2 * Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
4 * mtd nand driver for M-Systems DiskOnChip G4
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus
12 * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
13 * Should work on these as well. Let me know!
17 * Mechanism for management of password-protected areas
19 * Hamming ecc when reading oob only
21 * According to the M-Sys documentation, this device is also available in a
22 * "dual-die" configuration having a 256MB capacity, but no mechanism for
23 * detecting this variant is documented. Currently this driver assumes 128MB
26 * Support for multiple cascaded devices ("floors"). Not sure which gadgets
27 * contain multiple G4s in a cascaded configuration, if any.
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/string.h>
35 #include <linux/sched.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/export.h>
39 #include <linux/platform_device.h>
41 #include <linux/bitops.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/bch.h>
46 #include <linux/bitrev.h>
49 * You'll want to ignore badblocks if you're reading a partition that contains
50 * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
51 * it does not use mtd nand's method for marking bad blocks (using oob area).
52 * This will also skip the check of the "page written" flag.
54 static bool ignore_badblocks
;
55 module_param(ignore_badblocks
, bool, 0);
56 MODULE_PARM_DESC(ignore_badblocks
, "no badblock checking performed");
61 void __iomem
*virtadr
;
71 struct bch_control
*bch
;
75 * Defines prefixed with DOCG4 are unique to the diskonchip G4. All others are
76 * shared with other diskonchip devices (P3, G3 at least).
78 * Functions with names prefixed with docg4_ are mtd / nand interface functions
79 * (though they may also be called internally). All others are internal.
82 #define DOC_IOSPACE_DATA 0x0800
84 /* register offsets */
85 #define DOC_CHIPID 0x1000
86 #define DOC_DEVICESELECT 0x100a
87 #define DOC_ASICMODE 0x100c
88 #define DOC_DATAEND 0x101e
89 #define DOC_NOP 0x103e
91 #define DOC_FLASHSEQUENCE 0x1032
92 #define DOC_FLASHCOMMAND 0x1034
93 #define DOC_FLASHADDRESS 0x1036
94 #define DOC_FLASHCONTROL 0x1038
95 #define DOC_ECCCONF0 0x1040
96 #define DOC_ECCCONF1 0x1042
97 #define DOC_HAMMINGPARITY 0x1046
98 #define DOC_BCH_SYNDROM(idx) (0x1048 + idx)
100 #define DOC_ASICMODECONFIRM 0x1072
101 #define DOC_CHIPID_INV 0x1074
102 #define DOC_POWERMODE 0x107c
104 #define DOCG4_MYSTERY_REG 0x1050
106 /* apparently used only to write oob bytes 6 and 7 */
107 #define DOCG4_OOB_6_7 0x1052
109 /* DOC_FLASHSEQUENCE register commands */
110 #define DOC_SEQ_RESET 0x00
111 #define DOCG4_SEQ_PAGE_READ 0x03
112 #define DOCG4_SEQ_FLUSH 0x29
113 #define DOCG4_SEQ_PAGEWRITE 0x16
114 #define DOCG4_SEQ_PAGEPROG 0x1e
115 #define DOCG4_SEQ_BLOCKERASE 0x24
117 /* DOC_FLASHCOMMAND register commands */
118 #define DOCG4_CMD_PAGE_READ 0x00
119 #define DOC_CMD_ERASECYCLE2 0xd0
120 #define DOCG4_CMD_FLUSH 0x70
121 #define DOCG4_CMD_READ2 0x30
122 #define DOC_CMD_PROG_BLOCK_ADDR 0x60
123 #define DOCG4_CMD_PAGEWRITE 0x80
124 #define DOC_CMD_PROG_CYCLE2 0x10
125 #define DOC_CMD_RESET 0xff
127 /* DOC_POWERMODE register bits */
128 #define DOC_POWERDOWN_READY 0x80
130 /* DOC_FLASHCONTROL register bits */
131 #define DOC_CTRL_CE 0x10
132 #define DOC_CTRL_UNKNOWN 0x40
133 #define DOC_CTRL_FLASHREADY 0x01
135 /* DOC_ECCCONF0 register bits */
136 #define DOC_ECCCONF0_READ_MODE 0x8000
137 #define DOC_ECCCONF0_UNKNOWN 0x2000
138 #define DOC_ECCCONF0_ECC_ENABLE 0x1000
139 #define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff
141 /* DOC_ECCCONF1 register bits */
142 #define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80
143 #define DOC_ECCCONF1_ECC_ENABLE 0x07
144 #define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20
146 /* DOC_ASICMODE register bits */
147 #define DOC_ASICMODE_RESET 0x00
148 #define DOC_ASICMODE_NORMAL 0x01
149 #define DOC_ASICMODE_POWERDOWN 0x02
150 #define DOC_ASICMODE_MDWREN 0x04
151 #define DOC_ASICMODE_BDETCT_RESET 0x08
152 #define DOC_ASICMODE_RSTIN_RESET 0x10
153 #define DOC_ASICMODE_RAM_WE 0x20
155 /* good status values read after read/write/erase operations */
156 #define DOCG4_PROGSTATUS_GOOD 0x51
157 #define DOCG4_PROGSTATUS_GOOD_2 0xe0
160 * On read operations (page and oob-only), the first byte read from I/O reg is a
161 * status. On error, it reads 0x73; otherwise, it reads either 0x71 (first read
162 * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
164 #define DOCG4_READ_ERROR 0x02 /* bit 1 indicates read error */
166 /* anatomy of the device */
167 #define DOCG4_CHIP_SIZE 0x8000000
168 #define DOCG4_PAGE_SIZE 0x200
169 #define DOCG4_PAGES_PER_BLOCK 0x200
170 #define DOCG4_BLOCK_SIZE (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
171 #define DOCG4_NUMBLOCKS (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
172 #define DOCG4_OOB_SIZE 0x10
173 #define DOCG4_CHIP_SHIFT 27 /* log_2(DOCG4_CHIP_SIZE) */
174 #define DOCG4_PAGE_SHIFT 9 /* log_2(DOCG4_PAGE_SIZE) */
175 #define DOCG4_ERASE_SHIFT 18 /* log_2(DOCG4_BLOCK_SIZE) */
177 /* all but the last byte is included in ecc calculation */
178 #define DOCG4_BCH_SIZE (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
180 #define DOCG4_USERDATA_LEN 520 /* 512 byte page plus 8 oob avail to user */
182 /* expected values from the ID registers */
183 #define DOCG4_IDREG1_VALUE 0x0400
184 #define DOCG4_IDREG2_VALUE 0xfbff
186 /* primitive polynomial used to build the Galois field used by hw ecc gen */
187 #define DOCG4_PRIMITIVE_POLY 0x4443
189 #define DOCG4_M 14 /* Galois field is of order 2^14 */
190 #define DOCG4_T 4 /* BCH alg corrects up to 4 bit errors */
192 #define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
195 * Oob bytes 0 - 6 are available to the user.
