kiocb
, long res
, long res2
)
1425 struct aio_kiocb
*iocb
= container_of(kiocb
, struct aio_kiocb
, rw
);
1427 if (!list_empty_careful(&iocb
->ki_list
))
1428 aio_remove_iocb(iocb
);
1430 if (kiocb
->ki_flags
& IOCB_WRITE
) {
1431 struct inode
*inode
= file_inode(kiocb
->ki_filp
);
1434 * Tell lockdep we inherited freeze protection from submission
1437 if (S_ISREG(inode
->i_mode
))
1438 __sb_writers_acquired(inode
->i_sb
, SB_FREEZE_WRITE
);
1439 file_end_write(kiocb
->ki_filp
);
1442 iocb
->ki_res
.res
= res
;
1443 iocb
->ki_res
.res2
= res2
;
1447 static int aio_prep_rw(struct kiocb
*req
, const struct iocb
*iocb
)
1451 req
->ki_complete
= aio_complete_rw
;
1452 req
->private = NULL
;
1453 req
->ki_pos
= iocb
->aio_offset
;
1454 req
->ki_flags
= iocb_flags(req
->ki_filp
);
1455 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
)
1456 req
->ki_flags
|= IOCB_EVENTFD
;
1457 req
->ki_hint
= ki_hint_validate(file_write_hint(req
->ki_filp
));
1458 if (iocb
->aio_flags
& IOCB_FLAG_IOPRIO
) {
1460 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1461 * aio_reqprio is interpreted as an I/O scheduling
1462 * class and priority.
1464 ret
= ioprio_check_cap(iocb
->aio_reqprio
);
1466 pr_debug("aio ioprio check cap error: %d\n", ret
);
1470 req
->ki_ioprio
= iocb
->aio_reqprio
;
1472 req
->ki_ioprio
= get_current_ioprio();
1474 ret
= kiocb_set_rw_flags(req
, iocb
->aio_rw_flags
);
1478 req
->ki_flags
&= ~IOCB_HIPRI
; /* no one is going to poll for this I/O */
1482 static int aio_setup_rw(int rw
, const struct iocb
*iocb
, struct iovec
**iovec
,
1483 bool vectored
, bool compat
, struct iov_iter
*iter
)
1485 void __user
*buf
= (void __user
*)(uintptr_t)iocb
->aio_buf
;
1486 size_t len
= iocb
->aio_nbytes
;
1489 ssize_t ret
= import_single_range(rw
, buf
, len
, *iovec
, iter
);
1493 #ifdef CONFIG_COMPAT
1495 return compat_import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
,
1498 return import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
, iter
);
1501 static inline void aio_rw_done(struct kiocb
*req
, ssize_t ret
)
1507 case -ERESTARTNOINTR
:
1508 case -ERESTARTNOHAND
:
1509 case -ERESTART_RESTARTBLOCK
:
1511 * There's no easy way to restart the syscall since other AIO's
1512 * may be already running. Just fail this IO with EINTR.
1517 req
->ki_complete(req
, ret
, 0);
1521 static int aio_read(struct kiocb
*req
, const struct iocb
*iocb
,
1522 bool vectored
, bool compat
)
1524 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1525 struct iov_iter iter
;
1529 ret
= aio_prep_rw(req
, iocb
);
1532 file
= req
->ki_filp
;
1533 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1536 if (unlikely(!file
->f_op
->read_iter
))
1539 ret
= aio_setup_rw(READ
, iocb
, &iovec
, vectored
, compat
, &iter
);
1542 ret
= rw_verify_area(READ
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1544 aio_rw_done(req
, call_read_iter(file
, req
, &iter
));
1549 static int aio_write(struct kiocb
*req
, const struct iocb
*iocb
,
1550 bool vectored
, bool compat
)
1552 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1553 struct iov_iter iter
;
1557 ret
= aio_prep_rw(req
, iocb
);
1560 file
= req
->ki_filp
;
1562 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1564 if (unlikely(!file
->f_op
->write_iter
))
1567 ret
= aio_setup_rw(WRITE
, iocb
, &iovec
, vectored
, compat
, &iter
);
1570 ret
= rw_verify_area(WRITE
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1573 * Open-code file_start_write here to grab freeze protection,
1574 * which will be released by another thread in
1575 * aio_complete_rw(). Fool lockdep by telling it the lock got
1576 * released so that it doesn't complain about the held lock when
1577 * we return to userspace.
