mm/mmap.c: remove the first mapping check
[linux/fpc-iii.git] / mm / mmap.c
blob8a56d39df4ed2af8c46be660dfc73056798fced4
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/vmacache.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/syscalls.h>
19 #include <linux/capability.h>
20 #include <linux/init.h>
21 #include <linux/file.h>
22 #include <linux/fs.h>
23 #include <linux/personality.h>
24 #include <linux/security.h>
25 #include <linux/hugetlb.h>
26 #include <linux/profile.h>
27 #include <linux/export.h>
28 #include <linux/mount.h>
29 #include <linux/mempolicy.h>
30 #include <linux/rmap.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/perf_event.h>
33 #include <linux/audit.h>
34 #include <linux/khugepaged.h>
35 #include <linux/uprobes.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/notifier.h>
39 #include <linux/memory.h>
41 #include <asm/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
46 #include "internal.h"
48 #ifndef arch_mmap_check
49 #define arch_mmap_check(addr, len, flags) (0)
50 #endif
52 #ifndef arch_rebalance_pgtables
53 #define arch_rebalance_pgtables(addr, len) (addr)
54 #endif
56 static void unmap_region(struct mm_struct *mm,
57 struct vm_area_struct *vma, struct vm_area_struct *prev,
58 unsigned long start, unsigned long end);
60 /* description of effects of mapping type and prot in current implementation.
61 * this is due to the limited x86 page protection hardware. The expected
62 * behavior is in parens:
64 * map_type prot
65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (yes) yes w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (copy) copy w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
75 pgprot_t protection_map[16] = {
76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
82 return __pgprot(pgprot_val(protection_map[vm_flags &
83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84 pgprot_val(arch_vm_get_page_prot(vm_flags)));
86 EXPORT_SYMBOL(vm_get_page_prot);
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 unsigned long sysctl_overcommit_kbytes __read_mostly;
91 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
92 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
93 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
95 * Make sure vm_committed_as in one cacheline and not cacheline shared with
96 * other variables. It can be updated by several CPUs frequently.
98 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
101 * The global memory commitment made in the system can be a metric
102 * that can be used to drive ballooning decisions when Linux is hosted
103 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
104 * balancing memory across competing virtual machines that are hosted.
105 * Several metrics drive this policy engine including the guest reported
106 * memory commitment.
108 unsigned long vm_memory_committed(void)
110 return percpu_counter_read_positive(&vm_committed_as);
112 EXPORT_SYMBOL_GPL(vm_memory_committed);
115 * Check that a process has enough memory to allocate a new virtual
116 * mapping. 0 means there is enough memory for the allocation to
117 * succeed and -ENOMEM implies there is not.
119 * We currently support three overcommit policies, which are set via the
120 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
122 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
123 * Additional code 2002 Jul 20 by Robert Love.
125 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
127 * Note this is a helper function intended to be used by LSMs which
128 * wish to use this logic.
130 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
132 unsigned long free, allowed, reserve;
134 vm_acct_memory(pages);
137 * Sometimes we want to use more memory than we have
139 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
140 return 0;
142 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
143 free = global_page_state(NR_FREE_PAGES);
144 free += global_page_state(NR_FILE_PAGES);
147 * shmem pages shouldn't be counted as free in this
148 * case, they can't be purged, only swapped out, and
149 * that won't affect the overall amount of available
150 * memory in the system.
152 free -= global_page_state(NR_SHMEM);
154 free += get_nr_swap_pages();
157 * Any slabs which are created with the
158 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
159 * which are reclaimable, under pressure. The dentry
160 * cache and most inode caches should fall into this
162 free += global_page_state(NR_SLAB_RECLAIMABLE);
165 * Leave reserved pages. The pages are not for anonymous pages.
167 if (free <= totalreserve_pages)
168 goto error;
169 else
170 free -= totalreserve_pages;
173 * Reserve some for root
175 if (!cap_sys_admin)
176 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
178 if (free > pages)
179 return 0;
181 goto error;
184 allowed = vm_commit_limit();
186 * Reserve some for root
188 if (!cap_sys_admin)
189 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
192 * Don't let a single process grow so big a user can't recover
194 if (mm) {
195 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196 allowed -= min(mm->total_vm / 32, reserve);
199 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200 return 0;
201 error:
202 vm_unacct_memory(pages);
204 return -ENOMEM;
208 * Requires inode->i_mapping->i_mmap_mutex
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211 struct file *file, struct address_space *mapping)
213 if (vma->vm_flags & VM_DENYWRITE)
214 atomic_inc(&file_inode(file)->i_writecount);
215 if (vma->vm_flags & VM_SHARED)
216 mapping->i_mmap_writable--;
218 flush_dcache_mmap_lock(mapping);
219 if (unlikely(vma->vm_flags & VM_NONLINEAR))
220 list_del_init(&vma->shared.nonlinear);
221 else
222 vma_interval_tree_remove(vma, &mapping->i_mmap);
223 flush_dcache_mmap_unlock(mapping);
227 * Unlink a file-based vm structure from its interval tree, to hide
228 * vma from rmap and vmtruncate before freeing its page tables.
230 void unlink_file_vma(struct vm_area_struct *vma)
232 struct file *file = vma->vm_file;
234 if (file) {
235 struct address_space *mapping = file->f_mapping;
236 mutex_lock(&mapping->i_mmap_mutex);
237 __remove_shared_vm_struct(vma, file, mapping);
238 mutex_unlock(&mapping->i_mmap_mutex);
243 * Close a vm structure and free it, returning the next.
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
247 struct vm_area_struct *next = vma->vm_next;
249 might_sleep();
250 if (vma->vm_ops && vma->vm_ops->close)
251 vma->vm_ops->close(vma);
252 if (vma->vm_file)
253 fput(vma->vm_file);
254 mpol_put(vma_policy(vma));
255 kmem_cache_free(vm_area_cachep, vma);
256 return next;
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
263 unsigned long rlim, retval;
264 unsigned long newbrk, oldbrk;
265 struct mm_struct *mm = current->mm;
266 unsigned long min_brk;
267 bool populate;
269 down_write(&mm->mmap_sem);
271 #ifdef CONFIG_COMPAT_BRK
273 * CONFIG_COMPAT_BRK can still be overridden by setting
274 * randomize_va_space to 2, which will still cause mm->start_brk
275 * to be arbitrarily shifted
277 if (current->brk_randomized)
278 min_brk = mm->start_brk;
279 else
280 min_brk = mm->end_data;
281 #else
282 min_brk = mm->start_brk;
283 #endif
284 if (brk < min_brk)
285 goto out;
288 * Check against rlimit here. If this check is done later after the test
289 * of oldbrk with newbrk then it can escape the test and let the data
290 * segment grow beyond its set limit the in case where the limit is
291 * not page aligned -Ram Gupta
293 rlim = rlimit(RLIMIT_DATA);
294 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295 (mm->end_data - mm->start_data) > rlim)
296 goto out;
298 newbrk = PAGE_ALIGN(brk);
299 oldbrk = PAGE_ALIGN(mm->brk);
300 if (oldbrk == newbrk)
301 goto set_brk;
303 /* Always allow shrinking brk. */
304 if (brk <= mm->brk) {
305 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306 goto set_brk;
307 goto out;
310 /* Check against existing mmap mappings. */
311 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312 goto out;
314 /* Ok, looks good - let it rip. */
315 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316 goto out;
318 set_brk:
319 mm->brk = brk;
320 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321 up_write(&mm->mmap_sem);
322 if (populate)
323 mm_populate(oldbrk, newbrk - oldbrk);
324 return brk;
326 out:
327 retval = mm->brk;
328 up_write(&mm->mmap_sem);
329 return retval;
332 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
334 unsigned long max, subtree_gap;
335 max = vma->vm_start;
336 if (vma->vm_prev)
337 max -= vma->vm_prev->vm_end;
338 if (vma->vm_rb.rb_left) {
339 subtree_gap = rb_entry(vma->vm_rb.rb_left,
340 struct vm_area_struct, vm_rb)->rb_subtree_gap;
341 if (subtree_gap > max)
342 max = subtree_gap;
344 if (vma->vm_rb.rb_right) {
345 subtree_gap = rb_entry(vma->vm_rb.rb_right,
346 struct vm_area_struct, vm_rb)->rb_subtree_gap;
347 if (subtree_gap > max)
348 max = subtree_gap;
350 return max;
353 #ifdef CONFIG_DEBUG_VM_RB
354 static int browse_rb(struct rb_root *root)
356 int i = 0, j, bug = 0;
357 struct rb_node *nd, *pn = NULL;
358 unsigned long prev = 0, pend = 0;
360 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361 struct vm_area_struct *vma;
362 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363 if (vma->vm_start < prev) {
364 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365 bug = 1;
367 if (vma->vm_start < pend) {
368 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369 bug = 1;
371 if (vma->vm_start > vma->vm_end) {
372 printk("vm_end %lx < vm_start %lx\n",
373 vma->vm_end, vma->vm_start);
374 bug = 1;
376 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377 printk("free gap %lx, correct %lx\n",
378 vma->rb_subtree_gap,
379 vma_compute_subtree_gap(vma));
380 bug = 1;
382 i++;
383 pn = nd;
384 prev = vma->vm_start;
385 pend = vma->vm_end;
387 j = 0;
388 for (nd = pn; nd; nd = rb_prev(nd))
389 j++;
390 if (i != j) {
391 printk("backwards %d, forwards %d\n", j, i);
392 bug = 1;
394 return bug ? -1 : i;
397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
399 struct rb_node *nd;
401 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402 struct vm_area_struct *vma;
403 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404 BUG_ON(vma != ignore &&
405 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
409 static void validate_mm(struct mm_struct *mm)
411 int bug = 0;
412 int i = 0;
413 unsigned long highest_address = 0;
414 struct vm_area_struct *vma = mm->mmap;
415 while (vma) {
416 struct anon_vma_chain *avc;
417 vma_lock_anon_vma(vma);
418 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419 anon_vma_interval_tree_verify(avc);
420 vma_unlock_anon_vma(vma);
421 highest_address = vma->vm_end;
422 vma = vma->vm_next;
423 i++;
425 if (i != mm->map_count) {
426 printk("map_count %d vm_next %d\n", mm->map_count, i);
427 bug = 1;
429 if (highest_address != mm->highest_vm_end) {
430 printk("mm->highest_vm_end %lx, found %lx\n",
431 mm->highest_vm_end, highest_address);
432 bug = 1;
434 i = browse_rb(&mm->mm_rb);
435 if (i != mm->map_count) {
436 printk("map_count %d rb %d\n", mm->map_count, i);
437 bug = 1;
439 BUG_ON(bug);
441 #else
442 #define validate_mm_rb(root, ignore) do { } while (0)
443 #define validate_mm(mm) do { } while (0)
444 #endif
446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
452 * in the rbtree.