196 * Byte 7 is hamming ecc for first 7 bytes. Bytes 8 - 14 are hw-generated ecc.
197 * Byte 15 (the last) is used by the driver as a "page written" flag.
199 static struct nand_ecclayout docg4_oobinfo
= {
201 .eccpos
= {7, 8, 9, 10, 11, 12, 13, 14, 15},
203 .oobfree
= { {0, 7} }
207 * The device has a nop register which M-Sys claims is for the purpose of
208 * inserting precise delays. But beware; at least some operations fail if the
209 * nop writes are replaced with a generic delay!
211 static inline void write_nop(void __iomem
*docptr
)
213 writew(0, docptr
+ DOC_NOP
);
216 static void docg4_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
219 struct nand_chip
*nand
= mtd
->priv
;
220 uint16_t *p
= (uint16_t *) buf
;
223 for (i
= 0; i
< len
; i
++)
224 p
[i
] = readw(nand
->IO_ADDR_R
);
227 static void docg4_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
230 struct nand_chip
*nand
= mtd
->priv
;
231 uint16_t *p
= (uint16_t *) buf
;
234 for (i
= 0; i
< len
; i
++)
235 writew(p
[i
], nand
->IO_ADDR_W
);
238 static int poll_status(struct docg4_priv
*doc
)
241 * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
242 * register. Operations known to take a long time (e.g., block erase)
243 * should sleep for a while before calling this.
246 uint16_t flash_status
;
248 void __iomem
*docptr
= doc
->virtadr
;
250 dev_dbg(doc
->dev
, "%s...\n", __func__
);
252 /* hardware quirk requires reading twice initially */
253 flash_status
= readw(docptr
+ DOC_FLASHCONTROL
);
258 flash_status
= readb(docptr
+ DOC_FLASHCONTROL
);
259 } while (!(flash_status
& DOC_CTRL_FLASHREADY
) && --timeo
);
263 dev_err(doc
->dev
, "%s: timed out!\n", __func__
);
264 return NAND_STATUS_FAIL
;
267 if (unlikely(timeo
< 50))
268 dev_warn(doc
->dev
, "%s: nearly timed out; %d remaining\n",
275 static int docg4_wait(struct mtd_info
*mtd
, struct nand_chip
*nand
)
278 struct docg4_priv
*doc
= nand
->priv
;
279 int status
= NAND_STATUS_WP
; /* inverse logic?? */
280 dev_dbg(doc
->dev
, "%s...\n", __func__
);
282 /* report any previously unreported error */
284 status
|= doc
->status
;
289 status
|= poll_status(doc
);
293 static void docg4_select_chip(struct mtd_info
*mtd
, int chip
)
296 * Select among multiple cascaded chips ("floors"). Multiple floors are
297 * not yet supported, so the only valid non-negative value is 0.
299 struct nand_chip
*nand
= mtd
->priv
;
300 struct docg4_priv
*doc
= nand
->priv
;
301 void __iomem
*docptr
= doc
->virtadr
;
303 dev_dbg(doc
->dev
, "%s: chip %d\n", __func__
, chip
);
306 return; /* deselected */
309 dev_warn(doc
->dev
, "multiple floors currently unsupported\n");
311 writew(0, docptr
+ DOC_DEVICESELECT
);
314 static void reset(struct mtd_info
*mtd
)
316 /* full device reset */
318 struct nand_chip
*nand
= mtd
->priv
;
319 struct docg4_priv
*doc
= nand
->priv
;
320 void __iomem
*docptr
= doc
->virtadr
;
322 writew(DOC_ASICMODE_RESET
| DOC_ASICMODE_MDWREN
,
323 docptr
+ DOC_ASICMODE
);
324 writew(~(DOC_ASICMODE_RESET
| DOC_ASICMODE_MDWREN
),
325 docptr
+ DOC_ASICMODECONFIRM
);
328 writew(DOC_ASICMODE_NORMAL
| DOC_ASICMODE_MDWREN
,
329 docptr
+ DOC_ASICMODE
);
330 writew(~(DOC_ASICMODE_NORMAL
| DOC_ASICMODE_MDWREN
),
331 docptr
+ DOC_ASICMODECONFIRM
);
333 writew(DOC_ECCCONF1_ECC_ENABLE
, docptr
+ DOC_ECCCONF1
);
338 static void read_hw_ecc(void __iomem
*docptr
, uint8_t *ecc_buf
)
340 /* read the 7 hw-generated ecc bytes */
343 for (i
= 0; i
< 7; i
++) { /* hw quirk; read twice */
344 ecc_buf
[i
] = readb(docptr
+ DOC_BCH_SYNDROM(i
));
345 ecc_buf
[i
] = readb(docptr
+ DOC_BCH_SYNDROM(i
));
349 static int correct_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
352 * Called after a page read when hardware reports bitflips.
353 * Up to four bitflips can be corrected.
