2 * Copyright (C) ST-Ericsson AB 2012
4 * Main and Back-up battery management driver.
6 * Note: Backup battery management is required in case of Li-Ion battery and not
7 * for capacitive battery. HREF boards have capacitive battery and hence backup
8 * battery management is not used and the supported code is available in this
11 * License Terms: GNU General Public License v2
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/mfd/abx500/ab8500.h>
26 #include <linux/mfd/abx500.h>
27 #include <linux/slab.h>
28 #include <linux/mfd/abx500/ab8500-bm.h>
29 #include <linux/delay.h>
30 #include <linux/mfd/abx500/ab8500-gpadc.h>
31 #include <linux/mfd/abx500.h>
32 #include <linux/time.h>
33 #include <linux/completion.h>
35 #define MILLI_TO_MICRO 1000
36 #define FG_LSB_IN_MA 1627
37 #define QLSB_NANO_AMP_HOURS_X10 1129
38 #define INS_CURR_TIMEOUT (3 * HZ)
40 #define SEC_TO_SAMPLE(S) (S * 4)
42 #define NBR_AVG_SAMPLES 20
44 #define LOW_BAT_CHECK_INTERVAL (2 * HZ)
46 #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
47 #define BATT_OK_MIN 2360 /* mV */
48 #define BATT_OK_INCREMENT 50 /* mV */
49 #define BATT_OK_MAX_NR_INCREMENTS 0xE
54 #define interpolate(x, x1, y1, x2, y2) \
55 ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
57 #define to_ab8500_fg_device_info(x) container_of((x), \
58 struct ab8500_fg, fg_psy);
61 * struct ab8500_fg_interrupts - ab8500 fg interupts
62 * @name: name of the interrupt
63 * @isr function pointer to the isr
65 struct ab8500_fg_interrupts
{
67 irqreturn_t (*isr
)(int irq
, void *data
);
70 enum ab8500_fg_discharge_state
{
71 AB8500_FG_DISCHARGE_INIT
,
72 AB8500_FG_DISCHARGE_INITMEASURING
,
73 AB8500_FG_DISCHARGE_INIT_RECOVERY
,
74 AB8500_FG_DISCHARGE_RECOVERY
,
75 AB8500_FG_DISCHARGE_READOUT_INIT
,
76 AB8500_FG_DISCHARGE_READOUT
,
77 AB8500_FG_DISCHARGE_WAKEUP
,
80 static char *discharge_state
[] = {
82 "DISCHARGE_INITMEASURING",
83 "DISCHARGE_INIT_RECOVERY",
85 "DISCHARGE_READOUT_INIT",
90 enum ab8500_fg_charge_state
{
91 AB8500_FG_CHARGE_INIT
,
92 AB8500_FG_CHARGE_READOUT
,
95 static char *charge_state
[] = {
100 enum ab8500_fg_calibration_state
{
101 AB8500_FG_CALIB_INIT
,
102 AB8500_FG_CALIB_WAIT
,
106 struct ab8500_fg_avg_cap
{
108 int samples
[NBR_AVG_SAMPLES
];
109 __kernel_time_t time_stamps
[NBR_AVG_SAMPLES
];
115 struct ab8500_fg_battery_capacity
{
127 struct ab8500_fg_flags
{
139 bool batt_id_received
;
142 struct inst_curr_result_list
{
143 struct list_head list
;
148 * struct ab8500_fg - ab8500 FG device information
149 * @dev: Pointer to the structure device
150 * @node: a list of AB8500 FGs, hence prepared for reentrance
151 * @irq holds the CCEOC interrupt number
152 * @vbat: Battery voltage in mV
153 * @vbat_nom: Nominal battery voltage in mV
154 * @inst_curr: Instantenous battery current in mA
155 * @avg_curr: Average battery current in mA
156 * @bat_temp battery temperature
157 * @fg_samples: Number of samples used in the FG accumulation
158 * @accu_charge: Accumulated charge from the last conversion
159 * @recovery_cnt: Counter for recovery mode
160 * @high_curr_cnt: Counter for high current mode
161 * @init_cnt: Counter for init mode
162 * @recovery_needed: Indicate if recovery is needed
163 * @high_curr_mode: Indicate if we're in high current mode
164 * @init_capacity: Indicate if initial capacity measuring should be done
165 * @turn_off_fg: True if fg was off before current measurement
166 * @calib_state State during offset calibration
167 * @discharge_state: Current discharge state
168 * @charge_state: Current charge state
169 * @ab8500_fg_complete Completion struct used for the instant current reading
170 * @flags: Structure for information about events triggered
171 * @bat_cap: Structure for battery capacity specific parameters
172 * @avg_cap: Average capacity filter
173 * @parent: Pointer to the struct ab8500
174 * @gpadc: Pointer to the struct gpadc
175 * @pdata: Pointer to the abx500_fg platform data
176 * @bat: Pointer to the abx500_bm platform data
177 * @fg_psy: Structure that holds the FG specific battery properties
178 * @fg_wq: Work queue for running the FG algorithm
179 * @fg_periodic_work: Work to run the FG algorithm periodically
180 * @fg_low_bat_work: Work to check low bat condition
181 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
182 * @fg_work: Work to run the FG algorithm instantly
183 * @fg_acc_cur_work: Work to read the FG accumulator
184 * @fg_check_hw_failure_work: Work for checking HW state
185 * @cc_lock: Mutex for locking the CC
186 * @fg_kobject: Structure of type kobject
190 struct list_head node
;
202 bool recovery_needed
;
206 enum ab8500_fg_calibration_state calib_state
;
207 enum ab8500_fg_discharge_state discharge_state
;
208 enum ab8500_fg_charge_state charge_state
;
209 struct completion ab8500_fg_complete
;
210 struct ab8500_fg_flags flags
;
211 struct ab8500_fg_battery_capacity bat_cap
;
212 struct ab8500_fg_avg_cap avg_cap
;
213 struct ab8500
*parent
;
214 struct ab8500_gpadc
*gpadc
;
215 struct abx500_fg_platform_data
*pdata
;
216 struct abx500_bm_data
*bat
;
217 struct power_supply fg_psy
;
218 struct workqueue_struct
*fg_wq
;
219 struct delayed_work fg_periodic_work
;
220 struct delayed_work fg_low_bat_work
;
221 struct delayed_work fg_reinit_work
;
222 struct work_struct fg_work
;
223 struct work_struct fg_acc_cur_work
;
224 struct delayed_work fg_check_hw_failure_work
;
225 struct mutex cc_lock
;
226 struct kobject fg_kobject
;
228 static LIST_HEAD(ab8500_fg_list
);
231 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
232 * (i.e. the first fuel gauge in the instance list)
234 struct ab8500_fg
*ab8500_fg_get(void)
236 struct ab8500_fg
*fg
;
238 if (list_empty(&ab8500_fg_list
))
241 fg
= list_first_entry(&ab8500_fg_list
, struct ab8500_fg
, node
);
245 /* Main battery properties */
246 static enum power_supply_property ab8500_fg_props
[] = {
247 POWER_SUPPLY_PROP_VOLTAGE_NOW
,
248 POWER_SUPPLY_PROP_CURRENT_NOW
,
249 POWER_SUPPLY_PROP_CURRENT_AVG
,
250 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN
,
251 POWER_SUPPLY_PROP_ENERGY_FULL
,
252 POWER_SUPPLY_PROP_ENERGY_NOW
,
253 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN
,
254 POWER_SUPPLY_PROP_CHARGE_FULL
,
255 POWER_SUPPLY_PROP_CHARGE_NOW
,
256 POWER_SUPPLY_PROP_CAPACITY
,
257 POWER_SUPPLY_PROP_CAPACITY_LEVEL
,
261 * This array maps the raw hex value to lowbat voltage used by the AB8500
262 * Values taken from the UM0836
264 static int ab8500_fg_lowbat_voltage_map
[] = {
331 static u8
ab8500_volt_to_regval(int voltage
)
335 if (voltage
< ab8500_fg_lowbat_voltage_map
[0])
338 for (i
= 0; i
< ARRAY_SIZE(ab8500_fg_lowbat_voltage_map
); i
++) {
339 if (voltage
< ab8500_fg_lowbat_voltage_map
[i
])
343 /* If not captured above, return index of last element */
344 return (u8
) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map
) - 1;
348 * ab8500_fg_is_low_curr() - Low or high current mode
349 * @di: pointer to the ab8500_fg structure
350 * @curr: the current to base or our decision on
352 * Low current mode if the current consumption is below a certain threshold
354 static int ab8500_fg_is_low_curr(struct ab8500_fg
*di
, int curr
)
357 * We want to know if we're in low current mode
359 if (curr
> -di
->bat
->fg_params
->high_curr_threshold
)
366 * ab8500_fg_add_cap_sample() - Add capacity to average filter
367 * @di: pointer to the ab8500_fg structure
368 * @sample: the capacity in mAh to add to the filter
370 * A capacity is added to the filter and a new mean capacity is calculated and
373 static int ab8500_fg_add_cap_sample(struct ab8500_fg
*di
, int sample
)
376 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
381 avg
->sum
+= sample
- avg
->samples
[avg
->pos
];
382 avg
->samples
[avg
->pos
] = sample
;
383 avg
->time_stamps
[avg
->pos
] = ts
.tv_sec
;
386 if (avg
->pos
== NBR_AVG_SAMPLES
)
389 if (avg
->nbr_samples
< NBR_AVG_SAMPLES
)
393 * Check the time stamp for each sample. If too old,
394 * replace with latest sample
396 } while (ts
.tv_sec
- VALID_CAPACITY_SEC
> avg
->time_stamps
[avg
->pos
]);
398 avg
->avg
= avg
->sum
/ avg
->nbr_samples
;
404 * ab8500_fg_clear_cap_samples() - Clear average filter
405 * @di: pointer to the ab8500_fg structure
407 * The capacity filter is is reset to zero.