454 static void vma_gap_update(struct vm_area_struct *vma)
457 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458 * function that does exacltly what we want.
460 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
463 static inline void vma_rb_insert(struct vm_area_struct *vma,
464 struct rb_root *root)
466 /* All rb_subtree_gap values must be consistent prior to insertion */
467 validate_mm_rb(root, NULL);
469 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
475 * All rb_subtree_gap values must be consistent prior to erase,
476 * with the possible exception of the vma being erased.
478 validate_mm_rb(root, vma);
481 * Note rb_erase_augmented is a fairly large inline function,
482 * so make sure we instantiate it only once with our desired
483 * augmented rbtree callbacks.
485 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
489 * vma has some anon_vma assigned, and is already inserted on that
490 * anon_vma's interval trees.
492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493 * vma must be removed from the anon_vma's interval trees using
494 * anon_vma_interval_tree_pre_update_vma().
496 * After the update, the vma will be reinserted using
497 * anon_vma_interval_tree_post_update_vma().
499 * The entire update must be protected by exclusive mmap_sem and by
500 * the root anon_vma's mutex.
502 static inline void
503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
505 struct anon_vma_chain *avc;
507 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
511 static inline void
512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
514 struct anon_vma_chain *avc;
516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
520 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521 unsigned long end, struct vm_area_struct **pprev,
522 struct rb_node ***rb_link, struct rb_node **rb_parent)
524 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
526 __rb_link = &mm->mm_rb.rb_node;
527 rb_prev = __rb_parent = NULL;
529 while (*__rb_link) {
530 struct vm_area_struct *vma_tmp;
532 __rb_parent = *__rb_link;
533 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
535 if (vma_tmp->vm_end > addr) {
536 /* Fail if an existing vma overlaps the area */
537 if (vma_tmp->vm_start < end)
538 return -ENOMEM;
539 __rb_link = &__rb_parent->rb_left;
540 } else {
541 rb_prev = __rb_parent;
542 __rb_link = &__rb_parent->rb_right;
546 *pprev = NULL;
547 if (rb_prev)
548 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549 *rb_link = __rb_link;
550 *rb_parent = __rb_parent;
551 return 0;
554 static unsigned long count_vma_pages_range(struct mm_struct *mm,
555 unsigned long addr, unsigned long end)
557 unsigned long nr_pages = 0;
558 struct vm_area_struct *vma;
560 /* Find first overlaping mapping */
561 vma = find_vma_intersection(mm, addr, end);
562 if (!vma)
563 return 0;
565 nr_pages = (min(end, vma->vm_end) -
566 max(addr, vma->vm_start)) >> PAGE_SHIFT;
568 /* Iterate over the rest of the overlaps */
569 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570 unsigned long overlap_len;
572 if (vma->vm_start > end)
573 break;
575 overlap_len = min(end, vma->vm_end) - vma->vm_start;
576 nr_pages += overlap_len >> PAGE_SHIFT;
579 return nr_pages;
582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583 struct rb_node **rb_link, struct rb_node *rb_parent)
585 /* Update tracking information for the gap following the new vma. */
586 if (vma->vm_next)
587 vma_gap_update(vma->vm_next);
588 else
589 mm->highest_vm_end = vma->vm_end;
592 * vma->vm_prev wasn't known when we followed the rbtree to find the
593 * correct insertion point for that vma. As a result, we could not
594 * update the vma vm_rb parents rb_subtree_gap values on the way down.
595 * So, we first insert the vma with a zero rb_subtree_gap value
596 * (to be consistent with what we did on the way down), and then
597 * immediately update the gap to the correct value. Finally we
598 * rebalance the rbtree after all augmented values have been set.
600 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601 vma->rb_subtree_gap = 0;
602 vma_gap_update(vma);
603 vma_rb_insert(vma, &mm->mm_rb);
606 static void __vma_link_file(struct vm_area_struct *vma)
608 struct file *file;
610 file = vma->vm_file;
611 if (file) {
612 struct address_space *mapping = file->f_mapping;
614 if (vma->vm_flags & VM_DENYWRITE)
615 atomic_dec(&file_inode(file)->i_writecount);
616 if (vma->vm_flags & VM_SHARED)
617 mapping->i_mmap_writable++;
619 flush_dcache_mmap_lock(mapping);
620 if (unlikely(vma->vm_flags & VM_NONLINEAR))
621 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622 else
623 vma_interval_tree_insert(vma, &mapping->i_mmap);
624 flush_dcache_mmap_unlock(mapping);
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630 struct vm_area_struct *prev, struct rb_node **rb_link,
631 struct rb_node *rb_parent)
633 __vma_link_list(mm, vma, prev, rb_parent);
634 __vma_link_rb(mm, vma, rb_link, rb_parent);
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct vm_area_struct *prev, struct rb_node **rb_link,
639 struct rb_node *rb_parent)
641 struct address_space *mapping = NULL;
643 if (vma->vm_file) {
644 mapping = vma->vm_file->f_mapping;
645 mutex_lock(&mapping->i_mmap_mutex);
648 __vma_link(mm, vma, prev, rb_link, rb_parent);
649 __vma_link_file(vma);
651 if (mapping)
652 mutex_unlock(&mapping->i_mmap_mutex);
654 mm->map_count++;
655 validate_mm(mm);
659 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
660 * mm's list and rbtree. It has already been inserted into the interval tree.
662 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 struct vm_area_struct *prev;
665 struct rb_node **rb_link, *rb_parent;
667 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
668 &prev, &rb_link, &rb_parent))
669 BUG();
670 __vma_link(mm, vma, prev, rb_link, rb_parent);
671 mm->map_count++;
674 static inline void
675 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
676 struct vm_area_struct *prev)
678 struct vm_area_struct *next;
680 vma_rb_erase(vma, &mm->mm_rb);
681 prev->vm_next = next = vma->vm_next;
682 if (next)
683 next->vm_prev = prev;
685 /* Kill the cache */
686 vmacache_invalidate(mm);
690 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691 * is already present in an i_mmap tree without adjusting the tree.
692 * The following helper function should be used when such adjustments
693 * are necessary. The "insert" vma (if any) is to be inserted
694 * before we drop the necessary locks.
696 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
697 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
699 struct mm_struct *mm = vma->vm_mm;
700 struct vm_area_struct *next = vma->vm_next;
701 struct vm_area_struct *importer = NULL;
702 struct address_space *mapping = NULL;
703 struct rb_root *root = NULL;
704 struct anon_vma *anon_vma = NULL;
705 struct file *file = vma->vm_file;
706 bool start_changed = false, end_changed = false;
707 long adjust_next = 0;
708 int remove_next = 0;
710 if (next && !insert) {
711 struct vm_area_struct *exporter = NULL;
713 if (end >= next->vm_end) {
715 * vma expands, overlapping all the next, and
716 * perhaps the one after too (mprotect case 6).
718 again: remove_next = 1 + (end > next->vm_end);
719 end = next->vm_end;
720 exporter = next;
721 importer = vma;
722 } else if (end > next->vm_start) {
724 * vma expands, overlapping part of the next:
725 * mprotect case 5 shifting the boundary up.
727 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
728 exporter = next;
729 importer = vma;
730 } else if (end < vma->vm_end) {
732 * vma shrinks, and !insert tells it's not
733 * split_vma inserting another: so it must be
734 * mprotect case 4 shifting the boundary down.
736 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
737 exporter = vma;
738 importer = next;
742 * Easily overlooked: when mprotect shifts the boundary,
743 * make sure the expanding vma has anon_vma set if the
744 * shrinking vma had, to cover any anon pages imported.
746 if (exporter && exporter->anon_vma && !importer->anon_vma) {
747 if (anon_vma_clone(importer, exporter))
748 return -ENOMEM;
749 importer->anon_vma = exporter->anon_vma;
753 if (file) {
754 mapping = file->f_mapping;
755 if (!(vma->vm_flags & VM_NONLINEAR)) {
756 root = &mapping->i_mmap;
757 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
759 if (adjust_next)
760 uprobe_munmap(next, next->vm_start,
761 next->vm_end);
764 mutex_lock(&mapping->i_mmap_mutex);
765 if (insert) {
767 * Put into interval tree now, so instantiated pages
768 * are visible to arm/parisc __flush_dcache_page
769 * throughout; but we cannot insert into address
770 * space until vma start or end is updated.
772 __vma_link_file(insert);
776 vma_adjust_trans_huge(vma, start, end, adjust_next);
778 anon_vma = vma->anon_vma;
779 if (!anon_vma && adjust_next)
780 anon_vma = next->anon_vma;
781 if (anon_vma) {
782 VM_BUG_ON(adjust_next && next->anon_vma &&
783 anon_vma != next->anon_vma);
784 anon_vma_lock_write(anon_vma);
785 anon_vma_interval_tree_pre_update_vma(vma);
786 if (adjust_next)
787 anon_vma_interval_tree_pre_update_vma(next);
790 if (root) {
791 flush_dcache_mmap_lock(mapping);
792 vma_interval_tree_remove(vma, root);
793 if (adjust_next)
794 vma_interval_tree_remove(next, root);
797 if (start != vma->vm_start) {
798 vma->vm_start = start;
799 start_changed = true;
801 if (end != vma->vm_end) {
802 vma->vm_end = end;
803 end_changed = true;
805 vma->vm_pgoff = pgoff;
806 if (adjust_next) {
807 next->vm_start += adjust_next << PAGE_SHIFT;
808 next->vm_pgoff += adjust_next;
811 if (root) {
812 if (adjust_next)
813 vma_interval_tree_insert(next, root);
814 vma_interval_tree_insert(vma, root);
815 flush_dcache_mmap_unlock(mapping);
818 if (remove_next) {
820 * vma_merge has merged next into vma, and needs
821 * us to remove next before dropping the locks.
823 __vma_unlink(mm, next, vma);
824 if (file)
825 __remove_shared_vm_struct(next, file, mapping);
826 } else if (insert) {
828 * split_vma has split insert from vma, and needs
829 * us to insert it before dropping the locks
830 * (it may either follow vma or precede it).
832 __insert_vm_struct(mm, insert);
833 } else {
834 if (start_changed)
835 vma_gap_update(vma);
836 if (end_changed) {
837 if (!next)
838 mm->highest_vm_end = end;
839 else if (!adjust_next)
840 vma_gap_update(next);
844 if (anon_vma) {
845 anon_vma_interval_tree_post_update_vma(vma);
846 if (adjust_next)
847 anon_vma_interval_tree_post_update_vma(next);
848 anon_vma_unlock_write(anon_vma);
850 if (mapping)
851 mutex_unlock(&mapping->i_mmap_mutex);
853 if (root) {
854 uprobe_mmap(vma);
856 if (adjust_next)
857 uprobe_mmap(next);
860 if (remove_next) {
861 if (file) {
862 uprobe_munmap(next, next->vm_start, next->vm_end);
863 fput(file);
865 if (next->anon_vma)
866 anon_vma_merge(vma, next);
867 mm->map_count--;
868 mpol_put(vma_policy(next));
869 kmem_cache_free(vm_area_cachep, next);
871 * In mprotect's case 6 (see comments on vma_merge),
872 * we must remove another next too. It would clutter
873 * up the code too much to do both in one go.
