Staging: hv: move logging.h
[linux/fpc-iii.git] / drivers / char / istallion.c
blobab2f3349c5c4cc9dc13e3021307a3ede3ddf9a92
1 /*****************************************************************************/
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 /*****************************************************************************/
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/smp_lock.h>
24 #include <linux/interrupt.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial.h>
28 #include <linux/seq_file.h>
29 #include <linux/cdk.h>
30 #include <linux/comstats.h>
31 #include <linux/istallion.h>
32 #include <linux/ioport.h>
33 #include <linux/delay.h>
34 #include <linux/init.h>
35 #include <linux/device.h>
36 #include <linux/wait.h>
37 #include <linux/eisa.h>
38 #include <linux/ctype.h>
40 #include <asm/io.h>
41 #include <asm/uaccess.h>
43 #include <linux/pci.h>
45 /*****************************************************************************/
48 * Define different board types. Not all of the following board types
49 * are supported by this driver. But I will use the standard "assigned"
50 * board numbers. Currently supported boards are abbreviated as:
51 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
52 * STAL = Stallion.
54 #define BRD_UNKNOWN 0
55 #define BRD_STALLION 1
56 #define BRD_BRUMBY4 2
57 #define BRD_ONBOARD2 3
58 #define BRD_ONBOARD 4
59 #define BRD_ONBOARDE 7
60 #define BRD_ECP 23
61 #define BRD_ECPE 24
62 #define BRD_ECPMC 25
63 #define BRD_ECPPCI 29
65 #define BRD_BRUMBY BRD_BRUMBY4
68 * Define a configuration structure to hold the board configuration.
69 * Need to set this up in the code (for now) with the boards that are
70 * to be configured into the system. This is what needs to be modified
71 * when adding/removing/modifying boards. Each line entry in the
72 * stli_brdconf[] array is a board. Each line contains io/irq/memory
73 * ranges for that board (as well as what type of board it is).
74 * Some examples:
75 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
76 * This line will configure an EasyConnection 8/64 at io address 2a0,
77 * and shared memory address of cc000. Multiple EasyConnection 8/64
78 * boards can share the same shared memory address space. No interrupt
79 * is required for this board type.
80 * Another example:
81 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
82 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
83 * shared memory address of 0x80000000 (2 GByte). Multiple
84 * EasyConnection 8/64 EISA boards can share the same shared memory
85 * address space. No interrupt is required for this board type.
86 * Another example:
87 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
88 * This line will configure an ONboard (ISA type) at io address 240,
89 * and shared memory address of d0000. Multiple ONboards can share
90 * the same shared memory address space. No interrupt required.
91 * Another example:
92 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
93 * This line will configure a Brumby board (any number of ports!) at
94 * io address 360 and shared memory address of c8000. All Brumby boards
95 * configured into a system must have their own separate io and memory
96 * addresses. No interrupt is required.
97 * Another example:
98 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
99 * This line will configure an original Stallion board at io address 330
100 * and shared memory address d0000 (this would only be valid for a "V4.0"
101 * or Rev.O Stallion board). All Stallion boards configured into the
102 * system must have their own separate io and memory addresses. No
103 * interrupt is required.
106 struct stlconf {
107 int brdtype;
108 int ioaddr1;
109 int ioaddr2;
110 unsigned long memaddr;
111 int irq;
112 int irqtype;
115 static unsigned int stli_nrbrds;
117 /* stli_lock must NOT be taken holding brd_lock */
118 static spinlock_t stli_lock; /* TTY logic lock */
119 static spinlock_t brd_lock; /* Board logic lock */
122 * There is some experimental EISA board detection code in this driver.
123 * By default it is disabled, but for those that want to try it out,
124 * then set the define below to be 1.
126 #define STLI_EISAPROBE 0
128 /*****************************************************************************/
131 * Define some important driver characteristics. Device major numbers
132 * allocated as per Linux Device Registry.
134 #ifndef STL_SIOMEMMAJOR
135 #define STL_SIOMEMMAJOR 28
136 #endif
137 #ifndef STL_SERIALMAJOR
138 #define STL_SERIALMAJOR 24
139 #endif
140 #ifndef STL_CALLOUTMAJOR
141 #define STL_CALLOUTMAJOR 25
142 #endif
144 /*****************************************************************************/
147 * Define our local driver identity first. Set up stuff to deal with
148 * all the local structures required by a serial tty driver.
150 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
151 static char *stli_drvname = "istallion";
152 static char *stli_drvversion = "5.6.0";
153 static char *stli_serialname = "ttyE";
155 static struct tty_driver *stli_serial;
156 static const struct tty_port_operations stli_port_ops;
158 #define STLI_TXBUFSIZE 4096
161 * Use a fast local buffer for cooked characters. Typically a whole
162 * bunch of cooked characters come in for a port, 1 at a time. So we
163 * save those up into a local buffer, then write out the whole lot
164 * with a large memcpy. Just use 1 buffer for all ports, since its
165 * use it is only need for short periods of time by each port.
167 static char *stli_txcookbuf;
168 static int stli_txcooksize;
169 static int stli_txcookrealsize;
170 static struct tty_struct *stli_txcooktty;
173 * Define a local default termios struct. All ports will be created
174 * with this termios initially. Basically all it defines is a raw port
175 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
177 static struct ktermios stli_deftermios = {
178 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
179 .c_cc = INIT_C_CC,
180 .c_ispeed = 9600,
181 .c_ospeed = 9600,
185 * Define global stats structures. Not used often, and can be
186 * re-used for each stats call.
188 static comstats_t stli_comstats;
189 static combrd_t stli_brdstats;
190 static struct asystats stli_cdkstats;
192 /*****************************************************************************/
194 static DEFINE_MUTEX(stli_brdslock);
195 static struct stlibrd *stli_brds[STL_MAXBRDS];
197 static int stli_shared;
200 * Per board state flags. Used with the state field of the board struct.
201 * Not really much here... All we need to do is keep track of whether
202 * the board has been detected, and whether it is actually running a slave
203 * or not.
205 #define BST_FOUND 0x1
206 #define BST_STARTED 0x2
207 #define BST_PROBED 0x4
210 * Define the set of port state flags. These are marked for internal
211 * state purposes only, usually to do with the state of communications
212 * with the slave. Most of them need to be updated atomically, so always
213 * use the bit setting operations (unless protected by cli/sti).
215 #define ST_INITIALIZING 1
216 #define ST_OPENING 2
217 #define ST_CLOSING 3
218 #define ST_CMDING 4
219 #define ST_TXBUSY 5
220 #define ST_RXING 6
221 #define ST_DOFLUSHRX 7
222 #define ST_DOFLUSHTX 8
223 #define ST_DOSIGS 9
224 #define ST_RXSTOP 10
225 #define ST_GETSIGS 11
228 * Define an array of board names as printable strings. Handy for
229 * referencing boards when printing trace and stuff.
231 static char *stli_brdnames[] = {
232 "Unknown",
233 "Stallion",
234 "Brumby",
235 "ONboard-MC",
236 "ONboard",
237 "Brumby",
238 "Brumby",
239 "ONboard-EI",
240 NULL,
241 "ONboard",
242 "ONboard-MC",
243 "ONboard-MC",
244 NULL,
245 NULL,
246 NULL,
247 NULL,
248 NULL,
249 NULL,
250 NULL,
251 NULL,
252 "EasyIO",
253 "EC8/32-AT",
254 "EC8/32-MC",
255 "EC8/64-AT",
256 "EC8/64-EI",
257 "EC8/64-MC",
258 "EC8/32-PCI",
259 "EC8/64-PCI",
260 "EasyIO-PCI",
261 "EC/RA-PCI",
264 /*****************************************************************************/
267 * Define some string labels for arguments passed from the module
268 * load line. These allow for easy board definitions, and easy
269 * modification of the io, memory and irq resoucres.
272 static char *board0[8];
273 static char *board1[8];
274 static char *board2[8];
275 static char *board3[8];
277 static char **stli_brdsp[] = {
278 (char **) &board0,
279 (char **) &board1,
280 (char **) &board2,
281 (char **) &board3
285 * Define a set of common board names, and types. This is used to
286 * parse any module arguments.
289 static struct stlibrdtype {
290 char *name;
291 int type;
292 } stli_brdstr[] = {
293 { "stallion", BRD_STALLION },
294 { "1", BRD_STALLION },
295 { "brumby", BRD_BRUMBY },
296 { "brumby4", BRD_BRUMBY },
297 { "brumby/4", BRD_BRUMBY },
298 { "brumby-4", BRD_BRUMBY },
299 { "brumby8", BRD_BRUMBY },
300 { "brumby/8", BRD_BRUMBY },
301 { "brumby-8", BRD_BRUMBY },
302 { "brumby16", BRD_BRUMBY },
303 { "brumby/16", BRD_BRUMBY },
304 { "brumby-16", BRD_BRUMBY },
305 { "2", BRD_BRUMBY },
306 { "onboard2", BRD_ONBOARD2 },
307 { "onboard-2", BRD_ONBOARD2 },
308 { "onboard/2", BRD_ONBOARD2 },
309 { "onboard-mc", BRD_ONBOARD2 },
310 { "onboard/mc", BRD_ONBOARD2 },
311 { "onboard-mca", BRD_ONBOARD2 },
312 { "onboard/mca", BRD_ONBOARD2 },
313 { "3", BRD_ONBOARD2 },
314 { "onboard", BRD_ONBOARD },
315 { "onboardat", BRD_ONBOARD },
316 { "4", BRD_ONBOARD },
317 { "onboarde", BRD_ONBOARDE },
318 { "onboard-e", BRD_ONBOARDE },
319 { "onboard/e", BRD_ONBOARDE },
320 { "onboard-ei", BRD_ONBOARDE },
321 { "onboard/ei", BRD_ONBOARDE },
322 { "7", BRD_ONBOARDE },
323 { "ecp", BRD_ECP },
324 { "ecpat", BRD_ECP },
325 { "ec8/64", BRD_ECP },
326 { "ec8/64-at", BRD_ECP },
327 { "ec8/64-isa", BRD_ECP },
328 { "23", BRD_ECP },
329 { "ecpe", BRD_ECPE },
330 { "ecpei", BRD_ECPE },
331 { "ec8/64-e", BRD_ECPE },
332 { "ec8/64-ei", BRD_ECPE },
333 { "24", BRD_ECPE },
334 { "ecpmc", BRD_ECPMC },
335 { "ec8/64-mc", BRD_ECPMC },
336 { "ec8/64-mca", BRD_ECPMC },
337 { "25", BRD_ECPMC },
338 { "ecppci", BRD_ECPPCI },
339 { "ec/ra", BRD_ECPPCI },
340 { "ec/ra-pc", BRD_ECPPCI },
341 { "ec/ra-pci", BRD_ECPPCI },
342 { "29", BRD_ECPPCI },
346 * Define the module agruments.
348 MODULE_AUTHOR("Greg Ungerer");
349 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
350 MODULE_LICENSE("GPL");
353 module_param_array(board0, charp, NULL, 0);
354 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
355 module_param_array(board1, charp, NULL, 0);
356 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
357 module_param_array(board2, charp, NULL, 0);
358 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
359 module_param_array(board3, charp, NULL, 0);
360 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
362 #if STLI_EISAPROBE != 0
364 * Set up a default memory address table for EISA board probing.
365 * The default addresses are all bellow 1Mbyte, which has to be the
366 * case anyway. They should be safe, since we only read values from
367 * them, and interrupts are disabled while we do it. If the higher
368 * memory support is compiled in then we also try probing around
369 * the 1Gb, 2Gb and 3Gb areas as well...
371 static unsigned long stli_eisamemprobeaddrs[] = {
372 0xc0000, 0xd0000, 0xe0000, 0xf0000,
373 0x80000000, 0x80010000, 0x80020000, 0x80030000,
374 0x40000000, 0x40010000, 0x40020000, 0x40030000,
375 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
376 0xff000000, 0xff010000, 0xff020000, 0xff030000,
379 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
380 #endif
383 * Define the Stallion PCI vendor and device IDs.
385 #ifndef PCI_DEVICE_ID_ECRA
386 #define PCI_DEVICE_ID_ECRA 0x0004
387 #endif
389 static struct pci_device_id istallion_pci_tbl[] = {
390 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
391 { 0 }
393 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
395 static struct pci_driver stli_pcidriver;
397 /*****************************************************************************/
400 * Hardware configuration info for ECP boards. These defines apply
401 * to the directly accessible io ports of the ECP. There is a set of
402 * defines for each ECP board type, ISA, EISA, MCA and PCI.
404 #define ECP_IOSIZE 4
406 #define ECP_MEMSIZE (128 * 1024)
407 #define ECP_PCIMEMSIZE (256 * 1024)
409 #define ECP_ATPAGESIZE (4 * 1024)
410 #define ECP_MCPAGESIZE (4 * 1024)
411 #define ECP_EIPAGESIZE (64 * 1024)
412 #define ECP_PCIPAGESIZE (64 * 1024)
414 #define STL_EISAID 0x8c4e
417 * Important defines for the ISA class of ECP board.
419 #define ECP_ATIREG 0
420 #define ECP_ATCONFR 1
421 #define ECP_ATMEMAR 2
422 #define ECP_ATMEMPR 3
423 #define ECP_ATSTOP 0x1
424 #define ECP_ATINTENAB 0x10
425 #define ECP_ATENABLE 0x20
426 #define ECP_ATDISABLE 0x00
427 #define ECP_ATADDRMASK 0x3f000
428 #define ECP_ATADDRSHFT 12
431 * Important defines for the EISA class of ECP board.
433 #define ECP_EIIREG 0
434 #define ECP_EIMEMARL 1
435 #define ECP_EICONFR 2
436 #define ECP_EIMEMARH 3
437 #define ECP_EIENABLE 0x1
438 #define ECP_EIDISABLE 0x0
439 #define ECP_EISTOP 0x4
440 #define ECP_EIEDGE 0x00
441 #define ECP_EILEVEL 0x80
442 #define ECP_EIADDRMASKL 0x00ff0000
443 #define ECP_EIADDRSHFTL 16
444 #define ECP_EIADDRMASKH 0xff000000
445 #define ECP_EIADDRSHFTH 24
446 #define ECP_EIBRDENAB 0xc84
448 #define ECP_EISAID 0x4
451 * Important defines for the Micro-channel class of ECP board.
452 * (It has a lot in common with the ISA boards.)
454 #define ECP_MCIREG 0
455 #define ECP_MCCONFR 1
456 #define ECP_MCSTOP 0x20
457 #define ECP_MCENABLE 0x80
458 #define ECP_MCDISABLE 0x00
461 * Important defines for the PCI class of ECP board.
462 * (It has a lot in common with the other ECP boards.)
464 #define ECP_PCIIREG 0
465 #define ECP_PCICONFR 1
466 #define ECP_PCISTOP 0x01
469 * Hardware configuration info for ONboard and Brumby boards. These
470 * defines apply to the directly accessible io ports of these boards.
472 #define ONB_IOSIZE 16
473 #define ONB_MEMSIZE (64 * 1024)
474 #define ONB_ATPAGESIZE (64 * 1024)
475 #define ONB_MCPAGESIZE (64 * 1024)
476 #define ONB_EIMEMSIZE (128 * 1024)
477 #define ONB_EIPAGESIZE (64 * 1024)
480 * Important defines for the ISA class of ONboard board.
482 #define ONB_ATIREG 0
483 #define ONB_ATMEMAR 1
484 #define ONB_ATCONFR 2
485 #define ONB_ATSTOP 0x4
486 #define ONB_ATENABLE 0x01
487 #define ONB_ATDISABLE 0x00
488 #define ONB_ATADDRMASK 0xff0000
489 #define ONB_ATADDRSHFT 16
491 #define ONB_MEMENABLO 0
492 #define ONB_MEMENABHI 0x02
495 * Important defines for the EISA class of ONboard board.
