2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 #include <linux/mtd/gpmi-nand.h>
22 #include <linux/delay.h>
23 #include <linux/clk.h>
25 #include "gpmi-nand.h"
26 #include "gpmi-regs.h"
29 struct timing_threshod timing_default_threshold
= {
30 .max_data_setup_cycles
= (BM_GPMI_TIMING0_DATA_SETUP
>>
31 BP_GPMI_TIMING0_DATA_SETUP
),
32 .internal_data_setup_in_ns
= 0,
33 .max_sample_delay_factor
= (BM_GPMI_CTRL1_RDN_DELAY
>>
34 BP_GPMI_CTRL1_RDN_DELAY
),
35 .max_dll_clock_period_in_ns
= 32,
36 .max_dll_delay_in_ns
= 16,
39 #define MXS_SET_ADDR 0x4
40 #define MXS_CLR_ADDR 0x8
42 * Clear the bit and poll it cleared. This is usually called with
43 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
46 static int clear_poll_bit(void __iomem
*addr
, u32 mask
)
51 writel(mask
, addr
+ MXS_CLR_ADDR
);
54 * SFTRST needs 3 GPMI clocks to settle, the reference manual
55 * recommends to wait 1us.
59 /* poll the bit becoming clear */
60 while ((readl(addr
) & mask
) && --timeout
)
66 #define MODULE_CLKGATE (1 << 30)
67 #define MODULE_SFTRST (1 << 31)
69 * The current mxs_reset_block() will do two things:
70 * [1] enable the module.
71 * [2] reset the module.
73 * In most of the cases, it's ok.
74 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
75 * If you try to soft reset the BCH block, it becomes unusable until
76 * the next hard reset. This case occurs in the NAND boot mode. When the board
77 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
78 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
79 * You will see a DMA timeout in this case. The bug has been fixed
80 * in the following chips, such as MX28.
82 * To avoid this bug, just add a new parameter `just_enable` for
83 * the mxs_reset_block(), and rewrite it here.
85 static int gpmi_reset_block(void __iomem
*reset_addr
, bool just_enable
)
90 /* clear and poll SFTRST */
91 ret
= clear_poll_bit(reset_addr
, MODULE_SFTRST
);
96 writel(MODULE_CLKGATE
, reset_addr
+ MXS_CLR_ADDR
);
99 /* set SFTRST to reset the block */
100 writel(MODULE_SFTRST
, reset_addr
+ MXS_SET_ADDR
);
103 /* poll CLKGATE becoming set */
104 while ((!(readl(reset_addr
) & MODULE_CLKGATE
)) && --timeout
)
106 if (unlikely(!timeout
))
110 /* clear and poll SFTRST */
111 ret
= clear_poll_bit(reset_addr
, MODULE_SFTRST
);
115 /* clear and poll CLKGATE */
116 ret
= clear_poll_bit(reset_addr
, MODULE_CLKGATE
);
123 pr_err("%s(%p): module reset timeout\n", __func__
, reset_addr
);
127 int gpmi_init(struct gpmi_nand_data
*this)
129 struct resources
*r
= &this->resources
;
132 ret
= clk_prepare_enable(r
->clock
);
135 ret
= gpmi_reset_block(r
->gpmi_regs
, false);
139 /* Choose NAND mode. */
140 writel(BM_GPMI_CTRL1_GPMI_MODE
, r
->gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
142 /* Set the IRQ polarity. */
143 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY
,
144 r
->gpmi_regs
+ HW_GPMI_CTRL1_SET
);
146 /* Disable Write-Protection. */
147 writel(BM_GPMI_CTRL1_DEV_RESET
, r
->gpmi_regs
+ HW_GPMI_CTRL1_SET
);
149 /* Select BCH ECC. */
150 writel(BM_GPMI_CTRL1_BCH_MODE
, r
->gpmi_regs
+ HW_GPMI_CTRL1_SET
);
152 clk_disable_unprepare(r
->clock
);
158 /* This function is very useful. It is called only when the bug occur. */
159 void gpmi_dump_info(struct gpmi_nand_data
*this)
161 struct resources
*r
= &this->resources
;
162 struct bch_geometry
*geo
= &this->bch_geometry
;
166 pr_err("Show GPMI registers :\n");
167 for (i
= 0; i
<= HW_GPMI_DEBUG
/ 0x10 + 1; i
++) {
168 reg
= readl(r
->gpmi_regs
+ i
* 0x10);
169 pr_err("offset 0x%.3x : 0x%.8x\n", i
* 0x10, reg
);
172 /* start to print out the BCH info */
173 pr_err("BCH Geometry :\n");
174 pr_err("GF length : %u\n", geo
->gf_len
);
175 pr_err("ECC Strength : %u\n", geo
->ecc_strength
);
176 pr_err("Page Size in Bytes : %u\n", geo
->page_size
);
