block: move down direct IO plugging
[linux/fpc-iii.git] / drivers / mtd / nand / au1550nd.c
blob9f609d2dcf62d3dc993358e4de817de00d154267
1 /*
2 * drivers/mtd/nand/au1550nd.c
4 * Copyright (C) 2004 Embedded Edge, LLC
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
12 #include <linux/slab.h>
13 #include <linux/gpio.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/platform_device.h>
21 #include <asm/io.h>
22 #include <asm/mach-au1x00/au1000.h>
23 #include <asm/mach-au1x00/au1550nd.h>
26 struct au1550nd_ctx {
27 struct mtd_info info;
28 struct nand_chip chip;
30 int cs;
31 void __iomem *base;
32 void (*write_byte)(struct mtd_info *, u_char);
35 /**
36 * au_read_byte - read one byte from the chip
37 * @mtd: MTD device structure
39 * read function for 8bit buswidth
41 static u_char au_read_byte(struct mtd_info *mtd)
43 struct nand_chip *this = mtd->priv;
44 u_char ret = readb(this->IO_ADDR_R);
45 au_sync();
46 return ret;
49 /**
50 * au_write_byte - write one byte to the chip
51 * @mtd: MTD device structure
52 * @byte: pointer to data byte to write
54 * write function for 8it buswidth
56 static void au_write_byte(struct mtd_info *mtd, u_char byte)
58 struct nand_chip *this = mtd->priv;
59 writeb(byte, this->IO_ADDR_W);
60 au_sync();
63 /**
64 * au_read_byte16 - read one byte endianness aware from the chip
65 * @mtd: MTD device structure
67 * read function for 16bit buswidth with endianness conversion
69 static u_char au_read_byte16(struct mtd_info *mtd)
71 struct nand_chip *this = mtd->priv;
72 u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
73 au_sync();
74 return ret;
77 /**
78 * au_write_byte16 - write one byte endianness aware to the chip
79 * @mtd: MTD device structure
80 * @byte: pointer to data byte to write
82 * write function for 16bit buswidth with endianness conversion
84 static void au_write_byte16(struct mtd_info *mtd, u_char byte)
86 struct nand_chip *this = mtd->priv;
87 writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
88 au_sync();
91 /**
92 * au_read_word - read one word from the chip
93 * @mtd: MTD device structure
95 * read function for 16bit buswidth without endianness conversion
97 static u16 au_read_word(struct mtd_info *mtd)
99 struct nand_chip *this = mtd->priv;
100 u16 ret = readw(this->IO_ADDR_R);
101 au_sync();
102 return ret;
106 * au_write_buf - write buffer to chip
107 * @mtd: MTD device structure
108 * @buf: data buffer
109 * @len: number of bytes to write
111 * write function for 8bit buswidth
113 static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
115 int i;
116 struct nand_chip *this = mtd->priv;
118 for (i = 0; i < len; i++) {
119 writeb(buf[i], this->IO_ADDR_W);
120 au_sync();
125 * au_read_buf - read chip data into buffer
126 * @mtd: MTD device structure
127 * @buf: buffer to store date
128 * @len: number of bytes to read
130 * read function for 8bit buswidth
132 static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
134 int i;
135 struct nand_chip *this = mtd->priv;
137 for (i = 0; i < len; i++) {
138 buf[i] = readb(this->IO_ADDR_R);
139 au_sync();
144 * au_verify_buf - Verify chip data against buffer
145 * @mtd: MTD device structure
146 * @buf: buffer containing the data to compare
147 * @len: number of bytes to compare
149 * verify function for 8bit buswidth
151 static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
153 int i;
154 struct nand_chip *this = mtd->priv;
156 for (i = 0; i < len; i++) {
157 if (buf[i] != readb(this->IO_ADDR_R))
158 return -EFAULT;
159 au_sync();
162 return 0;
166 * au_write_buf16 - write buffer to chip
167 * @mtd: MTD device structure
168 * @buf: data buffer
169 * @len: number of bytes to write
171 * write function for 16bit buswidth
173 static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
175 int i;
176 struct nand_chip *this = mtd->priv;
177 u16 *p = (u16 *) buf;
178 len >>= 1;
180 for (i = 0; i < len; i++) {
181 writew(p[i], this->IO_ADDR_W);
182 au_sync();
188 * au_read_buf16 - read chip data into buffer
189 * @mtd: MTD device structure
190 * @buf: buffer to store date
191 * @len: number of bytes to read
193 * read function for 16bit buswidth
195 static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
197 int i;
198 struct nand_chip *this = mtd->priv;
199 u16 *p = (u16 *) buf;
200 len >>= 1;
202 for (i = 0; i < len; i++) {
203 p[i] = readw(this->IO_ADDR_R);
204 au_sync();
209 * au_verify_buf16 - Verify chip data against buffer
210 * @mtd: MTD device structure
211 * @buf: buffer containing the data to compare