875 next = vma->vm_next;
876 if (remove_next == 2)
877 goto again;
878 else if (next)
879 vma_gap_update(next);
880 else
881 mm->highest_vm_end = end;
883 if (insert && file)
884 uprobe_mmap(insert);
886 validate_mm(mm);
888 return 0;
892 * If the vma has a ->close operation then the driver probably needs to release
893 * per-vma resources, so we don't attempt to merge those.
895 static inline int is_mergeable_vma(struct vm_area_struct *vma,
896 struct file *file, unsigned long vm_flags)
899 * VM_SOFTDIRTY should not prevent from VMA merging, if we
900 * match the flags but dirty bit -- the caller should mark
901 * merged VMA as dirty. If dirty bit won't be excluded from
902 * comparison, we increase pressue on the memory system forcing
903 * the kernel to generate new VMAs when old one could be
904 * extended instead.
906 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
907 return 0;
908 if (vma->vm_file != file)
909 return 0;
910 if (vma->vm_ops && vma->vm_ops->close)
911 return 0;
912 return 1;
915 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
916 struct anon_vma *anon_vma2,
917 struct vm_area_struct *vma)
920 * The list_is_singular() test is to avoid merging VMA cloned from
921 * parents. This can improve scalability caused by anon_vma lock.
923 if ((!anon_vma1 || !anon_vma2) && (!vma ||
924 list_is_singular(&vma->anon_vma_chain)))
925 return 1;
926 return anon_vma1 == anon_vma2;
930 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
931 * in front of (at a lower virtual address and file offset than) the vma.
933 * We cannot merge two vmas if they have differently assigned (non-NULL)
934 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
936 * We don't check here for the merged mmap wrapping around the end of pagecache
937 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
938 * wrap, nor mmaps which cover the final page at index -1UL.
940 static int
941 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
942 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
944 if (is_mergeable_vma(vma, file, vm_flags) &&
945 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
946 if (vma->vm_pgoff == vm_pgoff)
947 return 1;
949 return 0;
953 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
954 * beyond (at a higher virtual address and file offset than) the vma.
956 * We cannot merge two vmas if they have differently assigned (non-NULL)
957 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
959 static int
960 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
961 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
963 if (is_mergeable_vma(vma, file, vm_flags) &&
964 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
965 pgoff_t vm_pglen;
966 vm_pglen = vma_pages(vma);
967 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
968 return 1;
970 return 0;
974 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
975 * whether that can be merged with its predecessor or its successor.
976 * Or both (it neatly fills a hole).
978 * In most cases - when called for mmap, brk or mremap - [addr,end) is
979 * certain not to be mapped by the time vma_merge is called; but when
980 * called for mprotect, it is certain to be already mapped (either at
981 * an offset within prev, or at the start of next), and the flags of
982 * this area are about to be changed to vm_flags - and the no-change
983 * case has already been eliminated.
985 * The following mprotect cases have to be considered, where AAAA is
986 * the area passed down from mprotect_fixup, never extending beyond one
987 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
989 * AAAA AAAA AAAA AAAA
990 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
991 * cannot merge might become might become might become
992 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
993 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
994 * mremap move: PPPPNNNNNNNN 8
995 * AAAA
996 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
997 * might become case 1 below case 2 below case 3 below
999 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1000 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1002 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1003 struct vm_area_struct *prev, unsigned long addr,
1004 unsigned long end, unsigned long vm_flags,
1005 struct anon_vma *anon_vma, struct file *file,
1006 pgoff_t pgoff, struct mempolicy *policy)
1008 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1009 struct vm_area_struct *area, *next;
1010 int err;
1013 * We later require that vma->vm_flags == vm_flags,
1014 * so this tests vma->vm_flags & VM_SPECIAL, too.
1016 if (vm_flags & VM_SPECIAL)
1017 return NULL;
1019 if (prev)
1020 next = prev->vm_next;
1021 else
1022 next = mm->mmap;
1023 area = next;
1024 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1025 next = next->vm_next;
1028 * Can it merge with the predecessor?
1030 if (prev && prev->vm_end == addr &&
1031 mpol_equal(vma_policy(prev), policy) &&
1032 can_vma_merge_after(prev, vm_flags,
1033 anon_vma, file, pgoff)) {
1035 * OK, it can. Can we now merge in the successor as well?
1037 if (next && end == next->vm_start &&
1038 mpol_equal(policy, vma_policy(next)) &&
1039 can_vma_merge_before(next, vm_flags,
1040 anon_vma, file, pgoff+pglen) &&
1041 is_mergeable_anon_vma(prev->anon_vma,
1042 next->anon_vma, NULL)) {
1043 /* cases 1, 6 */
1044 err = vma_adjust(prev, prev->vm_start,
1045 next->vm_end, prev->vm_pgoff, NULL);
1046 } else /* cases 2, 5, 7 */
1047 err = vma_adjust(prev, prev->vm_start,
1048 end, prev->vm_pgoff, NULL);
1049 if (err)
1050 return NULL;
1051 khugepaged_enter_vma_merge(prev);
1052 return prev;
1056 * Can this new request be merged in front of next?
1058 if (next && end == next->vm_start &&
1059 mpol_equal(policy, vma_policy(next)) &&
1060 can_vma_merge_before(next, vm_flags,
1061 anon_vma, file, pgoff+pglen)) {
1062 if (prev && addr < prev->vm_end) /* case 4 */
1063 err = vma_adjust(prev, prev->vm_start,
1064 addr, prev->vm_pgoff, NULL);
1065 else /* cases 3, 8 */
1066 err = vma_adjust(area, addr, next->vm_end,
1067 next->vm_pgoff - pglen, NULL);
1068 if (err)
1069 return NULL;
1070 khugepaged_enter_vma_merge(area);
1071 return area;
1074 return NULL;
1078 * Rough compatbility check to quickly see if it's even worth looking
1079 * at sharing an anon_vma.
1081 * They need to have the same vm_file, and the flags can only differ
1082 * in things that mprotect may change.
1084 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1085 * we can merge the two vma's. For example, we refuse to merge a vma if
1086 * there is a vm_ops->close() function, because that indicates that the
1087 * driver is doing some kind of reference counting. But that doesn't
1088 * really matter for the anon_vma sharing case.
1090 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1092 return a->vm_end == b->vm_start &&
1093 mpol_equal(vma_policy(a), vma_policy(b)) &&
1094 a->vm_file == b->vm_file &&
1095 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1096 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1100 * Do some basic sanity checking to see if we can re-use the anon_vma
1101 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1102 * the same as 'old', the other will be the new one that is trying
1103 * to share the anon_vma.
1105 * NOTE! This runs with mm_sem held for reading, so it is possible that
1106 * the anon_vma of 'old' is concurrently in the process of being set up
1107 * by another page fault trying to merge _that_. But that's ok: if it
1108 * is being set up, that automatically means that it will be a singleton
1109 * acceptable for merging, so we can do all of this optimistically. But
1110 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1112 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1113 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1114 * is to return an anon_vma that is "complex" due to having gone through
1115 * a fork).
1117 * We also make sure that the two vma's are compatible (adjacent,
1118 * and with the same memory policies). That's all stable, even with just
1119 * a read lock on the mm_sem.
1121 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1123 if (anon_vma_compatible(a, b)) {
1124 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1126 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1127 return anon_vma;
1129 return NULL;
1133 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1134 * neighbouring vmas for a suitable anon_vma, before it goes off
1135 * to allocate a new anon_vma. It checks because a repetitive
1136 * sequence of mprotects and faults may otherwise lead to distinct
1137 * anon_vmas being allocated, preventing vma merge in subsequent
1138 * mprotect.
1140 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1142 struct anon_vma *anon_vma;
1143 struct vm_area_struct *near;
1145 near = vma->vm_next;
1146 if (!near)
1147 goto try_prev;
1149 anon_vma = reusable_anon_vma(near, vma, near);
1150 if (anon_vma)
1151 return anon_vma;
1152 try_prev:
1153 near = vma->vm_prev;
1154 if (!near)
1155 goto none;
1157 anon_vma = reusable_anon_vma(near, near, vma);
1158 if (anon_vma)
1159 return anon_vma;
1160 none:
1162 * There's no absolute need to look only at touching neighbours:
1163 * we could search further afield for "compatible" anon_vmas.
1164 * But it would probably just be a waste of time searching,
1165 * or lead to too many vmas hanging off the same anon_vma.
1166 * We're trying to allow mprotect remerging later on,
1167 * not trying to minimize memory used for anon_vmas.
1169 return NULL;
1172 #ifdef CONFIG_PROC_FS
1173 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1174 struct file *file, long pages)
1176 const unsigned long stack_flags
1177 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1179 mm->total_vm += pages;
1181 if (file) {
1182 mm->shared_vm += pages;
1183 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1184 mm->exec_vm += pages;
1185 } else if (flags & stack_flags)
1186 mm->stack_vm += pages;
1188 #endif /* CONFIG_PROC_FS */
1191 * If a hint addr is less than mmap_min_addr change hint to be as
1192 * low as possible but still greater than mmap_min_addr
1194 static inline unsigned long round_hint_to_min(unsigned long hint)
1196 hint &= PAGE_MASK;
1197 if (((void *)hint != NULL) &&
1198 (hint < mmap_min_addr))
1199 return PAGE_ALIGN(mmap_min_addr);
1200 return hint;
1203 static inline int mlock_future_check(struct mm_struct *mm,
1204 unsigned long flags,
1205 unsigned long len)
1207 unsigned long locked, lock_limit;
1209 /* mlock MCL_FUTURE? */
1210 if (flags & VM_LOCKED) {
1211 locked = len >> PAGE_SHIFT;
1212 locked += mm->locked_vm;
1213 lock_limit = rlimit(RLIMIT_MEMLOCK);
1214 lock_limit >>= PAGE_SHIFT;
1215 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1216 return -EAGAIN;
1218 return 0;
1222 * The caller must hold down_write(&current->mm->mmap_sem).
1225 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1226 unsigned long len, unsigned long prot,
1227 unsigned long flags, unsigned long pgoff,
1228 unsigned long *populate)
1230 struct mm_struct * mm = current->mm;
1231 vm_flags_t vm_flags;
1233 *populate = 0;
1236 * Does the application expect PROT_READ to imply PROT_EXEC?