409 static void ab8500_fg_clear_cap_samples(struct ab8500_fg
*di
)
412 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
415 avg
->nbr_samples
= 0;
419 for (i
= 0; i
< NBR_AVG_SAMPLES
; i
++) {
421 avg
->time_stamps
[i
] = 0;
426 * ab8500_fg_fill_cap_sample() - Fill average filter
427 * @di: pointer to the ab8500_fg structure
428 * @sample: the capacity in mAh to fill the filter with
430 * The capacity filter is filled with a capacity in mAh
432 static void ab8500_fg_fill_cap_sample(struct ab8500_fg
*di
, int sample
)
436 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
440 for (i
= 0; i
< NBR_AVG_SAMPLES
; i
++) {
441 avg
->samples
[i
] = sample
;
442 avg
->time_stamps
[i
] = ts
.tv_sec
;
446 avg
->nbr_samples
= NBR_AVG_SAMPLES
;
447 avg
->sum
= sample
* NBR_AVG_SAMPLES
;
452 * ab8500_fg_coulomb_counter() - enable coulomb counter
453 * @di: pointer to the ab8500_fg structure
454 * @enable: enable/disable
456 * Enable/Disable coulomb counter.
457 * On failure returns negative value.
459 static int ab8500_fg_coulomb_counter(struct ab8500_fg
*di
, bool enable
)
462 mutex_lock(&di
->cc_lock
);
464 /* To be able to reprogram the number of samples, we have to
465 * first stop the CC and then enable it again */
466 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
467 AB8500_RTC_CC_CONF_REG
, 0x00);
471 /* Program the samples */
472 ret
= abx500_set_register_interruptible(di
->dev
,
473 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU
,
479 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
480 AB8500_RTC_CC_CONF_REG
,
481 (CC_DEEP_SLEEP_ENA
| CC_PWR_UP_ENA
));
485 di
->flags
.fg_enabled
= true;
487 /* Clear any pending read requests */
488 ret
= abx500_set_register_interruptible(di
->dev
,
489 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
, 0);
493 ret
= abx500_set_register_interruptible(di
->dev
,
494 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU_CTRL
, 0);
499 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
500 AB8500_RTC_CC_CONF_REG
, 0);
504 di
->flags
.fg_enabled
= false;
507 dev_dbg(di
->dev
, " CC enabled: %d Samples: %d\n",
508 enable
, di
->fg_samples
);
510 mutex_unlock(&di
->cc_lock
);
514 dev_err(di
->dev
, "%s Enabling coulomb counter failed\n", __func__
);
515 mutex_unlock(&di
->cc_lock
);
520 * ab8500_fg_inst_curr_start() - start battery instantaneous current
521 * @di: pointer to the ab8500_fg structure
523 * Returns 0 or error code
524 * Note: This is part "one" and has to be called before
525 * ab8500_fg_inst_curr_finalize()
527 int ab8500_fg_inst_curr_start(struct ab8500_fg
*di
)
532 mutex_lock(&di
->cc_lock
);
534 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
535 AB8500_RTC_CC_CONF_REG
, ®_val
);
539 if (!(reg_val
& CC_PWR_UP_ENA
)) {
540 dev_dbg(di
->dev
, "%s Enable FG\n", __func__
);
541 di
->turn_off_fg
= true;
543 /* Program the samples */
544 ret
= abx500_set_register_interruptible(di
->dev
,
545 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU
,
551 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
552 AB8500_RTC_CC_CONF_REG
,
553 (CC_DEEP_SLEEP_ENA
| CC_PWR_UP_ENA
));
557 di
->turn_off_fg
= false;
561 INIT_COMPLETION(di
->ab8500_fg_complete
);
564 /* Note: cc_lock is still locked */
567 mutex_unlock(&di
->cc_lock
);
572 * ab8500_fg_inst_curr_done() - check if fg conversion is done
573 * @di: pointer to the ab8500_fg structure
575 * Returns 1 if conversion done, 0 if still waiting
577 int ab8500_fg_inst_curr_done(struct ab8500_fg
*di
)
579 return completion_done(&di
->ab8500_fg_complete
);
583 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
584 * @di: pointer to the ab8500_fg structure
585 * @res: battery instantenous current(on success)
587 * Returns 0 or an error code
588 * Note: This is part "two" and has to be called at earliest 250 ms
589 * after ab8500_fg_inst_curr_start()
591 int ab8500_fg_inst_curr_finalize(struct ab8500_fg
*di
, int *res
)
598 if (!completion_done(&di
->ab8500_fg_complete
)) {
599 timeout
= wait_for_completion_timeout(&di
->ab8500_fg_complete
,
601 dev_dbg(di
->dev
, "Finalize time: %d ms\n",
602 ((INS_CURR_TIMEOUT
- timeout
) * 1000) / HZ
);
605 disable_irq(di
->irq
);
606 dev_err(di
->dev
, "completion timed out [%d]\n",
612 disable_irq(di
->irq
);
614 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
615 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
618 /* 100uS between read request and read is needed */
619 usleep_range(100, 100);
621 /* Read CC Sample conversion value Low and high */
622 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
623 AB8500_GASG_CC_SMPL_CNVL_REG
, &low
);
627 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
628 AB8500_GASG_CC_SMPL_CNVH_REG
, &high
);
633 * negative value for Discharging
634 * convert 2's compliment into decimal
637 val
= (low
| (high
<< 8) | 0xFFFFE000);
639 val
= (low
| (high
<< 8));
642 * Convert to unit value in mA
643 * Full scale input voltage is
644 * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
645 * Given a 250ms conversion cycle time the LSB corresponds
646 * to 112.9 nAh. Convert to current by dividing by the conversion
647 * time in hours (250ms = 1 / (3600 * 4)h)
648 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
650 val
= (val
* QLSB_NANO_AMP_HOURS_X10
* 36 * 4) /
651 (1000 * di
->bat
->fg_res
);
653 if (di
->turn_off_fg
) {
654 dev_dbg(di
->dev
, "%s Disable FG\n", __func__
);
656 /* Clear any pending read requests */
657 ret
= abx500_set_register_interruptible(di
->dev
,
658 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
, 0);
663 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
664 AB8500_RTC_CC_CONF_REG
, 0);
668 mutex_unlock(&di
->cc_lock
);
673 mutex_unlock(&di
->cc_lock
);
678 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
679 * @di: pointer to the ab8500_fg structure
680 * @res: battery instantenous current(on success)
682 * Returns 0 else error code
684 int ab8500_fg_inst_curr_blocking(struct ab8500_fg
*di
)
689 ret
= ab8500_fg_inst_curr_start(di
);
691 dev_err(di
->dev
, "Failed to initialize fg_inst\n");
695 ret
= ab8500_fg_inst_curr_finalize(di
, &res
);
697 dev_err(di
->dev
, "Failed to finalize fg_inst\n");
705 * ab8500_fg_acc_cur_work() - average battery current
706 * @work: pointer to the work_struct structure
708 * Updated the average battery current obtained from the
711 static void ab8500_fg_acc_cur_work(struct work_struct
*work
)
717 struct ab8500_fg
*di
= container_of(work
,
718 struct ab8500_fg
, fg_acc_cur_work
);
720 mutex_lock(&di
->cc_lock
);
721 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
722 AB8500_GASG_CC_NCOV_ACCU_CTRL
, RD_NCONV_ACCU_REQ
);
726 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
727 AB8500_GASG_CC_NCOV_ACCU_LOW
, &low
);
731 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
732 AB8500_GASG_CC_NCOV_ACCU_MED
, &med
);
736 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
737 AB8500_GASG_CC_NCOV_ACCU_HIGH
, &high
);
741 /* Check for sign bit in case of negative value, 2's compliment */
743 val
= (low
| (med
<< 8) | (high
<< 16) | 0xFFE00000);
745 val
= (low
| (med
<< 8) | (high
<< 16));
749 * Given a 250ms conversion cycle time the LSB corresponds
751 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
753 di
->accu_charge
= (val
* QLSB_NANO_AMP_HOURS_X10
) /
754 (100 * di
->bat
->fg_res
);
757 * Convert to unit value in mA
758 * Full scale input voltage is
759 * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
760 * Given a 250ms conversion cycle time the LSB corresponds
761 * to 112.9 nAh. Convert to current by dividing by the conversion
762 * time in hours (= samples / (3600 * 4)h)
763 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
765 di
->avg_curr
= (val
* QLSB_NANO_AMP_HOURS_X10
* 36) /
766 (1000 * di
->bat
->fg_res
* (di
->fg_samples
/ 4));
768 di
->flags
.conv_done
= true;
770 mutex_unlock(&di
->cc_lock
);
772 queue_work(di
->fg_wq
, &di
->fg_work
);
777 "Failed to read or write gas gauge registers\n");
778 mutex_unlock(&di
->cc_lock
);
779 queue_work(di
->fg_wq
, &di
->fg_work
);
783 * ab8500_fg_bat_voltage() - get battery voltage
784 * @di: pointer to the ab8500_fg structure
786 * Returns battery voltage(on success) else error code
788 static int ab8500_fg_bat_voltage(struct ab8500_fg
*di
)
793 vbat
= ab8500_gpadc_convert(di
->gpadc
, MAIN_BAT_V
);
796 "%s gpadc conversion failed, using previous value\n",
806 * ab8500_fg_volt_to_capacity() - Voltage based capacity
807 * @di: pointer to the ab8500_fg structure
808 * @voltage: The voltage to convert to a capacity
810 * Returns battery capacity in per mille based on voltage
812 static int ab8500_fg_volt_to_capacity(struct ab8500_fg
*di
, int voltage
)
815 struct abx500_v_to_cap
*tbl
;
818 tbl
= di
->bat
->bat_type
[di
->bat
->batt_id
].v_to_cap_tbl
,
819 tbl_size
= di
->bat
->bat_type
[di
->bat
->batt_id
].n_v_cap_tbl_elements
;
821 for (i
= 0; i
< tbl_size
; ++i
) {
822 if (voltage
> tbl
[i
].voltage
)
826 if ((i
> 0) && (i
< tbl_size
)) {
827 cap
= interpolate(voltage
,
829 tbl
[i
].capacity
* 10,
831 tbl
[i
-1].capacity
* 10);
838 dev_dbg(di
->dev
, "%s Vbat: %d, Cap: %d per mille",
839 __func__
, voltage
, cap
);
845 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
846 * @di: pointer to the ab8500_fg structure
848 * Returns battery capacity based on battery voltage that is not compensated
849 * for the voltage drop due to the load
851 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg
*di
)
853 di
->vbat
= ab8500_fg_bat_voltage(di
);
854 return ab8500_fg_volt_to_capacity(di
, di
->vbat
);
858 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
859 * @di: pointer to the ab8500_fg structure
861 * Returns battery inner resistance added with the fuel gauge resistor value
862 * to get the total resistance in the whole link from gnd to bat+ node.