497 #define ONB_EIIREG 0
498 #define ONB_EIMEMARL 1
499 #define ONB_EICONFR 2
500 #define ONB_EIMEMARH 3
501 #define ONB_EIENABLE 0x1
502 #define ONB_EIDISABLE 0x0
503 #define ONB_EISTOP 0x4
504 #define ONB_EIEDGE 0x00
505 #define ONB_EILEVEL 0x80
506 #define ONB_EIADDRMASKL 0x00ff0000
507 #define ONB_EIADDRSHFTL 16
508 #define ONB_EIADDRMASKH 0xff000000
509 #define ONB_EIADDRSHFTH 24
510 #define ONB_EIBRDENAB 0xc84
512 #define ONB_EISAID 0x1
515 * Important defines for the Brumby boards. They are pretty simple,
516 * there is not much that is programmably configurable.
518 #define BBY_IOSIZE 16
519 #define BBY_MEMSIZE (64 * 1024)
520 #define BBY_PAGESIZE (16 * 1024)
522 #define BBY_ATIREG 0
523 #define BBY_ATCONFR 1
524 #define BBY_ATSTOP 0x4
527 * Important defines for the Stallion boards. They are pretty simple,
528 * there is not much that is programmably configurable.
530 #define STAL_IOSIZE 16
531 #define STAL_MEMSIZE (64 * 1024)
532 #define STAL_PAGESIZE (64 * 1024)
535 * Define the set of status register values for EasyConnection panels.
536 * The signature will return with the status value for each panel. From
537 * this we can determine what is attached to the board - before we have
538 * actually down loaded any code to it.
540 #define ECH_PNLSTATUS 2
541 #define ECH_PNL16PORT 0x20
542 #define ECH_PNLIDMASK 0x07
543 #define ECH_PNLXPID 0x40
544 #define ECH_PNLINTRPEND 0x80
547 * Define some macros to do things to the board. Even those these boards
548 * are somewhat related there is often significantly different ways of
549 * doing some operation on it (like enable, paging, reset, etc). So each
550 * board class has a set of functions which do the commonly required
551 * operations. The macros below basically just call these functions,
552 * generally checking for a NULL function - which means that the board
553 * needs nothing done to it to achieve this operation!
555 #define EBRDINIT(brdp) \
556 if (brdp->init != NULL) \
557 (* brdp->init)(brdp)
559 #define EBRDENABLE(brdp) \
560 if (brdp->enable != NULL) \
561 (* brdp->enable)(brdp);
563 #define EBRDDISABLE(brdp) \
564 if (brdp->disable != NULL) \
565 (* brdp->disable)(brdp);
567 #define EBRDINTR(brdp) \
568 if (brdp->intr != NULL) \
569 (* brdp->intr)(brdp);
571 #define EBRDRESET(brdp) \
572 if (brdp->reset != NULL) \
573 (* brdp->reset)(brdp);
575 #define EBRDGETMEMPTR(brdp,offset) \
576 (* brdp->getmemptr)(brdp, offset, __LINE__)
579 * Define the maximal baud rate, and the default baud base for ports.
581 #define STL_MAXBAUD 460800
582 #define STL_BAUDBASE 115200
583 #define STL_CLOSEDELAY (5 * HZ / 10)
585 /*****************************************************************************/
588 * Define macros to extract a brd or port number from a minor number.
590 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
591 #define MINOR2PORT(min) ((min) & 0x3f)
593 /*****************************************************************************/
596 * Prototype all functions in this driver!
599 static int stli_parsebrd(struct stlconf *confp, char **argp);
600 static int stli_open(struct tty_struct *tty, struct file *filp);
601 static void stli_close(struct tty_struct *tty, struct file *filp);
602 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
603 static int stli_putchar(struct tty_struct *tty, unsigned char ch);
604 static void stli_flushchars(struct tty_struct *tty);
605 static int stli_writeroom(struct tty_struct *tty);
606 static int stli_charsinbuffer(struct tty_struct *tty);
607 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
608 static void stli_settermios(struct tty_struct *tty, struct ktermios *old);
609 static void stli_throttle(struct tty_struct *tty);
610 static void stli_unthrottle(struct tty_struct *tty);
611 static void stli_stop(struct tty_struct *tty);
612 static void stli_start(struct tty_struct *tty);
613 static void stli_flushbuffer(struct tty_struct *tty);
614 static int stli_breakctl(struct tty_struct *tty, int state);
615 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
616 static void stli_sendxchar(struct tty_struct *tty, char ch);
617 static void stli_hangup(struct tty_struct *tty);
619 static int stli_brdinit(struct stlibrd *brdp);
620 static int stli_startbrd(struct stlibrd *brdp);
621 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
622 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
623 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
624 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
625 static void stli_poll(unsigned long arg);
626 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
627 static int stli_initopen(struct tty_struct *tty, struct stlibrd *brdp, struct stliport *portp);
628 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
629 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
630 static int stli_setport(struct tty_struct *tty);
631 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
632 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
633 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
634 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
635 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
636 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
637 static long stli_mktiocm(unsigned long sigvalue);
638 static void stli_read(struct stlibrd *brdp, struct stliport *portp);
639 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
640 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp);
641 static int stli_getbrdstats(combrd_t __user *bp);
642 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp, comstats_t __user *cp);
643 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp);
644 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
645 static int stli_getportstruct(struct stliport __user *arg);
646 static int stli_getbrdstruct(struct stlibrd __user *arg);
647 static struct stlibrd *stli_allocbrd(void);
649 static void stli_ecpinit(struct stlibrd *brdp);
650 static void stli_ecpenable(struct stlibrd *brdp);
651 static void stli_ecpdisable(struct stlibrd *brdp);
652 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
653 static void stli_ecpreset(struct stlibrd *brdp);
654 static void stli_ecpintr(struct stlibrd *brdp);
655 static void stli_ecpeiinit(struct stlibrd *brdp);
656 static void stli_ecpeienable(struct stlibrd *brdp);
657 static void stli_ecpeidisable(struct stlibrd *brdp);
658 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
659 static void stli_ecpeireset(struct stlibrd *brdp);
660 static void stli_ecpmcenable(struct stlibrd *brdp);
661 static void stli_ecpmcdisable(struct stlibrd *brdp);
662 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
663 static void stli_ecpmcreset(struct stlibrd *brdp);
664 static void stli_ecppciinit(struct stlibrd *brdp);
665 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
666 static void stli_ecppcireset(struct stlibrd *brdp);
668 static void stli_onbinit(struct stlibrd *brdp);
669 static void stli_onbenable(struct stlibrd *brdp);
670 static void stli_onbdisable(struct stlibrd *brdp);
671 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
672 static void stli_onbreset(struct stlibrd *brdp);
673 static void stli_onbeinit(struct stlibrd *brdp);
674 static void stli_onbeenable(struct stlibrd *brdp);
675 static void stli_onbedisable(struct stlibrd *brdp);
676 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
677 static void stli_onbereset(struct stlibrd *brdp);
678 static void stli_bbyinit(struct stlibrd *brdp);
679 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
680 static void stli_bbyreset(struct stlibrd *brdp);
681 static void stli_stalinit(struct stlibrd *brdp);
682 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
683 static void stli_stalreset(struct stlibrd *brdp);
685 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
687 static int stli_initecp(struct stlibrd *brdp);
688 static int stli_initonb(struct stlibrd *brdp);
689 #if STLI_EISAPROBE != 0
690 static int stli_eisamemprobe(struct stlibrd *brdp);
691 #endif
692 static int stli_initports(struct stlibrd *brdp);
694 /*****************************************************************************/
697 * Define the driver info for a user level shared memory device. This
698 * device will work sort of like the /dev/kmem device - except that it
699 * will give access to the shared memory on the Stallion intelligent
700 * board. This is also a very useful debugging tool.
702 static const struct file_operations stli_fsiomem = {
703 .owner = THIS_MODULE,
704 .read = stli_memread,
705 .write = stli_memwrite,
706 .ioctl = stli_memioctl,
709 /*****************************************************************************/
712 * Define a timer_list entry for our poll routine. The slave board
713 * is polled every so often to see if anything needs doing. This is
714 * much cheaper on host cpu than using interrupts. It turns out to
715 * not increase character latency by much either...
717 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
719 static int stli_timeron;
722 * Define the calculation for the timeout routine.
724 #define STLI_TIMEOUT (jiffies + 1)
726 /*****************************************************************************/
728 static struct class *istallion_class;
730 static void stli_cleanup_ports(struct stlibrd *brdp)
732 struct stliport *portp;
733 unsigned int j;
734 struct tty_struct *tty;
736 for (j = 0; j < STL_MAXPORTS; j++) {
737 portp = brdp->ports[j];
738 if (portp != NULL) {
739 tty = tty_port_tty_get(&portp->port);
740 if (tty != NULL) {
741 tty_hangup(tty);
742 tty_kref_put(tty);
744 kfree(portp);
749 /*****************************************************************************/
752 * Parse the supplied argument string, into the board conf struct.
755 static int stli_parsebrd(struct stlconf *confp, char **argp)
757 unsigned int i;
758 char *sp;
760 if (argp[0] == NULL || *argp[0] == 0)
761 return 0;
763 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
764 *sp = tolower(*sp);
766 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
767 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
768 break;
770 if (i == ARRAY_SIZE(stli_brdstr)) {
771 printk(KERN_WARNING "istallion: unknown board name, %s?\n", argp[0]);
772 return 0;
775 confp->brdtype = stli_brdstr[i].type;
776 if (argp[1] != NULL && *argp[1] != 0)
777 confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
778 if (argp[2] != NULL && *argp[2] != 0)
779 confp->memaddr = simple_strtoul(argp[2], NULL, 0);
780 return(1);
783 /*****************************************************************************/
785 static int stli_open(struct tty_struct *tty, struct file *filp)
787 struct stlibrd *brdp;
788 struct stliport *portp;
789 struct tty_port *port;
790 unsigned int minordev, brdnr, portnr;
791 int rc;
793 minordev = tty->index;
794 brdnr = MINOR2BRD(minordev);
795 if (brdnr >= stli_nrbrds)
796 return -ENODEV;
797 brdp = stli_brds[brdnr];
798 if (brdp == NULL)
799 return -ENODEV;
800 if ((brdp->state & BST_STARTED) == 0)
801 return -ENODEV;
802 portnr = MINOR2PORT(minordev);
803 if (portnr > brdp->nrports)
804 return -ENODEV;
806 portp = brdp->ports[portnr];
807 if (portp == NULL)
808 return -ENODEV;
809 if (portp->devnr < 1)
810 return -ENODEV;
811 port = &portp->port;
814 * On the first open of the device setup the port hardware, and
815 * initialize the per port data structure. Since initializing the port
816 * requires several commands to the board we will need to wait for any
817 * other open that is already initializing the port.
819 * Review - locking
821 tty_port_tty_set(port, tty);
822 tty->driver_data = portp;
823 port->count++;
825 wait_event_interruptible(portp->raw_wait,
826 !test_bit(ST_INITIALIZING, &portp->state));
827 if (signal_pending(current))
828 return -ERESTARTSYS;
830 if ((portp->port.flags & ASYNC_INITIALIZED) == 0) {
831 set_bit(ST_INITIALIZING, &portp->state);
832 if ((rc = stli_initopen(tty, brdp, portp)) >= 0) {
833 /* Locking */
834 port->flags |= ASYNC_INITIALIZED;
835 clear_bit(TTY_IO_ERROR, &tty->flags);
837 clear_bit(ST_INITIALIZING, &portp->state);
838 wake_up_interruptible(&portp->raw_wait);
839 if (rc < 0)
840 return rc;
842 return tty_port_block_til_ready(&portp->port, tty, filp);
845 /*****************************************************************************/
847 static void stli_close(struct tty_struct *tty, struct file *filp)
849 struct stlibrd *brdp;
850 struct stliport *portp;
851 struct tty_port *port;
852 unsigned long flags;
854 portp = tty->driver_data;
855 if (portp == NULL)
856 return;
857 port = &portp->port;
859 if (tty_port_close_start(port, tty, filp) == 0)
860 return;
863 * May want to wait for data to drain before closing. The BUSY flag
864 * keeps track of whether we are still transmitting or not. It is
865 * updated by messages from the slave - indicating when all chars
866 * really have drained.
868 spin_lock_irqsave(&stli_lock, flags);
869 if (tty == stli_txcooktty)
870 stli_flushchars(tty);
871 spin_unlock_irqrestore(&stli_lock, flags);
873 /* We end up doing this twice for the moment. This needs looking at
874 eventually. Note we still use portp->closing_wait as a result */
875 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
876 tty_wait_until_sent(tty, portp->closing_wait);
878 /* FIXME: port locking here needs attending to */
879 port->flags &= ~ASYNC_INITIALIZED;
881 brdp = stli_brds[portp->brdnr];
882 stli_rawclose(brdp, portp, 0, 0);
883 if (tty->termios->c_cflag & HUPCL) {
884 stli_mkasysigs(&portp->asig, 0, 0);
885 if (test_bit(ST_CMDING, &portp->state))
886 set_bit(ST_DOSIGS, &portp->state);
887 else
888 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
889 sizeof(asysigs_t), 0);
891 clear_bit(ST_TXBUSY, &portp->state);
892 clear_bit(ST_RXSTOP, &portp->state);
893 set_bit(TTY_IO_ERROR, &tty->flags);
894 tty_ldisc_flush(tty);
895 set_bit(ST_DOFLUSHRX, &portp->state);
896 stli_flushbuffer(tty);
898 tty_port_close_end(port, tty);
899 tty_port_tty_set(port, NULL);
902 /*****************************************************************************/
905 * Carry out first open operations on a port. This involves a number of
906 * commands to be sent to the slave. We need to open the port, set the
907 * notification events, set the initial port settings, get and set the
908 * initial signal values. We sleep and wait in between each one. But
909 * this still all happens pretty quickly.
912 static int stli_initopen(struct tty_struct *tty,
913 struct stlibrd *brdp, struct stliport *portp)
915 asynotify_t nt;
916 asyport_t aport;
917 int rc;
919 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
920 return rc;
922 memset(&nt, 0, sizeof(asynotify_t));
923 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
924 nt.signal = SG_DCD;
925 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
926 sizeof(asynotify_t), 0)) < 0)
927 return rc;
929 stli_mkasyport(tty, portp, &aport, tty->termios);
930 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
931 sizeof(asyport_t), 0)) < 0)
932 return rc;
934 set_bit(ST_GETSIGS, &portp->state);
935 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
936 sizeof(asysigs_t), 1)) < 0)
937 return rc;
938 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
939 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
940 stli_mkasysigs(&portp->asig, 1, 1);
941 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
942 sizeof(asysigs_t), 0)) < 0)
943 return rc;
945 return 0;
948 /*****************************************************************************/
951 * Send an open message to the slave. This will sleep waiting for the
952 * acknowledgement, so must have user context. We need to co-ordinate
953 * with close events here, since we don't want open and close events
954 * to overlap.
957 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
959 cdkhdr_t __iomem *hdrp;
960 cdkctrl_t __iomem *cp;
961 unsigned char __iomem *bits;
962 unsigned long flags;
963 int rc;
966 * Send a message to the slave to open this port.
970 * Slave is already closing this port. This can happen if a hangup
971 * occurs on this port. So we must wait until it is complete. The
972 * order of opens and closes may not be preserved across shared
973 * memory, so we must wait until it is complete.
975 wait_event_interruptible(portp->raw_wait,
976 !test_bit(ST_CLOSING, &portp->state));
977 if (signal_pending(current)) {
978 return -ERESTARTSYS;
982 * Everything is ready now, so write the open message into shared
983 * memory. Once the message is in set the service bits to say that
984 * this port wants service.
986 spin_lock_irqsave(&brd_lock, flags);
987 EBRDENABLE(brdp);
988 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
989 writel(arg, &cp->openarg);
990 writeb(1, &cp->open);
991 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
992 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
993 portp->portidx;
994 writeb(readb(bits) | portp->portbit, bits);
995 EBRDDISABLE(brdp);
997 if (wait == 0) {
998 spin_unlock_irqrestore(&brd_lock, flags);
999 return 0;
1003 * Slave is in action, so now we must wait for the open acknowledgment
1004 * to come back.