1238 * (the exception is when the underlying filesystem is noexec
1239 * mounted, in which case we dont add PROT_EXEC.)
1241 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1242 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1243 prot |= PROT_EXEC;
1245 if (!len)
1246 return -EINVAL;
1248 if (!(flags & MAP_FIXED))
1249 addr = round_hint_to_min(addr);
1251 /* Careful about overflows.. */
1252 len = PAGE_ALIGN(len);
1253 if (!len)
1254 return -ENOMEM;
1256 /* offset overflow? */
1257 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1258 return -EOVERFLOW;
1260 /* Too many mappings? */
1261 if (mm->map_count > sysctl_max_map_count)
1262 return -ENOMEM;
1264 /* Obtain the address to map to. we verify (or select) it and ensure
1265 * that it represents a valid section of the address space.
1267 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1268 if (addr & ~PAGE_MASK)
1269 return addr;
1271 /* Do simple checking here so the lower-level routines won't have
1272 * to. we assume access permissions have been handled by the open
1273 * of the memory object, so we don't do any here.
1275 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1276 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1278 if (flags & MAP_LOCKED)
1279 if (!can_do_mlock())
1280 return -EPERM;
1282 if (mlock_future_check(mm, vm_flags, len))
1283 return -EAGAIN;
1285 if (file) {
1286 struct inode *inode = file_inode(file);
1288 switch (flags & MAP_TYPE) {
1289 case MAP_SHARED:
1290 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1291 return -EACCES;
1294 * Make sure we don't allow writing to an append-only
1295 * file..
1297 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1298 return -EACCES;
1301 * Make sure there are no mandatory locks on the file.
1303 if (locks_verify_locked(file))
1304 return -EAGAIN;
1306 vm_flags |= VM_SHARED | VM_MAYSHARE;
1307 if (!(file->f_mode & FMODE_WRITE))
1308 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1310 /* fall through */
1311 case MAP_PRIVATE:
1312 if (!(file->f_mode & FMODE_READ))
1313 return -EACCES;
1314 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1315 if (vm_flags & VM_EXEC)
1316 return -EPERM;
1317 vm_flags &= ~VM_MAYEXEC;
1320 if (!file->f_op->mmap)
1321 return -ENODEV;
1322 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1323 return -EINVAL;
1324 break;
1326 default:
1327 return -EINVAL;
1329 } else {
1330 switch (flags & MAP_TYPE) {
1331 case MAP_SHARED:
1332 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1333 return -EINVAL;
1335 * Ignore pgoff.
1337 pgoff = 0;
1338 vm_flags |= VM_SHARED | VM_MAYSHARE;
1339 break;
1340 case MAP_PRIVATE:
1342 * Set pgoff according to addr for anon_vma.
1344 pgoff = addr >> PAGE_SHIFT;
1345 break;
1346 default:
1347 return -EINVAL;
1352 * Set 'VM_NORESERVE' if we should not account for the
1353 * memory use of this mapping.
1355 if (flags & MAP_NORESERVE) {
1356 /* We honor MAP_NORESERVE if allowed to overcommit */
1357 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1358 vm_flags |= VM_NORESERVE;
1360 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1361 if (file && is_file_hugepages(file))
1362 vm_flags |= VM_NORESERVE;
1365 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1366 if (!IS_ERR_VALUE(addr) &&
1367 ((vm_flags & VM_LOCKED) ||
1368 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1369 *populate = len;
1370 return addr;
1373 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1374 unsigned long, prot, unsigned long, flags,
1375 unsigned long, fd, unsigned long, pgoff)
1377 struct file *file = NULL;
1378 unsigned long retval = -EBADF;
1380 if (!(flags & MAP_ANONYMOUS)) {
1381 audit_mmap_fd(fd, flags);
1382 file = fget(fd);
1383 if (!file)
1384 goto out;
1385 if (is_file_hugepages(file))
1386 len = ALIGN(len, huge_page_size(hstate_file(file)));
1387 retval = -EINVAL;
1388 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1389 goto out_fput;
1390 } else if (flags & MAP_HUGETLB) {
1391 struct user_struct *user = NULL;
1392 struct hstate *hs;
1394 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1395 if (!hs)
1396 return -EINVAL;
1398 len = ALIGN(len, huge_page_size(hs));
1400 * VM_NORESERVE is used because the reservations will be
1401 * taken when vm_ops->mmap() is called
1402 * A dummy user value is used because we are not locking
1403 * memory so no accounting is necessary
1405 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1406 VM_NORESERVE,
1407 &user, HUGETLB_ANONHUGE_INODE,
1408 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1409 if (IS_ERR(file))
1410 return PTR_ERR(file);
1413 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1415 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1416 out_fput:
1417 if (file)
1418 fput(file);
1419 out:
1420 return retval;
1423 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1424 struct mmap_arg_struct {
1425 unsigned long addr;
1426 unsigned long len;
1427 unsigned long prot;
1428 unsigned long flags;
1429 unsigned long fd;
1430 unsigned long offset;
1433 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1435 struct mmap_arg_struct a;
1437 if (copy_from_user(&a, arg, sizeof(a)))
1438 return -EFAULT;
1439 if (a.offset & ~PAGE_MASK)
1440 return -EINVAL;
1442 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1443 a.offset >> PAGE_SHIFT);
1445 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1448 * Some shared mappigns will want the pages marked read-only
1449 * to track write events. If so, we'll downgrade vm_page_prot
1450 * to the private version (using protection_map[] without the
1451 * VM_SHARED bit).
1453 int vma_wants_writenotify(struct vm_area_struct *vma)
1455 vm_flags_t vm_flags = vma->vm_flags;
1457 /* If it was private or non-writable, the write bit is already clear */
1458 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1459 return 0;
1461 /* The backer wishes to know when pages are first written to? */
1462 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1463 return 1;
1465 /* The open routine did something to the protections already? */
1466 if (pgprot_val(vma->vm_page_prot) !=
1467 pgprot_val(vm_get_page_prot(vm_flags)))
1468 return 0;
1470 /* Specialty mapping? */
1471 if (vm_flags & VM_PFNMAP)
1472 return 0;
1474 /* Can the mapping track the dirty pages? */
1475 return vma->vm_file && vma->vm_file->f_mapping &&
1476 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1480 * We account for memory if it's a private writeable mapping,
1481 * not hugepages and VM_NORESERVE wasn't set.
1483 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1486 * hugetlb has its own accounting separate from the core VM
1487 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1489 if (file && is_file_hugepages(file))
1490 return 0;
1492 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1495 unsigned long mmap_region(struct file *file, unsigned long addr,
1496 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1498 struct mm_struct *mm = current->mm;
1499 struct vm_area_struct *vma, *prev;
1500 int error;
1501 struct rb_node **rb_link, *rb_parent;
1502 unsigned long charged = 0;
1504 /* Check against address space limit. */
1505 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1506 unsigned long nr_pages;
1509 * MAP_FIXED may remove pages of mappings that intersects with
1510 * requested mapping. Account for the pages it would unmap.
1512 if (!(vm_flags & MAP_FIXED))
1513 return -ENOMEM;
1515 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1517 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1518 return -ENOMEM;
1521 /* Clear old maps */
1522 error = -ENOMEM;
1523 munmap_back:
1524 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1525 if (do_munmap(mm, addr, len))
1526 return -ENOMEM;
1527 goto munmap_back;
1531 * Private writable mapping: check memory availability
1533 if (accountable_mapping(file, vm_flags)) {
1534 charged = len >> PAGE_SHIFT;
1535 if (security_vm_enough_memory_mm(mm, charged))
1536 return -ENOMEM;
1537 vm_flags |= VM_ACCOUNT;
1541 * Can we just expand an old mapping?
1543 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1544 if (vma)
1545 goto out;
1548 * Determine the object being mapped and call the appropriate
1549 * specific mapper. the address has already been validated, but
1550 * not unmapped, but the maps are removed from the list.
1552 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1553 if (!vma) {
1554 error = -ENOMEM;
1555 goto unacct_error;
1558 vma->vm_mm = mm;
1559 vma->vm_start = addr;
1560 vma->vm_end = addr + len;
1561 vma->vm_flags = vm_flags;
1562 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1563 vma->vm_pgoff = pgoff;
1564 INIT_LIST_HEAD(&vma->anon_vma_chain);
1566 if (file) {
1567 if (vm_flags & VM_DENYWRITE) {
1568 error = deny_write_access(file);
1569 if (error)
1570 goto free_vma;
1572 vma->vm_file = get_file(file);
1573 error = file->f_op->mmap(file, vma);
1574 if (error)
1575 goto unmap_and_free_vma;
1577 /* Can addr have changed??
1579 * Answer: Yes, several device drivers can do it in their
1580 * f_op->mmap method. -DaveM
1581 * Bug: If addr is changed, prev, rb_link, rb_parent should
1582 * be updated for vma_link()
1584 WARN_ON_ONCE(addr != vma->vm_start);
1586 addr = vma->vm_start;
1587 vm_flags = vma->vm_flags;
1588 } else if (vm_flags & VM_SHARED) {
1589 error = shmem_zero_setup(vma);
1590 if (error)
1591 goto free_vma;
1594 if (vma_wants_writenotify(vma)) {
1595 pgprot_t pprot = vma->vm_page_prot;
1597 /* Can vma->vm_page_prot have changed??
1599 * Answer: Yes, drivers may have changed it in their
1600 * f_op->mmap method.
1602 * Ensures that vmas marked as uncached stay that way.
1604 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1605 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1606 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1609 vma_link(mm, vma, prev, rb_link, rb_parent);
1610 /* Once vma denies write, undo our temporary denial count */
1611 if (vm_flags & VM_DENYWRITE)
1612 allow_write_access(file);
1613 file = vma->vm_file;
1614 out:
1615 perf_event_mmap(vma);
1617 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1618 if (vm_flags & VM_LOCKED) {
1619 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1620 vma == get_gate_vma(current->mm)))
1621 mm->locked_vm += (len >> PAGE_SHIFT);
1622 else
1623 vma->vm_flags &= ~VM_LOCKED;
1626 if (file)
1627 uprobe_mmap(vma);
1630 * New (or expanded) vma always get soft dirty status.
1631 * Otherwise user-space soft-dirty page tracker won't
1632 * be able to distinguish situation when vma area unmapped,
1633 * then new mapped in-place (which must be aimed as
1634 * a completely new data area).