177 pr_err("Metadata Size in Bytes : %u\n", geo
->metadata_size
);
178 pr_err("ECC Chunk Size in Bytes: %u\n", geo
->ecc_chunk_size
);
179 pr_err("ECC Chunk Count : %u\n", geo
->ecc_chunk_count
);
180 pr_err("Payload Size in Bytes : %u\n", geo
->payload_size
);
181 pr_err("Auxiliary Size in Bytes: %u\n", geo
->auxiliary_size
);
182 pr_err("Auxiliary Status Offset: %u\n", geo
->auxiliary_status_offset
);
183 pr_err("Block Mark Byte Offset : %u\n", geo
->block_mark_byte_offset
);
184 pr_err("Block Mark Bit Offset : %u\n", geo
->block_mark_bit_offset
);
187 /* Configures the geometry for BCH. */
188 int bch_set_geometry(struct gpmi_nand_data
*this)
190 struct resources
*r
= &this->resources
;
191 struct bch_geometry
*bch_geo
= &this->bch_geometry
;
192 unsigned int block_count
;
193 unsigned int block_size
;
194 unsigned int metadata_size
;
195 unsigned int ecc_strength
;
196 unsigned int page_size
;
199 if (common_nfc_set_geometry(this))
202 block_count
= bch_geo
->ecc_chunk_count
- 1;
203 block_size
= bch_geo
->ecc_chunk_size
;
204 metadata_size
= bch_geo
->metadata_size
;
205 ecc_strength
= bch_geo
->ecc_strength
>> 1;
206 page_size
= bch_geo
->page_size
;
208 ret
= clk_prepare_enable(r
->clock
);
213 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
214 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
215 * On the other hand, the MX28 needs the reset, because one case has been
216 * seen where the BCH produced ECC errors constantly after 10000
217 * consecutive reboots. The latter case has not been seen on the MX23 yet,
218 * still we don't know if it could happen there as well.
220 ret
= gpmi_reset_block(r
->bch_regs
, GPMI_IS_MX23(this));
224 /* Configure layout 0. */
225 writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count
)
226 | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size
)
227 | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength
, this)
228 | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size
, this),
229 r
->bch_regs
+ HW_BCH_FLASH0LAYOUT0
);
231 writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size
)
232 | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength
, this)
233 | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size
, this),
234 r
->bch_regs
+ HW_BCH_FLASH0LAYOUT1
);
236 /* Set *all* chip selects to use layout 0. */
237 writel(0, r
->bch_regs
+ HW_BCH_LAYOUTSELECT
);
239 /* Enable interrupts. */
240 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN
,
241 r
->bch_regs
+ HW_BCH_CTRL_SET
);
243 clk_disable_unprepare(r
->clock
);
249 /* Converts time in nanoseconds to cycles. */
250 static unsigned int ns_to_cycles(unsigned int time
,
251 unsigned int period
, unsigned int min
)
255 k
= (time
+ period
- 1) / period
;
259 #define DEF_MIN_PROP_DELAY 5
260 #define DEF_MAX_PROP_DELAY 9
261 /* Apply timing to current hardware conditions. */
262 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data
*this,
263 struct gpmi_nfc_hardware_timing
*hw
)
265 struct timing_threshod
*nfc
= &timing_default_threshold
;
266 struct nand_chip
*nand
= &this->nand
;
267 struct nand_timing target
= this->timing
;
268 bool improved_timing_is_available
;
269 unsigned long clock_frequency_in_hz
;
270 unsigned int clock_period_in_ns
;
271 bool dll_use_half_periods
;
272 unsigned int dll_delay_shift
;
273 unsigned int max_sample_delay_in_ns
;
274 unsigned int address_setup_in_cycles
;
275 unsigned int data_setup_in_ns
;
276 unsigned int data_setup_in_cycles
;
277 unsigned int data_hold_in_cycles
;
278 int ideal_sample_delay_in_ns
;
279 unsigned int sample_delay_factor
;
281 unsigned int min_prop_delay_in_ns
= DEF_MIN_PROP_DELAY
;
282 unsigned int max_prop_delay_in_ns
= DEF_MAX_PROP_DELAY
;
285 * If there are multiple chips, we need to relax the timings to allow
286 * for signal distortion due to higher capacitance.