1579 if (S_ISREG(file_inode(file
)->i_mode
)) {
1580 __sb_start_write(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
, true);
1581 __sb_writers_release(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
);
1583 req
->ki_flags
|= IOCB_WRITE
;
1584 aio_rw_done(req
, call_write_iter(file
, req
, &iter
));
1590 static void aio_fsync_work(struct work_struct
*work
)
1592 struct aio_kiocb
*iocb
= container_of(work
, struct aio_kiocb
, fsync
.work
);
1594 iocb
->ki_res
.res
= vfs_fsync(iocb
->fsync
.file
, iocb
->fsync
.datasync
);
1598 static int aio_fsync(struct fsync_iocb
*req
, const struct iocb
*iocb
,
1601 if (unlikely(iocb
->aio_buf
|| iocb
->aio_offset
|| iocb
->aio_nbytes
||
1602 iocb
->aio_rw_flags
))
1605 if (unlikely(!req
->file
->f_op
->fsync
))
1608 req
->datasync
= datasync
;
1609 INIT_WORK(&req
->work
, aio_fsync_work
);
1610 schedule_work(&req
->work
);
1614 static void aio_poll_complete_work(struct work_struct
*work
)
1616 struct poll_iocb
*req
= container_of(work
, struct poll_iocb
, work
);
1617 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1618 struct poll_table_struct pt
= { ._key
= req
->events
};
1619 struct kioctx
*ctx
= iocb
->ki_ctx
;
1622 if (!READ_ONCE(req
->cancelled
))
1623 mask
= vfs_poll(req
->file
, &pt
) & req
->events
;
1626 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1627 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1628 * synchronize with them. In the cancellation case the list_del_init
1629 * itself is not actually needed, but harmless so we keep it in to
1630 * avoid further branches in the fast path.
1632 spin_lock_irq(&ctx
->ctx_lock
);
1633 if (!mask
&& !READ_ONCE(req
->cancelled
)) {
1634 add_wait_queue(req
->head
, &req
->wait
);
1635 spin_unlock_irq(&ctx
->ctx_lock
);
1638 list_del_init(&iocb
->ki_list
);
1639 iocb
->ki_res
.res
= mangle_poll(mask
);
1641 spin_unlock_irq(&ctx
->ctx_lock
);
1646 /* assumes we are called with irqs disabled */
1647 static int aio_poll_cancel(struct kiocb
*iocb
)
1649 struct aio_kiocb
*aiocb
= container_of(iocb
, struct aio_kiocb
, rw
);
1650 struct poll_iocb
*req
= &aiocb
->poll
;
1652 spin_lock(&req
->head
->lock
);
1653 WRITE_ONCE(req
->cancelled
, true);
1654 if (!list_empty(&req
->wait
.entry
)) {
1655 list_del_init(&req
->wait
.entry
);
1656 schedule_work(&aiocb
->poll
.work
);
1658 spin_unlock(&req
->head
->lock
);
1663 static int aio_poll_wake(struct wait_queue_entry
*wait
, unsigned mode
, int sync
,
1666 struct poll_iocb
*req
= container_of(wait
, struct poll_iocb
, wait
);
1667 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1668 __poll_t mask
= key_to_poll(key
);
1669 unsigned long flags
;
1671 /* for instances that support it check for an event match first: */
1672 if (mask
&& !(mask
& req
->events
))
1675 list_del_init(&req
->wait
.entry
);
1677 if (mask
&& spin_trylock_irqsave(&iocb
->ki_ctx
->ctx_lock
, flags
)) {
1679 * Try to complete the iocb inline if we can. Use
1680 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1681 * call this function with IRQs disabled and because IRQs
1682 * have to be disabled before ctx_lock is obtained.