864 static int ab8500_fg_battery_resistance(struct ab8500_fg
*di
)
867 struct batres_vs_temp
*tbl
;
870 tbl
= di
->bat
->bat_type
[di
->bat
->batt_id
].batres_tbl
;
871 tbl_size
= di
->bat
->bat_type
[di
->bat
->batt_id
].n_batres_tbl_elements
;
873 for (i
= 0; i
< tbl_size
; ++i
) {
874 if (di
->bat_temp
/ 10 > tbl
[i
].temp
)
878 if ((i
> 0) && (i
< tbl_size
)) {
879 resist
= interpolate(di
->bat_temp
/ 10,
885 resist
= tbl
[0].resist
;
887 resist
= tbl
[tbl_size
- 1].resist
;
890 dev_dbg(di
->dev
, "%s Temp: %d battery internal resistance: %d"
891 " fg resistance %d, total: %d (mOhm)\n",
892 __func__
, di
->bat_temp
, resist
, di
->bat
->fg_res
/ 10,
893 (di
->bat
->fg_res
/ 10) + resist
);
895 /* fg_res variable is in 0.1mOhm */
896 resist
+= di
->bat
->fg_res
/ 10;
902 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
903 * @di: pointer to the ab8500_fg structure
905 * Returns battery capacity based on battery voltage that is load compensated
906 * for the voltage drop
908 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg
*di
)
914 ab8500_fg_inst_curr_start(di
);
917 vbat
+= ab8500_fg_bat_voltage(di
);
920 } while (!ab8500_fg_inst_curr_done(di
));
922 ab8500_fg_inst_curr_finalize(di
, &di
->inst_curr
);
925 res
= ab8500_fg_battery_resistance(di
);
927 /* Use Ohms law to get the load compensated voltage */
928 vbat_comp
= di
->vbat
- (di
->inst_curr
* res
) / 1000;
930 dev_dbg(di
->dev
, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
931 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
932 __func__
, di
->vbat
, vbat_comp
, res
, di
->inst_curr
, i
);
934 return ab8500_fg_volt_to_capacity(di
, vbat_comp
);
938 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
939 * @di: pointer to the ab8500_fg structure
940 * @cap_mah: capacity in mAh
942 * Converts capacity in mAh to capacity in permille
944 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg
*di
, int cap_mah
)
946 return (cap_mah
* 1000) / di
->bat_cap
.max_mah_design
;
950 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
951 * @di: pointer to the ab8500_fg structure
952 * @cap_pm: capacity in permille
954 * Converts capacity in permille to capacity in mAh
956 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg
*di
, int cap_pm
)
958 return cap_pm
* di
->bat_cap
.max_mah_design
/ 1000;
962 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
963 * @di: pointer to the ab8500_fg structure
964 * @cap_mah: capacity in mAh
966 * Converts capacity in mAh to capacity in uWh
968 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg
*di
, int cap_mah
)
973 div_res
= ((u64
) cap_mah
) * ((u64
) di
->vbat_nom
);
974 div_rem
= do_div(div_res
, 1000);
976 /* Make sure to round upwards if necessary */
977 if (div_rem
>= 1000 / 2)
980 return (int) div_res
;
984 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
985 * @di: pointer to the ab8500_fg structure
987 * Return the capacity in mAh based on previous calculated capcity and the FG
988 * accumulator register value. The filter is filled with this capacity
990 static int ab8500_fg_calc_cap_charging(struct ab8500_fg
*di
)
992 dev_dbg(di
->dev
, "%s cap_mah %d accu_charge %d\n",
997 /* Capacity should not be less than 0 */
998 if (di
->bat_cap
.mah
+ di
->accu_charge
> 0)
999 di
->bat_cap
.mah
+= di
->accu_charge
;
1001 di
->bat_cap
.mah
= 0;
1003 * We force capacity to 100% once when the algorithm
1004 * reports that it's full.
1006 if (di
->bat_cap
.mah
>= di
->bat_cap
.max_mah_design
||
1007 di
->flags
.force_full
) {
1008 di
->bat_cap
.mah
= di
->bat_cap
.max_mah_design
;
1011 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1012 di
->bat_cap
.permille
=
1013 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1015 /* We need to update battery voltage and inst current when charging */
1016 di
->vbat
= ab8500_fg_bat_voltage(di
);
1017 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1019 return di
->bat_cap
.mah
;
1023 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1024 * @di: pointer to the ab8500_fg structure
1025 * @comp: if voltage should be load compensated before capacity calc
1027 * Return the capacity in mAh based on the battery voltage. The voltage can
1028 * either be load compensated or not. This value is added to the filter and a
1029 * new mean value is calculated and returned.
1031 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg
*di
, bool comp
)
1036 permille
= ab8500_fg_load_comp_volt_to_capacity(di
);
1038 permille
= ab8500_fg_uncomp_volt_to_capacity(di
);
1040 mah
= ab8500_fg_convert_permille_to_mah(di
, permille
);
1042 di
->bat_cap
.mah
= ab8500_fg_add_cap_sample(di
, mah
);
1043 di
->bat_cap
.permille
=
1044 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1046 return di
->bat_cap
.mah
;
1050 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1051 * @di: pointer to the ab8500_fg structure
1053 * Return the capacity in mAh based on previous calculated capcity and the FG
1054 * accumulator register value. This value is added to the filter and a
1055 * new mean value is calculated and returned.