1006 rc = 0;
1007 set_bit(ST_OPENING, &portp->state);
1008 spin_unlock_irqrestore(&brd_lock, flags);
1010 wait_event_interruptible(portp->raw_wait,
1011 !test_bit(ST_OPENING, &portp->state));
1012 if (signal_pending(current))
1013 rc = -ERESTARTSYS;
1015 if ((rc == 0) && (portp->rc != 0))
1016 rc = -EIO;
1017 return rc;
1020 /*****************************************************************************/
1023 * Send a close message to the slave. Normally this will sleep waiting
1024 * for the acknowledgement, but if wait parameter is 0 it will not. If
1025 * wait is true then must have user context (to sleep).
1028 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1030 cdkhdr_t __iomem *hdrp;
1031 cdkctrl_t __iomem *cp;
1032 unsigned char __iomem *bits;
1033 unsigned long flags;
1034 int rc;
1037 * Slave is already closing this port. This can happen if a hangup
1038 * occurs on this port.
1040 if (wait) {
1041 wait_event_interruptible(portp->raw_wait,
1042 !test_bit(ST_CLOSING, &portp->state));
1043 if (signal_pending(current)) {
1044 return -ERESTARTSYS;
1049 * Write the close command into shared memory.
1051 spin_lock_irqsave(&brd_lock, flags);
1052 EBRDENABLE(brdp);
1053 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1054 writel(arg, &cp->closearg);
1055 writeb(1, &cp->close);
1056 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1057 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1058 portp->portidx;
1059 writeb(readb(bits) |portp->portbit, bits);
1060 EBRDDISABLE(brdp);
1062 set_bit(ST_CLOSING, &portp->state);
1063 spin_unlock_irqrestore(&brd_lock, flags);
1065 if (wait == 0)
1066 return 0;
1069 * Slave is in action, so now we must wait for the open acknowledgment
1070 * to come back.
1072 rc = 0;
1073 wait_event_interruptible(portp->raw_wait,
1074 !test_bit(ST_CLOSING, &portp->state));
1075 if (signal_pending(current))
1076 rc = -ERESTARTSYS;
1078 if ((rc == 0) && (portp->rc != 0))
1079 rc = -EIO;
1080 return rc;
1083 /*****************************************************************************/
1086 * Send a command to the slave and wait for the response. This must
1087 * have user context (it sleeps). This routine is generic in that it
1088 * can send any type of command. Its purpose is to wait for that command
1089 * to complete (as opposed to initiating the command then returning).
1092 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1094 wait_event_interruptible(portp->raw_wait,
1095 !test_bit(ST_CMDING, &portp->state));
1096 if (signal_pending(current))
1097 return -ERESTARTSYS;
1099 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1101 wait_event_interruptible(portp->raw_wait,
1102 !test_bit(ST_CMDING, &portp->state));
1103 if (signal_pending(current))
1104 return -ERESTARTSYS;
1106 if (portp->rc != 0)
1107 return -EIO;
1108 return 0;
1111 /*****************************************************************************/
1114 * Send the termios settings for this port to the slave. This sleeps
1115 * waiting for the command to complete - so must have user context.
1118 static int stli_setport(struct tty_struct *tty)
1120 struct stliport *portp = tty->driver_data;
1121 struct stlibrd *brdp;
1122 asyport_t aport;
1124 if (portp == NULL)
1125 return -ENODEV;
1126 if (portp->brdnr >= stli_nrbrds)
1127 return -ENODEV;
1128 brdp = stli_brds[portp->brdnr];
1129 if (brdp == NULL)
1130 return -ENODEV;
1132 stli_mkasyport(tty, portp, &aport, tty->termios);
1133 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1136 /*****************************************************************************/
1138 static int stli_carrier_raised(struct tty_port *port)
1140 struct stliport *portp = container_of(port, struct stliport, port);
1141 return (portp->sigs & TIOCM_CD) ? 1 : 0;
1144 static void stli_dtr_rts(struct tty_port *port, int on)
1146 struct stliport *portp = container_of(port, struct stliport, port);
1147 struct stlibrd *brdp = stli_brds[portp->brdnr];
1148 stli_mkasysigs(&portp->asig, on, on);
1149 if (stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1150 sizeof(asysigs_t), 0) < 0)
1151 printk(KERN_WARNING "istallion: dtr set failed.\n");
1155 /*****************************************************************************/
1158 * Write routine. Take the data and put it in the shared memory ring
1159 * queue. If port is not already sending chars then need to mark the
1160 * service bits for this port.
1163 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1165 cdkasy_t __iomem *ap;
1166 cdkhdr_t __iomem *hdrp;
1167 unsigned char __iomem *bits;
1168 unsigned char __iomem *shbuf;
1169 unsigned char *chbuf;
1170 struct stliport *portp;
1171 struct stlibrd *brdp;
1172 unsigned int len, stlen, head, tail, size;
1173 unsigned long flags;
1175 if (tty == stli_txcooktty)
1176 stli_flushchars(tty);
1177 portp = tty->driver_data;
1178 if (portp == NULL)
1179 return 0;
1180 if (portp->brdnr >= stli_nrbrds)
1181 return 0;
1182 brdp = stli_brds[portp->brdnr];
1183 if (brdp == NULL)
1184 return 0;
1185 chbuf = (unsigned char *) buf;
1188 * All data is now local, shove as much as possible into shared memory.
1190 spin_lock_irqsave(&brd_lock, flags);
1191 EBRDENABLE(brdp);
1192 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1193 head = (unsigned int) readw(&ap->txq.head);
1194 tail = (unsigned int) readw(&ap->txq.tail);
1195 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1196 tail = (unsigned int) readw(&ap->txq.tail);
1197 size = portp->txsize;
1198 if (head >= tail) {
1199 len = size - (head - tail) - 1;
1200 stlen = size - head;
1201 } else {
1202 len = tail - head - 1;
1203 stlen = len;
1206 len = min(len, (unsigned int)count);
1207 count = 0;
1208 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1210 while (len > 0) {
1211 stlen = min(len, stlen);
1212 memcpy_toio(shbuf + head, chbuf, stlen);
1213 chbuf += stlen;
1214 len -= stlen;
1215 count += stlen;
1216 head += stlen;
1217 if (head >= size) {
1218 head = 0;
1219 stlen = tail;
1223 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1224 writew(head, &ap->txq.head);
1225 if (test_bit(ST_TXBUSY, &portp->state)) {
1226 if (readl(&ap->changed.data) & DT_TXEMPTY)
1227 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1229 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1230 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1231 portp->portidx;
1232 writeb(readb(bits) | portp->portbit, bits);
1233 set_bit(ST_TXBUSY, &portp->state);
1234 EBRDDISABLE(brdp);
1235 spin_unlock_irqrestore(&brd_lock, flags);
1237 return(count);
1240 /*****************************************************************************/
1243 * Output a single character. We put it into a temporary local buffer
1244 * (for speed) then write out that buffer when the flushchars routine
1245 * is called. There is a safety catch here so that if some other port
1246 * writes chars before the current buffer has been, then we write them
1247 * first them do the new ports.
1250 static int stli_putchar(struct tty_struct *tty, unsigned char ch)
1252 if (tty != stli_txcooktty) {
1253 if (stli_txcooktty != NULL)
1254 stli_flushchars(stli_txcooktty);
1255 stli_txcooktty = tty;
1258 stli_txcookbuf[stli_txcooksize++] = ch;
1259 return 0;
1262 /*****************************************************************************/
1265 * Transfer characters from the local TX cooking buffer to the board.
1266 * We sort of ignore the tty that gets passed in here. We rely on the
1267 * info stored with the TX cook buffer to tell us which port to flush
1268 * the data on. In any case we clean out the TX cook buffer, for re-use
1269 * by someone else.
1272 static void stli_flushchars(struct tty_struct *tty)
1274 cdkhdr_t __iomem *hdrp;
1275 unsigned char __iomem *bits;
1276 cdkasy_t __iomem *ap;
1277 struct tty_struct *cooktty;
1278 struct stliport *portp;
1279 struct stlibrd *brdp;
1280 unsigned int len, stlen, head, tail, size, count, cooksize;
1281 unsigned char *buf;
1282 unsigned char __iomem *shbuf;
1283 unsigned long flags;
1285 cooksize = stli_txcooksize;
1286 cooktty = stli_txcooktty;
1287 stli_txcooksize = 0;
1288 stli_txcookrealsize = 0;
1289 stli_txcooktty = NULL;
1291 if (cooktty == NULL)
1292 return;
1293 if (tty != cooktty)
1294 tty = cooktty;
1295 if (cooksize == 0)
1296 return;
1298 portp = tty->driver_data;
1299 if (portp == NULL)
1300 return;
1301 if (portp->brdnr >= stli_nrbrds)
1302 return;
1303 brdp = stli_brds[portp->brdnr];
1304 if (brdp == NULL)
1305 return;
1307 spin_lock_irqsave(&brd_lock, flags);
1308 EBRDENABLE(brdp);
1310 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1311 head = (unsigned int) readw(&ap->txq.head);
1312 tail = (unsigned int) readw(&ap->txq.tail);
1313 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1314 tail = (unsigned int) readw(&ap->txq.tail);
1315 size = portp->txsize;
1316 if (head >= tail) {
1317 len = size - (head - tail) - 1;
1318 stlen = size - head;
1319 } else {
1320 len = tail - head - 1;
1321 stlen = len;
1324 len = min(len, cooksize);
1325 count = 0;
1326 shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1327 buf = stli_txcookbuf;
1329 while (len > 0) {
1330 stlen = min(len, stlen);
1331 memcpy_toio(shbuf + head, buf, stlen);
1332 buf += stlen;
1333 len -= stlen;
1334 count += stlen;
1335 head += stlen;
1336 if (head >= size) {
1337 head = 0;
1338 stlen = tail;
1342 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1343 writew(head, &ap->txq.head);
1345 if (test_bit(ST_TXBUSY, &portp->state)) {
1346 if (readl(&ap->changed.data) & DT_TXEMPTY)
1347 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1349 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1350 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1351 portp->portidx;
1352 writeb(readb(bits) | portp->portbit, bits);
1353 set_bit(ST_TXBUSY, &portp->state);
1355 EBRDDISABLE(brdp);
1356 spin_unlock_irqrestore(&brd_lock, flags);
1359 /*****************************************************************************/
1361 static int stli_writeroom(struct tty_struct *tty)
1363 cdkasyrq_t __iomem *rp;
1364 struct stliport *portp;
1365 struct stlibrd *brdp;
1366 unsigned int head, tail, len;
1367 unsigned long flags;
1369 if (tty == stli_txcooktty) {
1370 if (stli_txcookrealsize != 0) {
1371 len = stli_txcookrealsize - stli_txcooksize;
1372 return len;
1376 portp = tty->driver_data;
1377 if (portp == NULL)
1378 return 0;
1379 if (portp->brdnr >= stli_nrbrds)
1380 return 0;
1381 brdp = stli_brds[portp->brdnr];
1382 if (brdp == NULL)
1383 return 0;
1385 spin_lock_irqsave(&brd_lock, flags);
1386 EBRDENABLE(brdp);
1387 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1388 head = (unsigned int) readw(&rp->head);
1389 tail = (unsigned int) readw(&rp->tail);
1390 if (tail != ((unsigned int) readw(&rp->tail)))
1391 tail = (unsigned int) readw(&rp->tail);
1392 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1393 len--;
1394 EBRDDISABLE(brdp);
1395 spin_unlock_irqrestore(&brd_lock, flags);
1397 if (tty == stli_txcooktty) {
1398 stli_txcookrealsize = len;
1399 len -= stli_txcooksize;
1401 return len;
1404 /*****************************************************************************/
1407 * Return the number of characters in the transmit buffer. Normally we
1408 * will return the number of chars in the shared memory ring queue.
1409 * We need to kludge around the case where the shared memory buffer is
1410 * empty but not all characters have drained yet, for this case just
1411 * return that there is 1 character in the buffer!
1414 static int stli_charsinbuffer(struct tty_struct *tty)
1416 cdkasyrq_t __iomem *rp;
1417 struct stliport *portp;
1418 struct stlibrd *brdp;
1419 unsigned int head, tail, len;
1420 unsigned long flags;
1422 if (tty == stli_txcooktty)
1423 stli_flushchars(tty);
1424 portp = tty->driver_data;
1425 if (portp == NULL)
1426 return 0;
1427 if (portp->brdnr >= stli_nrbrds)
1428 return 0;
1429 brdp = stli_brds[portp->brdnr];
1430 if (brdp == NULL)
1431 return 0;
1433 spin_lock_irqsave(&brd_lock, flags);
1434 EBRDENABLE(brdp);
1435 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1436 head = (unsigned int) readw(&rp->head);
1437 tail = (unsigned int) readw(&rp->tail);
1438 if (tail != ((unsigned int) readw(&rp->tail)))
1439 tail = (unsigned int) readw(&rp->tail);
1440 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1441 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1442 len = 1;
1443 EBRDDISABLE(brdp);
1444 spin_unlock_irqrestore(&brd_lock, flags);
1446 return len;
1449 /*****************************************************************************/
1452 * Generate the serial struct info.
1455 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1457 struct serial_struct sio;
1458 struct stlibrd *brdp;
1460 memset(&sio, 0, sizeof(struct serial_struct));
1461 sio.type = PORT_UNKNOWN;
1462 sio.line = portp->portnr;
1463 sio.irq = 0;
1464 sio.flags = portp->port.flags;
1465 sio.baud_base = portp->baud_base;
1466 sio.close_delay = portp->port.close_delay;
1467 sio.closing_wait = portp->closing_wait;
1468 sio.custom_divisor = portp->custom_divisor;
1469 sio.xmit_fifo_size = 0;
1470 sio.hub6 = 0;
1472 brdp = stli_brds[portp->brdnr];
1473 if (brdp != NULL)
1474 sio.port = brdp->iobase;
1476 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1477 -EFAULT : 0;
1480 /*****************************************************************************/
1483 * Set port according to the serial struct info.
1484 * At this point we do not do any auto-configure stuff, so we will
1485 * just quietly ignore any requests to change irq, etc.
1488 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1490 struct serial_struct sio;
1491 int rc;
1492 struct stliport *portp = tty->driver_data;
1494 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1495 return -EFAULT;
1496 if (!capable(CAP_SYS_ADMIN)) {
1497 if ((sio.baud_base != portp->baud_base) ||
1498 (sio.close_delay != portp->port.close_delay) ||
1499 ((sio.flags & ~ASYNC_USR_MASK) !=
1500 (portp->port.flags & ~ASYNC_USR_MASK)))
1501 return -EPERM;
1504 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1505 (sio.flags & ASYNC_USR_MASK);
1506 portp->baud_base = sio.baud_base;
1507 portp->port.close_delay = sio.close_delay;
1508 portp->closing_wait = sio.closing_wait;
1509 portp->custom_divisor = sio.custom_divisor;
1511 if ((rc = stli_setport(tty)) < 0)
1512 return rc;
1513 return 0;
1516 /*****************************************************************************/
1518 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1520 struct stliport *portp = tty->driver_data;
1521 struct stlibrd *brdp;
1522 int rc;
1524 if (portp == NULL)
1525 return -ENODEV;
1526 if (portp->brdnr >= stli_nrbrds)
1527 return 0;
1528 brdp = stli_brds[portp->brdnr];
1529 if (brdp == NULL)
1530 return 0;
1531 if (tty->flags & (1 << TTY_IO_ERROR))
1532 return -EIO;
1534 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1535 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1536 return rc;
1538 return stli_mktiocm(portp->asig.sigvalue);
1541 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1542 unsigned int set, unsigned int clear)
1544 struct stliport *portp = tty->driver_data;
1545 struct stlibrd *brdp;
1546 int rts = -1, dtr = -1;
1548 if (portp == NULL)
1549 return -ENODEV;
1550 if (portp->brdnr >= stli_nrbrds)
1551 return 0;
1552 brdp = stli_brds[portp->brdnr];
1553 if (brdp == NULL)
1554 return 0;
1555 if (tty->flags & (1 << TTY_IO_ERROR))
1556 return -EIO;
1558 if (set & TIOCM_RTS)
1559 rts = 1;
1560 if (set & TIOCM_DTR)
1561 dtr = 1;
1562 if (clear & TIOCM_RTS)
1563 rts = 0;
1564 if (clear & TIOCM_DTR)
1565 dtr = 0;
1567 stli_mkasysigs(&portp->asig, dtr, rts);
1569 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1570 sizeof(asysigs_t), 0);
1573 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1575 struct stliport *portp;
1576 struct stlibrd *brdp;
1577 int rc;
1578 void __user *argp = (void __user *)arg;
1580 portp = tty->driver_data;
1581 if (portp == NULL)
1582 return -ENODEV;
1583 if (portp->brdnr >= stli_nrbrds)
1584 return 0;
1585 brdp = stli_brds[portp->brdnr];
1586 if (brdp == NULL)
1587 return 0;
1589 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1590 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1591 if (tty->flags & (1 << TTY_IO_ERROR))
1592 return -EIO;
1595 rc = 0;
1597 switch (cmd) {
1598 case TIOCGSERIAL:
1599 rc = stli_getserial(portp, argp);
1600 break;
1601 case TIOCSSERIAL:
1602 rc = stli_setserial(tty, argp);
1603 break;
1604 case STL_GETPFLAG:
1605 rc = put_user(portp->pflag, (unsigned __user *)argp);
1606 break;
1607 case STL_SETPFLAG:
1608 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1609 stli_setport(tty);
1610 break;
1611 case COM_GETPORTSTATS:
1612 rc = stli_getportstats(tty, portp, argp);
1613 break;
1614 case COM_CLRPORTSTATS:
1615 rc = stli_clrportstats(portp, argp);
1616 break;
1617 case TIOCSERCONFIG:
1618 case TIOCSERGWILD:
1619 case TIOCSERSWILD:
1620 case TIOCSERGETLSR:
1621 case TIOCSERGSTRUCT:
1622 case TIOCSERGETMULTI:
1623 case TIOCSERSETMULTI:
1624 default:
1625 rc = -ENOIOCTLCMD;
1626 break;
1629 return rc;
1632 /*****************************************************************************/
1635 * This routine assumes that we have user context and can sleep.