1684 list_del(&iocb
->ki_list
);
1685 iocb
->ki_res
.res
= mangle_poll(mask
);
1687 spin_unlock_irqrestore(&iocb
->ki_ctx
->ctx_lock
, flags
);
1690 schedule_work(&req
->work
);
1695 struct aio_poll_table
{
1696 struct poll_table_struct pt
;
1697 struct aio_kiocb
*iocb
;
1702 aio_poll_queue_proc(struct file
*file
, struct wait_queue_head
*head
,
1703 struct poll_table_struct
*p
)
1705 struct aio_poll_table
*pt
= container_of(p
, struct aio_poll_table
, pt
);
1707 /* multiple wait queues per file are not supported */
1708 if (unlikely(pt
->iocb
->poll
.head
)) {
1709 pt
->error
= -EINVAL
;
1714 pt
->iocb
->poll
.head
= head
;
1715 add_wait_queue(head
, &pt
->iocb
->poll
.wait
);
1718 static int aio_poll(struct aio_kiocb
*aiocb
, const struct iocb
*iocb
)
1720 struct kioctx
*ctx
= aiocb
->ki_ctx
;
1721 struct poll_iocb
*req
= &aiocb
->poll
;
1722 struct aio_poll_table apt
;
1723 bool cancel
= false;
1726 /* reject any unknown events outside the normal event mask. */
1727 if ((u16
)iocb
->aio_buf
!= iocb
->aio_buf
)
1729 /* reject fields that are not defined for poll */
1730 if (iocb
->aio_offset
|| iocb
->aio_nbytes
|| iocb
->aio_rw_flags
)
1733 INIT_WORK(&req
->work
, aio_poll_complete_work
);
1734 req
->events
= demangle_poll(iocb
->aio_buf
) | EPOLLERR
| EPOLLHUP
;
1738 req
->cancelled
= false;
1740 apt
.pt
._qproc
= aio_poll_queue_proc
;
1741 apt
.pt
._key
= req
->events
;
1743 apt
.error
= -EINVAL
; /* same as no support for IOCB_CMD_POLL */
1745 /* initialized the list so that we can do list_empty checks */
1746 INIT_LIST_HEAD(&req
->wait
.entry
);
1747 init_waitqueue_func_entry(&req
->wait
, aio_poll_wake
);
1749 mask
= vfs_poll(req
->file
, &apt
.pt
) & req
->events
;
1750 spin_lock_irq(&ctx
->ctx_lock
);
1751 if (likely(req
->head
)) {
1752 spin_lock(&req
->head
->lock
);
1753 if (unlikely(list_empty(&req
->wait
.entry
))) {
1759 if (mask
|| apt
.error
) {
1760 list_del_init(&req
->wait
.entry
);
1761 } else if (cancel
) {
1762 WRITE_ONCE(req
->cancelled
, true);
1763 } else if (!req
->done
) { /* actually waiting for an event */
1764 list_add_tail(&aiocb
->ki_list
, &ctx
->active_reqs
);
1765 aiocb
->ki_cancel
= aio_poll_cancel
;
1767 spin_unlock(&req
->head
->lock
);
1769 if (mask
) { /* no async, we'd stolen it */
1770 aiocb
->ki_res
.res
= mangle_poll(mask
);
1773 spin_unlock_irq(&ctx
->ctx_lock
);
1779 static int __io_submit_one(struct kioctx
*ctx
, const struct iocb
*iocb
,
1780 struct iocb __user
*user_iocb
, struct aio_kiocb
*req
,
1783 req
->ki_filp
= fget(iocb
->aio_fildes
);
1784 if (unlikely(!req
->ki_filp
))
1787 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1788 struct eventfd_ctx
*eventfd
;
1790 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1791 * instance of the file* now. The file descriptor must be
1792 * an eventfd() fd, and will be signaled for each completed
1793 * event using the eventfd_signal() function.