356 struct nand_chip
*nand
= mtd
->priv
;
357 struct docg4_priv
*doc
= nand
->priv
;
358 void __iomem
*docptr
= doc
->virtadr
;
359 int i
, numerrs
, errpos
[4];
360 const uint8_t blank_read_hwecc
[8] = {
361 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
363 read_hw_ecc(docptr
, doc
->ecc_buf
); /* read 7 hw-generated ecc bytes */
365 /* check if read error is due to a blank page */
366 if (!memcmp(doc
->ecc_buf
, blank_read_hwecc
, 7))
369 /* skip additional check of "written flag" if ignore_badblocks */
370 if (ignore_badblocks
== false) {
373 * If the hw ecc bytes are not those of a blank page, there's
374 * still a chance that the page is blank, but was read with
375 * errors. Check the "written flag" in last oob byte, which
376 * is set to zero when a page is written. If more than half
377 * the bits are set, assume a blank page. Unfortunately, the
378 * bit flips(s) are not reported in stats.
381 if (doc
->oob_buf
[15]) {
382 int bit
, numsetbits
= 0;
383 unsigned long written_flag
= doc
->oob_buf
[15];
384 for_each_set_bit(bit
, &written_flag
, 8)
386 if (numsetbits
> 4) { /* assume blank */
388 "error(s) in blank page "
390 page
* DOCG4_PAGE_SIZE
);
397 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
398 * algorithm is used to decode this. However the hw operates on page
399 * data in a bit order that is the reverse of that of the bch alg,
400 * requiring that the bits be reversed on the result. Thanks to Ivan
401 * Djelic for his analysis!
403 for (i
= 0; i
< 7; i
++)
404 doc
->ecc_buf
[i
] = bitrev8(doc
->ecc_buf
[i
]);
406 numerrs
= decode_bch(doc
->bch
, NULL
, DOCG4_USERDATA_LEN
, NULL
,
407 doc
->ecc_buf
, NULL
, errpos
);
409 if (numerrs
== -EBADMSG
) {
410 dev_warn(doc
->dev
, "uncorrectable errors at offset %08x\n",
411 page
* DOCG4_PAGE_SIZE
);
415 BUG_ON(numerrs
< 0); /* -EINVAL, or anything other than -EBADMSG */
417 /* undo last step in BCH alg (modulo mirroring not needed) */
418 for (i
= 0; i
< numerrs
; i
++)
419 errpos
[i
] = (errpos
[i
] & ~7)|(7-(errpos
[i
] & 7));
422 for (i
= 0; i
< numerrs
; i
++) {
424 /* ignore if error within oob ecc bytes */
425 if (errpos
[i
] > DOCG4_USERDATA_LEN
* 8)
428 /* if error within oob area preceeding ecc bytes... */
429 if (errpos
[i
] > DOCG4_PAGE_SIZE
* 8)
430 change_bit(errpos
[i
] - DOCG4_PAGE_SIZE
* 8,
431 (unsigned long *)doc
->oob_buf
);
433 else /* error in page data */
434 change_bit(errpos
[i
], (unsigned long *)buf
);
437 dev_notice(doc
->dev
, "%d error(s) corrected at offset %08x\n",
438 numerrs
, page
* DOCG4_PAGE_SIZE
);
443 static uint8_t docg4_read_byte(struct mtd_info
*mtd
)
445 struct nand_chip
*nand
= mtd
->priv
;
446 struct docg4_priv
*doc
= nand
->priv
;
448 dev_dbg(doc
->dev
, "%s\n", __func__
);
450 if (doc
->last_command
.command
== NAND_CMD_STATUS
) {
454 * Previous nand command was status request, so nand
455 * infrastructure code expects to read the status here. If an
456 * error occurred in a previous operation, report it.
458 doc
->last_command
.command
= 0;
461 status
= doc
->status
;
465 /* why is NAND_STATUS_WP inverse logic?? */
467 status
= NAND_STATUS_WP
| NAND_STATUS_READY
;
472 dev_warn(doc
->dev
, "unexpectd call to read_byte()\n");
477 static void write_addr(struct docg4_priv
*doc
, uint32_t docg4_addr
)
479 /* write the four address bytes packed in docg4_addr to the device */
481 void __iomem
*docptr
= doc
->virtadr
;
482 writeb(docg4_addr
& 0xff, docptr
+ DOC_FLASHADDRESS
);
484 writeb(docg4_addr
& 0xff, docptr
+ DOC_FLASHADDRESS
);
486 writeb(docg4_addr
& 0xff, docptr
+ DOC_FLASHADDRESS
);
488 writeb(docg4_addr
& 0xff, docptr
+ DOC_FLASHADDRESS
);
491 static int read_progstatus(struct docg4_priv
*doc
)
494 * This apparently checks the status of programming. Done after an
495 * erasure, and after page data is written. On error, the status is
496 * saved, to be later retrieved by the nand infrastructure code.
498 void __iomem
*docptr
= doc
->virtadr
;
500 /* status is read from the I/O reg */
501 uint16_t status1
= readw(docptr
+ DOC_IOSPACE_DATA
);
502 uint16_t status2
= readw(docptr
+ DOC_IOSPACE_DATA
);
503 uint16_t status3
= readw(docptr
+ DOCG4_MYSTERY_REG
);
505 dev_dbg(doc
->dev
, "docg4: %s: %02x %02x %02x\n",
506 __func__
, status1
, status2
, status3
);
508 if (status1
!= DOCG4_PROGSTATUS_GOOD
509 || status2
!= DOCG4_PROGSTATUS_GOOD_2
510 || status3
!= DOCG4_PROGSTATUS_GOOD_2
) {
511 doc
->status
= NAND_STATUS_FAIL
;
512 dev_warn(doc
->dev
, "read_progstatus failed: "
513 "%02x, %02x, %02x\n", status1
, status2
, status3
);
519 static int pageprog(struct mtd_info
*mtd
)
522 * Final step in writing a page. Writes the contents of its
523 * internal buffer out to the flash array, or some such.