1636 vma->vm_flags |= VM_SOFTDIRTY;
1638 return addr;
1640 unmap_and_free_vma:
1641 if (vm_flags & VM_DENYWRITE)
1642 allow_write_access(file);
1643 vma->vm_file = NULL;
1644 fput(file);
1646 /* Undo any partial mapping done by a device driver. */
1647 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1648 charged = 0;
1649 free_vma:
1650 kmem_cache_free(vm_area_cachep, vma);
1651 unacct_error:
1652 if (charged)
1653 vm_unacct_memory(charged);
1654 return error;
1657 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1660 * We implement the search by looking for an rbtree node that
1661 * immediately follows a suitable gap. That is,
1662 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1663 * - gap_end = vma->vm_start >= info->low_limit + length;
1664 * - gap_end - gap_start >= length
1667 struct mm_struct *mm = current->mm;
1668 struct vm_area_struct *vma;
1669 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1671 /* Adjust search length to account for worst case alignment overhead */
1672 length = info->length + info->align_mask;
1673 if (length < info->length)
1674 return -ENOMEM;
1676 /* Adjust search limits by the desired length */
1677 if (info->high_limit < length)
1678 return -ENOMEM;
1679 high_limit = info->high_limit - length;
1681 if (info->low_limit > high_limit)
1682 return -ENOMEM;
1683 low_limit = info->low_limit + length;
1685 /* Check if rbtree root looks promising */
1686 if (RB_EMPTY_ROOT(&mm->mm_rb))
1687 goto check_highest;
1688 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1689 if (vma->rb_subtree_gap < length)
1690 goto check_highest;
1692 while (true) {
1693 /* Visit left subtree if it looks promising */
1694 gap_end = vma->vm_start;
1695 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1696 struct vm_area_struct *left =
1697 rb_entry(vma->vm_rb.rb_left,
1698 struct vm_area_struct, vm_rb);
1699 if (left->rb_subtree_gap >= length) {
1700 vma = left;
1701 continue;
1705 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1706 check_current:
1707 /* Check if current node has a suitable gap */
1708 if (gap_start > high_limit)
1709 return -ENOMEM;
1710 if (gap_end >= low_limit && gap_end - gap_start >= length)
1711 goto found;
1713 /* Visit right subtree if it looks promising */
1714 if (vma->vm_rb.rb_right) {
1715 struct vm_area_struct *right =
1716 rb_entry(vma->vm_rb.rb_right,
1717 struct vm_area_struct, vm_rb);
1718 if (right->rb_subtree_gap >= length) {
1719 vma = right;
1720 continue;
1724 /* Go back up the rbtree to find next candidate node */
1725 while (true) {
1726 struct rb_node *prev = &vma->vm_rb;
1727 if (!rb_parent(prev))
1728 goto check_highest;
1729 vma = rb_entry(rb_parent(prev),
1730 struct vm_area_struct, vm_rb);
1731 if (prev == vma->vm_rb.rb_left) {
1732 gap_start = vma->vm_prev->vm_end;
1733 gap_end = vma->vm_start;
1734 goto check_current;
1739 check_highest:
1740 /* Check highest gap, which does not precede any rbtree node */
1741 gap_start = mm->highest_vm_end;
1742 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1743 if (gap_start > high_limit)
1744 return -ENOMEM;
1746 found:
1747 /* We found a suitable gap. Clip it with the original low_limit. */
1748 if (gap_start < info->low_limit)
1749 gap_start = info->low_limit;
1751 /* Adjust gap address to the desired alignment */
1752 gap_start += (info->align_offset - gap_start) & info->align_mask;
1754 VM_BUG_ON(gap_start + info->length > info->high_limit);
1755 VM_BUG_ON(gap_start + info->length > gap_end);
1756 return gap_start;
1759 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1761 struct mm_struct *mm = current->mm;
1762 struct vm_area_struct *vma;
1763 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1765 /* Adjust search length to account for worst case alignment overhead */
1766 length = info->length + info->align_mask;
1767 if (length < info->length)
1768 return -ENOMEM;
1771 * Adjust search limits by the desired length.
1772 * See implementation comment at top of unmapped_area().
1774 gap_end = info->high_limit;
1775 if (gap_end < length)
1776 return -ENOMEM;
1777 high_limit = gap_end - length;
1779 if (info->low_limit > high_limit)
1780 return -ENOMEM;
1781 low_limit = info->low_limit + length;
1783 /* Check highest gap, which does not precede any rbtree node */
1784 gap_start = mm->highest_vm_end;
1785 if (gap_start <= high_limit)
1786 goto found_highest;
1788 /* Check if rbtree root looks promising */
1789 if (RB_EMPTY_ROOT(&mm->mm_rb))
1790 return -ENOMEM;
1791 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1792 if (vma->rb_subtree_gap < length)
1793 return -ENOMEM;
1795 while (true) {
1796 /* Visit right subtree if it looks promising */
1797 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1798 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1799 struct vm_area_struct *right =
1800 rb_entry(vma->vm_rb.rb_right,
1801 struct vm_area_struct, vm_rb);
1802 if (right->rb_subtree_gap >= length) {
1803 vma = right;
1804 continue;
1808 check_current:
1809 /* Check if current node has a suitable gap */
1810 gap_end = vma->vm_start;
1811 if (gap_end < low_limit)
1812 return -ENOMEM;
1813 if (gap_start <= high_limit && gap_end - gap_start >= length)
1814 goto found;
1816 /* Visit left subtree if it looks promising */
1817 if (vma->vm_rb.rb_left) {
1818 struct vm_area_struct *left =
1819 rb_entry(vma->vm_rb.rb_left,
1820 struct vm_area_struct, vm_rb);
1821 if (left->rb_subtree_gap >= length) {
1822 vma = left;
1823 continue;
1827 /* Go back up the rbtree to find next candidate node */
1828 while (true) {
1829 struct rb_node *prev = &vma->vm_rb;
1830 if (!rb_parent(prev))
1831 return -ENOMEM;
1832 vma = rb_entry(rb_parent(prev),
1833 struct vm_area_struct, vm_rb);
1834 if (prev == vma->vm_rb.rb_right) {
1835 gap_start = vma->vm_prev ?
1836 vma->vm_prev->vm_end : 0;
1837 goto check_current;
1842 found:
1843 /* We found a suitable gap. Clip it with the original high_limit. */
1844 if (gap_end > info->high_limit)
1845 gap_end = info->high_limit;
1847 found_highest:
1848 /* Compute highest gap address at the desired alignment */
1849 gap_end -= info->length;
1850 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1852 VM_BUG_ON(gap_end < info->low_limit);
1853 VM_BUG_ON(gap_end < gap_start);
1854 return gap_end;
1857 /* Get an address range which is currently unmapped.
1858 * For shmat() with addr=0.
1860 * Ugly calling convention alert:
1861 * Return value with the low bits set means error value,
1862 * ie
1863 * if (ret & ~PAGE_MASK)
1864 * error = ret;
1866 * This function "knows" that -ENOMEM has the bits set.
1868 #ifndef HAVE_ARCH_UNMAPPED_AREA
1869 unsigned long
1870 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1871 unsigned long len, unsigned long pgoff, unsigned long flags)
1873 struct mm_struct *mm = current->mm;
1874 struct vm_area_struct *vma;
1875 struct vm_unmapped_area_info info;
1877 if (len > TASK_SIZE - mmap_min_addr)
1878 return -ENOMEM;
1880 if (flags & MAP_FIXED)
1881 return addr;
1883 if (addr) {
1884 addr = PAGE_ALIGN(addr);
1885 vma = find_vma(mm, addr);
1886 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1887 (!vma || addr + len <= vma->vm_start))
1888 return addr;
1891 info.flags = 0;
1892 info.length = len;
1893 info.low_limit = mm->mmap_base;
1894 info.high_limit = TASK_SIZE;
1895 info.align_mask = 0;
1896 return vm_unmapped_area(&info);
1898 #endif
1901 * This mmap-allocator allocates new areas top-down from below the
1902 * stack's low limit (the base):
1904 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1905 unsigned long
1906 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1907 const unsigned long len, const unsigned long pgoff,
1908 const unsigned long flags)
1910 struct vm_area_struct *vma;
1911 struct mm_struct *mm = current->mm;
1912 unsigned long addr = addr0;
1913 struct vm_unmapped_area_info info;
1915 /* requested length too big for entire address space */
1916 if (len > TASK_SIZE - mmap_min_addr)
1917 return -ENOMEM;
1919 if (flags & MAP_FIXED)
1920 return addr;
1922 /* requesting a specific address */
1923 if (addr) {
1924 addr = PAGE_ALIGN(addr);
1925 vma = find_vma(mm, addr);
1926 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1927 (!vma || addr + len <= vma->vm_start))
1928 return addr;
1931 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1932 info.length = len;
1933 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1934 info.high_limit = mm->mmap_base;
1935 info.align_mask = 0;
1936 addr = vm_unmapped_area(&info);
1939 * A failed mmap() very likely causes application failure,
1940 * so fall back to the bottom-up function here. This scenario
1941 * can happen with large stack limits and large mmap()
1942 * allocations.
1944 if (addr & ~PAGE_MASK) {
1945 VM_BUG_ON(addr != -ENOMEM);
1946 info.flags = 0;
1947 info.low_limit = TASK_UNMAPPED_BASE;
1948 info.high_limit = TASK_SIZE;
1949 addr = vm_unmapped_area(&info);
1952 return addr;
1954 #endif
1956 unsigned long
1957 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1958 unsigned long pgoff, unsigned long flags)
1960 unsigned long (*get_area)(struct file *, unsigned long,
1961 unsigned long, unsigned long, unsigned long);
1963 unsigned long error = arch_mmap_check(addr, len, flags);
1964 if (error)
1965 return error;
1967 /* Careful about overflows.. */
1968 if (len > TASK_SIZE)
1969 return -ENOMEM;
1971 get_area = current->mm->get_unmapped_area;
1972 if (file && file->f_op->get_unmapped_area)
1973 get_area = file->f_op->get_unmapped_area;
1974 addr = get_area(file, addr, len, pgoff, flags);
1975 if (IS_ERR_VALUE(addr))
1976 return addr;
1978 if (addr > TASK_SIZE - len)
1979 return -ENOMEM;
1980 if (addr & ~PAGE_MASK)
1981 return -EINVAL;
1983 addr = arch_rebalance_pgtables(addr, len);
1984 error = security_mmap_addr(addr);
1985 return error ? error : addr;
1988 EXPORT_SYMBOL(get_unmapped_area);
1990 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1991 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1993 struct rb_node *rb_node;
1994 struct vm_area_struct *vma;
1996 /* Check the cache first. */
1997 vma = vmacache_find(mm, addr);
1998 if (likely(vma))
1999 return vma;
2001 rb_node = mm->mm_rb.rb_node;
2002 vma = NULL;
2004 while (rb_node) {
2005 struct vm_area_struct *tmp;
2007 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2009 if (tmp->vm_end > addr) {
2010 vma = tmp;
2011 if (tmp->vm_start <= addr)
2012 break;
2013 rb_node = rb_node->rb_left;
2014 } else
2015 rb_node = rb_node->rb_right;
2018 if (vma)
2019 vmacache_update(addr, vma);
2020 return vma;
2023 EXPORT_SYMBOL(find_vma);
2026 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2028 struct vm_area_struct *
2029 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2030 struct vm_area_struct **pprev)
2032 struct vm_area_struct *vma;
2034 vma = find_vma(mm, addr);
2035 if (vma) {
2036 *pprev = vma->vm_prev;
2037 } else {
2038 struct rb_node *rb_node = mm->mm_rb.rb_node;
2039 *pprev = NULL;
2040 while (rb_node) {
2041 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2042 rb_node = rb_node->rb_right;
2045 return vma;
2049 * Verify that the stack growth is acceptable and
2050 * update accounting. This is shared with both the
2051 * grow-up and grow-down cases.