1057 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg
*di
)
1059 int permille_volt
, permille
;
1061 dev_dbg(di
->dev
, "%s cap_mah %d accu_charge %d\n",
1066 /* Capacity should not be less than 0 */
1067 if (di
->bat_cap
.mah
+ di
->accu_charge
> 0)
1068 di
->bat_cap
.mah
+= di
->accu_charge
;
1070 di
->bat_cap
.mah
= 0;
1072 if (di
->bat_cap
.mah
>= di
->bat_cap
.max_mah_design
)
1073 di
->bat_cap
.mah
= di
->bat_cap
.max_mah_design
;
1076 * Check against voltage based capacity. It can not be lower
1077 * than what the uncompensated voltage says
1079 permille
= ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1080 permille_volt
= ab8500_fg_uncomp_volt_to_capacity(di
);
1082 if (permille
< permille_volt
) {
1083 di
->bat_cap
.permille
= permille_volt
;
1084 di
->bat_cap
.mah
= ab8500_fg_convert_permille_to_mah(di
,
1085 di
->bat_cap
.permille
);
1087 dev_dbg(di
->dev
, "%s voltage based: perm %d perm_volt %d\n",
1092 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1094 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1095 di
->bat_cap
.permille
=
1096 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1099 return di
->bat_cap
.mah
;
1103 * ab8500_fg_capacity_level() - Get the battery capacity level
1104 * @di: pointer to the ab8500_fg structure
1106 * Get the battery capacity level based on the capacity in percent
1108 static int ab8500_fg_capacity_level(struct ab8500_fg
*di
)
1112 percent
= di
->bat_cap
.permille
/ 10;
1114 if (percent
<= di
->bat
->cap_levels
->critical
||
1116 ret
= POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL
;
1117 else if (percent
<= di
->bat
->cap_levels
->low
)
1118 ret
= POWER_SUPPLY_CAPACITY_LEVEL_LOW
;
1119 else if (percent
<= di
->bat
->cap_levels
->normal
)
1120 ret
= POWER_SUPPLY_CAPACITY_LEVEL_NORMAL
;
1121 else if (percent
<= di
->bat
->cap_levels
->high
)
1122 ret
= POWER_SUPPLY_CAPACITY_LEVEL_HIGH
;
1124 ret
= POWER_SUPPLY_CAPACITY_LEVEL_FULL
;
1130 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1131 * @di: pointer to the ab8500_fg structure
1132 * @init: capacity is allowed to go up in init mode
1134 * Check if capacity or capacity limit has changed and notify the system
1135 * about it using the power_supply framework
1137 static void ab8500_fg_check_capacity_limits(struct ab8500_fg
*di
, bool init
)
1139 bool changed
= false;
1141 di
->bat_cap
.level
= ab8500_fg_capacity_level(di
);
1143 if (di
->bat_cap
.level
!= di
->bat_cap
.prev_level
) {
1145 * We do not allow reported capacity level to go up
1146 * unless we're charging or if we're in init
1148 if (!(!di
->flags
.charging
&& di
->bat_cap
.level
>
1149 di
->bat_cap
.prev_level
) || init
) {
1150 dev_dbg(di
->dev
, "level changed from %d to %d\n",
1151 di
->bat_cap
.prev_level
,
1153 di
->bat_cap
.prev_level
= di
->bat_cap
.level
;
1156 dev_dbg(di
->dev
, "level not allowed to go up "
1157 "since no charger is connected: %d to %d\n",
1158 di
->bat_cap
.prev_level
,
1164 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1167 if (di
->flags
.low_bat
) {
1168 dev_dbg(di
->dev
, "Battery low, set capacity to 0\n");
1169 di
->bat_cap
.prev_percent
= 0;
1170 di
->bat_cap
.permille
= 0;
1171 di
->bat_cap
.prev_mah
= 0;
1172 di
->bat_cap
.mah
= 0;
1174 } else if (di
->flags
.fully_charged
) {
1176 * We report 100% if algorithm reported fully charged
1177 * unless capacity drops too much
1179 if (di
->flags
.force_full
) {
1180 di
->bat_cap
.prev_percent
= di
->bat_cap
.permille
/ 10;
1181 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1182 } else if (!di
->flags
.force_full
&&
1183 di
->bat_cap
.prev_percent
!=
1184 (di
->bat_cap
.permille
) / 10 &&
1185 (di
->bat_cap
.permille
/ 10) <
1186 di
->bat
->fg_params
->maint_thres
) {
1188 "battery reported full "
1189 "but capacity dropping: %d\n",
1190 di
->bat_cap
.permille
/ 10);
1191 di
->bat_cap
.prev_percent
= di
->bat_cap
.permille
/ 10;
1192 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1196 } else if (di
->bat_cap
.prev_percent
!= di
->bat_cap
.permille
/ 10) {
1197 if (di
->bat_cap
.permille
/ 10 == 0) {
1199 * We will not report 0% unless we've got
1200 * the LOW_BAT IRQ, no matter what the FG
1203 di
->bat_cap
.prev_percent
= 1;
1204 di
->bat_cap
.permille
= 1;
1205 di
->bat_cap
.prev_mah
= 1;
1206 di
->bat_cap
.mah
= 1;
1209 } else if (!(!di
->flags
.charging
&&
1210 (di
->bat_cap
.permille
/ 10) >
1211 di
->bat_cap
.prev_percent
) || init
) {
1213 * We do not allow reported capacity to go up
1214 * unless we're charging or if we're in init
1217 "capacity changed from %d to %d (%d)\n",
1218 di
->bat_cap
.prev_percent
,
1219 di
->bat_cap
.permille
/ 10,
1220 di
->bat_cap
.permille
);
1221 di
->bat_cap
.prev_percent
= di
->bat_cap
.permille
/ 10;
1222 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1226 dev_dbg(di
->dev
, "capacity not allowed to go up since "
1227 "no charger is connected: %d to %d (%d)\n",
1228 di
->bat_cap
.prev_percent
,
1229 di
->bat_cap
.permille
/ 10,
1230 di
->bat_cap
.permille
);
1235 power_supply_changed(&di
->fg_psy
);
1236 if (di
->flags
.fully_charged
&& di
->flags
.force_full
) {
1237 dev_dbg(di
->dev
, "Battery full, notifying.\n");
1238 di
->flags
.force_full
= false;
1239 sysfs_notify(&di
->fg_kobject
, NULL
, "charge_full");
1241 sysfs_notify(&di
->fg_kobject
, NULL
, "charge_now");
1245 static void ab8500_fg_charge_state_to(struct ab8500_fg
*di
,
1246 enum ab8500_fg_charge_state new_state
)
1248 dev_dbg(di
->dev
, "Charge state from %d [%s] to %d [%s]\n",
1250 charge_state
[di
->charge_state
],
1252 charge_state
[new_state
]);
1254 di
->charge_state
= new_state
;
1257 static void ab8500_fg_discharge_state_to(struct ab8500_fg
*di
,
1258 enum ab8500_fg_discharge_state new_state
)
1260 dev_dbg(di
->dev
, "Disharge state from %d [%s] to %d [%s]\n",
1261 di
->discharge_state
,
1262 discharge_state
[di
->discharge_state
],
1264 discharge_state
[new_state
]);
1266 di
->discharge_state
= new_state
;
1270 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1271 * @di: pointer to the ab8500_fg structure
1273 * Battery capacity calculation state machine for when we're charging
1275 static void ab8500_fg_algorithm_charging(struct ab8500_fg
*di
)
1278 * If we change to discharge mode
1279 * we should start with recovery
1281 if (di
->discharge_state
!= AB8500_FG_DISCHARGE_INIT_RECOVERY
)
1282 ab8500_fg_discharge_state_to(di
,
1283 AB8500_FG_DISCHARGE_INIT_RECOVERY
);
1285 switch (di
->charge_state
) {
1286 case AB8500_FG_CHARGE_INIT
:
1287 di
->fg_samples
= SEC_TO_SAMPLE(
1288 di
->bat
->fg_params
->accu_charging
);
1290 ab8500_fg_coulomb_counter(di
, true);
1291 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_READOUT
);
1295 case AB8500_FG_CHARGE_READOUT
:
1297 * Read the FG and calculate the new capacity
1299 mutex_lock(&di
->cc_lock
);
1300 if (!di
->flags
.conv_done
) {
1301 /* Wasn't the CC IRQ that got us here */
1302 mutex_unlock(&di
->cc_lock
);
1303 dev_dbg(di
->dev
, "%s CC conv not done\n",
1308 di
->flags
.conv_done
= false;
1309 mutex_unlock(&di
->cc_lock
);
1311 ab8500_fg_calc_cap_charging(di
);
1319 /* Check capacity limits */
1320 ab8500_fg_check_capacity_limits(di
, false);
1323 static void force_capacity(struct ab8500_fg
*di
)
1327 ab8500_fg_clear_cap_samples(di
);
1328 cap
= di
->bat_cap
.user_mah
;
1329 if (cap
> di
->bat_cap
.max_mah_design
) {
1330 dev_dbg(di
->dev
, "Remaining cap %d can't be bigger than total"
1331 " %d\n", cap
, di
->bat_cap
.max_mah_design
);
1332 cap
= di
->bat_cap
.max_mah_design
;
1334 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.user_mah
);
1335 di
->bat_cap
.permille
= ab8500_fg_convert_mah_to_permille(di
, cap
);
1336 di
->bat_cap
.mah
= cap
;
1337 ab8500_fg_check_capacity_limits(di
, true);
1340 static bool check_sysfs_capacity(struct ab8500_fg
*di
)
1342 int cap
, lower
, upper
;
1345 cap
= di
->bat_cap
.user_mah
;
1347 cap_permille
= ab8500_fg_convert_mah_to_permille(di
,
1348 di
->bat_cap
.user_mah
);
1350 lower
= di
->bat_cap
.permille
- di
->bat
->fg_params
->user_cap_limit
* 10;
1351 upper
= di
->bat_cap
.permille
+ di
->bat
->fg_params
->user_cap_limit
* 10;
1355 /* 1000 is permille, -> 100 percent */
1359 dev_dbg(di
->dev
, "Capacity limits:"
1360 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1361 lower
, cap_permille
, upper
, cap
, di
->bat_cap
.mah
);
1363 /* If within limits, use the saved capacity and exit estimation...*/
1364 if (cap_permille
> lower
&& cap_permille
< upper
) {
1365 dev_dbg(di
->dev
, "OK! Using users cap %d uAh now\n", cap
);
1369 dev_dbg(di
->dev
, "Capacity from user out of limits, ignoring");
1374 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1375 * @di: pointer to the ab8500_fg structure
1377 * Battery capacity calculation state machine for when we're discharging
1379 static void ab8500_fg_algorithm_discharging(struct ab8500_fg
*di
)
1383 /* If we change to charge mode we should start with init */
1384 if (di
->charge_state
!= AB8500_FG_CHARGE_INIT
)
1385 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
1387 switch (di
->discharge_state
) {
1388 case AB8500_FG_DISCHARGE_INIT
:
1389 /* We use the FG IRQ to work on */
1391 di
->fg_samples
= SEC_TO_SAMPLE(di
->bat
->fg_params
->init_timer
);
1392 ab8500_fg_coulomb_counter(di
, true);
1393 ab8500_fg_discharge_state_to(di
,
1394 AB8500_FG_DISCHARGE_INITMEASURING
);
1396 /* Intentional fallthrough */
1397 case AB8500_FG_DISCHARGE_INITMEASURING
:
1399 * Discard a number of samples during startup.
1400 * After that, use compensated voltage for a few
1401 * samples to get an initial capacity.