526 struct nand_chip
*nand
= mtd
->priv
;
527 struct docg4_priv
*doc
= nand
->priv
;
528 void __iomem
*docptr
= doc
->virtadr
;
531 dev_dbg(doc
->dev
, "docg4: %s\n", __func__
);
533 writew(DOCG4_SEQ_PAGEPROG
, docptr
+ DOC_FLASHSEQUENCE
);
534 writew(DOC_CMD_PROG_CYCLE2
, docptr
+ DOC_FLASHCOMMAND
);
538 /* Just busy-wait; usleep_range() slows things down noticeably. */
541 writew(DOCG4_SEQ_FLUSH
, docptr
+ DOC_FLASHSEQUENCE
);
542 writew(DOCG4_CMD_FLUSH
, docptr
+ DOC_FLASHCOMMAND
);
543 writew(DOC_ECCCONF0_READ_MODE
| 4, docptr
+ DOC_ECCCONF0
);
550 retval
= read_progstatus(doc
);
551 writew(0, docptr
+ DOC_DATAEND
);
559 static void sequence_reset(struct mtd_info
*mtd
)
561 /* common starting sequence for all operations */
563 struct nand_chip
*nand
= mtd
->priv
;
564 struct docg4_priv
*doc
= nand
->priv
;
565 void __iomem
*docptr
= doc
->virtadr
;
567 writew(DOC_CTRL_UNKNOWN
| DOC_CTRL_CE
, docptr
+ DOC_FLASHCONTROL
);
568 writew(DOC_SEQ_RESET
, docptr
+ DOC_FLASHSEQUENCE
);
569 writew(DOC_CMD_RESET
, docptr
+ DOC_FLASHCOMMAND
);
576 static void read_page_prologue(struct mtd_info
*mtd
, uint32_t docg4_addr
)
578 /* first step in reading a page */
580 struct nand_chip
*nand
= mtd
->priv
;
581 struct docg4_priv
*doc
= nand
->priv
;
582 void __iomem
*docptr
= doc
->virtadr
;
585 "docg4: %s: g4 page %08x\n", __func__
, docg4_addr
);
589 writew(DOCG4_SEQ_PAGE_READ
, docptr
+ DOC_FLASHSEQUENCE
);
590 writew(DOCG4_CMD_PAGE_READ
, docptr
+ DOC_FLASHCOMMAND
);
593 write_addr(doc
, docg4_addr
);
596 writew(DOCG4_CMD_READ2
, docptr
+ DOC_FLASHCOMMAND
);
603 static void write_page_prologue(struct mtd_info
*mtd
, uint32_t docg4_addr
)
605 /* first step in writing a page */
607 struct nand_chip
*nand
= mtd
->priv
;
608 struct docg4_priv
*doc
= nand
->priv
;
609 void __iomem
*docptr
= doc
->virtadr
;
612 "docg4: %s: g4 addr: %x\n", __func__
, docg4_addr
);
614 writew(DOCG4_SEQ_PAGEWRITE
, docptr
+ DOC_FLASHSEQUENCE
);
615 writew(DOCG4_CMD_PAGEWRITE
, docptr
+ DOC_FLASHCOMMAND
);
617 write_addr(doc
, docg4_addr
);
623 static uint32_t mtd_to_docg4_address(int page
, int column
)
626 * Convert mtd address to format used by the device, 32 bit packed.
628 * Some notes on G4 addressing... The M-Sys documentation on this device
629 * claims that pages are 2K in length, and indeed, the format of the
630 * address used by the device reflects that. But within each page are
631 * four 512 byte "sub-pages", each with its own oob data that is
632 * read/written immediately after the 512 bytes of page data. This oob
633 * data contains the ecc bytes for the preceeding 512 bytes.
635 * Rather than tell the mtd nand infrastructure that page size is 2k,
636 * with four sub-pages each, we engage in a little subterfuge and tell
637 * the infrastructure code that pages are 512 bytes in size. This is
638 * done because during the course of reverse-engineering the device, I
639 * never observed an instance where an entire 2K "page" was read or
640 * written as a unit. Each "sub-page" is always addressed individually,
641 * its data read/written, and ecc handled before the next "sub-page" is
644 * This requires us to convert addresses passed by the mtd nand
645 * infrastructure code to those used by the device.
647 * The address that is written to the device consists of four bytes: the
648 * first two are the 2k page number, and the second is the index into
649 * the page. The index is in terms of 16-bit half-words and includes
650 * the preceeding oob data, so e.g., the index into the second
651 * "sub-page" is 0x108, and the full device address of the start of mtd
652 * page 0x201 is 0x00800108.
654 int g4_page
= page
/ 4; /* device's 2K page */
655 int g4_index
= (page
% 4) * 0x108 + column
/2; /* offset into page */
656 return (g4_page
<< 16) | g4_index
; /* pack */
659 static void docg4_command(struct mtd_info
*mtd
, unsigned command
, int column
,
662 /* handle standard nand commands */
664 struct nand_chip
*nand
= mtd
->priv
;
665 struct docg4_priv
*doc
= nand
->priv
;
666 uint32_t g4_addr
= mtd_to_docg4_address(page_addr
, column
);
668 dev_dbg(doc
->dev
, "%s %x, page_addr=%x, column=%x\n",
669 __func__
, command
, page_addr
, column
);
672 * Save the command and its arguments. This enables emulation of
673 * standard flash devices, and also some optimizations.