2053 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2055 struct mm_struct *mm = vma->vm_mm;
2056 struct rlimit *rlim = current->signal->rlim;
2057 unsigned long new_start;
2059 /* address space limit tests */
2060 if (!may_expand_vm(mm, grow))
2061 return -ENOMEM;
2063 /* Stack limit test */
2064 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2065 return -ENOMEM;
2067 /* mlock limit tests */
2068 if (vma->vm_flags & VM_LOCKED) {
2069 unsigned long locked;
2070 unsigned long limit;
2071 locked = mm->locked_vm + grow;
2072 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2073 limit >>= PAGE_SHIFT;
2074 if (locked > limit && !capable(CAP_IPC_LOCK))
2075 return -ENOMEM;
2078 /* Check to ensure the stack will not grow into a hugetlb-only region */
2079 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2080 vma->vm_end - size;
2081 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2082 return -EFAULT;
2085 * Overcommit.. This must be the final test, as it will
2086 * update security statistics.
2088 if (security_vm_enough_memory_mm(mm, grow))
2089 return -ENOMEM;
2091 /* Ok, everything looks good - let it rip */
2092 if (vma->vm_flags & VM_LOCKED)
2093 mm->locked_vm += grow;
2094 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2095 return 0;
2098 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2100 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2101 * vma is the last one with address > vma->vm_end. Have to extend vma.
2103 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2105 int error;
2107 if (!(vma->vm_flags & VM_GROWSUP))
2108 return -EFAULT;
2111 * We must make sure the anon_vma is allocated
2112 * so that the anon_vma locking is not a noop.
2114 if (unlikely(anon_vma_prepare(vma)))
2115 return -ENOMEM;
2116 vma_lock_anon_vma(vma);
2119 * vma->vm_start/vm_end cannot change under us because the caller
2120 * is required to hold the mmap_sem in read mode. We need the
2121 * anon_vma lock to serialize against concurrent expand_stacks.
2122 * Also guard against wrapping around to address 0.
2124 if (address < PAGE_ALIGN(address+4))
2125 address = PAGE_ALIGN(address+4);
2126 else {
2127 vma_unlock_anon_vma(vma);
2128 return -ENOMEM;
2130 error = 0;
2132 /* Somebody else might have raced and expanded it already */
2133 if (address > vma->vm_end) {
2134 unsigned long size, grow;
2136 size = address - vma->vm_start;
2137 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2139 error = -ENOMEM;
2140 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2141 error = acct_stack_growth(vma, size, grow);
2142 if (!error) {
2144 * vma_gap_update() doesn't support concurrent
2145 * updates, but we only hold a shared mmap_sem
2146 * lock here, so we need to protect against
2147 * concurrent vma expansions.
2148 * vma_lock_anon_vma() doesn't help here, as
2149 * we don't guarantee that all growable vmas
2150 * in a mm share the same root anon vma.
2151 * So, we reuse mm->page_table_lock to guard
2152 * against concurrent vma expansions.
2154 spin_lock(&vma->vm_mm->page_table_lock);
2155 anon_vma_interval_tree_pre_update_vma(vma);
2156 vma->vm_end = address;
2157 anon_vma_interval_tree_post_update_vma(vma);
2158 if (vma->vm_next)
2159 vma_gap_update(vma->vm_next);
2160 else
2161 vma->vm_mm->highest_vm_end = address;
2162 spin_unlock(&vma->vm_mm->page_table_lock);
2164 perf_event_mmap(vma);
2168 vma_unlock_anon_vma(vma);
2169 khugepaged_enter_vma_merge(vma);
2170 validate_mm(vma->vm_mm);
2171 return error;
2173 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2176 * vma is the first one with address < vma->vm_start. Have to extend vma.
2178 int expand_downwards(struct vm_area_struct *vma,
2179 unsigned long address)
2181 int error;
2184 * We must make sure the anon_vma is allocated
2185 * so that the anon_vma locking is not a noop.
2187 if (unlikely(anon_vma_prepare(vma)))
2188 return -ENOMEM;
2190 address &= PAGE_MASK;
2191 error = security_mmap_addr(address);
2192 if (error)
2193 return error;
2195 vma_lock_anon_vma(vma);
2198 * vma->vm_start/vm_end cannot change under us because the caller
2199 * is required to hold the mmap_sem in read mode. We need the
2200 * anon_vma lock to serialize against concurrent expand_stacks.
2203 /* Somebody else might have raced and expanded it already */
2204 if (address < vma->vm_start) {
2205 unsigned long size, grow;
2207 size = vma->vm_end - address;
2208 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2210 error = -ENOMEM;
2211 if (grow <= vma->vm_pgoff) {
2212 error = acct_stack_growth(vma, size, grow);
2213 if (!error) {
2215 * vma_gap_update() doesn't support concurrent
2216 * updates, but we only hold a shared mmap_sem
2217 * lock here, so we need to protect against
2218 * concurrent vma expansions.
2219 * vma_lock_anon_vma() doesn't help here, as
2220 * we don't guarantee that all growable vmas
2221 * in a mm share the same root anon vma.
2222 * So, we reuse mm->page_table_lock to guard
2223 * against concurrent vma expansions.
2225 spin_lock(&vma->vm_mm->page_table_lock);
2226 anon_vma_interval_tree_pre_update_vma(vma);
2227 vma->vm_start = address;
2228 vma->vm_pgoff -= grow;
2229 anon_vma_interval_tree_post_update_vma(vma);
2230 vma_gap_update(vma);
2231 spin_unlock(&vma->vm_mm->page_table_lock);
2233 perf_event_mmap(vma);
2237 vma_unlock_anon_vma(vma);
2238 khugepaged_enter_vma_merge(vma);
2239 validate_mm(vma->vm_mm);
2240 return error;
2244 * Note how expand_stack() refuses to expand the stack all the way to
2245 * abut the next virtual mapping, *unless* that mapping itself is also
2246 * a stack mapping. We want to leave room for a guard page, after all
2247 * (the guard page itself is not added here, that is done by the
2248 * actual page faulting logic)
2250 * This matches the behavior of the guard page logic (see mm/memory.c:
2251 * check_stack_guard_page()), which only allows the guard page to be
2252 * removed under these circumstances.
2254 #ifdef CONFIG_STACK_GROWSUP
2255 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2257 struct vm_area_struct *next;
2259 address &= PAGE_MASK;
2260 next = vma->vm_next;
2261 if (next && next->vm_start == address + PAGE_SIZE) {
2262 if (!(next->vm_flags & VM_GROWSUP))
2263 return -ENOMEM;
2265 return expand_upwards(vma, address);
2268 struct vm_area_struct *
2269 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2271 struct vm_area_struct *vma, *prev;
2273 addr &= PAGE_MASK;
2274 vma = find_vma_prev(mm, addr, &prev);
2275 if (vma && (vma->vm_start <= addr))
2276 return vma;
2277 if (!prev || expand_stack(prev, addr))
2278 return NULL;
2279 if (prev->vm_flags & VM_LOCKED)
2280 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2281 return prev;
2283 #else
2284 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2286 struct vm_area_struct *prev;
2288 address &= PAGE_MASK;
2289 prev = vma->vm_prev;
2290 if (prev && prev->vm_end == address) {
2291 if (!(prev->vm_flags & VM_GROWSDOWN))
2292 return -ENOMEM;
2294 return expand_downwards(vma, address);
2297 struct vm_area_struct *
2298 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2300 struct vm_area_struct * vma;
2301 unsigned long start;
2303 addr &= PAGE_MASK;
2304 vma = find_vma(mm,addr);
2305 if (!vma)
2306 return NULL;
2307 if (vma->vm_start <= addr)
2308 return vma;
2309 if (!(vma->vm_flags & VM_GROWSDOWN))
2310 return NULL;
2311 start = vma->vm_start;
2312 if (expand_stack(vma, addr))
2313 return NULL;
2314 if (vma->vm_flags & VM_LOCKED)
2315 __mlock_vma_pages_range(vma, addr, start, NULL);
2316 return vma;
2318 #endif
2321 * Ok - we have the memory areas we should free on the vma list,
2322 * so release them, and do the vma updates.
2324 * Called with the mm semaphore held.
2326 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2328 unsigned long nr_accounted = 0;
2330 /* Update high watermark before we lower total_vm */
2331 update_hiwater_vm(mm);
2332 do {
2333 long nrpages = vma_pages(vma);
2335 if (vma->vm_flags & VM_ACCOUNT)
2336 nr_accounted += nrpages;
2337 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2338 vma = remove_vma(vma);
2339 } while (vma);
2340 vm_unacct_memory(nr_accounted);
2341 validate_mm(mm);
2345 * Get rid of page table information in the indicated region.
2347 * Called with the mm semaphore held.
2349 static void unmap_region(struct mm_struct *mm,
2350 struct vm_area_struct *vma, struct vm_area_struct *prev,
2351 unsigned long start, unsigned long end)
2353 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2354 struct mmu_gather tlb;
2356 lru_add_drain();
2357 tlb_gather_mmu(&tlb, mm, start, end);
2358 update_hiwater_rss(mm);
2359 unmap_vmas(&tlb, vma, start, end);
2360 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2361 next ? next->vm_start : USER_PGTABLES_CEILING);
2362 tlb_finish_mmu(&tlb, start, end);
2366 * Create a list of vma's touched by the unmap, removing them from the mm's
2367 * vma list as we go..
2369 static void
2370 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2371 struct vm_area_struct *prev, unsigned long end)
2373 struct vm_area_struct **insertion_point;
2374 struct vm_area_struct *tail_vma = NULL;
2376 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2377 vma->vm_prev = NULL;
2378 do {
2379 vma_rb_erase(vma, &mm->mm_rb);
2380 mm->map_count--;
2381 tail_vma = vma;
2382 vma = vma->vm_next;
2383 } while (vma && vma->vm_start < end);
2384 *insertion_point = vma;
2385 if (vma) {
2386 vma->vm_prev = prev;
2387 vma_gap_update(vma);
2388 } else
2389 mm->highest_vm_end = prev ? prev->vm_end : 0;
2390 tail_vma->vm_next = NULL;
2392 /* Kill the cache */
2393 vmacache_invalidate(mm);
2397 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2398 * munmap path where it doesn't make sense to fail.