1636 * Looks like it is true for the current ttys implementation..!!
1639 static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1641 struct stliport *portp;
1642 struct stlibrd *brdp;
1643 struct ktermios *tiosp;
1644 asyport_t aport;
1646 portp = tty->driver_data;
1647 if (portp == NULL)
1648 return;
1649 if (portp->brdnr >= stli_nrbrds)
1650 return;
1651 brdp = stli_brds[portp->brdnr];
1652 if (brdp == NULL)
1653 return;
1655 tiosp = tty->termios;
1657 stli_mkasyport(tty, portp, &aport, tiosp);
1658 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1659 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1660 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1661 sizeof(asysigs_t), 0);
1662 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1663 tty->hw_stopped = 0;
1664 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1665 wake_up_interruptible(&portp->port.open_wait);
1668 /*****************************************************************************/
1671 * Attempt to flow control who ever is sending us data. We won't really
1672 * do any flow control action here. We can't directly, and even if we
1673 * wanted to we would have to send a command to the slave. The slave
1674 * knows how to flow control, and will do so when its buffers reach its
1675 * internal high water marks. So what we will do is set a local state
1676 * bit that will stop us sending any RX data up from the poll routine
1677 * (which is the place where RX data from the slave is handled).
1680 static void stli_throttle(struct tty_struct *tty)
1682 struct stliport *portp = tty->driver_data;
1683 if (portp == NULL)
1684 return;
1685 set_bit(ST_RXSTOP, &portp->state);
1688 /*****************************************************************************/
1691 * Unflow control the device sending us data... That means that all
1692 * we have to do is clear the RXSTOP state bit. The next poll call
1693 * will then be able to pass the RX data back up.
1696 static void stli_unthrottle(struct tty_struct *tty)
1698 struct stliport *portp = tty->driver_data;
1699 if (portp == NULL)
1700 return;
1701 clear_bit(ST_RXSTOP, &portp->state);
1704 /*****************************************************************************/
1707 * Stop the transmitter.
1710 static void stli_stop(struct tty_struct *tty)
1714 /*****************************************************************************/
1717 * Start the transmitter again.
1720 static void stli_start(struct tty_struct *tty)
1724 /*****************************************************************************/
1727 * Hangup this port. This is pretty much like closing the port, only
1728 * a little more brutal. No waiting for data to drain. Shutdown the
1729 * port and maybe drop signals. This is rather tricky really. We want
1730 * to close the port as well.
1733 static void stli_hangup(struct tty_struct *tty)
1735 struct stliport *portp;
1736 struct stlibrd *brdp;
1737 struct tty_port *port;
1738 unsigned long flags;
1740 portp = tty->driver_data;
1741 if (portp == NULL)
1742 return;
1743 if (portp->brdnr >= stli_nrbrds)
1744 return;
1745 brdp = stli_brds[portp->brdnr];
1746 if (brdp == NULL)
1747 return;
1748 port = &portp->port;
1750 spin_lock_irqsave(&port->lock, flags);
1751 port->flags &= ~ASYNC_INITIALIZED;
1752 spin_unlock_irqrestore(&port->lock, flags);
1754 if (!test_bit(ST_CLOSING, &portp->state))
1755 stli_rawclose(brdp, portp, 0, 0);
1757 spin_lock_irqsave(&stli_lock, flags);
1758 if (tty->termios->c_cflag & HUPCL) {
1759 stli_mkasysigs(&portp->asig, 0, 0);
1760 if (test_bit(ST_CMDING, &portp->state)) {
1761 set_bit(ST_DOSIGS, &portp->state);
1762 set_bit(ST_DOFLUSHTX, &portp->state);
1763 set_bit(ST_DOFLUSHRX, &portp->state);
1764 } else {
1765 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
1766 &portp->asig, sizeof(asysigs_t), 0);
1770 clear_bit(ST_TXBUSY, &portp->state);
1771 clear_bit(ST_RXSTOP, &portp->state);
1772 set_bit(TTY_IO_ERROR, &tty->flags);
1773 spin_unlock_irqrestore(&stli_lock, flags);
1775 tty_port_hangup(port);
1778 /*****************************************************************************/
1781 * Flush characters from the lower buffer. We may not have user context
1782 * so we cannot sleep waiting for it to complete. Also we need to check
1783 * if there is chars for this port in the TX cook buffer, and flush them
1784 * as well.
1787 static void stli_flushbuffer(struct tty_struct *tty)
1789 struct stliport *portp;
1790 struct stlibrd *brdp;
1791 unsigned long ftype, flags;
1793 portp = tty->driver_data;
1794 if (portp == NULL)
1795 return;
1796 if (portp->brdnr >= stli_nrbrds)
1797 return;
1798 brdp = stli_brds[portp->brdnr];
1799 if (brdp == NULL)
1800 return;
1802 spin_lock_irqsave(&brd_lock, flags);
1803 if (tty == stli_txcooktty) {
1804 stli_txcooktty = NULL;
1805 stli_txcooksize = 0;
1806 stli_txcookrealsize = 0;
1808 if (test_bit(ST_CMDING, &portp->state)) {
1809 set_bit(ST_DOFLUSHTX, &portp->state);
1810 } else {
1811 ftype = FLUSHTX;
1812 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1813 ftype |= FLUSHRX;
1814 clear_bit(ST_DOFLUSHRX, &portp->state);
1816 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1818 spin_unlock_irqrestore(&brd_lock, flags);
1819 tty_wakeup(tty);
1822 /*****************************************************************************/
1824 static int stli_breakctl(struct tty_struct *tty, int state)
1826 struct stlibrd *brdp;
1827 struct stliport *portp;
1828 long arg;
1830 portp = tty->driver_data;
1831 if (portp == NULL)
1832 return -EINVAL;
1833 if (portp->brdnr >= stli_nrbrds)
1834 return -EINVAL;
1835 brdp = stli_brds[portp->brdnr];
1836 if (brdp == NULL)
1837 return -EINVAL;
1839 arg = (state == -1) ? BREAKON : BREAKOFF;
1840 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1841 return 0;
1844 /*****************************************************************************/
1846 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1848 struct stliport *portp;
1849 unsigned long tend;
1851 portp = tty->driver_data;
1852 if (portp == NULL)
1853 return;
1855 if (timeout == 0)
1856 timeout = HZ;
1857 tend = jiffies + timeout;
1859 while (test_bit(ST_TXBUSY, &portp->state)) {
1860 if (signal_pending(current))
1861 break;
1862 msleep_interruptible(20);
1863 if (time_after_eq(jiffies, tend))
1864 break;
1868 /*****************************************************************************/
1870 static void stli_sendxchar(struct tty_struct *tty, char ch)
1872 struct stlibrd *brdp;
1873 struct stliport *portp;
1874 asyctrl_t actrl;
1876 portp = tty->driver_data;
1877 if (portp == NULL)
1878 return;
1879 if (portp->brdnr >= stli_nrbrds)
1880 return;
1881 brdp = stli_brds[portp->brdnr];
1882 if (brdp == NULL)
1883 return;
1885 memset(&actrl, 0, sizeof(asyctrl_t));
1886 if (ch == STOP_CHAR(tty)) {
1887 actrl.rxctrl = CT_STOPFLOW;
1888 } else if (ch == START_CHAR(tty)) {
1889 actrl.rxctrl = CT_STARTFLOW;
1890 } else {
1891 actrl.txctrl = CT_SENDCHR;
1892 actrl.tximdch = ch;
1894 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
1897 static void stli_portinfo(struct seq_file *m, struct stlibrd *brdp, struct stliport *portp, int portnr)
1899 char *uart;
1900 int rc;
1902 rc = stli_portcmdstats(NULL, portp);
1904 uart = "UNKNOWN";
1905 if (brdp->state & BST_STARTED) {
1906 switch (stli_comstats.hwid) {
1907 case 0: uart = "2681"; break;
1908 case 1: uart = "SC26198"; break;
1909 default:uart = "CD1400"; break;
1912 seq_printf(m, "%d: uart:%s ", portnr, uart);
1914 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
1915 char sep;
1917 seq_printf(m, "tx:%d rx:%d", (int) stli_comstats.txtotal,
1918 (int) stli_comstats.rxtotal);
1920 if (stli_comstats.rxframing)
1921 seq_printf(m, " fe:%d",
1922 (int) stli_comstats.rxframing);
1923 if (stli_comstats.rxparity)
1924 seq_printf(m, " pe:%d",
1925 (int) stli_comstats.rxparity);
1926 if (stli_comstats.rxbreaks)
1927 seq_printf(m, " brk:%d",
1928 (int) stli_comstats.rxbreaks);
1929 if (stli_comstats.rxoverrun)
1930 seq_printf(m, " oe:%d",
1931 (int) stli_comstats.rxoverrun);
1933 sep = ' ';
1934 if (stli_comstats.signals & TIOCM_RTS) {
1935 seq_printf(m, "%c%s", sep, "RTS");
1936 sep = '|';
1938 if (stli_comstats.signals & TIOCM_CTS) {
1939 seq_printf(m, "%c%s", sep, "CTS");
1940 sep = '|';
1942 if (stli_comstats.signals & TIOCM_DTR) {
1943 seq_printf(m, "%c%s", sep, "DTR");
1944 sep = '|';
1946 if (stli_comstats.signals & TIOCM_CD) {
1947 seq_printf(m, "%c%s", sep, "DCD");
1948 sep = '|';
1950 if (stli_comstats.signals & TIOCM_DSR) {
1951 seq_printf(m, "%c%s", sep, "DSR");
1952 sep = '|';
1955 seq_putc(m, '\n');
1958 /*****************************************************************************/
1961 * Port info, read from the /proc file system.
1964 static int stli_proc_show(struct seq_file *m, void *v)
1966 struct stlibrd *brdp;
1967 struct stliport *portp;
1968 unsigned int brdnr, portnr, totalport;
1970 totalport = 0;
1972 seq_printf(m, "%s: version %s\n", stli_drvtitle, stli_drvversion);
1975 * We scan through for each board, panel and port. The offset is
1976 * calculated on the fly, and irrelevant ports are skipped.
1978 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
1979 brdp = stli_brds[brdnr];
1980 if (brdp == NULL)
1981 continue;
1982 if (brdp->state == 0)
1983 continue;
1985 totalport = brdnr * STL_MAXPORTS;
1986 for (portnr = 0; (portnr < brdp->nrports); portnr++,
1987 totalport++) {
1988 portp = brdp->ports[portnr];
1989 if (portp == NULL)
1990 continue;
1991 stli_portinfo(m, brdp, portp, totalport);
1994 return 0;
1997 static int stli_proc_open(struct inode *inode, struct file *file)
1999 return single_open(file, stli_proc_show, NULL);
2002 static const struct file_operations stli_proc_fops = {
2003 .owner = THIS_MODULE,
2004 .open = stli_proc_open,
2005 .read = seq_read,
2006 .llseek = seq_lseek,
2007 .release = single_release,
2010 /*****************************************************************************/
2013 * Generic send command routine. This will send a message to the slave,
2014 * of the specified type with the specified argument. Must be very
2015 * careful of data that will be copied out from shared memory -
2016 * containing command results. The command completion is all done from
2017 * a poll routine that does not have user context. Therefore you cannot
2018 * copy back directly into user space, or to the kernel stack of a
2019 * process. This routine does not sleep, so can be called from anywhere.
2021 * The caller must hold the brd_lock (see also stli_sendcmd the usual
2022 * entry point)
2025 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2027 cdkhdr_t __iomem *hdrp;
2028 cdkctrl_t __iomem *cp;
2029 unsigned char __iomem *bits;
2031 if (test_bit(ST_CMDING, &portp->state)) {
2032 printk(KERN_ERR "istallion: command already busy, cmd=%x!\n",
2033 (int) cmd);
2034 return;
2037 EBRDENABLE(brdp);
2038 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2039 if (size > 0) {
2040 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
2041 if (copyback) {
2042 portp->argp = arg;
2043 portp->argsize = size;
2046 writel(0, &cp->status);
2047 writel(cmd, &cp->cmd);
2048 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2049 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
2050 portp->portidx;
2051 writeb(readb(bits) | portp->portbit, bits);
2052 set_bit(ST_CMDING, &portp->state);
2053 EBRDDISABLE(brdp);
2056 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2058 unsigned long flags;
2060 spin_lock_irqsave(&brd_lock, flags);
2061 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2062 spin_unlock_irqrestore(&brd_lock, flags);
2065 /*****************************************************************************/
2068 * Read data from shared memory. This assumes that the shared memory
2069 * is enabled and that interrupts are off. Basically we just empty out
2070 * the shared memory buffer into the tty buffer. Must be careful to
2071 * handle the case where we fill up the tty buffer, but still have
2072 * more chars to unload.
2075 static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2077 cdkasyrq_t __iomem *rp;
2078 char __iomem *shbuf;
2079 struct tty_struct *tty;
2080 unsigned int head, tail, size;
2081 unsigned int len, stlen;
2083 if (test_bit(ST_RXSTOP, &portp->state))
2084 return;
2085 tty = tty_port_tty_get(&portp->port);
2086 if (tty == NULL)
2087 return;
2089 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2090 head = (unsigned int) readw(&rp->head);
2091 if (head != ((unsigned int) readw(&rp->head)))
2092 head = (unsigned int) readw(&rp->head);
2093 tail = (unsigned int) readw(&rp->tail);
2094 size = portp->rxsize;
2095 if (head >= tail) {
2096 len = head - tail;
2097 stlen = len;
2098 } else {
2099 len = size - (tail - head);
2100 stlen = size - tail;
2103 len = tty_buffer_request_room(tty, len);
2105 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2107 while (len > 0) {
2108 unsigned char *cptr;
2110 stlen = min(len, stlen);
2111 tty_prepare_flip_string(tty, &cptr, stlen);
2112 memcpy_fromio(cptr, shbuf + tail, stlen);
2113 len -= stlen;
2114 tail += stlen;
2115 if (tail >= size) {
2116 tail = 0;
2117 stlen = head;
2120 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2121 writew(tail, &rp->tail);
2123 if (head != tail)
2124 set_bit(ST_RXING, &portp->state);
2126 tty_schedule_flip(tty);
2127 tty_kref_put(tty);
2130 /*****************************************************************************/
2133 * Set up and carry out any delayed commands. There is only a small set
2134 * of slave commands that can be done "off-level". So it is not too
2135 * difficult to deal with them here.