675 doc
->last_command
.command
= command
;
676 doc
->last_command
.column
= column
;
677 doc
->last_command
.page
= page_addr
;
686 read_page_prologue(mtd
, g4_addr
);
689 case NAND_CMD_STATUS
:
690 /* next call to read_byte() will expect a status */
694 write_page_prologue(mtd
, g4_addr
);
696 /* hack for deferred write of oob bytes */
697 if (doc
->oob_page
== page_addr
)
698 memcpy(nand
->oob_poi
, doc
->oob_buf
, 16);
701 case NAND_CMD_PAGEPROG
:
705 /* we don't expect these, based on review of nand_base.c */
706 case NAND_CMD_READOOB
:
707 case NAND_CMD_READID
:
708 case NAND_CMD_ERASE1
:
709 case NAND_CMD_ERASE2
:
710 dev_warn(doc
->dev
, "docg4_command: "
711 "unexpected nand command 0x%x\n", command
);
717 static int read_page(struct mtd_info
*mtd
, struct nand_chip
*nand
,
718 uint8_t *buf
, int page
, bool use_ecc
)
720 struct docg4_priv
*doc
= nand
->priv
;
721 void __iomem
*docptr
= doc
->virtadr
;
722 uint16_t status
, edc_err
, *buf16
;
723 int bits_corrected
= 0;
725 dev_dbg(doc
->dev
, "%s: page %08x\n", __func__
, page
);
727 writew(DOC_ECCCONF0_READ_MODE
|
728 DOC_ECCCONF0_ECC_ENABLE
|
729 DOC_ECCCONF0_UNKNOWN
|
731 docptr
+ DOC_ECCCONF0
);
738 /* the 1st byte from the I/O reg is a status; the rest is page data */
739 status
= readw(docptr
+ DOC_IOSPACE_DATA
);
740 if (status
& DOCG4_READ_ERROR
) {
742 "docg4_read_page: bad status: 0x%02x\n", status
);
743 writew(0, docptr
+ DOC_DATAEND
);
747 dev_dbg(doc
->dev
, "%s: status = 0x%x\n", __func__
, status
);
749 docg4_read_buf(mtd
, buf
, DOCG4_PAGE_SIZE
); /* read the page data */
752 * Diskonchips read oob immediately after a page read. Mtd
753 * infrastructure issues a separate command for reading oob after the
754 * page is read. So we save the oob bytes in a local buffer and just
755 * copy it if the next command reads oob from the same page.
758 /* first 14 oob bytes read from I/O reg */
759 docg4_read_buf(mtd
, doc
->oob_buf
, 14);
761 /* last 2 read from another reg */
762 buf16
= (uint16_t *)(doc
->oob_buf
+ 14);
763 *buf16
= readw(docptr
+ DOCG4_MYSTERY_REG
);
767 if (likely(use_ecc
== true)) {
769 /* read the register that tells us if bitflip(s) detected */
770 edc_err
= readw(docptr
+ DOC_ECCCONF1
);
771 edc_err
= readw(docptr
+ DOC_ECCCONF1
);
772 dev_dbg(doc
->dev
, "%s: edc_err = 0x%02x\n", __func__
, edc_err
);
774 /* If bitflips are reported, attempt to correct with ecc */
775 if (edc_err
& DOC_ECCCONF1_BCH_SYNDROM_ERR
) {
776 bits_corrected
= correct_data(mtd
, buf
, page
);
777 if (bits_corrected
== -EBADMSG
)
778 mtd
->ecc_stats
.failed
++;
780 mtd
->ecc_stats
.corrected
+= bits_corrected
;
784 writew(0, docptr
+ DOC_DATAEND
);
785 return bits_corrected
;
789 static int docg4_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*nand
,
790 uint8_t *buf
, int oob_required
, int page
)
792 return read_page(mtd
, nand
, buf
, page
, false);
795 static int docg4_read_page(struct mtd_info
*mtd
, struct nand_chip
*nand
,
796 uint8_t *buf
, int oob_required
, int page
)
798 return read_page(mtd
, nand
, buf
, page
, true);
801 static int docg4_read_oob(struct mtd_info
*mtd
, struct nand_chip
*nand
,
804 struct docg4_priv
*doc
= nand
->priv
;
805 void __iomem
*docptr
= doc
->virtadr
;
808 dev_dbg(doc
->dev
, "%s: page %x\n", __func__
, page
);
811 * Oob bytes are read as part of a normal page read. If the previous
812 * nand command was a read of the page whose oob is now being read, just
813 * copy the oob bytes that we saved in a local buffer and avoid a
816 if (doc
->last_command
.command
== NAND_CMD_READ0
&&
817 doc
->last_command
.page
== page
) {
818 memcpy(nand
->oob_poi
, doc
->oob_buf
, 16);
823 * Separate read of oob data only.