288 if (nand
->numchips
> 2) {
289 target
.data_setup_in_ns
+= 10;
290 target
.data_hold_in_ns
+= 10;
291 target
.address_setup_in_ns
+= 10;
292 } else if (nand
->numchips
> 1) {
293 target
.data_setup_in_ns
+= 5;
294 target
.data_hold_in_ns
+= 5;
295 target
.address_setup_in_ns
+= 5;
298 /* Check if improved timing information is available. */
299 improved_timing_is_available
=
300 (target
.tREA_in_ns
>= 0) &&
301 (target
.tRLOH_in_ns
>= 0) &&
302 (target
.tRHOH_in_ns
>= 0) ;
304 /* Inspect the clock. */
305 clock_frequency_in_hz
= nfc
->clock_frequency_in_hz
;
306 clock_period_in_ns
= 1000000000 / clock_frequency_in_hz
;
309 * The NFC quantizes setup and hold parameters in terms of clock cycles.
310 * Here, we quantize the setup and hold timing parameters to the
311 * next-highest clock period to make sure we apply at least the
314 * For data setup and data hold, the hardware interprets a value of zero
315 * as the largest possible delay. This is not what's intended by a zero
316 * in the input parameter, so we impose a minimum of one cycle.
318 data_setup_in_cycles
= ns_to_cycles(target
.data_setup_in_ns
,
319 clock_period_in_ns
, 1);
320 data_hold_in_cycles
= ns_to_cycles(target
.data_hold_in_ns
,
321 clock_period_in_ns
, 1);
322 address_setup_in_cycles
= ns_to_cycles(target
.address_setup_in_ns
,
323 clock_period_in_ns
, 0);
326 * The clock's period affects the sample delay in a number of ways:
328 * (1) The NFC HAL tells us the maximum clock period the sample delay
329 * DLL can tolerate. If the clock period is greater than half that
330 * maximum, we must configure the DLL to be driven by half periods.
332 * (2) We need to convert from an ideal sample delay, in ns, to a
333 * "sample delay factor," which the NFC uses. This factor depends on
334 * whether we're driving the DLL with full or half periods.
335 * Paraphrasing the reference manual:
337 * AD = SDF x 0.125 x RP
341 * AD is the applied delay, in ns.
342 * SDF is the sample delay factor, which is dimensionless.
343 * RP is the reference period, in ns, which is a full clock period
344 * if the DLL is being driven by full periods, or half that if
345 * the DLL is being driven by half periods.
347 * Let's re-arrange this in a way that's more useful to us:
353 * The reference period is either the clock period or half that, so this
357 * SDF = AD x ----- = --------
362 * f is 1 or 1/2, depending on how we're driving the DLL.
363 * P is the clock period.
364 * DDF is the DLL Delay Factor, a dimensionless value that
365 * incorporates all the constants in the conversion.
367 * DDF will be either 8 or 16, both of which are powers of two. We can
368 * reduce the cost of this conversion by using bit shifts instead of
369 * multiplication or division. Thus:
377 * AD = (SDF >> DDS) x P
381 * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
383 if (clock_period_in_ns
> (nfc
->max_dll_clock_period_in_ns
>> 1)) {
384 dll_use_half_periods
= true;
385 dll_delay_shift
= 3 + 1;
387 dll_use_half_periods
= false;
392 * Compute the maximum sample delay the NFC allows, under current
393 * conditions. If the clock is running too slowly, no sample delay is
396 if (clock_period_in_ns
> nfc
->max_dll_clock_period_in_ns
)
397 max_sample_delay_in_ns
= 0;
400 * Compute the delay implied by the largest sample delay factor
403 max_sample_delay_in_ns
=
404 (nfc
->max_sample_delay_factor
* clock_period_in_ns
) >>
408 * Check if the implied sample delay larger than the NFC
411 if (max_sample_delay_in_ns
> nfc
->max_dll_delay_in_ns
)
412 max_sample_delay_in_ns
= nfc
->max_dll_delay_in_ns
;
416 * Check if improved timing information is available. If not, we have to
417 * use a less-sophisticated algorithm.