2400 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2401 unsigned long addr, int new_below)
2403 struct vm_area_struct *new;
2404 int err = -ENOMEM;
2406 if (is_vm_hugetlb_page(vma) && (addr &
2407 ~(huge_page_mask(hstate_vma(vma)))))
2408 return -EINVAL;
2410 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2411 if (!new)
2412 goto out_err;
2414 /* most fields are the same, copy all, and then fixup */
2415 *new = *vma;
2417 INIT_LIST_HEAD(&new->anon_vma_chain);
2419 if (new_below)
2420 new->vm_end = addr;
2421 else {
2422 new->vm_start = addr;
2423 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2426 err = vma_dup_policy(vma, new);
2427 if (err)
2428 goto out_free_vma;
2430 if (anon_vma_clone(new, vma))
2431 goto out_free_mpol;
2433 if (new->vm_file)
2434 get_file(new->vm_file);
2436 if (new->vm_ops && new->vm_ops->open)
2437 new->vm_ops->open(new);
2439 if (new_below)
2440 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2441 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2442 else
2443 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2445 /* Success. */
2446 if (!err)
2447 return 0;
2449 /* Clean everything up if vma_adjust failed. */
2450 if (new->vm_ops && new->vm_ops->close)
2451 new->vm_ops->close(new);
2452 if (new->vm_file)
2453 fput(new->vm_file);
2454 unlink_anon_vmas(new);
2455 out_free_mpol:
2456 mpol_put(vma_policy(new));
2457 out_free_vma:
2458 kmem_cache_free(vm_area_cachep, new);
2459 out_err:
2460 return err;
2464 * Split a vma into two pieces at address 'addr', a new vma is allocated
2465 * either for the first part or the tail.
2467 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2468 unsigned long addr, int new_below)
2470 if (mm->map_count >= sysctl_max_map_count)
2471 return -ENOMEM;
2473 return __split_vma(mm, vma, addr, new_below);
2476 /* Munmap is split into 2 main parts -- this part which finds
2477 * what needs doing, and the areas themselves, which do the
2478 * work. This now handles partial unmappings.
2479 * Jeremy Fitzhardinge <jeremy@goop.org>
2481 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2483 unsigned long end;
2484 struct vm_area_struct *vma, *prev, *last;
2486 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2487 return -EINVAL;
2489 if ((len = PAGE_ALIGN(len)) == 0)
2490 return -EINVAL;
2492 /* Find the first overlapping VMA */
2493 vma = find_vma(mm, start);
2494 if (!vma)
2495 return 0;
2496 prev = vma->vm_prev;
2497 /* we have start < vma->vm_end */
2499 /* if it doesn't overlap, we have nothing.. */
2500 end = start + len;
2501 if (vma->vm_start >= end)
2502 return 0;
2505 * If we need to split any vma, do it now to save pain later.
2507 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2508 * unmapped vm_area_struct will remain in use: so lower split_vma
2509 * places tmp vma above, and higher split_vma places tmp vma below.
2511 if (start > vma->vm_start) {
2512 int error;
2515 * Make sure that map_count on return from munmap() will
2516 * not exceed its limit; but let map_count go just above
2517 * its limit temporarily, to help free resources as expected.
2519 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2520 return -ENOMEM;
2522 error = __split_vma(mm, vma, start, 0);
2523 if (error)
2524 return error;
2525 prev = vma;
2528 /* Does it split the last one? */
2529 last = find_vma(mm, end);
2530 if (last && end > last->vm_start) {
2531 int error = __split_vma(mm, last, end, 1);
2532 if (error)
2533 return error;
2535 vma = prev? prev->vm_next: mm->mmap;
2538 * unlock any mlock()ed ranges before detaching vmas
2540 if (mm->locked_vm) {
2541 struct vm_area_struct *tmp = vma;
2542 while (tmp && tmp->vm_start < end) {
2543 if (tmp->vm_flags & VM_LOCKED) {
2544 mm->locked_vm -= vma_pages(tmp);
2545 munlock_vma_pages_all(tmp);
2547 tmp = tmp->vm_next;
2552 * Remove the vma's, and unmap the actual pages
2554 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2555 unmap_region(mm, vma, prev, start, end);
2557 /* Fix up all other VM information */
2558 remove_vma_list(mm, vma);
2560 return 0;
2563 int vm_munmap(unsigned long start, size_t len)
2565 int ret;
2566 struct mm_struct *mm = current->mm;
2568 down_write(&mm->mmap_sem);
2569 ret = do_munmap(mm, start, len);
2570 up_write(&mm->mmap_sem);
2571 return ret;
2573 EXPORT_SYMBOL(vm_munmap);
2575 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2577 profile_munmap(addr);
2578 return vm_munmap(addr, len);
2581 static inline void verify_mm_writelocked(struct mm_struct *mm)
2583 #ifdef CONFIG_DEBUG_VM
2584 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2585 WARN_ON(1);
2586 up_read(&mm->mmap_sem);
2588 #endif
2592 * this is really a simplified "do_mmap". it only handles
2593 * anonymous maps. eventually we may be able to do some
2594 * brk-specific accounting here.
2596 static unsigned long do_brk(unsigned long addr, unsigned long len)
2598 struct mm_struct * mm = current->mm;
2599 struct vm_area_struct * vma, * prev;
2600 unsigned long flags;
2601 struct rb_node ** rb_link, * rb_parent;
2602 pgoff_t pgoff = addr >> PAGE_SHIFT;
2603 int error;
2605 len = PAGE_ALIGN(len);
2606 if (!len)
2607 return addr;
2609 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2611 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2612 if (error & ~PAGE_MASK)
2613 return error;
2615 error = mlock_future_check(mm, mm->def_flags, len);
2616 if (error)
2617 return error;
2620 * mm->mmap_sem is required to protect against another thread
2621 * changing the mappings in case we sleep.
2623 verify_mm_writelocked(mm);
2626 * Clear old maps. this also does some error checking for us
2628 munmap_back:
2629 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2630 if (do_munmap(mm, addr, len))
2631 return -ENOMEM;
2632 goto munmap_back;
2635 /* Check against address space limits *after* clearing old maps... */
2636 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2637 return -ENOMEM;
2639 if (mm->map_count > sysctl_max_map_count)
2640 return -ENOMEM;
2642 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2643 return -ENOMEM;
2645 /* Can we just expand an old private anonymous mapping? */
2646 vma = vma_merge(mm, prev, addr, addr + len, flags,
2647 NULL, NULL, pgoff, NULL);
2648 if (vma)
2649 goto out;
2652 * create a vma struct for an anonymous mapping
2654 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2655 if (!vma) {
2656 vm_unacct_memory(len >> PAGE_SHIFT);
2657 return -ENOMEM;
2660 INIT_LIST_HEAD(&vma->anon_vma_chain);
2661 vma->vm_mm = mm;
2662 vma->vm_start = addr;
2663 vma->vm_end = addr + len;
2664 vma->vm_pgoff = pgoff;
2665 vma->vm_flags = flags;
2666 vma->vm_page_prot = vm_get_page_prot(flags);
2667 vma_link(mm, vma, prev, rb_link, rb_parent);
2668 out:
2669 perf_event_mmap(vma);
2670 mm->total_vm += len >> PAGE_SHIFT;
2671 if (flags & VM_LOCKED)
2672 mm->locked_vm += (len >> PAGE_SHIFT);
2673 vma->vm_flags |= VM_SOFTDIRTY;
2674 return addr;
2677 unsigned long vm_brk(unsigned long addr, unsigned long len)
2679 struct mm_struct *mm = current->mm;
2680 unsigned long ret;
2681 bool populate;
2683 down_write(&mm->mmap_sem);
2684 ret = do_brk(addr, len);
2685 populate = ((mm->def_flags & VM_LOCKED) != 0);
2686 up_write(&mm->mmap_sem);
2687 if (populate)
2688 mm_populate(addr, len);
2689 return ret;
2691 EXPORT_SYMBOL(vm_brk);
2693 /* Release all mmaps. */
2694 void exit_mmap(struct mm_struct *mm)
2696 struct mmu_gather tlb;
2697 struct vm_area_struct *vma;
2698 unsigned long nr_accounted = 0;
2700 /* mm's last user has gone, and its about to be pulled down */
2701 mmu_notifier_release(mm);
2703 if (mm->locked_vm) {
2704 vma = mm->mmap;
2705 while (vma) {
2706 if (vma->vm_flags & VM_LOCKED)
2707 munlock_vma_pages_all(vma);
2708 vma = vma->vm_next;
2712 arch_exit_mmap(mm);
2714 vma = mm->mmap;
2715 if (!vma) /* Can happen if dup_mmap() received an OOM */
2716 return;
2718 lru_add_drain();
2719 flush_cache_mm(mm);
2720 tlb_gather_mmu(&tlb, mm, 0, -1);
2721 /* update_hiwater_rss(mm) here? but nobody should be looking */
2722 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2723 unmap_vmas(&tlb, vma, 0, -1);
2725 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2726 tlb_finish_mmu(&tlb, 0, -1);
2729 * Walk the list again, actually closing and freeing it,
2730 * with preemption enabled, without holding any MM locks.
2732 while (vma) {
2733 if (vma->vm_flags & VM_ACCOUNT)
2734 nr_accounted += vma_pages(vma);
2735 vma = remove_vma(vma);
2737 vm_unacct_memory(nr_accounted);
2739 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2740 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2743 /* Insert vm structure into process list sorted by address
2744 * and into the inode's i_mmap tree. If vm_file is non-NULL
2745 * then i_mmap_mutex is taken here.
2747 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2749 struct vm_area_struct *prev;
2750 struct rb_node **rb_link, *rb_parent;
2753 * The vm_pgoff of a purely anonymous vma should be irrelevant
2754 * until its first write fault, when page's anon_vma and index
2755 * are set. But now set the vm_pgoff it will almost certainly
2756 * end up with (unless mremap moves it elsewhere before that
2757 * first wfault), so /proc/pid/maps tells a consistent story.
2759 * By setting it to reflect the virtual start address of the
2760 * vma, merges and splits can happen in a seamless way, just
2761 * using the existing file pgoff checks and manipulations.
2762 * Similarly in do_mmap_pgoff and in do_brk.
2764 if (!vma->vm_file) {
2765 BUG_ON(vma->anon_vma);
2766 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2768 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2769 &prev, &rb_link, &rb_parent))
2770 return -ENOMEM;
2771 if ((vma->vm_flags & VM_ACCOUNT) &&
2772 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2773 return -ENOMEM;
2775 vma_link(mm, vma, prev, rb_link, rb_parent);
2776 return 0;
2780 * Copy the vma structure to a new location in the same mm,
2781 * prior to moving page table entries, to effect an mremap move.