825 docg4_command(mtd
, NAND_CMD_READ0
, nand
->ecc
.size
, page
);
827 writew(DOC_ECCCONF0_READ_MODE
| DOCG4_OOB_SIZE
, docptr
+ DOC_ECCCONF0
);
834 /* the 1st byte from the I/O reg is a status; the rest is oob data */
835 status
= readw(docptr
+ DOC_IOSPACE_DATA
);
836 if (status
& DOCG4_READ_ERROR
) {
838 "docg4_read_oob failed: status = 0x%02x\n", status
);
842 dev_dbg(doc
->dev
, "%s: status = 0x%x\n", __func__
, status
);
844 docg4_read_buf(mtd
, nand
->oob_poi
, 16);
849 writew(0, docptr
+ DOC_DATAEND
);
855 static void docg4_erase_block(struct mtd_info
*mtd
, int page
)
857 struct nand_chip
*nand
= mtd
->priv
;
858 struct docg4_priv
*doc
= nand
->priv
;
859 void __iomem
*docptr
= doc
->virtadr
;
862 dev_dbg(doc
->dev
, "%s: page %04x\n", __func__
, page
);
866 writew(DOCG4_SEQ_BLOCKERASE
, docptr
+ DOC_FLASHSEQUENCE
);
867 writew(DOC_CMD_PROG_BLOCK_ADDR
, docptr
+ DOC_FLASHCOMMAND
);
870 /* only 2 bytes of address are written to specify erase block */
871 g4_page
= (uint16_t)(page
/ 4); /* to g4's 2k page addressing */
872 writeb(g4_page
& 0xff, docptr
+ DOC_FLASHADDRESS
);
874 writeb(g4_page
& 0xff, docptr
+ DOC_FLASHADDRESS
);
877 /* start the erasure */
878 writew(DOC_CMD_ERASECYCLE2
, docptr
+ DOC_FLASHCOMMAND
);
882 usleep_range(500, 1000); /* erasure is long; take a snooze */
884 writew(DOCG4_SEQ_FLUSH
, docptr
+ DOC_FLASHSEQUENCE
);
885 writew(DOCG4_CMD_FLUSH
, docptr
+ DOC_FLASHCOMMAND
);
886 writew(DOC_ECCCONF0_READ_MODE
| 4, docptr
+ DOC_ECCCONF0
);
893 read_progstatus(doc
);
895 writew(0, docptr
+ DOC_DATAEND
);
901 static void write_page(struct mtd_info
*mtd
, struct nand_chip
*nand
,
902 const uint8_t *buf
, bool use_ecc
)
904 struct docg4_priv
*doc
= nand
->priv
;
905 void __iomem
*docptr
= doc
->virtadr
;
908 dev_dbg(doc
->dev
, "%s...\n", __func__
);
910 writew(DOC_ECCCONF0_ECC_ENABLE
|
911 DOC_ECCCONF0_UNKNOWN
|
913 docptr
+ DOC_ECCCONF0
);
916 /* write the page data */
917 docg4_write_buf16(mtd
, buf
, DOCG4_PAGE_SIZE
);
919 /* oob bytes 0 through 5 are written to I/O reg */
920 docg4_write_buf16(mtd
, nand
->oob_poi
, 6);
922 /* oob byte 6 written to a separate reg */
923 writew(nand
->oob_poi
[6], docptr
+ DOCG4_OOB_6_7
);
928 /* write hw-generated ecc bytes to oob */
929 if (likely(use_ecc
== true)) {
930 /* oob byte 7 is hamming code */
931 uint8_t hamming
= readb(docptr
+ DOC_HAMMINGPARITY
);
932 hamming
= readb(docptr
+ DOC_HAMMINGPARITY
); /* 2nd read */
933 writew(hamming
, docptr
+ DOCG4_OOB_6_7
);
936 /* read the 7 bch bytes from ecc regs */
937 read_hw_ecc(docptr
, ecc_buf
);
938 ecc_buf
[7] = 0; /* clear the "page written" flag */
941 /* write user-supplied bytes to oob */
943 writew(nand
->oob_poi
[7], docptr
+ DOCG4_OOB_6_7
);
945 memcpy(ecc_buf
, &nand
->oob_poi
[8], 8);
948 docg4_write_buf16(mtd
, ecc_buf
, 8);
951 writew(0, docptr
+ DOC_DATAEND
);
955 static void docg4_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*nand
,
956 const uint8_t *buf
, int oob_required
)
958 return write_page(mtd
, nand
, buf
, false);
961 static void docg4_write_page(struct mtd_info
*mtd
, struct nand_chip
*nand
,
962 const uint8_t *buf
, int oob_required
)
964 return write_page(mtd
, nand
, buf
, true);
967 static int docg4_write_oob(struct mtd_info
*mtd
, struct nand_chip
*nand
,
971 * Writing oob-only is not really supported, because MLC nand must write
972 * oob bytes at the same time as page data. Nonetheless, we save the
973 * oob buffer contents here, and then write it along with the page data
974 * if the same page is subsequently written. This allows user space
975 * utilities that write the oob data prior to the page data to work
976 * (e.g., nandwrite). The disdvantage is that, if the intention was to
977 * write oob only, the operation is quietly ignored. Also, oob can get
978 * corrupted if two concurrent processes are running nandwrite.
981 /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
982 struct docg4_priv
*doc
= nand
->priv
;
983 doc
->oob_page
= page
;
984 memcpy(doc
->oob_buf
, nand
->oob_poi
, 16);
988 static int __init
read_factory_bbt(struct mtd_info
*mtd
)
991 * The device contains a read-only factory bad block table. Read it and
992 * update the memory-based bbt accordingly.
995 struct nand_chip
*nand
= mtd
->priv
;
996 struct docg4_priv
*doc
= nand
->priv
;
997 uint32_t g4_addr
= mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE
, 0);
999 int i
, block
, status
;
1001 buf
= kzalloc(DOCG4_PAGE_SIZE
, GFP_KERNEL
);
1005 read_page_prologue(mtd
, g4_addr
);
1006 status
= docg4_read_page(mtd
, nand
, buf
, 0, DOCG4_FACTORY_BBT_PAGE
);
1011 * If no memory-based bbt was created, exit. This will happen if module
1012 * parameter ignore_badblocks is set. Then why even call this function?
1013 * For an unknown reason, block erase always fails if it's the first
1014 * operation after device power-up. The above read ensures it never is.
1017 if (nand
->bbt
== NULL
) /* no memory-based bbt */
1021 * Parse factory bbt and update memory-based bbt. Factory bbt format is
1022 * simple: one bit per block, block numbers increase left to right (msb
1023 * to lsb). Bit clear means bad block.
1025 for (i
= block
= 0; block
< DOCG4_NUMBLOCKS
; block
+= 8, i
++) {
1027 unsigned long bits
= ~buf
[i
];
1028 for_each_set_bit(bitnum
, &bits
, 8) {
1029 int badblock
= block
+ 7 - bitnum
;
1030 nand
->bbt
[badblock
/ 4] |=
1031 0x03 << ((badblock
% 4) * 2);
1032 mtd
->ecc_stats
.badblocks
++;
1033 dev_notice(doc
->dev
, "factory-marked bad block: %d\n",
1042 static int docg4_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
1045 * Mark a block as bad. Bad blocks are marked in the oob area of the
1046 * first page of the block. The default scan_bbt() in the nand
1047 * infrastructure code works fine for building the memory-based bbt
1048 * during initialization, as does the nand infrastructure function that
1049 * checks if a block is bad by reading the bbt. This function replaces
1050 * the nand default because writes to oob-only are not supported.