2138 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2140 int cmd;
2142 if (test_bit(ST_DOSIGS, &portp->state)) {
2143 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2144 test_bit(ST_DOFLUSHRX, &portp->state))
2145 cmd = A_SETSIGNALSF;
2146 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2147 cmd = A_SETSIGNALSFTX;
2148 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2149 cmd = A_SETSIGNALSFRX;
2150 else
2151 cmd = A_SETSIGNALS;
2152 clear_bit(ST_DOFLUSHTX, &portp->state);
2153 clear_bit(ST_DOFLUSHRX, &portp->state);
2154 clear_bit(ST_DOSIGS, &portp->state);
2155 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2156 sizeof(asysigs_t));
2157 writel(0, &cp->status);
2158 writel(cmd, &cp->cmd);
2159 set_bit(ST_CMDING, &portp->state);
2160 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2161 test_bit(ST_DOFLUSHRX, &portp->state)) {
2162 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2163 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2164 clear_bit(ST_DOFLUSHTX, &portp->state);
2165 clear_bit(ST_DOFLUSHRX, &portp->state);
2166 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2167 writel(0, &cp->status);
2168 writel(A_FLUSH, &cp->cmd);
2169 set_bit(ST_CMDING, &portp->state);
2173 /*****************************************************************************/
2176 * Host command service checking. This handles commands or messages
2177 * coming from the slave to the host. Must have board shared memory
2178 * enabled and interrupts off when called. Notice that by servicing the
2179 * read data last we don't need to change the shared memory pointer
2180 * during processing (which is a slow IO operation).
2181 * Return value indicates if this port is still awaiting actions from
2182 * the slave (like open, command, or even TX data being sent). If 0
2183 * then port is still busy, otherwise no longer busy.
2186 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2188 cdkasy_t __iomem *ap;
2189 cdkctrl_t __iomem *cp;
2190 struct tty_struct *tty;
2191 asynotify_t nt;
2192 unsigned long oldsigs;
2193 int rc, donerx;
2195 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2196 cp = &ap->ctrl;
2199 * Check if we are waiting for an open completion message.
2201 if (test_bit(ST_OPENING, &portp->state)) {
2202 rc = readl(&cp->openarg);
2203 if (readb(&cp->open) == 0 && rc != 0) {
2204 if (rc > 0)
2205 rc--;
2206 writel(0, &cp->openarg);
2207 portp->rc = rc;
2208 clear_bit(ST_OPENING, &portp->state);
2209 wake_up_interruptible(&portp->raw_wait);
2214 * Check if we are waiting for a close completion message.
2216 if (test_bit(ST_CLOSING, &portp->state)) {
2217 rc = (int) readl(&cp->closearg);
2218 if (readb(&cp->close) == 0 && rc != 0) {
2219 if (rc > 0)
2220 rc--;
2221 writel(0, &cp->closearg);
2222 portp->rc = rc;
2223 clear_bit(ST_CLOSING, &portp->state);
2224 wake_up_interruptible(&portp->raw_wait);
2229 * Check if we are waiting for a command completion message. We may
2230 * need to copy out the command results associated with this command.
2232 if (test_bit(ST_CMDING, &portp->state)) {
2233 rc = readl(&cp->status);
2234 if (readl(&cp->cmd) == 0 && rc != 0) {
2235 if (rc > 0)
2236 rc--;
2237 if (portp->argp != NULL) {
2238 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2239 portp->argsize);
2240 portp->argp = NULL;
2242 writel(0, &cp->status);
2243 portp->rc = rc;
2244 clear_bit(ST_CMDING, &portp->state);
2245 stli_dodelaycmd(portp, cp);
2246 wake_up_interruptible(&portp->raw_wait);
2251 * Check for any notification messages ready. This includes lots of
2252 * different types of events - RX chars ready, RX break received,
2253 * TX data low or empty in the slave, modem signals changed state.
2255 donerx = 0;
2257 if (ap->notify) {
2258 nt = ap->changed;
2259 ap->notify = 0;
2260 tty = tty_port_tty_get(&portp->port);
2262 if (nt.signal & SG_DCD) {
2263 oldsigs = portp->sigs;
2264 portp->sigs = stli_mktiocm(nt.sigvalue);
2265 clear_bit(ST_GETSIGS, &portp->state);
2266 if ((portp->sigs & TIOCM_CD) &&
2267 ((oldsigs & TIOCM_CD) == 0))
2268 wake_up_interruptible(&portp->port.open_wait);
2269 if ((oldsigs & TIOCM_CD) &&
2270 ((portp->sigs & TIOCM_CD) == 0)) {
2271 if (portp->port.flags & ASYNC_CHECK_CD) {
2272 if (tty)
2273 tty_hangup(tty);
2278 if (nt.data & DT_TXEMPTY)
2279 clear_bit(ST_TXBUSY, &portp->state);
2280 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2281 if (tty != NULL) {
2282 tty_wakeup(tty);
2283 EBRDENABLE(brdp);
2287 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2288 if (tty != NULL) {
2289 tty_insert_flip_char(tty, 0, TTY_BREAK);
2290 if (portp->port.flags & ASYNC_SAK) {
2291 do_SAK(tty);
2292 EBRDENABLE(brdp);
2294 tty_schedule_flip(tty);
2297 tty_kref_put(tty);
2299 if (nt.data & DT_RXBUSY) {
2300 donerx++;
2301 stli_read(brdp, portp);
2306 * It might seem odd that we are checking for more RX chars here.
2307 * But, we need to handle the case where the tty buffer was previously
2308 * filled, but we had more characters to pass up. The slave will not
2309 * send any more RX notify messages until the RX buffer has been emptied.
2310 * But it will leave the service bits on (since the buffer is not empty).
2311 * So from here we can try to process more RX chars.
2313 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2314 clear_bit(ST_RXING, &portp->state);
2315 stli_read(brdp, portp);
2318 return((test_bit(ST_OPENING, &portp->state) ||
2319 test_bit(ST_CLOSING, &portp->state) ||
2320 test_bit(ST_CMDING, &portp->state) ||
2321 test_bit(ST_TXBUSY, &portp->state) ||
2322 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2325 /*****************************************************************************/
2328 * Service all ports on a particular board. Assumes that the boards
2329 * shared memory is enabled, and that the page pointer is pointed
2330 * at the cdk header structure.
2333 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2335 struct stliport *portp;
2336 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2337 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2338 unsigned char __iomem *slavep;
2339 int bitpos, bitat, bitsize;
2340 int channr, nrdevs, slavebitchange;
2342 bitsize = brdp->bitsize;
2343 nrdevs = brdp->nrdevs;
2346 * Check if slave wants any service. Basically we try to do as
2347 * little work as possible here. There are 2 levels of service
2348 * bits. So if there is nothing to do we bail early. We check
2349 * 8 service bits at a time in the inner loop, so we can bypass
2350 * the lot if none of them want service.
2352 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2353 bitsize);
2355 memset(&slavebits[0], 0, bitsize);
2356 slavebitchange = 0;
2358 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2359 if (hostbits[bitpos] == 0)
2360 continue;
2361 channr = bitpos * 8;
2362 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2363 if (hostbits[bitpos] & bitat) {
2364 portp = brdp->ports[(channr - 1)];
2365 if (stli_hostcmd(brdp, portp)) {
2366 slavebitchange++;
2367 slavebits[bitpos] |= bitat;
2374 * If any of the ports are no longer busy then update them in the
2375 * slave request bits. We need to do this after, since a host port
2376 * service may initiate more slave requests.
2378 if (slavebitchange) {
2379 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2380 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2381 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2382 if (readb(slavebits + bitpos))
2383 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2388 /*****************************************************************************/
2391 * Driver poll routine. This routine polls the boards in use and passes
2392 * messages back up to host when necessary. This is actually very
2393 * CPU efficient, since we will always have the kernel poll clock, it
2394 * adds only a few cycles when idle (since board service can be
2395 * determined very easily), but when loaded generates no interrupts
2396 * (with their expensive associated context change).
2399 static void stli_poll(unsigned long arg)
2401 cdkhdr_t __iomem *hdrp;
2402 struct stlibrd *brdp;
2403 unsigned int brdnr;
2405 mod_timer(&stli_timerlist, STLI_TIMEOUT);
2408 * Check each board and do any servicing required.
2410 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2411 brdp = stli_brds[brdnr];
2412 if (brdp == NULL)
2413 continue;
2414 if ((brdp->state & BST_STARTED) == 0)
2415 continue;
2417 spin_lock(&brd_lock);
2418 EBRDENABLE(brdp);
2419 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2420 if (readb(&hdrp->hostreq))
2421 stli_brdpoll(brdp, hdrp);
2422 EBRDDISABLE(brdp);
2423 spin_unlock(&brd_lock);
2427 /*****************************************************************************/
2430 * Translate the termios settings into the port setting structure of
2431 * the slave.
2434 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp,
2435 asyport_t *pp, struct ktermios *tiosp)
2437 memset(pp, 0, sizeof(asyport_t));
2440 * Start of by setting the baud, char size, parity and stop bit info.
2442 pp->baudout = tty_get_baud_rate(tty);
2443 if ((tiosp->c_cflag & CBAUD) == B38400) {
2444 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2445 pp->baudout = 57600;
2446 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2447 pp->baudout = 115200;
2448 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2449 pp->baudout = 230400;
2450 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2451 pp->baudout = 460800;
2452 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2453 pp->baudout = (portp->baud_base / portp->custom_divisor);
2455 if (pp->baudout > STL_MAXBAUD)
2456 pp->baudout = STL_MAXBAUD;
2457 pp->baudin = pp->baudout;
2459 switch (tiosp->c_cflag & CSIZE) {
2460 case CS5:
2461 pp->csize = 5;
2462 break;
2463 case CS6:
2464 pp->csize = 6;
2465 break;
2466 case CS7:
2467 pp->csize = 7;
2468 break;
2469 default:
2470 pp->csize = 8;
2471 break;
2474 if (tiosp->c_cflag & CSTOPB)
2475 pp->stopbs = PT_STOP2;
2476 else
2477 pp->stopbs = PT_STOP1;
2479 if (tiosp->c_cflag & PARENB) {
2480 if (tiosp->c_cflag & PARODD)
2481 pp->parity = PT_ODDPARITY;
2482 else
2483 pp->parity = PT_EVENPARITY;
2484 } else {
2485 pp->parity = PT_NOPARITY;
2489 * Set up any flow control options enabled.
2491 if (tiosp->c_iflag & IXON) {
2492 pp->flow |= F_IXON;
2493 if (tiosp->c_iflag & IXANY)
2494 pp->flow |= F_IXANY;
2496 if (tiosp->c_cflag & CRTSCTS)
2497 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2499 pp->startin = tiosp->c_cc[VSTART];
2500 pp->stopin = tiosp->c_cc[VSTOP];
2501 pp->startout = tiosp->c_cc[VSTART];
2502 pp->stopout = tiosp->c_cc[VSTOP];
2505 * Set up the RX char marking mask with those RX error types we must
2506 * catch. We can get the slave to help us out a little here, it will
2507 * ignore parity errors and breaks for us, and mark parity errors in
2508 * the data stream.
2510 if (tiosp->c_iflag & IGNPAR)
2511 pp->iflag |= FI_IGNRXERRS;
2512 if (tiosp->c_iflag & IGNBRK)
2513 pp->iflag |= FI_IGNBREAK;
2515 portp->rxmarkmsk = 0;
2516 if (tiosp->c_iflag & (INPCK | PARMRK))
2517 pp->iflag |= FI_1MARKRXERRS;
2518 if (tiosp->c_iflag & BRKINT)
2519 portp->rxmarkmsk |= BRKINT;
2522 * Set up clocal processing as required.
2524 if (tiosp->c_cflag & CLOCAL)
2525 portp->port.flags &= ~ASYNC_CHECK_CD;
2526 else
2527 portp->port.flags |= ASYNC_CHECK_CD;
2530 * Transfer any persistent flags into the asyport structure.
2532 pp->pflag = (portp->pflag & 0xffff);
2533 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2534 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2535 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2538 /*****************************************************************************/
2541 * Construct a slave signals structure for setting the DTR and RTS
2542 * signals as specified.
2545 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2547 memset(sp, 0, sizeof(asysigs_t));
2548 if (dtr >= 0) {
2549 sp->signal |= SG_DTR;
2550 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2552 if (rts >= 0) {
2553 sp->signal |= SG_RTS;
2554 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2558 /*****************************************************************************/
2561 * Convert the signals returned from the slave into a local TIOCM type
2562 * signals value. We keep them locally in TIOCM format.
2565 static long stli_mktiocm(unsigned long sigvalue)
2567 long tiocm = 0;
2568 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2569 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2570 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2571 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2572 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2573 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2574 return(tiocm);
2577 /*****************************************************************************/
2580 * All panels and ports actually attached have been worked out. All
2581 * we need to do here is set up the appropriate per port data structures.
2584 static int stli_initports(struct stlibrd *brdp)
2586 struct stliport *portp;
2587 unsigned int i, panelnr, panelport;
2589 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2590 portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2591 if (!portp) {
2592 printk(KERN_WARNING "istallion: failed to allocate port structure\n");
2593 continue;
2595 tty_port_init(&portp->port);
2596 portp->port.ops = &stli_port_ops;
2597 portp->magic = STLI_PORTMAGIC;
2598 portp->portnr = i;
2599 portp->brdnr = brdp->brdnr;
2600 portp->panelnr = panelnr;
2601 portp->baud_base = STL_BAUDBASE;
2602 portp->port.close_delay = STL_CLOSEDELAY;
2603 portp->closing_wait = 30 * HZ;
2604 init_waitqueue_head(&portp->port.open_wait);
2605 init_waitqueue_head(&portp->port.close_wait);
2606 init_waitqueue_head(&portp->raw_wait);
2607 panelport++;
2608 if (panelport >= brdp->panels[panelnr]) {
2609 panelport = 0;
2610 panelnr++;
2612 brdp->ports[i] = portp;
2615 return 0;
2618 /*****************************************************************************/
2621 * All the following routines are board specific hardware operations.
2624 static void stli_ecpinit(struct stlibrd *brdp)
2626 unsigned long memconf;
2628 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2629 udelay(10);
2630 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2631 udelay(100);
2633 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2634 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2637 /*****************************************************************************/
2639 static void stli_ecpenable(struct stlibrd *brdp)
2641 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2644 /*****************************************************************************/
2646 static void stli_ecpdisable(struct stlibrd *brdp)
2648 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2651 /*****************************************************************************/
2653 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2655 void __iomem *ptr;
2656 unsigned char val;
2658 if (offset > brdp->memsize) {
2659 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2660 "range at line=%d(%d), brd=%d\n",
2661 (int) offset, line, __LINE__, brdp->brdnr);
2662 ptr = NULL;
2663 val = 0;
2664 } else {
2665 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2666 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2668 outb(val, (brdp->iobase + ECP_ATMEMPR));
2669 return(ptr);
2672 /*****************************************************************************/
2674 static void stli_ecpreset(struct stlibrd *brdp)
2676 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2677 udelay(10);
2678 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2679 udelay(500);
2682 /*****************************************************************************/
2684 static void stli_ecpintr(struct stlibrd *brdp)
2686 outb(0x1, brdp->iobase);
2689 /*****************************************************************************/
2692 * The following set of functions act on ECP EISA boards.
2695 static void stli_ecpeiinit(struct stlibrd *brdp)
2697 unsigned long memconf;
2699 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2700 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2701 udelay(10);
2702 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2703 udelay(500);
2705 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2706 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2707 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2708 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2711 /*****************************************************************************/
2713 static void stli_ecpeienable(struct stlibrd *brdp)
2715 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2718 /*****************************************************************************/
2720 static void stli_ecpeidisable(struct stlibrd *brdp)
2722 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2725 /*****************************************************************************/
2727 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2729 void __iomem *ptr;
2730 unsigned char val;
2732 if (offset > brdp->memsize) {
2733 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2734 "range at line=%d(%d), brd=%d\n",
2735 (int) offset, line, __LINE__, brdp->brdnr);
2736 ptr = NULL;
2737 val = 0;
2738 } else {
2739 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2740 if (offset < ECP_EIPAGESIZE)
2741 val = ECP_EIENABLE;
2742 else
2743 val = ECP_EIENABLE | 0x40;
2745 outb(val, (brdp->iobase + ECP_EICONFR));
2746 return(ptr);
2749 /*****************************************************************************/
2751 static void stli_ecpeireset(struct stlibrd *brdp)
2753 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2754 udelay(10);
2755 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2756 udelay(500);
2759 /*****************************************************************************/
2762 * The following set of functions act on ECP MCA boards.