1402 * Then go to READOUT
1404 sleep_time
= di
->bat
->fg_params
->init_timer
;
1406 /* Discard the first [x] seconds */
1408 di
->bat
->fg_params
->init_discard_time
) {
1409 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1411 ab8500_fg_check_capacity_limits(di
, true);
1414 di
->init_cnt
+= sleep_time
;
1415 if (di
->init_cnt
> di
->bat
->fg_params
->init_total_time
)
1416 ab8500_fg_discharge_state_to(di
,
1417 AB8500_FG_DISCHARGE_READOUT_INIT
);
1421 case AB8500_FG_DISCHARGE_INIT_RECOVERY
:
1422 di
->recovery_cnt
= 0;
1423 di
->recovery_needed
= true;
1424 ab8500_fg_discharge_state_to(di
,
1425 AB8500_FG_DISCHARGE_RECOVERY
);
1427 /* Intentional fallthrough */
1429 case AB8500_FG_DISCHARGE_RECOVERY
:
1430 sleep_time
= di
->bat
->fg_params
->recovery_sleep_timer
;
1433 * We should check the power consumption
1434 * If low, go to READOUT (after x min) or
1435 * RECOVERY_SLEEP if time left.
1436 * If high, go to READOUT
1438 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1440 if (ab8500_fg_is_low_curr(di
, di
->inst_curr
)) {
1441 if (di
->recovery_cnt
>
1442 di
->bat
->fg_params
->recovery_total_time
) {
1443 di
->fg_samples
= SEC_TO_SAMPLE(
1444 di
->bat
->fg_params
->accu_high_curr
);
1445 ab8500_fg_coulomb_counter(di
, true);
1446 ab8500_fg_discharge_state_to(di
,
1447 AB8500_FG_DISCHARGE_READOUT
);
1448 di
->recovery_needed
= false;
1450 queue_delayed_work(di
->fg_wq
,
1451 &di
->fg_periodic_work
,
1454 di
->recovery_cnt
+= sleep_time
;
1456 di
->fg_samples
= SEC_TO_SAMPLE(
1457 di
->bat
->fg_params
->accu_high_curr
);
1458 ab8500_fg_coulomb_counter(di
, true);
1459 ab8500_fg_discharge_state_to(di
,
1460 AB8500_FG_DISCHARGE_READOUT
);
1464 case AB8500_FG_DISCHARGE_READOUT_INIT
:
1465 di
->fg_samples
= SEC_TO_SAMPLE(
1466 di
->bat
->fg_params
->accu_high_curr
);
1467 ab8500_fg_coulomb_counter(di
, true);
1468 ab8500_fg_discharge_state_to(di
,
1469 AB8500_FG_DISCHARGE_READOUT
);
1472 case AB8500_FG_DISCHARGE_READOUT
:
1473 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1475 if (ab8500_fg_is_low_curr(di
, di
->inst_curr
)) {
1476 /* Detect mode change */
1477 if (di
->high_curr_mode
) {
1478 di
->high_curr_mode
= false;
1479 di
->high_curr_cnt
= 0;
1482 if (di
->recovery_needed
) {
1483 ab8500_fg_discharge_state_to(di
,
1484 AB8500_FG_DISCHARGE_RECOVERY
);
1486 queue_delayed_work(di
->fg_wq
,
1487 &di
->fg_periodic_work
, 0);
1492 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1494 mutex_lock(&di
->cc_lock
);
1495 if (!di
->flags
.conv_done
) {
1496 /* Wasn't the CC IRQ that got us here */
1497 mutex_unlock(&di
->cc_lock
);
1498 dev_dbg(di
->dev
, "%s CC conv not done\n",
1503 di
->flags
.conv_done
= false;
1504 mutex_unlock(&di
->cc_lock
);
1506 /* Detect mode change */
1507 if (!di
->high_curr_mode
) {
1508 di
->high_curr_mode
= true;
1509 di
->high_curr_cnt
= 0;
1512 di
->high_curr_cnt
+=
1513 di
->bat
->fg_params
->accu_high_curr
;
1514 if (di
->high_curr_cnt
>
1515 di
->bat
->fg_params
->high_curr_time
)
1516 di
->recovery_needed
= true;
1518 ab8500_fg_calc_cap_discharge_fg(di
);
1521 ab8500_fg_check_capacity_limits(di
, false);
1525 case AB8500_FG_DISCHARGE_WAKEUP
:
1526 ab8500_fg_coulomb_counter(di
, true);
1527 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1529 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1531 di
->fg_samples
= SEC_TO_SAMPLE(
1532 di
->bat
->fg_params
->accu_high_curr
);
1533 ab8500_fg_coulomb_counter(di
, true);
1534 ab8500_fg_discharge_state_to(di
,
1535 AB8500_FG_DISCHARGE_READOUT
);
1537 ab8500_fg_check_capacity_limits(di
, false);
1547 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1548 * @di: pointer to the ab8500_fg structure
1551 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg
*di
)
1555 switch (di
->calib_state
) {
1556 case AB8500_FG_CALIB_INIT
:
1557 dev_dbg(di
->dev
, "Calibration ongoing...\n");
1559 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1560 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1561 CC_INT_CAL_N_AVG_MASK
, CC_INT_CAL_SAMPLES_8
);
1565 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1566 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1567 CC_INTAVGOFFSET_ENA
, CC_INTAVGOFFSET_ENA
);
1570 di
->calib_state
= AB8500_FG_CALIB_WAIT
;
1572 case AB8500_FG_CALIB_END
:
1573 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1574 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1575 CC_MUXOFFSET
, CC_MUXOFFSET
);
1578 di
->flags
.calibrate
= false;
1579 dev_dbg(di
->dev
, "Calibration done...\n");
1580 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1582 case AB8500_FG_CALIB_WAIT
:
1583 dev_dbg(di
->dev
, "Calibration WFI\n");
1589 /* Something went wrong, don't calibrate then */
1590 dev_err(di
->dev
, "failed to calibrate the CC\n");
1591 di
->flags
.calibrate
= false;
1592 di
->calib_state
= AB8500_FG_CALIB_INIT
;
1593 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1597 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1598 * @di: pointer to the ab8500_fg structure
1600 * Entry point for the battery capacity calculation state machine
1602 static void ab8500_fg_algorithm(struct ab8500_fg
*di
)
1604 if (di
->flags
.calibrate
)
1605 ab8500_fg_algorithm_calibrate(di
);
1607 if (di
->flags
.charging
)
1608 ab8500_fg_algorithm_charging(di
);
1610 ab8500_fg_algorithm_discharging(di
);
1613 dev_dbg(di
->dev
, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
1614 "%d %d %d %d %d %d %d\n",
1615 di
->bat_cap
.max_mah_design
,
1617 di
->bat_cap
.permille
,
1619 di
->bat_cap
.prev_mah
,
1620 di
->bat_cap
.prev_percent
,
1621 di
->bat_cap
.prev_level
,
1628 di
->discharge_state
,
1630 di
->recovery_needed
);
1634 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1635 * @work: pointer to the work_struct structure
1637 * Work queue function for periodic work
1639 static void ab8500_fg_periodic_work(struct work_struct
*work
)
1641 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1642 fg_periodic_work
.work
);
1644 if (di
->init_capacity
) {
1645 /* A dummy read that will return 0 */
1646 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1647 /* Get an initial capacity calculation */
1648 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1649 ab8500_fg_check_capacity_limits(di
, true);
1650 di
->init_capacity
= false;
1652 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1653 } else if (di
->flags
.user_cap
) {
1654 if (check_sysfs_capacity(di
)) {
1655 ab8500_fg_check_capacity_limits(di
, true);
1656 if (di
->flags
.charging
)
1657 ab8500_fg_charge_state_to(di
,
1658 AB8500_FG_CHARGE_INIT
);
1660 ab8500_fg_discharge_state_to(di
,
1661 AB8500_FG_DISCHARGE_READOUT_INIT
);
1663 di
->flags
.user_cap
= false;
1664 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1666 ab8500_fg_algorithm(di
);
1671 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1672 * @work: pointer to the work_struct structure
1674 * Work queue function for checking the OVV_BAT condition
1676 static void ab8500_fg_check_hw_failure_work(struct work_struct
*work
)
1681 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1682 fg_check_hw_failure_work
.work
);
1685 * If we have had a battery over-voltage situation,
1686 * check ovv-bit to see if it should be reset.
1688 if (di
->flags
.bat_ovv
) {
1689 ret
= abx500_get_register_interruptible(di
->dev
,
1690 AB8500_CHARGER
, AB8500_CH_STAT_REG
,
1693 dev_err(di
->dev
, "%s ab8500 read failed\n", __func__
);
1696 if ((reg_value
& BATT_OVV
) != BATT_OVV
) {
1697 dev_dbg(di
->dev
, "Battery recovered from OVV\n");
1698 di
->flags
.bat_ovv
= false;
1699 power_supply_changed(&di
->fg_psy
);
1703 /* Not yet recovered from ovv, reschedule this test */
1704 queue_delayed_work(di
->fg_wq
, &di
->fg_check_hw_failure_work
,
1710 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1711 * @work: pointer to the work_struct structure
1713 * Work queue function for checking the LOW_BAT condition
1715 static void ab8500_fg_low_bat_work(struct work_struct
*work
)
1719 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1720 fg_low_bat_work
.work
);
1722 vbat
= ab8500_fg_bat_voltage(di
);
1724 /* Check if LOW_BAT still fulfilled */
1725 if (vbat
< di
->bat
->fg_params
->lowbat_threshold
) {
1726 di
->flags
.low_bat
= true;
1727 dev_warn(di
->dev
, "Battery voltage still LOW\n");
1730 * We need to re-schedule this check to be able to detect
1731 * if the voltage increases again during charging
1733 queue_delayed_work(di
->fg_wq
, &di
->fg_low_bat_work
,
1734 round_jiffies(LOW_BAT_CHECK_INTERVAL
));
1736 di
->flags
.low_bat
= false;
1737 dev_warn(di
->dev
, "Battery voltage OK again\n");
1740 /* This is needed to dispatch LOW_BAT */
1741 ab8500_fg_check_capacity_limits(di
, false);
1743 /* Set this flag to check if LOW_BAT IRQ still occurs */
1744 di
->flags
.low_bat_delay
= false;
1748 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1749 * to the target voltage.