419 if (!improved_timing_is_available
) {
421 * Fold the read setup time required by the NFC into the ideal
424 ideal_sample_delay_in_ns
= target
.gpmi_sample_delay_in_ns
+
425 nfc
->internal_data_setup_in_ns
;
428 * The ideal sample delay may be greater than the maximum
429 * allowed by the NFC. If so, we can trade off sample delay time
430 * for more data setup time.
432 * In each iteration of the following loop, we add a cycle to
433 * the data setup time and subtract a corresponding amount from
434 * the sample delay until we've satisified the constraints or
435 * can't do any better.
437 while ((ideal_sample_delay_in_ns
> max_sample_delay_in_ns
) &&
438 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
440 data_setup_in_cycles
++;
441 ideal_sample_delay_in_ns
-= clock_period_in_ns
;
443 if (ideal_sample_delay_in_ns
< 0)
444 ideal_sample_delay_in_ns
= 0;
449 * Compute the sample delay factor that corresponds most closely
450 * to the ideal sample delay. If the result is too large for the
451 * NFC, use the maximum value.
453 * Notice that we use the ns_to_cycles function to compute the
454 * sample delay factor. We do this because the form of the
455 * computation is the same as that for calculating cycles.
457 sample_delay_factor
=
459 ideal_sample_delay_in_ns
<< dll_delay_shift
,
460 clock_period_in_ns
, 0);
462 if (sample_delay_factor
> nfc
->max_sample_delay_factor
)
463 sample_delay_factor
= nfc
->max_sample_delay_factor
;
465 /* Skip to the part where we return our results. */
470 * If control arrives here, we have more detailed timing information,
471 * so we can use a better algorithm.
475 * Fold the read setup time required by the NFC into the maximum
478 max_prop_delay_in_ns
+= nfc
->internal_data_setup_in_ns
;
481 * Earlier, we computed the number of clock cycles required to satisfy
482 * the data setup time. Now, we need to know the actual nanoseconds.
484 data_setup_in_ns
= clock_period_in_ns
* data_setup_in_cycles
;
487 * Compute tEYE, the width of the data eye when reading from the NAND
488 * Flash. The eye width is fundamentally determined by the data setup
489 * time, perturbed by propagation delays and some characteristics of the
492 * start of the eye = max_prop_delay + tREA
493 * end of the eye = min_prop_delay + tRHOH + data_setup
495 tEYE
= (int)min_prop_delay_in_ns
+ (int)target
.tRHOH_in_ns
+
496 (int)data_setup_in_ns
;
498 tEYE
-= (int)max_prop_delay_in_ns
+ (int)target
.tREA_in_ns
;
501 * The eye must be open. If it's not, we can try to open it by
502 * increasing its main forcer, the data setup time.
504 * In each iteration of the following loop, we increase the data setup
505 * time by a single clock cycle. We do this until either the eye is
506 * open or we run into NFC limits.
508 while ((tEYE
<= 0) &&
509 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
510 /* Give a cycle to data setup. */
511 data_setup_in_cycles
++;
512 /* Synchronize the data setup time with the cycles. */
513 data_setup_in_ns
+= clock_period_in_ns
;
514 /* Adjust tEYE accordingly. */
515 tEYE
+= clock_period_in_ns
;
519 * When control arrives here, the eye is open. The ideal time to sample
520 * the data is in the center of the eye:
522 * end of the eye + start of the eye
523 * --------------------------------- - data_setup
526 * After some algebra, this simplifies to the code immediately below.
528 ideal_sample_delay_in_ns
=
529 ((int)max_prop_delay_in_ns
+
530 (int)target
.tREA_in_ns
+
531 (int)min_prop_delay_in_ns
+
532 (int)target
.tRHOH_in_ns
-
533 (int)data_setup_in_ns
) >> 1;
536 * The following figure illustrates some aspects of a NAND Flash read:
539 * __ _____________________________________
540 * RDN \_________________/
543 * /-----------------\
544 * Read Data ----------------------------< >---------
545 * \-----------------/
548 * |<--Data Setup -->|<--Delay Time -->| |
551 * | |<-- Quantized Delay Time -->|
555 * We have some issues we must now address:
557 * (1) The *ideal* sample delay time must not be negative. If it is, we
560 * (2) The *ideal* sample delay time must not be greater than that
561 * allowed by the NFC. If it is, we can increase the data setup
562 * time, which will reduce the delay between the end of the data
563 * setup and the center of the eye. It will also make the eye
564 * larger, which might help with the next issue...