1055 struct nand_chip
*nand
= mtd
->priv
;
1056 struct docg4_priv
*doc
= nand
->priv
;
1057 struct nand_bbt_descr
*bbtd
= nand
->badblock_pattern
;
1058 int block
= (int)(ofs
>> nand
->bbt_erase_shift
);
1059 int page
= (int)(ofs
>> nand
->page_shift
);
1060 uint32_t g4_addr
= mtd_to_docg4_address(page
, 0);
1062 dev_dbg(doc
->dev
, "%s: %08llx\n", __func__
, ofs
);
1064 if (unlikely(ofs
& (DOCG4_BLOCK_SIZE
- 1)))
1065 dev_warn(doc
->dev
, "%s: ofs %llx not start of block!\n",
1068 /* allocate blank buffer for page data */
1069 buf
= kzalloc(DOCG4_PAGE_SIZE
, GFP_KERNEL
);
1073 /* update bbt in memory */
1074 nand
->bbt
[block
/ 4] |= 0x01 << ((block
& 0x03) * 2);
1076 /* write bit-wise negation of pattern to oob buffer */
1077 memset(nand
->oob_poi
, 0xff, mtd
->oobsize
);
1078 for (i
= 0; i
< bbtd
->len
; i
++)
1079 nand
->oob_poi
[bbtd
->offs
+ i
] = ~bbtd
->pattern
[i
];
1081 /* write first page of block */
1082 write_page_prologue(mtd
, g4_addr
);
1083 docg4_write_page(mtd
, nand
, buf
, 1);
1084 ret
= pageprog(mtd
);
1086 mtd
->ecc_stats
.badblocks
++;
1093 static int docg4_block_neverbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
1095 /* only called when module_param ignore_badblocks is set */
1099 static int docg4_suspend(struct platform_device
*pdev
, pm_message_t state
)
1102 * Put the device into "deep power-down" mode. Note that CE# must be
1103 * deasserted for this to take effect. The xscale, e.g., can be
1104 * configured to float this signal when the processor enters power-down,
1105 * and a suitable pull-up ensures its deassertion.
1110 struct docg4_priv
*doc
= platform_get_drvdata(pdev
);
1111 void __iomem
*docptr
= doc
->virtadr
;
1113 dev_dbg(doc
->dev
, "%s...\n", __func__
);
1115 /* poll the register that tells us we're ready to go to sleep */
1116 for (i
= 0; i
< 10; i
++) {
1117 pwr_down
= readb(docptr
+ DOC_POWERMODE
);
1118 if (pwr_down
& DOC_POWERDOWN_READY
)
1120 usleep_range(1000, 4000);
1123 if (pwr_down
& DOC_POWERDOWN_READY
) {
1124 dev_err(doc
->dev
, "suspend failed; "
1125 "timeout polling DOC_POWERDOWN_READY\n");
1129 writew(DOC_ASICMODE_POWERDOWN
| DOC_ASICMODE_MDWREN
,
1130 docptr
+ DOC_ASICMODE
);
1131 writew(~(DOC_ASICMODE_POWERDOWN
| DOC_ASICMODE_MDWREN
),
1132 docptr
+ DOC_ASICMODECONFIRM
);
1139 static int docg4_resume(struct platform_device
*pdev
)
1143 * Exit power-down. Twelve consecutive reads of the address below
1144 * accomplishes this, assuming CE# has been asserted.
1147 struct docg4_priv
*doc
= platform_get_drvdata(pdev
);
1148 void __iomem
*docptr
= doc
->virtadr
;
1151 dev_dbg(doc
->dev
, "%s...\n", __func__
);
1153 for (i
= 0; i
< 12; i
++)
1154 readb(docptr
+ 0x1fff);
1159 static void __init
init_mtd_structs(struct mtd_info
*mtd
)
1161 /* initialize mtd and nand data structures */
1164 * Note that some of the following initializations are not usually
1165 * required within a nand driver because they are performed by the nand
1166 * infrastructure code as part of nand_scan(). In this case they need
1167 * to be initialized here because we skip call to nand_scan_ident() (the
1168 * first half of nand_scan()). The call to nand_scan_ident() is skipped
1169 * because for this device the chip id is not read in the manner of a
1170 * standard nand device. Unfortunately, nand_scan_ident() does other
1171 * things as well, such as call nand_set_defaults().