1750 * @di: pointer to the ab8500_fg structure
1751 * @target target voltage
1753 * Returns bit pattern closest to the target voltage
1754 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1757 static int ab8500_fg_battok_calc(struct ab8500_fg
*di
, int target
)
1759 if (target
> BATT_OK_MIN
+
1760 (BATT_OK_INCREMENT
* BATT_OK_MAX_NR_INCREMENTS
))
1761 return BATT_OK_MAX_NR_INCREMENTS
;
1762 if (target
< BATT_OK_MIN
)
1764 return (target
- BATT_OK_MIN
) / BATT_OK_INCREMENT
;
1768 * ab8500_fg_battok_init_hw_register - init battok levels
1769 * @di: pointer to the ab8500_fg structure
1773 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg
*di
)
1783 sel0
= di
->bat
->fg_params
->battok_falling_th_sel0
;
1784 sel1
= di
->bat
->fg_params
->battok_raising_th_sel1
;
1786 cbp_sel0
= ab8500_fg_battok_calc(di
, sel0
);
1787 cbp_sel1
= ab8500_fg_battok_calc(di
, sel1
);
1789 selected
= BATT_OK_MIN
+ cbp_sel0
* BATT_OK_INCREMENT
;
1791 if (selected
!= sel0
)
1792 dev_warn(di
->dev
, "Invalid voltage step:%d, using %d %d\n",
1793 sel0
, selected
, cbp_sel0
);
1795 selected
= BATT_OK_MIN
+ cbp_sel1
* BATT_OK_INCREMENT
;
1797 if (selected
!= sel1
)
1798 dev_warn(di
->dev
, "Invalid voltage step:%d, using %d %d\n",
1799 sel1
, selected
, cbp_sel1
);
1801 new_val
= cbp_sel0
| (cbp_sel1
<< 4);
1803 dev_dbg(di
->dev
, "using: %x %d %d\n", new_val
, cbp_sel0
, cbp_sel1
);
1804 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_SYS_CTRL2_BLOCK
,
1805 AB8500_BATT_OK_REG
, new_val
);
1810 * ab8500_fg_instant_work() - Run the FG state machine instantly
1811 * @work: pointer to the work_struct structure
1813 * Work queue function for instant work
1815 static void ab8500_fg_instant_work(struct work_struct
*work
)
1817 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
, fg_work
);
1819 ab8500_fg_algorithm(di
);
1823 * ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
1824 * @irq: interrupt number
1825 * @_di: pointer to the ab8500_fg structure
1827 * Returns IRQ status(IRQ_HANDLED)
1829 static irqreturn_t
ab8500_fg_cc_data_end_handler(int irq
, void *_di
)
1831 struct ab8500_fg
*di
= _di
;
1832 complete(&di
->ab8500_fg_complete
);
1837 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1838 * @irq: interrupt number
1839 * @_di: pointer to the ab8500_fg structure
1841 * Returns IRQ status(IRQ_HANDLED)
1843 static irqreturn_t
ab8500_fg_cc_int_calib_handler(int irq
, void *_di
)
1845 struct ab8500_fg
*di
= _di
;
1846 di
->calib_state
= AB8500_FG_CALIB_END
;
1847 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1852 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1853 * @irq: interrupt number
1854 * @_di: pointer to the ab8500_fg structure
1856 * Returns IRQ status(IRQ_HANDLED)
1858 static irqreturn_t
ab8500_fg_cc_convend_handler(int irq
, void *_di
)
1860 struct ab8500_fg
*di
= _di
;
1862 queue_work(di
->fg_wq
, &di
->fg_acc_cur_work
);
1868 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
1869 * @irq: interrupt number
1870 * @_di: pointer to the ab8500_fg structure
1872 * Returns IRQ status(IRQ_HANDLED)
1874 static irqreturn_t
ab8500_fg_batt_ovv_handler(int irq
, void *_di
)
1876 struct ab8500_fg
*di
= _di
;
1878 dev_dbg(di
->dev
, "Battery OVV\n");
1879 di
->flags
.bat_ovv
= true;
1880 power_supply_changed(&di
->fg_psy
);
1882 /* Schedule a new HW failure check */
1883 queue_delayed_work(di
->fg_wq
, &di
->fg_check_hw_failure_work
, 0);
1889 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
1890 * @irq: interrupt number
1891 * @_di: pointer to the ab8500_fg structure
1893 * Returns IRQ status(IRQ_HANDLED)
1895 static irqreturn_t
ab8500_fg_lowbatf_handler(int irq
, void *_di
)
1897 struct ab8500_fg
*di
= _di
;
1899 if (!di
->flags
.low_bat_delay
) {
1900 dev_warn(di
->dev
, "Battery voltage is below LOW threshold\n");
1901 di
->flags
.low_bat_delay
= true;
1903 * Start a timer to check LOW_BAT again after some time
1904 * This is done to avoid shutdown on single voltage dips
1906 queue_delayed_work(di
->fg_wq
, &di
->fg_low_bat_work
,
1907 round_jiffies(LOW_BAT_CHECK_INTERVAL
));
1913 * ab8500_fg_get_property() - get the fg properties
1914 * @psy: pointer to the power_supply structure
1915 * @psp: pointer to the power_supply_property structure
1916 * @val: pointer to the power_supply_propval union
1918 * This function gets called when an application tries to get the
1919 * fg properties by reading the sysfs files.
1920 * voltage_now: battery voltage
1921 * current_now: battery instant current
1922 * current_avg: battery average current
1923 * charge_full_design: capacity where battery is considered full
1924 * charge_now: battery capacity in nAh
1925 * capacity: capacity in percent
1926 * capacity_level: capacity level
1928 * Returns error code in case of failure else 0 on success
1930 static int ab8500_fg_get_property(struct power_supply
*psy
,
1931 enum power_supply_property psp
,
1932 union power_supply_propval
*val
)
1934 struct ab8500_fg
*di
;
1936 di
= to_ab8500_fg_device_info(psy
);
1939 * If battery is identified as unknown and charging of unknown
1940 * batteries is disabled, we always report 100% capacity and
1941 * capacity level UNKNOWN, since we can't calculate
1942 * remaining capacity
1946 case POWER_SUPPLY_PROP_VOLTAGE_NOW
:
1947 if (di
->flags
.bat_ovv
)
1948 val
->intval
= BATT_OVV_VALUE
* 1000;
1950 val
->intval
= di
->vbat
* 1000;
1952 case POWER_SUPPLY_PROP_CURRENT_NOW
:
1953 val
->intval
= di
->inst_curr
* 1000;
1955 case POWER_SUPPLY_PROP_CURRENT_AVG
:
1956 val
->intval
= di
->avg_curr
* 1000;
1958 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN
:
1959 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
1960 di
->bat_cap
.max_mah_design
);
1962 case POWER_SUPPLY_PROP_ENERGY_FULL
:
1963 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
1964 di
->bat_cap
.max_mah
);
1966 case POWER_SUPPLY_PROP_ENERGY_NOW
:
1967 if (di
->flags
.batt_unknown
&& !di
->bat
->chg_unknown_bat
&&
1968 di
->flags
.batt_id_received
)
1969 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
1970 di
->bat_cap
.max_mah
);
1972 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
1973 di
->bat_cap
.prev_mah
);
1975 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN
:
1976 val
->intval
= di
->bat_cap
.max_mah_design
;
1978 case POWER_SUPPLY_PROP_CHARGE_FULL
:
1979 val
->intval
= di
->bat_cap
.max_mah
;
1981 case POWER_SUPPLY_PROP_CHARGE_NOW
:
1982 if (di
->flags
.batt_unknown
&& !di
->bat
->chg_unknown_bat
&&
1983 di
->flags
.batt_id_received
)
1984 val
->intval
= di
->bat_cap
.max_mah
;
1986 val
->intval
= di
->bat_cap
.prev_mah
;
1988 case POWER_SUPPLY_PROP_CAPACITY
:
1989 if (di
->flags
.batt_unknown
&& !di
->bat
->chg_unknown_bat
&&
1990 di
->flags
.batt_id_received
)
1993 val
->intval
= di
->bat_cap
.prev_percent
;
1995 case POWER_SUPPLY_PROP_CAPACITY_LEVEL
:
1996 if (di
->flags
.batt_unknown
&& !di
->bat
->chg_unknown_bat
&&
1997 di
->flags
.batt_id_received
)
1998 val
->intval
= POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN
;
2000 val
->intval
= di
->bat_cap
.prev_level
;
2008 static int ab8500_fg_get_ext_psy_data(struct device
*dev
, void *data
)
2010 struct power_supply
*psy
;
2011 struct power_supply
*ext
;
2012 struct ab8500_fg
*di
;
2013 union power_supply_propval ret
;
2015 bool psy_found
= false;
2017 psy
= (struct power_supply
*)data
;
2018 ext
= dev_get_drvdata(dev
);
2019 di
= to_ab8500_fg_device_info(psy
);
2022 * For all psy where the name of your driver
2023 * appears in any supplied_to
2025 for (i
= 0; i
< ext
->num_supplicants
; i
++) {
2026 if (!strcmp(ext
->supplied_to
[i
], psy
->name
))
2033 /* Go through all properties for the psy */