566 * (3) The *quantized* sample delay time must not fall either before the
567 * eye opens or after it closes (the latter is the problem
568 * illustrated in the above figure).
571 /* Jam a negative ideal sample delay to zero. */
572 if (ideal_sample_delay_in_ns
< 0)
573 ideal_sample_delay_in_ns
= 0;
576 * Extend the data setup as needed to reduce the ideal sample delay
577 * below the maximum permitted by the NFC.
579 while ((ideal_sample_delay_in_ns
> max_sample_delay_in_ns
) &&
580 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
582 /* Give a cycle to data setup. */
583 data_setup_in_cycles
++;
584 /* Synchronize the data setup time with the cycles. */
585 data_setup_in_ns
+= clock_period_in_ns
;
586 /* Adjust tEYE accordingly. */
587 tEYE
+= clock_period_in_ns
;
590 * Decrease the ideal sample delay by one half cycle, to keep it
591 * in the middle of the eye.
593 ideal_sample_delay_in_ns
-= (clock_period_in_ns
>> 1);
595 /* Jam a negative ideal sample delay to zero. */
596 if (ideal_sample_delay_in_ns
< 0)
597 ideal_sample_delay_in_ns
= 0;
601 * Compute the sample delay factor that corresponds to the ideal sample
602 * delay. If the result is too large, then use the maximum allowed
605 * Notice that we use the ns_to_cycles function to compute the sample
606 * delay factor. We do this because the form of the computation is the
607 * same as that for calculating cycles.
609 sample_delay_factor
=
610 ns_to_cycles(ideal_sample_delay_in_ns
<< dll_delay_shift
,
611 clock_period_in_ns
, 0);
613 if (sample_delay_factor
> nfc
->max_sample_delay_factor
)
614 sample_delay_factor
= nfc
->max_sample_delay_factor
;
617 * These macros conveniently encapsulate a computation we'll use to
618 * continuously evaluate whether or not the data sample delay is inside
621 #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
623 #define QUANTIZED_DELAY \
624 ((int) ((sample_delay_factor * clock_period_in_ns) >> \
627 #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
629 #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
632 * While the quantized sample time falls outside the eye, reduce the
633 * sample delay or extend the data setup to move the sampling point back
634 * toward the eye. Do not allow the number of data setup cycles to
635 * exceed the maximum allowed by the NFC.
637 while (SAMPLE_IS_NOT_WITHIN_THE_EYE
&&
638 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
640 * If control arrives here, the quantized sample delay falls
641 * outside the eye. Check if it's before the eye opens, or after
644 if (QUANTIZED_DELAY
> IDEAL_DELAY
) {
646 * If control arrives here, the quantized sample delay
647 * falls after the eye closes. Decrease the quantized
648 * delay time and then go back to re-evaluate.
650 if (sample_delay_factor
!= 0)
651 sample_delay_factor
--;
656 * If control arrives here, the quantized sample delay falls
657 * before the eye opens. Shift the sample point by increasing
658 * data setup time. This will also make the eye larger.
661 /* Give a cycle to data setup. */
662 data_setup_in_cycles
++;
663 /* Synchronize the data setup time with the cycles. */
664 data_setup_in_ns
+= clock_period_in_ns
;
665 /* Adjust tEYE accordingly. */
666 tEYE
+= clock_period_in_ns
;
669 * Decrease the ideal sample delay by one half cycle, to keep it
670 * in the middle of the eye.