2765 static void stli_ecpmcenable(struct stlibrd *brdp)
2767 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2770 /*****************************************************************************/
2772 static void stli_ecpmcdisable(struct stlibrd *brdp)
2774 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2777 /*****************************************************************************/
2779 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2781 void __iomem *ptr;
2782 unsigned char val;
2784 if (offset > brdp->memsize) {
2785 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2786 "range at line=%d(%d), brd=%d\n",
2787 (int) offset, line, __LINE__, brdp->brdnr);
2788 ptr = NULL;
2789 val = 0;
2790 } else {
2791 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2792 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2794 outb(val, (brdp->iobase + ECP_MCCONFR));
2795 return(ptr);
2798 /*****************************************************************************/
2800 static void stli_ecpmcreset(struct stlibrd *brdp)
2802 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2803 udelay(10);
2804 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2805 udelay(500);
2808 /*****************************************************************************/
2811 * The following set of functions act on ECP PCI boards.
2814 static void stli_ecppciinit(struct stlibrd *brdp)
2816 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2817 udelay(10);
2818 outb(0, (brdp->iobase + ECP_PCICONFR));
2819 udelay(500);
2822 /*****************************************************************************/
2824 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2826 void __iomem *ptr;
2827 unsigned char val;
2829 if (offset > brdp->memsize) {
2830 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2831 "range at line=%d(%d), board=%d\n",
2832 (int) offset, line, __LINE__, brdp->brdnr);
2833 ptr = NULL;
2834 val = 0;
2835 } else {
2836 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2837 val = (offset / ECP_PCIPAGESIZE) << 1;
2839 outb(val, (brdp->iobase + ECP_PCICONFR));
2840 return(ptr);
2843 /*****************************************************************************/
2845 static void stli_ecppcireset(struct stlibrd *brdp)
2847 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2848 udelay(10);
2849 outb(0, (brdp->iobase + ECP_PCICONFR));
2850 udelay(500);
2853 /*****************************************************************************/
2856 * The following routines act on ONboards.
2859 static void stli_onbinit(struct stlibrd *brdp)
2861 unsigned long memconf;
2863 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2864 udelay(10);
2865 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2866 mdelay(1000);
2868 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
2869 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
2870 outb(0x1, brdp->iobase);
2871 mdelay(1);
2874 /*****************************************************************************/
2876 static void stli_onbenable(struct stlibrd *brdp)
2878 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
2881 /*****************************************************************************/
2883 static void stli_onbdisable(struct stlibrd *brdp)
2885 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
2888 /*****************************************************************************/
2890 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2892 void __iomem *ptr;
2894 if (offset > brdp->memsize) {
2895 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2896 "range at line=%d(%d), brd=%d\n",
2897 (int) offset, line, __LINE__, brdp->brdnr);
2898 ptr = NULL;
2899 } else {
2900 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
2902 return(ptr);
2905 /*****************************************************************************/
2907 static void stli_onbreset(struct stlibrd *brdp)
2909 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2910 udelay(10);
2911 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2912 mdelay(1000);
2915 /*****************************************************************************/
2918 * The following routines act on ONboard EISA.
2921 static void stli_onbeinit(struct stlibrd *brdp)
2923 unsigned long memconf;
2925 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
2926 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2927 udelay(10);
2928 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2929 mdelay(1000);
2931 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
2932 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
2933 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
2934 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
2935 outb(0x1, brdp->iobase);
2936 mdelay(1);
2939 /*****************************************************************************/
2941 static void stli_onbeenable(struct stlibrd *brdp)
2943 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
2946 /*****************************************************************************/
2948 static void stli_onbedisable(struct stlibrd *brdp)
2950 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2953 /*****************************************************************************/
2955 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2957 void __iomem *ptr;
2958 unsigned char val;
2960 if (offset > brdp->memsize) {
2961 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2962 "range at line=%d(%d), brd=%d\n",
2963 (int) offset, line, __LINE__, brdp->brdnr);
2964 ptr = NULL;
2965 val = 0;
2966 } else {
2967 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
2968 if (offset < ONB_EIPAGESIZE)
2969 val = ONB_EIENABLE;
2970 else
2971 val = ONB_EIENABLE | 0x40;
2973 outb(val, (brdp->iobase + ONB_EICONFR));
2974 return(ptr);
2977 /*****************************************************************************/
2979 static void stli_onbereset(struct stlibrd *brdp)
2981 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2982 udelay(10);
2983 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2984 mdelay(1000);
2987 /*****************************************************************************/
2990 * The following routines act on Brumby boards.
2993 static void stli_bbyinit(struct stlibrd *brdp)
2995 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2996 udelay(10);
2997 outb(0, (brdp->iobase + BBY_ATCONFR));
2998 mdelay(1000);
2999 outb(0x1, brdp->iobase);
3000 mdelay(1);
3003 /*****************************************************************************/
3005 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3007 void __iomem *ptr;
3008 unsigned char val;
3010 BUG_ON(offset > brdp->memsize);
3012 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3013 val = (unsigned char) (offset / BBY_PAGESIZE);
3014 outb(val, (brdp->iobase + BBY_ATCONFR));
3015 return(ptr);
3018 /*****************************************************************************/
3020 static void stli_bbyreset(struct stlibrd *brdp)
3022 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3023 udelay(10);
3024 outb(0, (brdp->iobase + BBY_ATCONFR));
3025 mdelay(1000);
3028 /*****************************************************************************/
3031 * The following routines act on original old Stallion boards.
3034 static void stli_stalinit(struct stlibrd *brdp)
3036 outb(0x1, brdp->iobase);
3037 mdelay(1000);
3040 /*****************************************************************************/
3042 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3044 BUG_ON(offset > brdp->memsize);
3045 return brdp->membase + (offset % STAL_PAGESIZE);
3048 /*****************************************************************************/
3050 static void stli_stalreset(struct stlibrd *brdp)
3052 u32 __iomem *vecp;
3054 vecp = (u32 __iomem *) (brdp->membase + 0x30);
3055 writel(0xffff0000, vecp);
3056 outb(0, brdp->iobase);
3057 mdelay(1000);
3060 /*****************************************************************************/
3063 * Try to find an ECP board and initialize it. This handles only ECP
3064 * board types.
3067 static int stli_initecp(struct stlibrd *brdp)
3069 cdkecpsig_t sig;
3070 cdkecpsig_t __iomem *sigsp;
3071 unsigned int status, nxtid;
3072 char *name;
3073 int retval, panelnr, nrports;
3075 if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3076 retval = -ENODEV;
3077 goto err;
3080 brdp->iosize = ECP_IOSIZE;
3082 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3083 retval = -EIO;
3084 goto err;
3088 * Based on the specific board type setup the common vars to access
3089 * and enable shared memory. Set all board specific information now
3090 * as well.
3092 switch (brdp->brdtype) {
3093 case BRD_ECP:
3094 brdp->memsize = ECP_MEMSIZE;
3095 brdp->pagesize = ECP_ATPAGESIZE;
3096 brdp->init = stli_ecpinit;
3097 brdp->enable = stli_ecpenable;
3098 brdp->reenable = stli_ecpenable;
3099 brdp->disable = stli_ecpdisable;
3100 brdp->getmemptr = stli_ecpgetmemptr;
3101 brdp->intr = stli_ecpintr;
3102 brdp->reset = stli_ecpreset;
3103 name = "serial(EC8/64)";
3104 break;
3106 case BRD_ECPE:
3107 brdp->memsize = ECP_MEMSIZE;
3108 brdp->pagesize = ECP_EIPAGESIZE;
3109 brdp->init = stli_ecpeiinit;
3110 brdp->enable = stli_ecpeienable;
3111 brdp->reenable = stli_ecpeienable;
3112 brdp->disable = stli_ecpeidisable;
3113 brdp->getmemptr = stli_ecpeigetmemptr;
3114 brdp->intr = stli_ecpintr;
3115 brdp->reset = stli_ecpeireset;
3116 name = "serial(EC8/64-EI)";
3117 break;
3119 case BRD_ECPMC:
3120 brdp->memsize = ECP_MEMSIZE;
3121 brdp->pagesize = ECP_MCPAGESIZE;
3122 brdp->init = NULL;
3123 brdp->enable = stli_ecpmcenable;
3124 brdp->reenable = stli_ecpmcenable;
3125 brdp->disable = stli_ecpmcdisable;
3126 brdp->getmemptr = stli_ecpmcgetmemptr;
3127 brdp->intr = stli_ecpintr;
3128 brdp->reset = stli_ecpmcreset;
3129 name = "serial(EC8/64-MCA)";
3130 break;
3132 case BRD_ECPPCI:
3133 brdp->memsize = ECP_PCIMEMSIZE;
3134 brdp->pagesize = ECP_PCIPAGESIZE;
3135 brdp->init = stli_ecppciinit;
3136 brdp->enable = NULL;
3137 brdp->reenable = NULL;
3138 brdp->disable = NULL;
3139 brdp->getmemptr = stli_ecppcigetmemptr;
3140 brdp->intr = stli_ecpintr;
3141 brdp->reset = stli_ecppcireset;
3142 name = "serial(EC/RA-PCI)";
3143 break;
3145 default:
3146 retval = -EINVAL;
3147 goto err_reg;
3151 * The per-board operations structure is all set up, so now let's go
3152 * and get the board operational. Firstly initialize board configuration
3153 * registers. Set the memory mapping info so we can get at the boards
3154 * shared memory.
3156 EBRDINIT(brdp);
3158 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3159 if (brdp->membase == NULL) {
3160 retval = -ENOMEM;
3161 goto err_reg;
3165 * Now that all specific code is set up, enable the shared memory and
3166 * look for the a signature area that will tell us exactly what board
3167 * this is, and what it is connected to it.
3169 EBRDENABLE(brdp);
3170 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3171 memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3172 EBRDDISABLE(brdp);
3174 if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3175 retval = -ENODEV;
3176 goto err_unmap;
3180 * Scan through the signature looking at the panels connected to the
3181 * board. Calculate the total number of ports as we go.
3183 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3184 status = sig.panelid[nxtid];
3185 if ((status & ECH_PNLIDMASK) != nxtid)
3186 break;
3188 brdp->panelids[panelnr] = status;
3189 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3190 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3191 nxtid++;
3192 brdp->panels[panelnr] = nrports;
3193 brdp->nrports += nrports;
3194 nxtid++;
3195 brdp->nrpanels++;
3199 brdp->state |= BST_FOUND;
3200 return 0;
3201 err_unmap:
3202 iounmap(brdp->membase);
3203 brdp->membase = NULL;
3204 err_reg:
3205 release_region(brdp->iobase, brdp->iosize);
3206 err:
3207 return retval;
3210 /*****************************************************************************/
3213 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3214 * This handles only these board types.
3217 static int stli_initonb(struct stlibrd *brdp)
3219 cdkonbsig_t sig;
3220 cdkonbsig_t __iomem *sigsp;
3221 char *name;
3222 int i, retval;
3225 * Do a basic sanity check on the IO and memory addresses.
3227 if (brdp->iobase == 0 || brdp->memaddr == 0) {
3228 retval = -ENODEV;
3229 goto err;
3232 brdp->iosize = ONB_IOSIZE;
3234 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3235 retval = -EIO;
3236 goto err;
3240 * Based on the specific board type setup the common vars to access
3241 * and enable shared memory. Set all board specific information now
3242 * as well.
3244 switch (brdp->brdtype) {
3245 case BRD_ONBOARD:
3246 case BRD_ONBOARD2:
3247 brdp->memsize = ONB_MEMSIZE;
3248 brdp->pagesize = ONB_ATPAGESIZE;
3249 brdp->init = stli_onbinit;
3250 brdp->enable = stli_onbenable;
3251 brdp->reenable = stli_onbenable;
3252 brdp->disable = stli_onbdisable;
3253 brdp->getmemptr = stli_onbgetmemptr;
3254 brdp->intr = stli_ecpintr;
3255 brdp->reset = stli_onbreset;
3256 if (brdp->memaddr > 0x100000)
3257 brdp->enabval = ONB_MEMENABHI;
3258 else
3259 brdp->enabval = ONB_MEMENABLO;
3260 name = "serial(ONBoard)";
3261 break;
3263 case BRD_ONBOARDE:
3264 brdp->memsize = ONB_EIMEMSIZE;
3265 brdp->pagesize = ONB_EIPAGESIZE;
3266 brdp->init = stli_onbeinit;
3267 brdp->enable = stli_onbeenable;
3268 brdp->reenable = stli_onbeenable;
3269 brdp->disable = stli_onbedisable;
3270 brdp->getmemptr = stli_onbegetmemptr;
3271 brdp->intr = stli_ecpintr;
3272 brdp->reset = stli_onbereset;
3273 name = "serial(ONBoard/E)";
3274 break;
3276 case BRD_BRUMBY4:
3277 brdp->memsize = BBY_MEMSIZE;
3278 brdp->pagesize = BBY_PAGESIZE;
3279 brdp->init = stli_bbyinit;
3280 brdp->enable = NULL;
3281 brdp->reenable = NULL;
3282 brdp->disable = NULL;
3283 brdp->getmemptr = stli_bbygetmemptr;
3284 brdp->intr = stli_ecpintr;
3285 brdp->reset = stli_bbyreset;
3286 name = "serial(Brumby)";
3287 break;
3289 case BRD_STALLION:
3290 brdp->memsize = STAL_MEMSIZE;
3291 brdp->pagesize = STAL_PAGESIZE;
3292 brdp->init = stli_stalinit;
3293 brdp->enable = NULL;
3294 brdp->reenable = NULL;
3295 brdp->disable = NULL;
3296 brdp->getmemptr = stli_stalgetmemptr;
3297 brdp->intr = stli_ecpintr;
3298 brdp->reset = stli_stalreset;
3299 name = "serial(Stallion)";
3300 break;
3302 default:
3303 retval = -EINVAL;
3304 goto err_reg;
3308 * The per-board operations structure is all set up, so now let's go
3309 * and get the board operational. Firstly initialize board configuration
3310 * registers. Set the memory mapping info so we can get at the boards
3311 * shared memory.
3313 EBRDINIT(brdp);
3315 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3316 if (brdp->membase == NULL) {
3317 retval = -ENOMEM;
3318 goto err_reg;
3322 * Now that all specific code is set up, enable the shared memory and
3323 * look for the a signature area that will tell us exactly what board
3324 * this is, and how many ports.
3326 EBRDENABLE(brdp);
3327 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3328 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3329 EBRDDISABLE(brdp);
3331 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3332 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3333 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3334 sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3335 retval = -ENODEV;
3336 goto err_unmap;
3340 * Scan through the signature alive mask and calculate how many ports
3341 * there are on this board.
3343 brdp->nrpanels = 1;
3344 if (sig.amask1) {
3345 brdp->nrports = 32;
3346 } else {
3347 for (i = 0; (i < 16); i++) {
3348 if (((sig.amask0 << i) & 0x8000) == 0)
3349 break;
3351 brdp->nrports = i;
3353 brdp->panels[0] = brdp->nrports;
3356 brdp->state |= BST_FOUND;
3357 return 0;
3358 err_unmap:
3359 iounmap(brdp->membase);
3360 brdp->membase = NULL;
3361 err_reg:
3362 release_region(brdp->iobase, brdp->iosize);
3363 err:
3364 return retval;
3367 /*****************************************************************************/
3370 * Start up a running board. This routine is only called after the
3371 * code has been down loaded to the board and is operational. It will
3372 * read in the memory map, and get the show on the road...