1174 struct nand_chip
*nand
= mtd
->priv
;
1175 struct docg4_priv
*doc
= nand
->priv
;
1177 mtd
->size
= DOCG4_CHIP_SIZE
;
1178 mtd
->name
= "Msys_Diskonchip_G4";
1179 mtd
->writesize
= DOCG4_PAGE_SIZE
;
1180 mtd
->erasesize
= DOCG4_BLOCK_SIZE
;
1181 mtd
->oobsize
= DOCG4_OOB_SIZE
;
1182 nand
->chipsize
= DOCG4_CHIP_SIZE
;
1183 nand
->chip_shift
= DOCG4_CHIP_SHIFT
;
1184 nand
->bbt_erase_shift
= nand
->phys_erase_shift
= DOCG4_ERASE_SHIFT
;
1185 nand
->chip_delay
= 20;
1186 nand
->page_shift
= DOCG4_PAGE_SHIFT
;
1187 nand
->pagemask
= 0x3ffff;
1188 nand
->badblockpos
= NAND_LARGE_BADBLOCK_POS
;
1189 nand
->badblockbits
= 8;
1190 nand
->ecc
.layout
= &docg4_oobinfo
;
1191 nand
->ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1192 nand
->ecc
.size
= DOCG4_PAGE_SIZE
;
1193 nand
->ecc
.prepad
= 8;
1194 nand
->ecc
.bytes
= 8;
1195 nand
->ecc
.strength
= DOCG4_T
;
1196 nand
->options
= NAND_BUSWIDTH_16
| NAND_NO_SUBPAGE_WRITE
;
1197 nand
->IO_ADDR_R
= nand
->IO_ADDR_W
= doc
->virtadr
+ DOC_IOSPACE_DATA
;
1198 nand
->controller
= &nand
->hwcontrol
;
1199 spin_lock_init(&nand
->controller
->lock
);
1200 init_waitqueue_head(&nand
->controller
->wq
);
1203 nand
->cmdfunc
= docg4_command
;
1204 nand
->waitfunc
= docg4_wait
;
1205 nand
->select_chip
= docg4_select_chip
;
1206 nand
->read_byte
= docg4_read_byte
;
1207 nand
->block_markbad
= docg4_block_markbad
;
1208 nand
->read_buf
= docg4_read_buf
;
1209 nand
->write_buf
= docg4_write_buf16
;
1210 nand
->scan_bbt
= nand_default_bbt
;
1211 nand
->erase_cmd
= docg4_erase_block
;
1212 nand
->ecc
.read_page
= docg4_read_page
;
1213 nand
->ecc
.write_page
= docg4_write_page
;
1214 nand
->ecc
.read_page_raw
= docg4_read_page_raw
;
1215 nand
->ecc
.write_page_raw
= docg4_write_page_raw
;
1216 nand
->ecc
.read_oob
= docg4_read_oob
;
1217 nand
->ecc
.write_oob
= docg4_write_oob
;
1220 * The way the nand infrastructure code is written, a memory-based bbt
1221 * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt,
1222 * nand->block_bad() is used. So when ignoring bad blocks, we skip the
1223 * scan and define a dummy block_bad() which always returns 0.
1225 if (ignore_badblocks
) {
1226 nand
->options
|= NAND_SKIP_BBTSCAN
;
1227 nand
->block_bad
= docg4_block_neverbad
;
1232 static int __init
read_id_reg(struct mtd_info
*mtd
)
1234 struct nand_chip
*nand
= mtd
->priv
;
1235 struct docg4_priv
*doc
= nand
->priv
;
1236 void __iomem
*docptr
= doc
->virtadr
;
1239 /* check for presence of g4 chip by reading id registers */
1240 id1
= readw(docptr
+ DOC_CHIPID
);
1241 id1
= readw(docptr
+ DOCG4_MYSTERY_REG
);
1242 id2
= readw(docptr
+ DOC_CHIPID_INV
);
1243 id2
= readw(docptr
+ DOCG4_MYSTERY_REG
);
1245 if (id1
== DOCG4_IDREG1_VALUE
&& id2
== DOCG4_IDREG2_VALUE
) {
1247 "NAND device: 128MiB Diskonchip G4 detected\n");
1254 static char const *part_probes
[] = { "cmdlinepart", "saftlpart", NULL
};
1256 static int __init
probe_docg4(struct platform_device
*pdev
)
1258 struct mtd_info
*mtd
;
1259 struct nand_chip
*nand
;
1260 void __iomem
*virtadr
;
1261 struct docg4_priv
*doc
;
1264 struct device
*dev
= &pdev
->dev
;
1266 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1268 dev_err(dev
, "no io memory resource defined!\n");
1272 virtadr
= ioremap(r
->start
, resource_size(r
));
1274 dev_err(dev
, "Diskonchip ioremap failed: %pR\n", r
);
1278 len
= sizeof(struct mtd_info
) + sizeof(struct nand_chip
) +
1279 sizeof(struct docg4_priv
);
1280 mtd
= kzalloc(len
, GFP_KERNEL
);
1285 nand
= (struct nand_chip
*) (mtd
+ 1);
1286 doc
= (struct docg4_priv
*) (nand
+ 1);
1289 mtd
->owner
= THIS_MODULE
;
1290 doc
->virtadr
= virtadr
;
1293 init_mtd_structs(mtd
);
1295 /* initialize kernel bch algorithm */
1296 doc
->bch
= init_bch(DOCG4_M
, DOCG4_T
, DOCG4_PRIMITIVE_POLY
);
1297 if (doc
->bch
== NULL
) {
1302 platform_set_drvdata(pdev
, doc
);
1305 retval
= read_id_reg(mtd
);
1306 if (retval
== -ENODEV
) {
1307 dev_warn(dev
, "No diskonchip G4 device found.\n");
1311 retval
= nand_scan_tail(mtd
);
1315 retval
= read_factory_bbt(mtd
);
1319 retval
= mtd_device_parse_register(mtd
, part_probes
, NULL
, NULL
, 0);
1329 /* re-declarations avoid compiler warning */
1330 struct nand_chip
*nand
= mtd
->priv
;
1331 struct docg4_priv
*doc
= nand
->priv
;
1332 nand_release(mtd
); /* deletes partitions and mtd devices */
1333 platform_set_drvdata(pdev
, NULL
);
1341 static int __exit
cleanup_docg4(struct platform_device
*pdev
)
1343 struct docg4_priv
*doc
= platform_get_drvdata(pdev
);
1344 nand_release(doc
->mtd
);
1345 platform_set_drvdata(pdev
, NULL
);
1348 iounmap(doc
->virtadr
);
1352 static struct platform_driver docg4_driver
= {
1355 .owner
= THIS_MODULE
,
1357 .suspend
= docg4_suspend
,
1358 .resume
= docg4_resume
,
1359 .remove
= __exit_p(cleanup_docg4
),
1362 static int __init
docg4_init(void)
1364 return platform_driver_probe(&docg4_driver
, probe_docg4
);
1367 static void __exit
docg4_exit(void)
1369 platform_driver_unregister(&docg4_driver
);
1372 module_init(docg4_init
);
1373 module_exit(docg4_exit
);
1375 MODULE_LICENSE("GPL");
1376 MODULE_AUTHOR("Mike Dunn");
1377 MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");