3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * PV guests under Xen are running in an non-contiguous memory architecture.
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
36 #include <linux/bootmem.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/export.h>
39 #include <xen/swiotlb-xen.h>
41 #include <xen/xen-ops.h>
42 #include <xen/hvc-console.h>
44 * Used to do a quick range check in swiotlb_tbl_unmap_single and
45 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
49 static char *xen_io_tlb_start
, *xen_io_tlb_end
;
50 static unsigned long xen_io_tlb_nslabs
;
52 * Quick lookup value of the bus address of the IOTLB.
57 static dma_addr_t
xen_phys_to_bus(phys_addr_t paddr
)
59 return phys_to_machine(XPADDR(paddr
)).maddr
;
62 static phys_addr_t
xen_bus_to_phys(dma_addr_t baddr
)
64 return machine_to_phys(XMADDR(baddr
)).paddr
;
67 static dma_addr_t
xen_virt_to_bus(void *address
)
69 return xen_phys_to_bus(virt_to_phys(address
));
72 static int check_pages_physically_contiguous(unsigned long pfn
,
76 unsigned long next_mfn
;
80 next_mfn
= pfn_to_mfn(pfn
);
81 nr_pages
= (offset
+ length
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
83 for (i
= 1; i
< nr_pages
; i
++) {
84 if (pfn_to_mfn(++pfn
) != ++next_mfn
)
90 static int range_straddles_page_boundary(phys_addr_t p
, size_t size
)
92 unsigned long pfn
= PFN_DOWN(p
);
93 unsigned int offset
= p
& ~PAGE_MASK
;
95 if (offset
+ size
<= PAGE_SIZE
)
97 if (check_pages_physically_contiguous(pfn
, offset
, size
))
102 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr
)
104 unsigned long mfn
= PFN_DOWN(dma_addr
);
105 unsigned long pfn
= mfn_to_local_pfn(mfn
);
108 /* If the address is outside our domain, it CAN
109 * have the same virtual address as another address
110 * in our domain. Therefore _only_ check address within our domain.
112 if (pfn_valid(pfn
)) {
113 paddr
= PFN_PHYS(pfn
);
114 return paddr
>= virt_to_phys(xen_io_tlb_start
) &&
115 paddr
< virt_to_phys(xen_io_tlb_end
);
120 static int max_dma_bits
= 32;
123 xen_swiotlb_fixup(void *buf
, size_t size
, unsigned long nslabs
)
128 dma_bits
= get_order(IO_TLB_SEGSIZE
<< IO_TLB_SHIFT
) + PAGE_SHIFT
;
132 int slabs
= min(nslabs
- i
, (unsigned long)IO_TLB_SEGSIZE
);
135 rc
= xen_create_contiguous_region(
136 (unsigned long)buf
+ (i
<< IO_TLB_SHIFT
),
137 get_order(slabs
<< IO_TLB_SHIFT
),
139 } while (rc
&& dma_bits
++ < max_dma_bits
);
144 } while (i
< nslabs
);
148 void __init
xen_swiotlb_init(int verbose
)
152 unsigned long nr_tbl
;
154 unsigned int repeat
= 3;
156 nr_tbl
= swiotlb_nr_tbl();
158 xen_io_tlb_nslabs
= nr_tbl
;
160 xen_io_tlb_nslabs
= (64 * 1024 * 1024 >> IO_TLB_SHIFT
);
161 xen_io_tlb_nslabs
= ALIGN(xen_io_tlb_nslabs
, IO_TLB_SEGSIZE
);
164 bytes
= xen_io_tlb_nslabs
<< IO_TLB_SHIFT
;
167 * Get IO TLB memory from any location.
169 xen_io_tlb_start
= alloc_bootmem_pages(PAGE_ALIGN(bytes
));
170 if (!xen_io_tlb_start
) {
171 m
= "Cannot allocate Xen-SWIOTLB buffer!\n";
174 xen_io_tlb_end
= xen_io_tlb_start
+ bytes
;
176 * And replace that memory with pages under 4GB.
178 rc
= xen_swiotlb_fixup(xen_io_tlb_start
,
182 free_bootmem(__pa(xen_io_tlb_start
), PAGE_ALIGN(bytes
));
183 m
= "Failed to get contiguous memory for DMA from Xen!\n"\
184 "You either: don't have the permissions, do not have"\
185 " enough free memory under 4GB, or the hypervisor memory"\
186 "is too fragmented!";
189 start_dma_addr
= xen_virt_to_bus(xen_io_tlb_start
);
190 swiotlb_init_with_tbl(xen_io_tlb_start
, xen_io_tlb_nslabs
, verbose
);
195 xen_io_tlb_nslabs
= max(1024UL, /* Min is 2MB */
196 (xen_io_tlb_nslabs
>> 1));
197 printk(KERN_INFO
"Xen-SWIOTLB: Lowering to %luMB\n",
198 (xen_io_tlb_nslabs
<< IO_TLB_SHIFT
) >> 20);
201 xen_raw_printk("%s (rc:%d)", m
, rc
);
202 panic("%s (rc:%d)", m
, rc
);
206 xen_swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
207 dma_addr_t
*dma_handle
, gfp_t flags
,
208 struct dma_attrs
*attrs
)
211 int order
= get_order(size
);
212 u64 dma_mask
= DMA_BIT_MASK(32);
213 unsigned long vstart
;
218 * Ignore region specifiers - the kernel's ideas of
219 * pseudo-phys memory layout has nothing to do with the
220 * machine physical layout. We can't allocate highmem
221 * because we can't return a pointer to it.