3375 static int stli_startbrd(struct stlibrd *brdp)
3377 cdkhdr_t __iomem *hdrp;
3378 cdkmem_t __iomem *memp;
3379 cdkasy_t __iomem *ap;
3380 unsigned long flags;
3381 unsigned int portnr, nrdevs, i;
3382 struct stliport *portp;
3383 int rc = 0;
3384 u32 memoff;
3386 spin_lock_irqsave(&brd_lock, flags);
3387 EBRDENABLE(brdp);
3388 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3389 nrdevs = hdrp->nrdevs;
3391 #if 0
3392 printk("%s(%d): CDK version %d.%d.%d --> "
3393 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3394 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3395 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3396 readl(&hdrp->slavep));
3397 #endif
3399 if (nrdevs < (brdp->nrports + 1)) {
3400 printk(KERN_ERR "istallion: slave failed to allocate memory for "
3401 "all devices, devices=%d\n", nrdevs);
3402 brdp->nrports = nrdevs - 1;
3404 brdp->nrdevs = nrdevs;
3405 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3406 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3407 brdp->bitsize = (nrdevs + 7) / 8;
3408 memoff = readl(&hdrp->memp);
3409 if (memoff > brdp->memsize) {
3410 printk(KERN_ERR "istallion: corrupted shared memory region?\n");
3411 rc = -EIO;
3412 goto stli_donestartup;
3414 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3415 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3416 printk(KERN_ERR "istallion: no slave control device found\n");
3417 goto stli_donestartup;
3419 memp++;
3422 * Cycle through memory allocation of each port. We are guaranteed to
3423 * have all ports inside the first page of slave window, so no need to
3424 * change pages while reading memory map.
3426 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3427 if (readw(&memp->dtype) != TYP_ASYNC)
3428 break;
3429 portp = brdp->ports[portnr];
3430 if (portp == NULL)
3431 break;
3432 portp->devnr = i;
3433 portp->addr = readl(&memp->offset);
3434 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3435 portp->portidx = (unsigned char) (i / 8);
3436 portp->portbit = (unsigned char) (0x1 << (i % 8));
3439 writeb(0xff, &hdrp->slavereq);
3442 * For each port setup a local copy of the RX and TX buffer offsets
3443 * and sizes. We do this separate from the above, because we need to
3444 * move the shared memory page...
3446 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3447 portp = brdp->ports[portnr];
3448 if (portp == NULL)
3449 break;
3450 if (portp->addr == 0)
3451 break;
3452 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3453 if (ap != NULL) {
3454 portp->rxsize = readw(&ap->rxq.size);
3455 portp->txsize = readw(&ap->txq.size);
3456 portp->rxoffset = readl(&ap->rxq.offset);
3457 portp->txoffset = readl(&ap->txq.offset);
3461 stli_donestartup:
3462 EBRDDISABLE(brdp);
3463 spin_unlock_irqrestore(&brd_lock, flags);
3465 if (rc == 0)
3466 brdp->state |= BST_STARTED;
3468 if (! stli_timeron) {
3469 stli_timeron++;
3470 mod_timer(&stli_timerlist, STLI_TIMEOUT);
3473 return rc;
3476 /*****************************************************************************/
3479 * Probe and initialize the specified board.
3482 static int __devinit stli_brdinit(struct stlibrd *brdp)
3484 int retval;
3486 switch (brdp->brdtype) {
3487 case BRD_ECP:
3488 case BRD_ECPE:
3489 case BRD_ECPMC:
3490 case BRD_ECPPCI:
3491 retval = stli_initecp(brdp);
3492 break;
3493 case BRD_ONBOARD:
3494 case BRD_ONBOARDE:
3495 case BRD_ONBOARD2:
3496 case BRD_BRUMBY4:
3497 case BRD_STALLION:
3498 retval = stli_initonb(brdp);
3499 break;
3500 default:
3501 printk(KERN_ERR "istallion: board=%d is unknown board "
3502 "type=%d\n", brdp->brdnr, brdp->brdtype);
3503 retval = -ENODEV;
3506 if (retval)
3507 return retval;
3509 stli_initports(brdp);
3510 printk(KERN_INFO "istallion: %s found, board=%d io=%x mem=%x "
3511 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3512 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3513 brdp->nrpanels, brdp->nrports);
3514 return 0;
3517 #if STLI_EISAPROBE != 0
3518 /*****************************************************************************/
3521 * Probe around trying to find where the EISA boards shared memory
3522 * might be. This is a bit if hack, but it is the best we can do.
3525 static int stli_eisamemprobe(struct stlibrd *brdp)
3527 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3528 cdkonbsig_t onbsig, __iomem *onbsigp;
3529 int i, foundit;
3532 * First up we reset the board, to get it into a known state. There
3533 * is only 2 board types here we need to worry about. Don;t use the
3534 * standard board init routine here, it programs up the shared
3535 * memory address, and we don't know it yet...
3537 if (brdp->brdtype == BRD_ECPE) {
3538 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3539 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3540 udelay(10);
3541 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3542 udelay(500);
3543 stli_ecpeienable(brdp);
3544 } else if (brdp->brdtype == BRD_ONBOARDE) {
3545 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3546 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3547 udelay(10);
3548 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3549 mdelay(100);
3550 outb(0x1, brdp->iobase);
3551 mdelay(1);
3552 stli_onbeenable(brdp);
3553 } else {
3554 return -ENODEV;
3557 foundit = 0;
3558 brdp->memsize = ECP_MEMSIZE;
3561 * Board shared memory is enabled, so now we have a poke around and
3562 * see if we can find it.
3564 for (i = 0; (i < stli_eisamempsize); i++) {
3565 brdp->memaddr = stli_eisamemprobeaddrs[i];
3566 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3567 if (brdp->membase == NULL)
3568 continue;
3570 if (brdp->brdtype == BRD_ECPE) {
3571 ecpsigp = stli_ecpeigetmemptr(brdp,
3572 CDK_SIGADDR, __LINE__);
3573 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3574 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3575 foundit = 1;
3576 } else {
3577 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3578 CDK_SIGADDR, __LINE__);
3579 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3580 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3581 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3582 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3583 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3584 foundit = 1;
3587 iounmap(brdp->membase);
3588 if (foundit)
3589 break;
3593 * Regardless of whether we found the shared memory or not we must
3594 * disable the region. After that return success or failure.
3596 if (brdp->brdtype == BRD_ECPE)
3597 stli_ecpeidisable(brdp);
3598 else
3599 stli_onbedisable(brdp);
3601 if (! foundit) {
3602 brdp->memaddr = 0;
3603 brdp->membase = NULL;
3604 printk(KERN_ERR "istallion: failed to probe shared memory "
3605 "region for %s in EISA slot=%d\n",
3606 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3607 return -ENODEV;
3609 return 0;
3611 #endif
3613 static int stli_getbrdnr(void)
3615 unsigned int i;
3617 for (i = 0; i < STL_MAXBRDS; i++) {
3618 if (!stli_brds[i]) {
3619 if (i >= stli_nrbrds)
3620 stli_nrbrds = i + 1;
3621 return i;
3624 return -1;
3627 #if STLI_EISAPROBE != 0
3628 /*****************************************************************************/
3631 * Probe around and try to find any EISA boards in system. The biggest
3632 * problem here is finding out what memory address is associated with
3633 * an EISA board after it is found. The registers of the ECPE and
3634 * ONboardE are not readable - so we can't read them from there. We
3635 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3636 * actually have any way to find out the real value. The best we can
3637 * do is go probing around in the usual places hoping we can find it.
3640 static int __init stli_findeisabrds(void)
3642 struct stlibrd *brdp;
3643 unsigned int iobase, eid, i;
3644 int brdnr, found = 0;
3647 * Firstly check if this is an EISA system. If this is not an EISA system then
3648 * don't bother going any further!
3650 if (EISA_bus)
3651 return 0;
3654 * Looks like an EISA system, so go searching for EISA boards.
3656 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3657 outb(0xff, (iobase + 0xc80));
3658 eid = inb(iobase + 0xc80);
3659 eid |= inb(iobase + 0xc81) << 8;
3660 if (eid != STL_EISAID)
3661 continue;
3664 * We have found a board. Need to check if this board was
3665 * statically configured already (just in case!).
3667 for (i = 0; (i < STL_MAXBRDS); i++) {
3668 brdp = stli_brds[i];
3669 if (brdp == NULL)
3670 continue;
3671 if (brdp->iobase == iobase)
3672 break;
3674 if (i < STL_MAXBRDS)
3675 continue;
3678 * We have found a Stallion board and it is not configured already.
3679 * Allocate a board structure and initialize it.
3681 if ((brdp = stli_allocbrd()) == NULL)
3682 return found ? : -ENOMEM;
3683 brdnr = stli_getbrdnr();
3684 if (brdnr < 0)
3685 return found ? : -ENOMEM;
3686 brdp->brdnr = (unsigned int)brdnr;
3687 eid = inb(iobase + 0xc82);
3688 if (eid == ECP_EISAID)
3689 brdp->brdtype = BRD_ECPE;
3690 else if (eid == ONB_EISAID)
3691 brdp->brdtype = BRD_ONBOARDE;
3692 else
3693 brdp->brdtype = BRD_UNKNOWN;
3694 brdp->iobase = iobase;
3695 outb(0x1, (iobase + 0xc84));
3696 if (stli_eisamemprobe(brdp))
3697 outb(0, (iobase + 0xc84));
3698 if (stli_brdinit(brdp) < 0) {
3699 kfree(brdp);
3700 continue;
3703 stli_brds[brdp->brdnr] = brdp;
3704 found++;
3706 for (i = 0; i < brdp->nrports; i++)
3707 tty_register_device(stli_serial,
3708 brdp->brdnr * STL_MAXPORTS + i, NULL);
3711 return found;
3713 #else
3714 static inline int stli_findeisabrds(void) { return 0; }
3715 #endif
3717 /*****************************************************************************/
3720 * Find the next available board number that is free.
3723 /*****************************************************************************/
3726 * We have a Stallion board. Allocate a board structure and
3727 * initialize it. Read its IO and MEMORY resources from PCI
3728 * configuration space.
3731 static int __devinit stli_pciprobe(struct pci_dev *pdev,
3732 const struct pci_device_id *ent)
3734 struct stlibrd *brdp;
3735 unsigned int i;
3736 int brdnr, retval = -EIO;
3738 retval = pci_enable_device(pdev);
3739 if (retval)
3740 goto err;
3741 brdp = stli_allocbrd();
3742 if (brdp == NULL) {
3743 retval = -ENOMEM;
3744 goto err;
3746 mutex_lock(&stli_brdslock);
3747 brdnr = stli_getbrdnr();
3748 if (brdnr < 0) {
3749 printk(KERN_INFO "istallion: too many boards found, "
3750 "maximum supported %d\n", STL_MAXBRDS);
3751 mutex_unlock(&stli_brdslock);
3752 retval = -EIO;
3753 goto err_fr;
3755 brdp->brdnr = (unsigned int)brdnr;
3756 stli_brds[brdp->brdnr] = brdp;
3757 mutex_unlock(&stli_brdslock);
3758 brdp->brdtype = BRD_ECPPCI;
3760 * We have all resources from the board, so lets setup the actual
3761 * board structure now.
3763 brdp->iobase = pci_resource_start(pdev, 3);
3764 brdp->memaddr = pci_resource_start(pdev, 2);
3765 retval = stli_brdinit(brdp);
3766 if (retval)
3767 goto err_null;
3769 brdp->state |= BST_PROBED;
3770 pci_set_drvdata(pdev, brdp);
3772 EBRDENABLE(brdp);
3773 brdp->enable = NULL;
3774 brdp->disable = NULL;
3776 for (i = 0; i < brdp->nrports; i++)
3777 tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3778 &pdev->dev);
3780 return 0;
3781 err_null:
3782 stli_brds[brdp->brdnr] = NULL;
3783 err_fr:
3784 kfree(brdp);
3785 err:
3786 return retval;
3789 static void __devexit stli_pciremove(struct pci_dev *pdev)
3791 struct stlibrd *brdp = pci_get_drvdata(pdev);
3793 stli_cleanup_ports(brdp);
3795 iounmap(brdp->membase);
3796 if (brdp->iosize > 0)
3797 release_region(brdp->iobase, brdp->iosize);
3799 stli_brds[brdp->brdnr] = NULL;
3800 kfree(brdp);
3803 static struct pci_driver stli_pcidriver = {
3804 .name = "istallion",
3805 .id_table = istallion_pci_tbl,
3806 .probe = stli_pciprobe,
3807 .remove = __devexit_p(stli_pciremove)
3809 /*****************************************************************************/
3812 * Allocate a new board structure. Fill out the basic info in it.
3815 static struct stlibrd *stli_allocbrd(void)
3817 struct stlibrd *brdp;
3819 brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3820 if (!brdp) {
3821 printk(KERN_ERR "istallion: failed to allocate memory "
3822 "(size=%Zd)\n", sizeof(struct stlibrd));
3823 return NULL;
3825 brdp->magic = STLI_BOARDMAGIC;
3826 return brdp;
3829 /*****************************************************************************/
3832 * Scan through all the boards in the configuration and see what we
3833 * can find.
3836 static int __init stli_initbrds(void)
3838 struct stlibrd *brdp, *nxtbrdp;
3839 struct stlconf conf;
3840 unsigned int i, j, found = 0;
3841 int retval;
3843 for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3844 stli_nrbrds++) {
3845 memset(&conf, 0, sizeof(conf));
3846 if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3847 continue;
3848 if ((brdp = stli_allocbrd()) == NULL)
3849 continue;
3850 brdp->brdnr = stli_nrbrds;
3851 brdp->brdtype = conf.brdtype;
3852 brdp->iobase = conf.ioaddr1;
3853 brdp->memaddr = conf.memaddr;
3854 if (stli_brdinit(brdp) < 0) {
3855 kfree(brdp);
3856 continue;
3858 stli_brds[brdp->brdnr] = brdp;
3859 found++;
3861 for (i = 0; i < brdp->nrports; i++)
3862 tty_register_device(stli_serial,
3863 brdp->brdnr * STL_MAXPORTS + i, NULL);
3866 retval = stli_findeisabrds();
3867 if (retval > 0)
3868 found += retval;
3871 * All found boards are initialized. Now for a little optimization, if
3872 * no boards are sharing the "shared memory" regions then we can just
3873 * leave them all enabled. This is in fact the usual case.