1795 eventfd
= eventfd_ctx_fdget(iocb
->aio_resfd
);
1796 if (IS_ERR(eventfd
))
1797 return PTR_ERR(eventfd
);
1799 req
->ki_eventfd
= eventfd
;
1802 if (unlikely(put_user(KIOCB_KEY
, &user_iocb
->aio_key
))) {
1803 pr_debug("EFAULT: aio_key\n");
1807 req
->ki_res
.obj
= (u64
)(unsigned long)user_iocb
;
1808 req
->ki_res
.data
= iocb
->aio_data
;
1809 req
->ki_res
.res
= 0;
1810 req
->ki_res
.res2
= 0;
1812 switch (iocb
->aio_lio_opcode
) {
1813 case IOCB_CMD_PREAD
:
1814 return aio_read(&req
->rw
, iocb
, false, compat
);
1815 case IOCB_CMD_PWRITE
:
1816 return aio_write(&req
->rw
, iocb
, false, compat
);
1817 case IOCB_CMD_PREADV
:
1818 return aio_read(&req
->rw
, iocb
, true, compat
);
1819 case IOCB_CMD_PWRITEV
:
1820 return aio_write(&req
->rw
, iocb
, true, compat
);
1821 case IOCB_CMD_FSYNC
:
1822 return aio_fsync(&req
->fsync
, iocb
, false);
1823 case IOCB_CMD_FDSYNC
:
1824 return aio_fsync(&req
->fsync
, iocb
, true);
1826 return aio_poll(req
, iocb
);
1828 pr_debug("invalid aio operation %d\n", iocb
->aio_lio_opcode
);
1833 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1836 struct aio_kiocb
*req
;
1840 if (unlikely(copy_from_user(&iocb
, user_iocb
, sizeof(iocb
))))
1843 /* enforce forwards compatibility on users */
1844 if (unlikely(iocb
.aio_reserved2
)) {
1845 pr_debug("EINVAL: reserve field set\n");
1849 /* prevent overflows */
1851 (iocb
.aio_buf
!= (unsigned long)iocb
.aio_buf
) ||
1852 (iocb
.aio_nbytes
!= (size_t)iocb
.aio_nbytes
) ||
1853 ((ssize_t
)iocb
.aio_nbytes
< 0)
1855 pr_debug("EINVAL: overflow check\n");
1859 req
= aio_get_req(ctx
);
1863 err
= __io_submit_one(ctx
, &iocb
, user_iocb
, req
, compat
);
1865 /* Done with the synchronous reference */
1869 * If err is 0, we'd either done aio_complete() ourselves or have
1870 * arranged for that to be done asynchronously. Anything non-zero
1871 * means that we need to destroy req ourselves.
1873 if (unlikely(err
)) {
1875 put_reqs_available(ctx
, 1);
1881 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1882 * the number of iocbs queued. May return -EINVAL if the aio_context
1883 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1884 * *iocbpp[0] is not properly initialized, if the operation specified
1885 * is invalid for the file descriptor in the iocb. May fail with
1886 * -EFAULT if any of the data structures point to invalid data. May
1887 * fail with -EBADF if the file descriptor specified in the first
1888 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1889 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1890 * fail with -ENOSYS if not implemented.