223 flags
&= ~(__GFP_DMA
| __GFP_HIGHMEM
);
225 if (dma_alloc_from_coherent(hwdev
, size
, dma_handle
, &ret
))
228 vstart
= __get_free_pages(flags
, order
);
229 ret
= (void *)vstart
;
234 if (hwdev
&& hwdev
->coherent_dma_mask
)
235 dma_mask
= hwdev
->coherent_dma_mask
;
237 phys
= virt_to_phys(ret
);
238 dev_addr
= xen_phys_to_bus(phys
);
239 if (((dev_addr
+ size
- 1 <= dma_mask
)) &&
240 !range_straddles_page_boundary(phys
, size
))
241 *dma_handle
= dev_addr
;
243 if (xen_create_contiguous_region(vstart
, order
,
244 fls64(dma_mask
)) != 0) {
245 free_pages(vstart
, order
);
248 *dma_handle
= virt_to_machine(ret
).maddr
;
250 memset(ret
, 0, size
);
253 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent
);
256 xen_swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
257 dma_addr_t dev_addr
, struct dma_attrs
*attrs
)
259 int order
= get_order(size
);
261 u64 dma_mask
= DMA_BIT_MASK(32);
263 if (dma_release_from_coherent(hwdev
, order
, vaddr
))
266 if (hwdev
&& hwdev
->coherent_dma_mask
)
267 dma_mask
= hwdev
->coherent_dma_mask
;
269 phys
= virt_to_phys(vaddr
);
271 if (((dev_addr
+ size
- 1 > dma_mask
)) ||
272 range_straddles_page_boundary(phys
, size
))
273 xen_destroy_contiguous_region((unsigned long)vaddr
, order
);
275 free_pages((unsigned long)vaddr
, order
);
277 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent
);
281 * Map a single buffer of the indicated size for DMA in streaming mode. The
282 * physical address to use is returned.
284 * Once the device is given the dma address, the device owns this memory until
285 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
287 dma_addr_t
xen_swiotlb_map_page(struct device
*dev
, struct page
*page
,
288 unsigned long offset
, size_t size
,
289 enum dma_data_direction dir
,
290 struct dma_attrs
*attrs
)
292 phys_addr_t phys
= page_to_phys(page
) + offset
;
293 dma_addr_t dev_addr
= xen_phys_to_bus(phys
);
296 BUG_ON(dir
== DMA_NONE
);
298 * If the address happens to be in the device's DMA window,
299 * we can safely return the device addr and not worry about bounce
302 if (dma_capable(dev
, dev_addr
, size
) &&
303 !range_straddles_page_boundary(phys
, size
) && !swiotlb_force
)
307 * Oh well, have to allocate and map a bounce buffer.
309 map
= swiotlb_tbl_map_single(dev
, start_dma_addr
, phys
, size
, dir
);
311 return DMA_ERROR_CODE
;
313 dev_addr
= xen_virt_to_bus(map
);
316 * Ensure that the address returned is DMA'ble
318 if (!dma_capable(dev
, dev_addr
, size
)) {
319 swiotlb_tbl_unmap_single(dev
, map
, size
, dir
);
324 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page
);
327 * Unmap a single streaming mode DMA translation. The dma_addr and size must
328 * match what was provided for in a previous xen_swiotlb_map_page call. All
329 * other usages are undefined.
331 * After this call, reads by the cpu to the buffer are guaranteed to see
332 * whatever the device wrote there.
334 static void xen_unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
335 size_t size
, enum dma_data_direction dir
)
337 phys_addr_t paddr
= xen_bus_to_phys(dev_addr
);
339 BUG_ON(dir
== DMA_NONE
);
341 /* NOTE: We use dev_addr here, not paddr! */
342 if (is_xen_swiotlb_buffer(dev_addr
)) {
343 swiotlb_tbl_unmap_single(hwdev
, phys_to_virt(paddr
), size
, dir
);
347 if (dir
!= DMA_FROM_DEVICE
)
351 * phys_to_virt doesn't work with hihgmem page but we could
352 * call dma_mark_clean() with hihgmem page here. However, we
353 * are fine since dma_mark_clean() is null on POWERPC. We can
354 * make dma_mark_clean() take a physical address if necessary.