3875 stli_shared = 0;
3876 if (stli_nrbrds > 1) {
3877 for (i = 0; (i < stli_nrbrds); i++) {
3878 brdp = stli_brds[i];
3879 if (brdp == NULL)
3880 continue;
3881 for (j = i + 1; (j < stli_nrbrds); j++) {
3882 nxtbrdp = stli_brds[j];
3883 if (nxtbrdp == NULL)
3884 continue;
3885 if ((brdp->membase >= nxtbrdp->membase) &&
3886 (brdp->membase <= (nxtbrdp->membase +
3887 nxtbrdp->memsize - 1))) {
3888 stli_shared++;
3889 break;
3895 if (stli_shared == 0) {
3896 for (i = 0; (i < stli_nrbrds); i++) {
3897 brdp = stli_brds[i];
3898 if (brdp == NULL)
3899 continue;
3900 if (brdp->state & BST_FOUND) {
3901 EBRDENABLE(brdp);
3902 brdp->enable = NULL;
3903 brdp->disable = NULL;
3908 retval = pci_register_driver(&stli_pcidriver);
3909 if (retval && found == 0) {
3910 printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
3911 "driver can be registered!\n");
3912 goto err;
3915 return 0;
3916 err:
3917 return retval;
3920 /*****************************************************************************/
3923 * Code to handle an "staliomem" read operation. This device is the
3924 * contents of the board shared memory. It is used for down loading
3925 * the slave image (and debugging :-)
3928 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
3930 unsigned long flags;
3931 void __iomem *memptr;
3932 struct stlibrd *brdp;
3933 unsigned int brdnr;
3934 int size, n;
3935 void *p;
3936 loff_t off = *offp;
3938 brdnr = iminor(fp->f_path.dentry->d_inode);
3939 if (brdnr >= stli_nrbrds)
3940 return -ENODEV;
3941 brdp = stli_brds[brdnr];
3942 if (brdp == NULL)
3943 return -ENODEV;
3944 if (brdp->state == 0)
3945 return -ENODEV;
3946 if (off >= brdp->memsize || off + count < off)
3947 return 0;
3949 size = min(count, (size_t)(brdp->memsize - off));
3952 * Copy the data a page at a time
3955 p = (void *)__get_free_page(GFP_KERNEL);
3956 if(p == NULL)
3957 return -ENOMEM;
3959 while (size > 0) {
3960 spin_lock_irqsave(&brd_lock, flags);
3961 EBRDENABLE(brdp);
3962 memptr = EBRDGETMEMPTR(brdp, off);
3963 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3964 n = min(n, (int)PAGE_SIZE);
3965 memcpy_fromio(p, memptr, n);
3966 EBRDDISABLE(brdp);
3967 spin_unlock_irqrestore(&brd_lock, flags);
3968 if (copy_to_user(buf, p, n)) {
3969 count = -EFAULT;
3970 goto out;
3972 off += n;
3973 buf += n;
3974 size -= n;
3976 out:
3977 *offp = off;
3978 free_page((unsigned long)p);
3979 return count;
3982 /*****************************************************************************/
3985 * Code to handle an "staliomem" write operation. This device is the
3986 * contents of the board shared memory. It is used for down loading
3987 * the slave image (and debugging :-)
3989 * FIXME: copy under lock
3992 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
3994 unsigned long flags;
3995 void __iomem *memptr;
3996 struct stlibrd *brdp;
3997 char __user *chbuf;
3998 unsigned int brdnr;
3999 int size, n;
4000 void *p;
4001 loff_t off = *offp;
4003 brdnr = iminor(fp->f_path.dentry->d_inode);
4005 if (brdnr >= stli_nrbrds)
4006 return -ENODEV;
4007 brdp = stli_brds[brdnr];
4008 if (brdp == NULL)
4009 return -ENODEV;
4010 if (brdp->state == 0)
4011 return -ENODEV;
4012 if (off >= brdp->memsize || off + count < off)
4013 return 0;
4015 chbuf = (char __user *) buf;
4016 size = min(count, (size_t)(brdp->memsize - off));
4019 * Copy the data a page at a time
4022 p = (void *)__get_free_page(GFP_KERNEL);
4023 if(p == NULL)
4024 return -ENOMEM;
4026 while (size > 0) {
4027 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4028 n = min(n, (int)PAGE_SIZE);
4029 if (copy_from_user(p, chbuf, n)) {
4030 if (count == 0)
4031 count = -EFAULT;
4032 goto out;
4034 spin_lock_irqsave(&brd_lock, flags);
4035 EBRDENABLE(brdp);
4036 memptr = EBRDGETMEMPTR(brdp, off);
4037 memcpy_toio(memptr, p, n);
4038 EBRDDISABLE(brdp);
4039 spin_unlock_irqrestore(&brd_lock, flags);
4040 off += n;
4041 chbuf += n;
4042 size -= n;
4044 out:
4045 free_page((unsigned long) p);
4046 *offp = off;
4047 return count;
4050 /*****************************************************************************/
4053 * Return the board stats structure to user app.
4056 static int stli_getbrdstats(combrd_t __user *bp)
4058 struct stlibrd *brdp;
4059 unsigned int i;
4061 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4062 return -EFAULT;
4063 if (stli_brdstats.brd >= STL_MAXBRDS)
4064 return -ENODEV;
4065 brdp = stli_brds[stli_brdstats.brd];
4066 if (brdp == NULL)
4067 return -ENODEV;
4069 memset(&stli_brdstats, 0, sizeof(combrd_t));
4070 stli_brdstats.brd = brdp->brdnr;
4071 stli_brdstats.type = brdp->brdtype;
4072 stli_brdstats.hwid = 0;
4073 stli_brdstats.state = brdp->state;
4074 stli_brdstats.ioaddr = brdp->iobase;
4075 stli_brdstats.memaddr = brdp->memaddr;
4076 stli_brdstats.nrpanels = brdp->nrpanels;
4077 stli_brdstats.nrports = brdp->nrports;
4078 for (i = 0; (i < brdp->nrpanels); i++) {
4079 stli_brdstats.panels[i].panel = i;
4080 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4081 stli_brdstats.panels[i].nrports = brdp->panels[i];
4084 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4085 return -EFAULT;
4086 return 0;
4089 /*****************************************************************************/
4092 * Resolve the referenced port number into a port struct pointer.
4095 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4096 unsigned int portnr)
4098 struct stlibrd *brdp;
4099 unsigned int i;
4101 if (brdnr >= STL_MAXBRDS)
4102 return NULL;
4103 brdp = stli_brds[brdnr];
4104 if (brdp == NULL)
4105 return NULL;
4106 for (i = 0; (i < panelnr); i++)
4107 portnr += brdp->panels[i];
4108 if (portnr >= brdp->nrports)
4109 return NULL;
4110 return brdp->ports[portnr];
4113 /*****************************************************************************/
4116 * Return the port stats structure to user app. A NULL port struct
4117 * pointer passed in means that we need to find out from the app
4118 * what port to get stats for (used through board control device).
4121 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp)
4123 unsigned long flags;
4124 struct stlibrd *brdp;
4125 int rc;
4127 memset(&stli_comstats, 0, sizeof(comstats_t));
4129 if (portp == NULL)
4130 return -ENODEV;
4131 brdp = stli_brds[portp->brdnr];
4132 if (brdp == NULL)
4133 return -ENODEV;
4135 if (brdp->state & BST_STARTED) {
4136 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4137 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4138 return rc;
4139 } else {
4140 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4143 stli_comstats.brd = portp->brdnr;
4144 stli_comstats.panel = portp->panelnr;
4145 stli_comstats.port = portp->portnr;
4146 stli_comstats.state = portp->state;
4147 stli_comstats.flags = portp->port.flags;
4149 spin_lock_irqsave(&brd_lock, flags);
4150 if (tty != NULL) {
4151 if (portp->port.tty == tty) {
4152 stli_comstats.ttystate = tty->flags;
4153 stli_comstats.rxbuffered = -1;
4154 if (tty->termios != NULL) {
4155 stli_comstats.cflags = tty->termios->c_cflag;
4156 stli_comstats.iflags = tty->termios->c_iflag;
4157 stli_comstats.oflags = tty->termios->c_oflag;
4158 stli_comstats.lflags = tty->termios->c_lflag;
4162 spin_unlock_irqrestore(&brd_lock, flags);
4164 stli_comstats.txtotal = stli_cdkstats.txchars;
4165 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4166 stli_comstats.txbuffered = stli_cdkstats.txringq;
4167 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4168 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4169 stli_comstats.rxparity = stli_cdkstats.parity;
4170 stli_comstats.rxframing = stli_cdkstats.framing;
4171 stli_comstats.rxlost = stli_cdkstats.ringover;
4172 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4173 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4174 stli_comstats.txxon = stli_cdkstats.txstart;
4175 stli_comstats.txxoff = stli_cdkstats.txstop;
4176 stli_comstats.rxxon = stli_cdkstats.rxstart;
4177 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4178 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4179 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4180 stli_comstats.modem = stli_cdkstats.dcdcnt;
4181 stli_comstats.hwid = stli_cdkstats.hwid;
4182 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4184 return 0;
4187 /*****************************************************************************/
4190 * Return the port stats structure to user app. A NULL port struct
4191 * pointer passed in means that we need to find out from the app
4192 * what port to get stats for (used through board control device).
4195 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp,
4196 comstats_t __user *cp)
4198 struct stlibrd *brdp;
4199 int rc;
4201 if (!portp) {
4202 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4203 return -EFAULT;
4204 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4205 stli_comstats.port);
4206 if (!portp)
4207 return -ENODEV;
4210 brdp = stli_brds[portp->brdnr];
4211 if (!brdp)
4212 return -ENODEV;
4214 if ((rc = stli_portcmdstats(tty, portp)) < 0)
4215 return rc;
4217 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4218 -EFAULT : 0;
4221 /*****************************************************************************/
4224 * Clear the port stats structure. We also return it zeroed out...
4227 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4229 struct stlibrd *brdp;
4230 int rc;
4232 if (!portp) {
4233 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4234 return -EFAULT;
4235 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4236 stli_comstats.port);
4237 if (!portp)
4238 return -ENODEV;
4241 brdp = stli_brds[portp->brdnr];
4242 if (!brdp)
4243 return -ENODEV;
4245 if (brdp->state & BST_STARTED) {
4246 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
4247 return rc;
4250 memset(&stli_comstats, 0, sizeof(comstats_t));
4251 stli_comstats.brd = portp->brdnr;
4252 stli_comstats.panel = portp->panelnr;
4253 stli_comstats.port = portp->portnr;
4255 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4256 return -EFAULT;
4257 return 0;
4260 /*****************************************************************************/
4263 * Return the entire driver ports structure to a user app.
4266 static int stli_getportstruct(struct stliport __user *arg)
4268 struct stliport stli_dummyport;
4269 struct stliport *portp;
4271 if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4272 return -EFAULT;
4273 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4274 stli_dummyport.portnr);
4275 if (!portp)
4276 return -ENODEV;
4277 if (copy_to_user(arg, portp, sizeof(struct stliport)))
4278 return -EFAULT;
4279 return 0;
4282 /*****************************************************************************/
4285 * Return the entire driver board structure to a user app.
4288 static int stli_getbrdstruct(struct stlibrd __user *arg)
4290 struct stlibrd stli_dummybrd;
4291 struct stlibrd *brdp;
4293 if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4294 return -EFAULT;
4295 if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4296 return -ENODEV;
4297 brdp = stli_brds[stli_dummybrd.brdnr];
4298 if (!brdp)
4299 return -ENODEV;
4300 if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4301 return -EFAULT;
4302 return 0;
4305 /*****************************************************************************/
4308 * The "staliomem" device is also required to do some special operations on
4309 * the board. We need to be able to send an interrupt to the board,
4310 * reset it, and start/stop it.
4313 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
4315 struct stlibrd *brdp;
4316 int brdnr, rc, done;
4317 void __user *argp = (void __user *)arg;
4320 * First up handle the board independent ioctls.
4322 done = 0;
4323 rc = 0;
4325 lock_kernel();
4327 switch (cmd) {
4328 case COM_GETPORTSTATS:
4329 rc = stli_getportstats(NULL, NULL, argp);
4330 done++;
4331 break;
4332 case COM_CLRPORTSTATS:
4333 rc = stli_clrportstats(NULL, argp);
4334 done++;
4335 break;
4336 case COM_GETBRDSTATS:
4337 rc = stli_getbrdstats(argp);
4338 done++;
4339 break;
4340 case COM_READPORT:
4341 rc = stli_getportstruct(argp);
4342 done++;
4343 break;
4344 case COM_READBOARD:
4345 rc = stli_getbrdstruct(argp);
4346 done++;
4347 break;
4349 unlock_kernel();
4351 if (done)
4352 return rc;
4355 * Now handle the board specific ioctls. These all depend on the
4356 * minor number of the device they were called from.
4358 brdnr = iminor(ip);
4359 if (brdnr >= STL_MAXBRDS)
4360 return -ENODEV;
4361 brdp = stli_brds[brdnr];
4362 if (!brdp)
4363 return -ENODEV;
4364 if (brdp->state == 0)
4365 return -ENODEV;
4367 lock_kernel();
4369 switch (cmd) {
4370 case STL_BINTR:
4371 EBRDINTR(brdp);
4372 break;
4373 case STL_BSTART:
4374 rc = stli_startbrd(brdp);
4375 break;
4376 case STL_BSTOP:
4377 brdp->state &= ~BST_STARTED;
4378 break;
4379 case STL_BRESET:
4380 brdp->state &= ~BST_STARTED;
4381 EBRDRESET(brdp);
4382 if (stli_shared == 0) {
4383 if (brdp->reenable != NULL)
4384 (* brdp->reenable)(brdp);
4386 break;
4387 default:
4388 rc = -ENOIOCTLCMD;
4389 break;
4391 unlock_kernel();
4392 return rc;
4395 static const struct tty_operations stli_ops = {
4396 .open = stli_open,
4397 .close = stli_close,
4398 .write = stli_write,
4399 .put_char = stli_putchar,
4400 .flush_chars = stli_flushchars,
4401 .write_room = stli_writeroom,
4402 .chars_in_buffer = stli_charsinbuffer,
4403 .ioctl = stli_ioctl,
4404 .set_termios = stli_settermios,
4405 .throttle = stli_throttle,
4406 .unthrottle = stli_unthrottle,
4407 .stop = stli_stop,
4408 .start = stli_start,
4409 .hangup = stli_hangup,
4410 .flush_buffer = stli_flushbuffer,
4411 .break_ctl = stli_breakctl,
4412 .wait_until_sent = stli_waituntilsent,
4413 .send_xchar = stli_sendxchar,
4414 .tiocmget = stli_tiocmget,
4415 .tiocmset = stli_tiocmset,
4416 .proc_fops = &stli_proc_fops,
4419 static const struct tty_port_operations stli_port_ops = {
4420 .carrier_raised = stli_carrier_raised,
4421 .dtr_rts = stli_dtr_rts,
4424 /*****************************************************************************/
4426 * Loadable module initialization stuff.
4429 static void istallion_cleanup_isa(void)
4431 struct stlibrd *brdp;
4432 unsigned int j;
4434 for (j = 0; (j < stli_nrbrds); j++) {
4435 if ((brdp = stli_brds[j]) == NULL || (brdp->state & BST_PROBED))
4436 continue;
4438 stli_cleanup_ports(brdp);
4440 iounmap(brdp->membase);
4441 if (brdp->iosize > 0)
4442 release_region(brdp->iobase, brdp->iosize);
4443 kfree(brdp);
4444 stli_brds[j] = NULL;
4448 static int __init istallion_module_init(void)
4450 unsigned int i;
4451 int retval;
4453 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4455 spin_lock_init(&stli_lock);
4456 spin_lock_init(&brd_lock);
4458 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4459 if (!stli_txcookbuf) {
4460 printk(KERN_ERR "istallion: failed to allocate memory "
4461 "(size=%d)\n", STLI_TXBUFSIZE);
4462 retval = -ENOMEM;
4463 goto err;
4466 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4467 if (!stli_serial) {
4468 retval = -ENOMEM;
4469 goto err_free;
4472 stli_serial->owner = THIS_MODULE;
4473 stli_serial->driver_name = stli_drvname;
4474 stli_serial->name = stli_serialname;
4475 stli_serial->major = STL_SERIALMAJOR;
4476 stli_serial->minor_start = 0;
4477 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4478 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4479 stli_serial->init_termios = stli_deftermios;
4480 stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4481 tty_set_operations(stli_serial, &stli_ops);
4483 retval = tty_register_driver(stli_serial);
4484 if (retval) {
4485 printk(KERN_ERR "istallion: failed to register serial driver\n");
4486 goto err_ttyput;
4489 retval = stli_initbrds();
4490 if (retval)
4491 goto err_ttyunr;
4494 * Set up a character driver for the shared memory region. We need this
4495 * to down load the slave code image. Also it is a useful debugging tool.
4497 retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4498 if (retval) {
4499 printk(KERN_ERR "istallion: failed to register serial memory "
4500 "device\n");
4501 goto err_deinit;
4504 istallion_class = class_create(THIS_MODULE, "staliomem");
4505 for (i = 0; i < 4; i++)
4506 device_create(istallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4507 NULL, "staliomem%d", i);
4509 return 0;
4510 err_deinit:
4511 pci_unregister_driver(&stli_pcidriver);
4512 istallion_cleanup_isa();
4513 err_ttyunr:
4514 tty_unregister_driver(stli_serial);
4515 err_ttyput:
4516 put_tty_driver(stli_serial);
4517 err_free:
4518 kfree(stli_txcookbuf);
4519 err:
4520 return retval;
4523 /*****************************************************************************/
4525 static void __exit istallion_module_exit(void)
4527 unsigned int j;
4529 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4530 stli_drvversion);
4532 if (stli_timeron) {
4533 stli_timeron = 0;
4534 del_timer_sync(&stli_timerlist);
4537 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4539 for (j = 0; j < 4; j++)
4540 device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
4541 class_destroy(istallion_class);
4543 pci_unregister_driver(&stli_pcidriver);
4544 istallion_cleanup_isa();
4546 tty_unregister_driver(stli_serial);
4547 put_tty_driver(stli_serial);
4549 kfree(stli_txcookbuf);
4552 module_init(istallion_module_init);
4553 module_exit(istallion_module_exit);