2034 for (j
= 0; j
< ext
->num_properties
; j
++) {
2035 enum power_supply_property prop
;
2036 prop
= ext
->properties
[j
];
2038 if (ext
->get_property(ext
, prop
, &ret
))
2042 case POWER_SUPPLY_PROP_STATUS
:
2043 switch (ext
->type
) {
2044 case POWER_SUPPLY_TYPE_BATTERY
:
2045 switch (ret
.intval
) {
2046 case POWER_SUPPLY_STATUS_UNKNOWN
:
2047 case POWER_SUPPLY_STATUS_DISCHARGING
:
2048 case POWER_SUPPLY_STATUS_NOT_CHARGING
:
2049 if (!di
->flags
.charging
)
2051 di
->flags
.charging
= false;
2052 di
->flags
.fully_charged
= false;
2053 queue_work(di
->fg_wq
, &di
->fg_work
);
2055 case POWER_SUPPLY_STATUS_FULL
:
2056 if (di
->flags
.fully_charged
)
2058 di
->flags
.fully_charged
= true;
2059 di
->flags
.force_full
= true;
2060 /* Save current capacity as maximum */
2061 di
->bat_cap
.max_mah
= di
->bat_cap
.mah
;
2062 queue_work(di
->fg_wq
, &di
->fg_work
);
2064 case POWER_SUPPLY_STATUS_CHARGING
:
2065 if (di
->flags
.charging
)
2067 di
->flags
.charging
= true;
2068 di
->flags
.fully_charged
= false;
2069 queue_work(di
->fg_wq
, &di
->fg_work
);
2076 case POWER_SUPPLY_PROP_TECHNOLOGY
:
2077 switch (ext
->type
) {
2078 case POWER_SUPPLY_TYPE_BATTERY
:
2079 if (!di
->flags
.batt_id_received
) {
2080 const struct abx500_battery_type
*b
;
2082 b
= &(di
->bat
->bat_type
[di
->bat
->batt_id
]);
2084 di
->flags
.batt_id_received
= true;
2086 di
->bat_cap
.max_mah_design
=
2088 b
->charge_full_design
;
2090 di
->bat_cap
.max_mah
=
2091 di
->bat_cap
.max_mah_design
;
2093 di
->vbat_nom
= b
->nominal_voltage
;
2097 di
->flags
.batt_unknown
= false;
2099 di
->flags
.batt_unknown
= true;
2105 case POWER_SUPPLY_PROP_TEMP
:
2106 switch (ext
->type
) {
2107 case POWER_SUPPLY_TYPE_BATTERY
:
2108 if (di
->flags
.batt_id_received
)
2109 di
->bat_temp
= ret
.intval
;
2123 * ab8500_fg_init_hw_registers() - Set up FG related registers
2124 * @di: pointer to the ab8500_fg structure
2126 * Set up battery OVV, low battery voltage registers
2128 static int ab8500_fg_init_hw_registers(struct ab8500_fg
*di
)
2132 /* Set VBAT OVV threshold */
2133 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
2139 dev_err(di
->dev
, "failed to set BATT_OVV\n");
2143 /* Enable VBAT OVV detection */
2144 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
2150 dev_err(di
->dev
, "failed to enable BATT_OVV\n");
2154 /* Low Battery Voltage */
2155 ret
= abx500_set_register_interruptible(di
->dev
,
2156 AB8500_SYS_CTRL2_BLOCK
,
2158 ab8500_volt_to_regval(
2159 di
->bat
->fg_params
->lowbat_threshold
) << 1 |
2162 dev_err(di
->dev
, "%s write failed\n", __func__
);
2166 /* Battery OK threshold */
2167 ret
= ab8500_fg_battok_init_hw_register(di
);
2169 dev_err(di
->dev
, "BattOk init write failed.\n");
2177 * ab8500_fg_external_power_changed() - callback for power supply changes
2178 * @psy: pointer to the structure power_supply
2180 * This function is the entry point of the pointer external_power_changed
2181 * of the structure power_supply.
2182 * This function gets executed when there is a change in any external power
2183 * supply that this driver needs to be notified of.
2185 static void ab8500_fg_external_power_changed(struct power_supply
*psy
)
2187 struct ab8500_fg
*di
= to_ab8500_fg_device_info(psy
);
2189 class_for_each_device(power_supply_class
, NULL
,
2190 &di
->fg_psy
, ab8500_fg_get_ext_psy_data
);
2194 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2195 * @work: pointer to the work_struct structure
2197 * Used to reset the current battery capacity to be able to
2198 * retrigger a new voltage base capacity calculation. For
2199 * test and verification purpose.
2201 static void ab8500_fg_reinit_work(struct work_struct
*work
)
2203 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
2204 fg_reinit_work
.work
);
2206 if (di
->flags
.calibrate
== false) {
2207 dev_dbg(di
->dev
, "Resetting FG state machine to init.\n");
2208 ab8500_fg_clear_cap_samples(di
);
2209 ab8500_fg_calc_cap_discharge_voltage(di
, true);
2210 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
2211 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_INIT
);
2212 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2215 dev_err(di
->dev
, "Residual offset calibration ongoing "
2217 /* Wait one second until next try*/
2218 queue_delayed_work(di
->fg_wq
, &di
->fg_reinit_work
,
2224 * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2226 * This function can be used to force the FG algorithm to recalculate a new
2227 * voltage based battery capacity.
2229 void ab8500_fg_reinit(void)
2231 struct ab8500_fg
*di
= ab8500_fg_get();
2232 /* User won't be notified if a null pointer returned. */
2234 queue_delayed_work(di
->fg_wq
, &di
->fg_reinit_work
, 0);
2237 /* Exposure to the sysfs interface */
2239 struct ab8500_fg_sysfs_entry
{
2240 struct attribute attr
;
2241 ssize_t (*show
)(struct ab8500_fg
*, char *);
2242 ssize_t (*store
)(struct ab8500_fg
*, const char *, size_t);
2245 static ssize_t
charge_full_show(struct ab8500_fg
*di
, char *buf
)
2247 return sprintf(buf
, "%d\n", di
->bat_cap
.max_mah
);
2250 static ssize_t
charge_full_store(struct ab8500_fg
*di
, const char *buf
,
2253 unsigned long charge_full
;
2254 ssize_t ret
= -EINVAL
;
2256 ret
= strict_strtoul(buf
, 10, &charge_full
);
2258 dev_dbg(di
->dev
, "Ret %zd charge_full %lu", ret
, charge_full
);
2261 di
->bat_cap
.max_mah
= (int) charge_full
;
2267 static ssize_t
charge_now_show(struct ab8500_fg
*di
, char *buf
)
2269 return sprintf(buf
, "%d\n", di
->bat_cap
.prev_mah
);
2272 static ssize_t
charge_now_store(struct ab8500_fg
*di
, const char *buf
,
2275 unsigned long charge_now
;
2278 ret
= strict_strtoul(buf
, 10, &charge_now
);
2280 dev_dbg(di
->dev
, "Ret %zd charge_now %lu was %d",
2281 ret
, charge_now
, di
->bat_cap
.prev_mah
);
2284 di
->bat_cap
.user_mah
= (int) charge_now
;
2285 di
->flags
.user_cap
= true;
2287 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2292 static struct ab8500_fg_sysfs_entry charge_full_attr
=
2293 __ATTR(charge_full
, 0644, charge_full_show
, charge_full_store
);
2295 static struct ab8500_fg_sysfs_entry charge_now_attr
=
2296 __ATTR(charge_now
, 0644, charge_now_show
, charge_now_store
);
2299 ab8500_fg_show(struct kobject
*kobj
, struct attribute
*attr
, char *buf
)
2301 struct ab8500_fg_sysfs_entry
*entry
;
2302 struct ab8500_fg
*di
;
2304 entry
= container_of(attr
, struct ab8500_fg_sysfs_entry
, attr
);
2305 di
= container_of(kobj
, struct ab8500_fg
, fg_kobject
);
2310 return entry
->show(di
, buf
);
2313 ab8500_fg_store(struct kobject
*kobj
, struct attribute
*attr
, const char *buf
,
2316 struct ab8500_fg_sysfs_entry
*entry
;
2317 struct ab8500_fg
*di
;
2319 entry
= container_of(attr
, struct ab8500_fg_sysfs_entry
, attr
);
2320 di
= container_of(kobj
, struct ab8500_fg
, fg_kobject
);
2325 return entry
->store(di
, buf
, count
);
2328 static const struct sysfs_ops ab8500_fg_sysfs_ops
= {
2329 .show
= ab8500_fg_show
,
2330 .store
= ab8500_fg_store
,
2333 static struct attribute
*ab8500_fg_attrs
[] = {
2334 &charge_full_attr
.attr
,
2335 &charge_now_attr
.attr
,
2339 static struct kobj_type ab8500_fg_ktype
= {
2340 .sysfs_ops
= &ab8500_fg_sysfs_ops
,
2341 .default_attrs
= ab8500_fg_attrs
,
2345 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2346 * @di: pointer to the struct ab8500_chargalg
2348 * This function removes the entry in sysfs.
2350 static void ab8500_fg_sysfs_exit(struct ab8500_fg
*di
)
2352 kobject_del(&di
->fg_kobject
);
2356 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2357 * @di: pointer to the struct ab8500_chargalg
2359 * This function adds an entry in sysfs.