356 dma_mark_clean(phys_to_virt(paddr
), size
);
359 void xen_swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
360 size_t size
, enum dma_data_direction dir
,
361 struct dma_attrs
*attrs
)
363 xen_unmap_single(hwdev
, dev_addr
, size
, dir
);
365 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page
);
368 * Make physical memory consistent for a single streaming mode DMA translation
371 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
372 * using the cpu, yet do not wish to teardown the dma mapping, you must
373 * call this function before doing so. At the next point you give the dma
374 * address back to the card, you must first perform a
375 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
378 xen_swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
379 size_t size
, enum dma_data_direction dir
,
380 enum dma_sync_target target
)
382 phys_addr_t paddr
= xen_bus_to_phys(dev_addr
);
384 BUG_ON(dir
== DMA_NONE
);
386 /* NOTE: We use dev_addr here, not paddr! */
387 if (is_xen_swiotlb_buffer(dev_addr
)) {
388 swiotlb_tbl_sync_single(hwdev
, phys_to_virt(paddr
), size
, dir
,
393 if (dir
!= DMA_FROM_DEVICE
)
396 dma_mark_clean(phys_to_virt(paddr
), size
);
400 xen_swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
401 size_t size
, enum dma_data_direction dir
)
403 xen_swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
405 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu
);
408 xen_swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
409 size_t size
, enum dma_data_direction dir
)
411 xen_swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
413 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device
);
416 * Map a set of buffers described by scatterlist in streaming mode for DMA.
417 * This is the scatter-gather version of the above xen_swiotlb_map_page
418 * interface. Here the scatter gather list elements are each tagged with the
419 * appropriate dma address and length. They are obtained via
420 * sg_dma_{address,length}(SG).
422 * NOTE: An implementation may be able to use a smaller number of
423 * DMA address/length pairs than there are SG table elements.
424 * (for example via virtual mapping capabilities)
425 * The routine returns the number of addr/length pairs actually
426 * used, at most nents.
428 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
432 xen_swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
433 int nelems
, enum dma_data_direction dir
,
434 struct dma_attrs
*attrs
)
436 struct scatterlist
*sg
;
439 BUG_ON(dir
== DMA_NONE
);
441 for_each_sg(sgl
, sg
, nelems
, i
) {
442 phys_addr_t paddr
= sg_phys(sg
);
443 dma_addr_t dev_addr
= xen_phys_to_bus(paddr
);
446 !dma_capable(hwdev
, dev_addr
, sg
->length
) ||
447 range_straddles_page_boundary(paddr
, sg
->length
)) {
448 void *map
= swiotlb_tbl_map_single(hwdev
,
453 /* Don't panic here, we expect map_sg users
454 to do proper error handling. */
455 xen_swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
457 sgl
[0].dma_length
= 0;
458 return DMA_ERROR_CODE
;
460 sg
->dma_address
= xen_virt_to_bus(map
);
462 sg
->dma_address
= dev_addr
;
463 sg
->dma_length
= sg
->length
;
467 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs
);
470 xen_swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
471 enum dma_data_direction dir
)
473 return xen_swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
475 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg
);
478 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
479 * concerning calls here are the same as for swiotlb_unmap_page() above.
482 xen_swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
483 int nelems
, enum dma_data_direction dir
,
484 struct dma_attrs
*attrs
)
486 struct scatterlist
*sg
;
489 BUG_ON(dir
== DMA_NONE
);
491 for_each_sg(sgl
, sg
, nelems
, i
)
492 xen_unmap_single(hwdev
, sg
->dma_address
, sg
->dma_length
, dir
);
495 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs
);
498 xen_swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
499 enum dma_data_direction dir
)
501 return xen_swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
503 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg
);
506 * Make physical memory consistent for a set of streaming mode DMA translations
509 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
513 xen_swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
514 int nelems
, enum dma_data_direction dir
,
515 enum dma_sync_target target
)
517 struct scatterlist
*sg
;
520 for_each_sg(sgl
, sg
, nelems
, i
)
521 xen_swiotlb_sync_single(hwdev
, sg
->dma_address
,
522 sg
->dma_length
, dir
, target
);
526 xen_swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
527 int nelems
, enum dma_data_direction dir
)
529 xen_swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
531 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu
);
534 xen_swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
535 int nelems
, enum dma_data_direction dir
)
537 xen_swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
539 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device
);
542 xen_swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
546 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error
);
549 * Return whether the given device DMA address mask can be supported
550 * properly. For example, if your device can only drive the low 24-bits
551 * during bus mastering, then you would pass 0x00ffffff as the mask to
555 xen_swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
557 return xen_virt_to_bus(xen_io_tlb_end
- 1) <= mask
;
559 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported
);