672 ideal_sample_delay_in_ns
-= (clock_period_in_ns
>> 1);
674 /* ...and one less period for the delay time. */
675 ideal_sample_delay_in_ns
-= clock_period_in_ns
;
677 /* Jam a negative ideal sample delay to zero. */
678 if (ideal_sample_delay_in_ns
< 0)
679 ideal_sample_delay_in_ns
= 0;
682 * We have a new ideal sample delay, so re-compute the quantized
685 sample_delay_factor
=
687 ideal_sample_delay_in_ns
<< dll_delay_shift
,
688 clock_period_in_ns
, 0);
690 if (sample_delay_factor
> nfc
->max_sample_delay_factor
)
691 sample_delay_factor
= nfc
->max_sample_delay_factor
;
694 /* Control arrives here when we're ready to return our results. */
696 hw
->data_setup_in_cycles
= data_setup_in_cycles
;
697 hw
->data_hold_in_cycles
= data_hold_in_cycles
;
698 hw
->address_setup_in_cycles
= address_setup_in_cycles
;
699 hw
->use_half_periods
= dll_use_half_periods
;
700 hw
->sample_delay_factor
= sample_delay_factor
;
702 /* Return success. */
707 void gpmi_begin(struct gpmi_nand_data
*this)
709 struct resources
*r
= &this->resources
;
710 struct timing_threshod
*nfc
= &timing_default_threshold
;
711 unsigned char *gpmi_regs
= r
->gpmi_regs
;
712 unsigned int clock_period_in_ns
;
714 unsigned int dll_wait_time_in_us
;
715 struct gpmi_nfc_hardware_timing hw
;
718 /* Enable the clock. */
719 ret
= clk_prepare_enable(r
->clock
);
721 pr_err("We failed in enable the clk\n");
725 /* set ready/busy timeout */
726 writel(0x500 << BP_GPMI_TIMING1_BUSY_TIMEOUT
,
727 gpmi_regs
+ HW_GPMI_TIMING1
);
729 /* Get the timing information we need. */
730 nfc
->clock_frequency_in_hz
= clk_get_rate(r
->clock
);
731 clock_period_in_ns
= 1000000000 / nfc
->clock_frequency_in_hz
;
733 gpmi_nfc_compute_hardware_timing(this, &hw
);
735 /* Set up all the simple timing parameters. */
736 reg
= BF_GPMI_TIMING0_ADDRESS_SETUP(hw
.address_setup_in_cycles
) |
737 BF_GPMI_TIMING0_DATA_HOLD(hw
.data_hold_in_cycles
) |
738 BF_GPMI_TIMING0_DATA_SETUP(hw
.data_setup_in_cycles
) ;
740 writel(reg
, gpmi_regs
+ HW_GPMI_TIMING0
);
743 * DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD.
745 writel(BM_GPMI_CTRL1_DLL_ENABLE
, gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
747 /* Clear out the DLL control fields. */
748 writel(BM_GPMI_CTRL1_RDN_DELAY
, gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
749 writel(BM_GPMI_CTRL1_HALF_PERIOD
, gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
751 /* If no sample delay is called for, return immediately. */
752 if (!hw
.sample_delay_factor
)
755 /* Configure the HALF_PERIOD flag. */
756 if (hw
.use_half_periods
)
757 writel(BM_GPMI_CTRL1_HALF_PERIOD
,
758 gpmi_regs
+ HW_GPMI_CTRL1_SET
);
760 /* Set the delay factor. */
761 writel(BF_GPMI_CTRL1_RDN_DELAY(hw
.sample_delay_factor
),
762 gpmi_regs
+ HW_GPMI_CTRL1_SET
);
764 /* Enable the DLL. */
765 writel(BM_GPMI_CTRL1_DLL_ENABLE
, gpmi_regs
+ HW_GPMI_CTRL1_SET
);
768 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
769 * we can use the GPMI.
771 * Calculate the amount of time we need to wait, in microseconds.