2360 * Returns error code in case of failure else 0(on success)
2362 static int ab8500_fg_sysfs_init(struct ab8500_fg
*di
)
2366 ret
= kobject_init_and_add(&di
->fg_kobject
,
2370 dev_err(di
->dev
, "failed to create sysfs entry\n");
2374 /* Exposure to the sysfs interface <<END>> */
2376 #if defined(CONFIG_PM)
2377 static int ab8500_fg_resume(struct platform_device
*pdev
)
2379 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
2382 * Change state if we're not charging. If we're charging we will wake
2385 if (!di
->flags
.charging
) {
2386 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_WAKEUP
);
2387 queue_work(di
->fg_wq
, &di
->fg_work
);
2393 static int ab8500_fg_suspend(struct platform_device
*pdev
,
2396 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
2398 flush_delayed_work(&di
->fg_periodic_work
);
2401 * If the FG is enabled we will disable it before going to suspend
2402 * only if we're not charging
2404 if (di
->flags
.fg_enabled
&& !di
->flags
.charging
)
2405 ab8500_fg_coulomb_counter(di
, false);
2410 #define ab8500_fg_suspend NULL
2411 #define ab8500_fg_resume NULL
2414 static int __devexit
ab8500_fg_remove(struct platform_device
*pdev
)
2417 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
2419 list_del(&di
->node
);
2421 /* Disable coulomb counter */
2422 ret
= ab8500_fg_coulomb_counter(di
, false);
2424 dev_err(di
->dev
, "failed to disable coulomb counter\n");
2426 destroy_workqueue(di
->fg_wq
);
2427 ab8500_fg_sysfs_exit(di
);
2429 flush_scheduled_work();
2430 power_supply_unregister(&di
->fg_psy
);
2431 platform_set_drvdata(pdev
, NULL
);
2436 /* ab8500 fg driver interrupts and their respective isr */
2437 static struct ab8500_fg_interrupts ab8500_fg_irq
[] = {
2438 {"NCONV_ACCU", ab8500_fg_cc_convend_handler
},
2439 {"BATT_OVV", ab8500_fg_batt_ovv_handler
},
2440 {"LOW_BAT_F", ab8500_fg_lowbatf_handler
},
2441 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler
},
2442 {"CCEOC", ab8500_fg_cc_data_end_handler
},
2445 static int __devinit
ab8500_fg_probe(struct platform_device
*pdev
)
2449 struct abx500_bm_plat_data
*plat_data
= pdev
->dev
.platform_data
;
2450 struct ab8500_fg
*di
;
2453 dev_err(&pdev
->dev
, "No platform data\n");
2457 di
= kzalloc(sizeof(*di
), GFP_KERNEL
);
2461 mutex_init(&di
->cc_lock
);
2463 /* get parent data */
2464 di
->dev
= &pdev
->dev
;
2465 di
->parent
= dev_get_drvdata(pdev
->dev
.parent
);
2466 di
->gpadc
= ab8500_gpadc_get("ab8500-gpadc.0");
2468 /* get fg specific platform data */
2469 di
->pdata
= plat_data
->fg
;
2471 dev_err(di
->dev
, "no fg platform data supplied\n");
2473 goto free_device_info
;
2476 /* get battery specific platform data */
2477 di
->bat
= plat_data
->battery
;
2479 dev_err(di
->dev
, "no battery platform data supplied\n");
2481 goto free_device_info
;
2484 di
->fg_psy
.name
= "ab8500_fg";
2485 di
->fg_psy
.type
= POWER_SUPPLY_TYPE_BATTERY
;
2486 di
->fg_psy
.properties
= ab8500_fg_props
;
2487 di
->fg_psy
.num_properties
= ARRAY_SIZE(ab8500_fg_props
);
2488 di
->fg_psy
.get_property
= ab8500_fg_get_property
;
2489 di
->fg_psy
.supplied_to
= di
->pdata
->supplied_to
;
2490 di
->fg_psy
.num_supplicants
= di
->pdata
->num_supplicants
;
2491 di
->fg_psy
.external_power_changed
= ab8500_fg_external_power_changed
;
2493 di
->bat_cap
.max_mah_design
= MILLI_TO_MICRO
*
2494 di
->bat
->bat_type
[di
->bat
->batt_id
].charge_full_design
;
2496 di
->bat_cap
.max_mah
= di
->bat_cap
.max_mah_design
;
2498 di
->vbat_nom
= di
->bat
->bat_type
[di
->bat
->batt_id
].nominal_voltage
;
2500 di
->init_capacity
= true;
2502 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
2503 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_INIT
);
2505 /* Create a work queue for running the FG algorithm */
2506 di
->fg_wq
= create_singlethread_workqueue("ab8500_fg_wq");
2507 if (di
->fg_wq
== NULL
) {
2508 dev_err(di
->dev
, "failed to create work queue\n");
2509 goto free_device_info
;
2512 /* Init work for running the fg algorithm instantly */
2513 INIT_WORK(&di
->fg_work
, ab8500_fg_instant_work
);
2515 /* Init work for getting the battery accumulated current */
2516 INIT_WORK(&di
->fg_acc_cur_work
, ab8500_fg_acc_cur_work
);
2518 /* Init work for reinitialising the fg algorithm */
2519 INIT_DELAYED_WORK_DEFERRABLE(&di
->fg_reinit_work
,
2520 ab8500_fg_reinit_work
);
2522 /* Work delayed Queue to run the state machine */
2523 INIT_DELAYED_WORK_DEFERRABLE(&di
->fg_periodic_work
,
2524 ab8500_fg_periodic_work
);
2526 /* Work to check low battery condition */
2527 INIT_DELAYED_WORK_DEFERRABLE(&di
->fg_low_bat_work
,
2528 ab8500_fg_low_bat_work
);
2530 /* Init work for HW failure check */
2531 INIT_DELAYED_WORK_DEFERRABLE(&di
->fg_check_hw_failure_work
,
2532 ab8500_fg_check_hw_failure_work
);
2534 /* Initialize OVV, and other registers */
2535 ret
= ab8500_fg_init_hw_registers(di
);
2537 dev_err(di
->dev
, "failed to initialize registers\n");
2538 goto free_inst_curr_wq
;
2541 /* Consider battery unknown until we're informed otherwise */
2542 di
->flags
.batt_unknown
= true;
2543 di
->flags
.batt_id_received
= false;
2545 /* Register FG power supply class */
2546 ret
= power_supply_register(di
->dev
, &di
->fg_psy
);
2548 dev_err(di
->dev
, "failed to register FG psy\n");
2549 goto free_inst_curr_wq
;
2552 di
->fg_samples
= SEC_TO_SAMPLE(di
->bat
->fg_params
->init_timer
);
2553 ab8500_fg_coulomb_counter(di
, true);
2555 /* Initialize completion used to notify completion of inst current */
2556 init_completion(&di
->ab8500_fg_complete
);
2558 /* Register interrupts */
2559 for (i
= 0; i
< ARRAY_SIZE(ab8500_fg_irq
); i
++) {
2560 irq
= platform_get_irq_byname(pdev
, ab8500_fg_irq
[i
].name
);
2561 ret
= request_threaded_irq(irq
, NULL
, ab8500_fg_irq
[i
].isr
,
2562 IRQF_SHARED
| IRQF_NO_SUSPEND
,
2563 ab8500_fg_irq
[i
].name
, di
);
2566 dev_err(di
->dev
, "failed to request %s IRQ %d: %d\n"
2567 , ab8500_fg_irq
[i
].name
, irq
, ret
);
2570 dev_dbg(di
->dev
, "Requested %s IRQ %d: %d\n",
2571 ab8500_fg_irq
[i
].name
, irq
, ret
);
2573 di
->irq
= platform_get_irq_byname(pdev
, "CCEOC");
2574 disable_irq(di
->irq
);
2576 platform_set_drvdata(pdev
, di
);
2578 ret
= ab8500_fg_sysfs_init(di
);
2580 dev_err(di
->dev
, "failed to create sysfs entry\n");
2584 /* Calibrate the fg first time */
2585 di
->flags
.calibrate
= true;
2586 di
->calib_state
= AB8500_FG_CALIB_INIT
;
2588 /* Use room temp as default value until we get an update from driver. */
2591 /* Run the FG algorithm */
2592 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2594 list_add_tail(&di
->node
, &ab8500_fg_list
);
2599 power_supply_unregister(&di
->fg_psy
);
2601 /* We also have to free all successfully registered irqs */
2602 for (i
= i
- 1; i
>= 0; i
--) {
2603 irq
= platform_get_irq_byname(pdev
, ab8500_fg_irq
[i
].name
);
2607 destroy_workqueue(di
->fg_wq
);
2614 static struct platform_driver ab8500_fg_driver
= {
2615 .probe
= ab8500_fg_probe
,
2616 .remove
= __devexit_p(ab8500_fg_remove
),
2617 .suspend
= ab8500_fg_suspend
,
2618 .resume
= ab8500_fg_resume
,
2620 .name
= "ab8500-fg",
2621 .owner
= THIS_MODULE
,
2625 static int __init
ab8500_fg_init(void)
2627 return platform_driver_register(&ab8500_fg_driver
);
2630 static void __exit
ab8500_fg_exit(void)
2632 platform_driver_unregister(&ab8500_fg_driver
);
2635 subsys_initcall_sync(ab8500_fg_init
);
2636 module_exit(ab8500_fg_exit
);
2638 MODULE_LICENSE("GPL v2");
2639 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
2640 MODULE_ALIAS("platform:ab8500-fg");
2641 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");