212 * @len: number of bytes to compare
214 * verify function for 16bit buswidth
216 static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
218 int i;
219 struct nand_chip *this = mtd->priv;
220 u16 *p = (u16 *) buf;
221 len >>= 1;
223 for (i = 0; i < len; i++) {
224 if (p[i] != readw(this->IO_ADDR_R))
225 return -EFAULT;
226 au_sync();
228 return 0;
231 /* Select the chip by setting nCE to low */
232 #define NAND_CTL_SETNCE 1
233 /* Deselect the chip by setting nCE to high */
234 #define NAND_CTL_CLRNCE 2
235 /* Select the command latch by setting CLE to high */
236 #define NAND_CTL_SETCLE 3
237 /* Deselect the command latch by setting CLE to low */
238 #define NAND_CTL_CLRCLE 4
239 /* Select the address latch by setting ALE to high */
240 #define NAND_CTL_SETALE 5
241 /* Deselect the address latch by setting ALE to low */
242 #define NAND_CTL_CLRALE 6
244 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
246 struct au1550nd_ctx *ctx = container_of(mtd, struct au1550nd_ctx, info);
247 struct nand_chip *this = mtd->priv;
249 switch (cmd) {
251 case NAND_CTL_SETCLE:
252 this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
253 break;
255 case NAND_CTL_CLRCLE:
256 this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
257 break;
259 case NAND_CTL_SETALE:
260 this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
261 break;
263 case NAND_CTL_CLRALE:
264 this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
265 /* FIXME: Nobody knows why this is necessary,
266 * but it works only that way */
267 udelay(1);
268 break;
270 case NAND_CTL_SETNCE:
271 /* assert (force assert) chip enable */
272 au_writel((1 << (4 + ctx->cs)), MEM_STNDCTL);
273 break;
275 case NAND_CTL_CLRNCE:
276 /* deassert chip enable */
277 au_writel(0, MEM_STNDCTL);
278 break;
281 this->IO_ADDR_R = this->IO_ADDR_W;
283 /* Drain the writebuffer */
284 au_sync();
287 int au1550_device_ready(struct mtd_info *mtd)
289 int ret = (au_readl(MEM_STSTAT) & 0x1) ? 1 : 0;
290 au_sync();
291 return ret;
295 * au1550_select_chip - control -CE line
296 * Forbid driving -CE manually permitting the NAND controller to do this.
297 * Keeping -CE asserted during the whole sector reads interferes with the
298 * NOR flash and PCMCIA drivers as it causes contention on the static bus.
299 * We only have to hold -CE low for the NAND read commands since the flash
300 * chip needs it to be asserted during chip not ready time but the NAND
301 * controller keeps it released.
303 * @mtd: MTD device structure
304 * @chip: chipnumber to select, -1 for deselect
306 static void au1550_select_chip(struct mtd_info *mtd, int chip)
311 * au1550_command - Send command to NAND device
312 * @mtd: MTD device structure
313 * @command: the command to be sent
314 * @column: the column address for this command, -1 if none
315 * @page_addr: the page address for this command, -1 if none
317 static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
319 struct au1550nd_ctx *ctx = container_of(mtd, struct au1550nd_ctx, info);
320 struct nand_chip *this = mtd->priv;
321 int ce_override = 0, i;
322 unsigned long flags = 0;
324 /* Begin command latch cycle */
325 au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
327 * Write out the command to the device.
329 if (command == NAND_CMD_SEQIN) {
330 int readcmd;
332 if (column >= mtd->writesize) {
333 /* OOB area */
334 column -= mtd->writesize;
335 readcmd = NAND_CMD_READOOB;
336 } else if (column < 256) {
337 /* First 256 bytes --> READ0 */
338 readcmd = NAND_CMD_READ0;
339 } else {
340 column -= 256;
341 readcmd = NAND_CMD_READ1;
343 ctx->write_byte(mtd, readcmd);
345 ctx->write_byte(mtd, command);
347 /* Set ALE and clear CLE to start address cycle */
348 au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
350 if (column != -1 || page_addr != -1) {
351 au1550_hwcontrol(mtd, NAND_CTL_SETALE);
353 /* Serially input address */
354 if (column != -1) {
355 /* Adjust columns for 16 bit buswidth */
356 if (this->options & NAND_BUSWIDTH_16)
357 column >>= 1;
358 ctx->write_byte(mtd, column);
360 if (page_addr != -1) {
361 ctx->write_byte(mtd, (u8)(page_addr & 0xff));
363 if (command == NAND_CMD_READ0 ||
364 command == NAND_CMD_READ1 ||
365 command == NAND_CMD_READOOB) {
367 * NAND controller will release -CE after
368 * the last address byte is written, so we'll
369 * have to forcibly assert it. No interrupts
370 * are allowed while we do this as we don't
371 * want the NOR flash or PCMCIA drivers to
372 * steal our precious bytes of data...