1892 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1893 struct iocb __user
* __user
*, iocbpp
)
1898 struct blk_plug plug
;
1900 if (unlikely(nr
< 0))
1903 ctx
= lookup_ioctx(ctx_id
);
1904 if (unlikely(!ctx
)) {
1905 pr_debug("EINVAL: invalid context id\n");
1909 if (nr
> ctx
->nr_events
)
1910 nr
= ctx
->nr_events
;
1912 if (nr
> AIO_PLUG_THRESHOLD
)
1913 blk_start_plug(&plug
);
1914 for (i
= 0; i
< nr
; i
++) {
1915 struct iocb __user
*user_iocb
;
1917 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1922 ret
= io_submit_one(ctx
, user_iocb
, false);
1926 if (nr
> AIO_PLUG_THRESHOLD
)
1927 blk_finish_plug(&plug
);
1929 percpu_ref_put(&ctx
->users
);
1933 #ifdef CONFIG_COMPAT
1934 COMPAT_SYSCALL_DEFINE3(io_submit
, compat_aio_context_t
, ctx_id
,
1935 int, nr
, compat_uptr_t __user
*, iocbpp
)
1940 struct blk_plug plug
;
1942 if (unlikely(nr
< 0))
1945 ctx
= lookup_ioctx(ctx_id
);
1946 if (unlikely(!ctx
)) {
1947 pr_debug("EINVAL: invalid context id\n");
1951 if (nr
> ctx
->nr_events
)
1952 nr
= ctx
->nr_events
;
1954 if (nr
> AIO_PLUG_THRESHOLD
)
1955 blk_start_plug(&plug
);
1956 for (i
= 0; i
< nr
; i
++) {
1957 compat_uptr_t user_iocb
;
1959 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1964 ret
= io_submit_one(ctx
, compat_ptr(user_iocb
), true);
1968 if (nr
> AIO_PLUG_THRESHOLD
)
1969 blk_finish_plug(&plug
);
1971 percpu_ref_put(&ctx
->users
);
1977 * Attempts to cancel an iocb previously passed to io_submit. If
1978 * the operation is successfully cancelled, the resulting event is
1979 * copied into the memory pointed to by result without being placed
1980 * into the completion queue and 0 is returned. May fail with
1981 * -EFAULT if any of the data structures pointed to are invalid.
1982 * May fail with -EINVAL if aio_context specified by ctx_id is
1983 * invalid. May fail with -EAGAIN if the iocb specified was not
1984 * cancelled. Will fail with -ENOSYS if not implemented.
1986 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1987 struct io_event __user
*, result
)
1990 struct aio_kiocb
*kiocb
;
1993 u64 obj
= (u64
)(unsigned long)iocb
;
1995 if (unlikely(get_user(key
, &iocb
->aio_key
)))
1997 if (unlikely(key
!= KIOCB_KEY
))
2000 ctx
= lookup_ioctx(ctx_id
);
2004 spin_lock_irq(&ctx
->ctx_lock
);
2005 /* TODO: use a hash or array, this sucks. */
2006 list_for_each_entry(kiocb
, &ctx
->active_reqs
, ki_list
) {
2007 if (kiocb
->ki_res
.obj
== obj
) {
2008 ret
= kiocb
->ki_cancel(&kiocb
->rw
);
2009 list_del_init(&kiocb
->ki_list
);
2013 spin_unlock_irq(&ctx
->ctx_lock
);
2017 * The result argument is no longer used - the io_event is
2018 * always delivered via the ring buffer. -EINPROGRESS indicates
2019 * cancellation is progress:
2024 percpu_ref_put(&ctx
->users
);
2029 static long do_io_getevents(aio_context_t ctx_id
,
2032 struct io_event __user
*events
,
2033 struct timespec64
*ts
)
2035 ktime_t until
= ts
? timespec64_to_ktime(*ts
) : KTIME_MAX
;
2036 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
2039 if (likely(ioctx
)) {
2040 if (likely(min_nr
<= nr
&& min_nr
>= 0))
2041 ret
= read_events(ioctx
, min_nr
, nr
, events
, until
);
2042 percpu_ref_put(&ioctx
->users
);
2049 * Attempts to read at least min_nr events and up to nr events from
2050 * the completion queue for the aio_context specified by ctx_id. If
2051 * it succeeds, the number of read events is returned. May fail with
2052 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2053 * out of range, if timeout is out of range. May fail with -EFAULT
2054 * if any of the memory specified is invalid. May return 0 or
2055 * < min_nr if the timeout specified by timeout has elapsed
2056 * before sufficient events are available, where timeout == NULL
2057 * specifies an infinite timeout. Note that the timeout pointed to by
2058 * timeout is relative. Will fail with -ENOSYS if not implemented.