773 dll_wait_time_in_us
= (clock_period_in_ns
* 64) / 1000;
775 if (!dll_wait_time_in_us
)
776 dll_wait_time_in_us
= 1;
778 /* Wait for the DLL to settle. */
779 udelay(dll_wait_time_in_us
);
785 void gpmi_end(struct gpmi_nand_data
*this)
787 struct resources
*r
= &this->resources
;
788 clk_disable_unprepare(r
->clock
);
791 /* Clears a BCH interrupt. */
792 void gpmi_clear_bch(struct gpmi_nand_data
*this)
794 struct resources
*r
= &this->resources
;
795 writel(BM_BCH_CTRL_COMPLETE_IRQ
, r
->bch_regs
+ HW_BCH_CTRL_CLR
);
798 /* Returns the Ready/Busy status of the given chip. */
799 int gpmi_is_ready(struct gpmi_nand_data
*this, unsigned chip
)
801 struct resources
*r
= &this->resources
;
805 if (GPMI_IS_MX23(this)) {
806 mask
= MX23_BM_GPMI_DEBUG_READY0
<< chip
;
807 reg
= readl(r
->gpmi_regs
+ HW_GPMI_DEBUG
);
808 } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6Q(this)) {
809 /* MX28 shares the same R/B register as MX6Q. */
810 mask
= MX28_BF_GPMI_STAT_READY_BUSY(1 << chip
);
811 reg
= readl(r
->gpmi_regs
+ HW_GPMI_STAT
);
813 pr_err("unknow arch.\n");
817 static inline void set_dma_type(struct gpmi_nand_data
*this,
818 enum dma_ops_type type
)
820 this->last_dma_type
= this->dma_type
;
821 this->dma_type
= type
;
824 int gpmi_send_command(struct gpmi_nand_data
*this)
826 struct dma_chan
*channel
= get_dma_chan(this);
827 struct dma_async_tx_descriptor
*desc
;
828 struct scatterlist
*sgl
;
829 int chip
= this->current_chip
;
832 /* [1] send out the PIO words */
833 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE
)
834 | BM_GPMI_CTRL0_WORD_LENGTH
835 | BF_GPMI_CTRL0_CS(chip
, this)
836 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
837 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE
)
838 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
839 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length
);
841 desc
= dmaengine_prep_slave_sg(channel
,
842 (struct scatterlist
*)pio
,
843 ARRAY_SIZE(pio
), DMA_TRANS_NONE
, 0);
845 pr_err("step 1 error\n");
849 /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
850 sgl
= &this->cmd_sgl
;
852 sg_init_one(sgl
, this->cmd_buffer
, this->command_length
);
853 dma_map_sg(this->dev
, sgl
, 1, DMA_TO_DEVICE
);
854 desc
= dmaengine_prep_slave_sg(channel
,
855 sgl
, 1, DMA_MEM_TO_DEV
,
856 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
859 pr_err("step 2 error\n");
863 /* [3] submit the DMA */
864 set_dma_type(this, DMA_FOR_COMMAND
);
865 return start_dma_without_bch_irq(this, desc
);
868 int gpmi_send_data(struct gpmi_nand_data
*this)
870 struct dma_async_tx_descriptor
*desc
;
871 struct dma_chan
*channel
= get_dma_chan(this);
872 int chip
= this->current_chip
;
873 uint32_t command_mode
;
878 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WRITE
;
879 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
881 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
882 | BM_GPMI_CTRL0_WORD_LENGTH
883 | BF_GPMI_CTRL0_CS(chip
, this)
884 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
885 | BF_GPMI_CTRL0_ADDRESS(address
)
886 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len
);
888 desc
= dmaengine_prep_slave_sg(channel
, (struct scatterlist
*)pio
,
889 ARRAY_SIZE(pio
), DMA_TRANS_NONE
, 0);
891 pr_err("step 1 error\n");
895 /* [2] send DMA request */
896 prepare_data_dma(this, DMA_TO_DEVICE
);
897 desc
= dmaengine_prep_slave_sg(channel
, &this->data_sgl
,
899 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
901 pr_err("step 2 error\n");
904 /* [3] submit the DMA */
905 set_dma_type(this, DMA_FOR_WRITE_DATA
);
906 return start_dma_without_bch_irq(this, desc
);
909 int gpmi_read_data(struct gpmi_nand_data
*this)
911 struct dma_async_tx_descriptor
*desc
;
912 struct dma_chan
*channel
= get_dma_chan(this);
913 int chip
= this->current_chip
;
917 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ
)
918 | BM_GPMI_CTRL0_WORD_LENGTH
919 | BF_GPMI_CTRL0_CS(chip
, this)
920 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
921 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA
)
922 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len
);
924 desc
= dmaengine_prep_slave_sg(channel
,
925 (struct scatterlist
*)pio
,
926 ARRAY_SIZE(pio
), DMA_TRANS_NONE
, 0);
928 pr_err("step 1 error\n");
932 /* [2] : send DMA request */
933 prepare_data_dma(this, DMA_FROM_DEVICE
);
934 desc
= dmaengine_prep_slave_sg(channel
, &this->data_sgl
,
936 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