374 ce_override = 1;
375 local_irq_save(flags);
376 au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
379 ctx->write_byte(mtd, (u8)(page_addr >> 8));
381 /* One more address cycle for devices > 32MiB */
382 if (this->chipsize > (32 << 20))
383 ctx->write_byte(mtd,
384 ((page_addr >> 16) & 0x0f));
386 /* Latch in address */
387 au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
391 * Program and erase have their own busy handlers.
392 * Status and sequential in need no delay.
394 switch (command) {
396 case NAND_CMD_PAGEPROG:
397 case NAND_CMD_ERASE1:
398 case NAND_CMD_ERASE2:
399 case NAND_CMD_SEQIN:
400 case NAND_CMD_STATUS:
401 return;
403 case NAND_CMD_RESET:
404 break;
406 case NAND_CMD_READ0:
407 case NAND_CMD_READ1:
408 case NAND_CMD_READOOB:
409 /* Check if we're really driving -CE low (just in case) */
410 if (unlikely(!ce_override))
411 break;
413 /* Apply a short delay always to ensure that we do wait tWB. */
414 ndelay(100);
415 /* Wait for a chip to become ready... */
416 for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
417 udelay(1);
419 /* Release -CE and re-enable interrupts. */
420 au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
421 local_irq_restore(flags);
422 return;
424 /* Apply this short delay always to ensure that we do wait tWB. */
425 ndelay(100);
427 while(!this->dev_ready(mtd));
430 static int __devinit find_nand_cs(unsigned long nand_base)
432 void __iomem *base =
433 (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
434 unsigned long addr, staddr, start, mask, end;
435 int i;
437 for (i = 0; i < 4; i++) {
438 addr = 0x1000 + (i * 0x10); /* CSx */
439 staddr = __raw_readl(base + addr + 0x08); /* STADDRx */
440 /* figure out the decoded range of this CS */
441 start = (staddr << 4) & 0xfffc0000;
442 mask = (staddr << 18) & 0xfffc0000;
443 end = (start | (start - 1)) & ~(start ^ mask);
444 if ((nand_base >= start) && (nand_base < end))
445 return i;
448 return -ENODEV;
451 static int __devinit au1550nd_probe(struct platform_device *pdev)
453 struct au1550nd_platdata *pd;
454 struct au1550nd_ctx *ctx;
455 struct nand_chip *this;
456 struct resource *r;
457 int ret, cs;
459 pd = pdev->dev.platform_data;
460 if (!pd) {
461 dev_err(&pdev->dev, "missing platform data\n");
462 return -ENODEV;
465 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
466 if (!ctx) {
467 dev_err(&pdev->dev, "no memory for NAND context\n");
468 return -ENOMEM;
471 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
472 if (!r) {
473 dev_err(&pdev->dev, "no NAND memory resource\n");
474 ret = -ENODEV;
475 goto out1;
477 if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
478 dev_err(&pdev->dev, "cannot claim NAND memory area\n");
479 ret = -ENOMEM;
480 goto out1;
483 ctx->base = ioremap_nocache(r->start, 0x1000);
484 if (!ctx->base) {
485 dev_err(&pdev->dev, "cannot remap NAND memory area\n");
486 ret = -ENODEV;
487 goto out2;
490 this = &ctx->chip;
491 ctx->info.priv = this;
492 ctx->info.owner = THIS_MODULE;
494 /* figure out which CS# r->start belongs to */
495 cs = find_nand_cs(r->start);
496 if (cs < 0) {
497 dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
498 ret = -ENODEV;
499 goto out3;
501 ctx->cs = cs;
503 this->dev_ready = au1550_device_ready;
504 this->select_chip = au1550_select_chip;
505 this->cmdfunc = au1550_command;
507 /* 30 us command delay time */
508 this->chip_delay = 30;
509 this->ecc.mode = NAND_ECC_SOFT;
511 if (pd->devwidth)
512 this->options |= NAND_BUSWIDTH_16;
514 this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
515 ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
516 this->read_word = au_read_word;
517 this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
518 this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
519 this->verify_buf = (pd->devwidth) ? au_verify_buf16 : au_verify_buf;
521 ret = nand_scan(&ctx->info, 1);
522 if (ret) {
523 dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
524 goto out3;
527 mtd_device_register(&ctx->info, pd->parts, pd->num_parts);
529 return 0;
531 out3:
532 iounmap(ctx->base);
533 out2:
534 release_mem_region(r->start, resource_size(r));
535 out1:
536 kfree(ctx);
537 return ret;
540 static int __devexit au1550nd_remove(struct platform_device *pdev)
542 struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
543 struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
545 nand_release(&ctx->info);
546 iounmap(ctx->base);
547 release_mem_region(r->start, 0x1000);
548 kfree(ctx);
549 return 0;
552 static struct platform_driver au1550nd_driver = {
553 .driver = {
554 .name = "au1550-nand",
555 .owner = THIS_MODULE,
557 .probe = au1550nd_probe,
558 .remove = __devexit_p(au1550nd_remove),
561 module_platform_driver(au1550nd_driver);
563 MODULE_LICENSE("GPL");
564 MODULE_AUTHOR("Embedded Edge, LLC");
565 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");