2060 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2062 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
2065 struct io_event __user
*, events
,
2066 struct __kernel_timespec __user
*, timeout
)
2068 struct timespec64 ts
;
2071 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
2074 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2075 if (!ret
&& signal_pending(current
))
2082 struct __aio_sigset
{
2083 const sigset_t __user
*sigmask
;
2087 SYSCALL_DEFINE6(io_pgetevents
,
2088 aio_context_t
, ctx_id
,
2091 struct io_event __user
*, events
,
2092 struct __kernel_timespec __user
*, timeout
,
2093 const struct __aio_sigset __user
*, usig
)
2095 struct __aio_sigset ksig
= { NULL
, };
2096 sigset_t ksigmask
, sigsaved
;
2097 struct timespec64 ts
;
2100 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
2103 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2106 ret
= set_user_sigmask(ksig
.sigmask
, &ksigmask
, &sigsaved
, ksig
.sigsetsize
);
2110 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2111 restore_user_sigmask(ksig
.sigmask
, &sigsaved
);
2112 if (signal_pending(current
) && !ret
)
2113 ret
= -ERESTARTNOHAND
;
2118 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2120 SYSCALL_DEFINE6(io_pgetevents_time32
,
2121 aio_context_t
, ctx_id
,
2124 struct io_event __user
*, events
,
2125 struct old_timespec32 __user
*, timeout
,
2126 const struct __aio_sigset __user
*, usig
)
2128 struct __aio_sigset ksig
= { NULL
, };
2129 sigset_t ksigmask
, sigsaved
;
2130 struct timespec64 ts
;
2133 if (timeout
&& unlikely(get_old_timespec32(&ts
, timeout
)))
2136 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2140 ret
= set_user_sigmask(ksig
.sigmask
, &ksigmask
, &sigsaved
, ksig
.sigsetsize
);
2144 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2145 restore_user_sigmask(ksig
.sigmask
, &sigsaved
);
2146 if (signal_pending(current
) && !ret
)
2147 ret
= -ERESTARTNOHAND
;
2154 #if defined(CONFIG_COMPAT_32BIT_TIME)
2156 SYSCALL_DEFINE5(io_getevents_time32
, __u32
, ctx_id
,
2159 struct io_event __user
*, events
,
2160 struct old_timespec32 __user
*, timeout
)
2162 struct timespec64 t
;
2165 if (timeout
&& get_old_timespec32(&t
, timeout
))
2168 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2169 if (!ret
&& signal_pending(current
))
2176 #ifdef CONFIG_COMPAT
2178 struct __compat_aio_sigset
{
2179 compat_sigset_t __user
*sigmask
;
2180 compat_size_t sigsetsize
;
2183 #if defined(CONFIG_COMPAT_32BIT_TIME)
2185 COMPAT_SYSCALL_DEFINE6(io_pgetevents
,
2186 compat_aio_context_t
, ctx_id
,
2187 compat_long_t
, min_nr
,
2189 struct io_event __user
*, events
,
2190 struct old_timespec32 __user
*, timeout
,
2191 const struct __compat_aio_sigset __user
*, usig
)
2193 struct __compat_aio_sigset ksig
= { NULL
, };
2194 sigset_t ksigmask
, sigsaved
;
2195 struct timespec64 t
;
2198 if (timeout
&& get_old_timespec32(&t
, timeout
))
2201 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2204 ret
= set_compat_user_sigmask(ksig
.sigmask
, &ksigmask
, &sigsaved
, ksig
.sigsetsize
);
2208 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2209 restore_user_sigmask(ksig
.sigmask
, &sigsaved
);
2210 if (signal_pending(current
) && !ret
)
2211 ret
= -ERESTARTNOHAND
;
2218 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64
,
2219 compat_aio_context_t
, ctx_id
,
2220 compat_long_t
, min_nr
,
2222 struct io_event __user
*, events
,
2223 struct __kernel_timespec __user
*, timeout
,
2224 const struct __compat_aio_sigset __user
*, usig
)
2226 struct __compat_aio_sigset ksig
= { NULL
, };
2227 sigset_t ksigmask
, sigsaved
;
2228 struct timespec64 t
;
2231 if (timeout
&& get_timespec64(&t
, timeout
))
2234 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2237 ret
= set_compat_user_sigmask(ksig
.sigmask
, &ksigmask
, &sigsaved
, ksig
.sigsetsize
);
2241 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2242 restore_user_sigmask(ksig
.sigmask
, &sigsaved
);
2243 if (signal_pending(current
) && !ret
)
2244 ret
= -ERESTARTNOHAND
;