938 pr_err("step 2 error\n");
942 /* [3] : submit the DMA */
943 set_dma_type(this, DMA_FOR_READ_DATA
);
944 return start_dma_without_bch_irq(this, desc
);
947 int gpmi_send_page(struct gpmi_nand_data
*this,
948 dma_addr_t payload
, dma_addr_t auxiliary
)
950 struct bch_geometry
*geo
= &this->bch_geometry
;
951 uint32_t command_mode
;
953 uint32_t ecc_command
;
954 uint32_t buffer_mask
;
955 struct dma_async_tx_descriptor
*desc
;
956 struct dma_chan
*channel
= get_dma_chan(this);
957 int chip
= this->current_chip
;
960 /* A DMA descriptor that does an ECC page read. */
961 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WRITE
;
962 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
963 ecc_command
= BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE
;
964 buffer_mask
= BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
|
965 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY
;
967 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
968 | BM_GPMI_CTRL0_WORD_LENGTH
969 | BF_GPMI_CTRL0_CS(chip
, this)
970 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
971 | BF_GPMI_CTRL0_ADDRESS(address
)
972 | BF_GPMI_CTRL0_XFER_COUNT(0);
974 pio
[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
975 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command
)
976 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask
);
977 pio
[3] = geo
->page_size
;
981 desc
= dmaengine_prep_slave_sg(channel
,
982 (struct scatterlist
*)pio
,
983 ARRAY_SIZE(pio
), DMA_TRANS_NONE
,
986 pr_err("step 2 error\n");
989 set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE
);
990 return start_dma_with_bch_irq(this, desc
);
993 int gpmi_read_page(struct gpmi_nand_data
*this,
994 dma_addr_t payload
, dma_addr_t auxiliary
)
996 struct bch_geometry
*geo
= &this->bch_geometry
;
997 uint32_t command_mode
;
999 uint32_t ecc_command
;
1000 uint32_t buffer_mask
;
1001 struct dma_async_tx_descriptor
*desc
;
1002 struct dma_chan
*channel
= get_dma_chan(this);
1003 int chip
= this->current_chip
;
1006 /* [1] Wait for the chip to report ready. */
1007 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY
;
1008 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1010 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1011 | BM_GPMI_CTRL0_WORD_LENGTH
1012 | BF_GPMI_CTRL0_CS(chip
, this)
1013 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1014 | BF_GPMI_CTRL0_ADDRESS(address
)
1015 | BF_GPMI_CTRL0_XFER_COUNT(0);
1017 desc
= dmaengine_prep_slave_sg(channel
,
1018 (struct scatterlist
*)pio
, 2,
1021 pr_err("step 1 error\n");
1025 /* [2] Enable the BCH block and read. */
1026 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__READ
;
1027 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1028 ecc_command
= BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE
;
1029 buffer_mask
= BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1030 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY
;
1032 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1033 | BM_GPMI_CTRL0_WORD_LENGTH
1034 | BF_GPMI_CTRL0_CS(chip
, this)
1035 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1036 | BF_GPMI_CTRL0_ADDRESS(address
)
1037 | BF_GPMI_CTRL0_XFER_COUNT(geo
->page_size
);
1040 pio
[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1041 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command
)
1042 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask
);
1043 pio
[3] = geo
->page_size
;
1046 desc
= dmaengine_prep_slave_sg(channel
,
1047 (struct scatterlist
*)pio
,
1048 ARRAY_SIZE(pio
), DMA_TRANS_NONE
,
1049 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1051 pr_err("step 2 error\n");
1055 /* [3] Disable the BCH block */
1056 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY
;
1057 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1059 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1060 | BM_GPMI_CTRL0_WORD_LENGTH
1061 | BF_GPMI_CTRL0_CS(chip
, this)
1062 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1063 | BF_GPMI_CTRL0_ADDRESS(address
)
1064 | BF_GPMI_CTRL0_XFER_COUNT(geo
->page_size
);
1066 pio
[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1067 desc
= dmaengine_prep_slave_sg(channel
,
1068 (struct scatterlist
*)pio
, 3,
1070 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1072 pr_err("step 3 error\n");
1076 /* [4] submit the DMA */
1077 set_dma_type(this, DMA_FOR_READ_ECC_PAGE
);
1078 return start_dma_with_bch_irq(this, desc
);