2783 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2784 unsigned long addr, unsigned long len, pgoff_t pgoff,
2785 bool *need_rmap_locks)
2787 struct vm_area_struct *vma = *vmap;
2788 unsigned long vma_start = vma->vm_start;
2789 struct mm_struct *mm = vma->vm_mm;
2790 struct vm_area_struct *new_vma, *prev;
2791 struct rb_node **rb_link, *rb_parent;
2792 bool faulted_in_anon_vma = true;
2795 * If anonymous vma has not yet been faulted, update new pgoff
2796 * to match new location, to increase its chance of merging.
2798 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2799 pgoff = addr >> PAGE_SHIFT;
2800 faulted_in_anon_vma = false;
2803 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2804 return NULL; /* should never get here */
2805 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2806 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2807 if (new_vma) {
2809 * Source vma may have been merged into new_vma
2811 if (unlikely(vma_start >= new_vma->vm_start &&
2812 vma_start < new_vma->vm_end)) {
2814 * The only way we can get a vma_merge with
2815 * self during an mremap is if the vma hasn't
2816 * been faulted in yet and we were allowed to
2817 * reset the dst vma->vm_pgoff to the
2818 * destination address of the mremap to allow
2819 * the merge to happen. mremap must change the
2820 * vm_pgoff linearity between src and dst vmas
2821 * (in turn preventing a vma_merge) to be
2822 * safe. It is only safe to keep the vm_pgoff
2823 * linear if there are no pages mapped yet.
2825 VM_BUG_ON(faulted_in_anon_vma);
2826 *vmap = vma = new_vma;
2828 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2829 } else {
2830 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2831 if (new_vma) {
2832 *new_vma = *vma;
2833 new_vma->vm_start = addr;
2834 new_vma->vm_end = addr + len;
2835 new_vma->vm_pgoff = pgoff;
2836 if (vma_dup_policy(vma, new_vma))
2837 goto out_free_vma;
2838 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2839 if (anon_vma_clone(new_vma, vma))
2840 goto out_free_mempol;
2841 if (new_vma->vm_file)
2842 get_file(new_vma->vm_file);
2843 if (new_vma->vm_ops && new_vma->vm_ops->open)
2844 new_vma->vm_ops->open(new_vma);
2845 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2846 *need_rmap_locks = false;
2849 return new_vma;
2851 out_free_mempol:
2852 mpol_put(vma_policy(new_vma));
2853 out_free_vma:
2854 kmem_cache_free(vm_area_cachep, new_vma);
2855 return NULL;
2859 * Return true if the calling process may expand its vm space by the passed
2860 * number of pages
2862 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2864 unsigned long cur = mm->total_vm; /* pages */
2865 unsigned long lim;
2867 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2869 if (cur + npages > lim)
2870 return 0;
2871 return 1;
2875 static int special_mapping_fault(struct vm_area_struct *vma,
2876 struct vm_fault *vmf)
2878 pgoff_t pgoff;
2879 struct page **pages;
2882 * special mappings have no vm_file, and in that case, the mm
2883 * uses vm_pgoff internally. So we have to subtract it from here.
2884 * We are allowed to do this because we are the mm; do not copy
2885 * this code into drivers!
2887 pgoff = vmf->pgoff - vma->vm_pgoff;
2889 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2890 pgoff--;
2892 if (*pages) {
2893 struct page *page = *pages;
2894 get_page(page);
2895 vmf->page = page;
2896 return 0;
2899 return VM_FAULT_SIGBUS;
2903 * Having a close hook prevents vma merging regardless of flags.
2905 static void special_mapping_close(struct vm_area_struct *vma)
2909 static const struct vm_operations_struct special_mapping_vmops = {
2910 .close = special_mapping_close,
2911 .fault = special_mapping_fault,
2915 * Called with mm->mmap_sem held for writing.
2916 * Insert a new vma covering the given region, with the given flags.
2917 * Its pages are supplied by the given array of struct page *.
2918 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2919 * The region past the last page supplied will always produce SIGBUS.
2920 * The array pointer and the pages it points to are assumed to stay alive
2921 * for as long as this mapping might exist.
2923 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2924 unsigned long addr, unsigned long len,
2925 unsigned long vm_flags, struct page **pages)
2927 int ret;
2928 struct vm_area_struct *vma;
2930 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2931 if (unlikely(vma == NULL))
2932 return ERR_PTR(-ENOMEM);
2934 INIT_LIST_HEAD(&vma->anon_vma_chain);
2935 vma->vm_mm = mm;
2936 vma->vm_start = addr;
2937 vma->vm_end = addr + len;
2939 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2940 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2942 vma->vm_ops = &special_mapping_vmops;
2943 vma->vm_private_data = pages;
2945 ret = insert_vm_struct(mm, vma);
2946 if (ret)
2947 goto out;
2949 mm->total_vm += len >> PAGE_SHIFT;
2951 perf_event_mmap(vma);
2953 return vma;
2955 out:
2956 kmem_cache_free(vm_area_cachep, vma);
2957 return ERR_PTR(ret);
2960 int install_special_mapping(struct mm_struct *mm,
2961 unsigned long addr, unsigned long len,
2962 unsigned long vm_flags, struct page **pages)
2964 struct vm_area_struct *vma = _install_special_mapping(mm,
2965 addr, len, vm_flags, pages);
2967 return PTR_ERR_OR_ZERO(vma);
2970 static DEFINE_MUTEX(mm_all_locks_mutex);
2972 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2974 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2976 * The LSB of head.next can't change from under us
2977 * because we hold the mm_all_locks_mutex.
2979 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2981 * We can safely modify head.next after taking the
2982 * anon_vma->root->rwsem. If some other vma in this mm shares
2983 * the same anon_vma we won't take it again.
2985 * No need of atomic instructions here, head.next
2986 * can't change from under us thanks to the
2987 * anon_vma->root->rwsem.
2989 if (__test_and_set_bit(0, (unsigned long *)
2990 &anon_vma->root->rb_root.rb_node))
2991 BUG();
2995 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2997 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2999 * AS_MM_ALL_LOCKS can't change from under us because
3000 * we hold the mm_all_locks_mutex.
3002 * Operations on ->flags have to be atomic because
3003 * even if AS_MM_ALL_LOCKS is stable thanks to the
3004 * mm_all_locks_mutex, there may be other cpus
3005 * changing other bitflags in parallel to us.
3007 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3008 BUG();
3009 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3014 * This operation locks against the VM for all pte/vma/mm related
3015 * operations that could ever happen on a certain mm. This includes
3016 * vmtruncate, try_to_unmap, and all page faults.
3018 * The caller must take the mmap_sem in write mode before calling
3019 * mm_take_all_locks(). The caller isn't allowed to release the
3020 * mmap_sem until mm_drop_all_locks() returns.
3022 * mmap_sem in write mode is required in order to block all operations
3023 * that could modify pagetables and free pages without need of
3024 * altering the vma layout (for example populate_range() with
3025 * nonlinear vmas). It's also needed in write mode to avoid new
3026 * anon_vmas to be associated with existing vmas.
3028 * A single task can't take more than one mm_take_all_locks() in a row
3029 * or it would deadlock.
3031 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3032 * mapping->flags avoid to take the same lock twice, if more than one
3033 * vma in this mm is backed by the same anon_vma or address_space.
3035 * We can take all the locks in random order because the VM code
3036 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3037 * takes more than one of them in a row. Secondly we're protected
3038 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3040 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3041 * that may have to take thousand of locks.
3043 * mm_take_all_locks() can fail if it's interrupted by signals.
3045 int mm_take_all_locks(struct mm_struct *mm)
3047 struct vm_area_struct *vma;
3048 struct anon_vma_chain *avc;
3050 BUG_ON(down_read_trylock(&mm->mmap_sem));
3052 mutex_lock(&mm_all_locks_mutex);
3054 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3055 if (signal_pending(current))
3056 goto out_unlock;
3057 if (vma->vm_file && vma->vm_file->f_mapping)
3058 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3061 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3062 if (signal_pending(current))
3063 goto out_unlock;
3064 if (vma->anon_vma)
3065 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3066 vm_lock_anon_vma(mm, avc->anon_vma);
3069 return 0;
3071 out_unlock:
3072 mm_drop_all_locks(mm);
3073 return -EINTR;
3076 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3078 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3080 * The LSB of head.next can't change to 0 from under
3081 * us because we hold the mm_all_locks_mutex.
3083 * We must however clear the bitflag before unlocking
3084 * the vma so the users using the anon_vma->rb_root will
3085 * never see our bitflag.
3087 * No need of atomic instructions here, head.next
3088 * can't change from under us until we release the
3089 * anon_vma->root->rwsem.
3091 if (!__test_and_clear_bit(0, (unsigned long *)
3092 &anon_vma->root->rb_root.rb_node))
3093 BUG();
3094 anon_vma_unlock_write(anon_vma);
3098 static void vm_unlock_mapping(struct address_space *mapping)
3100 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3102 * AS_MM_ALL_LOCKS can't change to 0 from under us
3103 * because we hold the mm_all_locks_mutex.
3105 mutex_unlock(&mapping->i_mmap_mutex);
3106 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3107 &mapping->flags))
3108 BUG();
3113 * The mmap_sem cannot be released by the caller until
3114 * mm_drop_all_locks() returns.
3116 void mm_drop_all_locks(struct mm_struct *mm)
3118 struct vm_area_struct *vma;
3119 struct anon_vma_chain *avc;
3121 BUG_ON(down_read_trylock(&mm->mmap_sem));
3122 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3124 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3125 if (vma->anon_vma)
3126 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3127 vm_unlock_anon_vma(avc->anon_vma);
3128 if (vma->vm_file && vma->vm_file->f_mapping)
3129 vm_unlock_mapping(vma->vm_file->f_mapping);
3132 mutex_unlock(&mm_all_locks_mutex);
3136 * initialise the VMA slab
3138 void __init mmap_init(void)
3140 int ret;
3142 ret = percpu_counter_init(&vm_committed_as, 0);
3143 VM_BUG_ON(ret);
3147 * Initialise sysctl_user_reserve_kbytes.
3149 * This is intended to prevent a user from starting a single memory hogging
3150 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3151 * mode.
3153 * The default value is min(3% of free memory, 128MB)
3154 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3156 static int init_user_reserve(void)
3158 unsigned long free_kbytes;
3160 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3162 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3163 return 0;
3165 subsys_initcall(init_user_reserve);
3168 * Initialise sysctl_admin_reserve_kbytes.
3170 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3171 * to log in and kill a memory hogging process.
3173 * Systems with more than 256MB will reserve 8MB, enough to recover
3174 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3175 * only reserve 3% of free pages by default.
3177 static int init_admin_reserve(void)
3179 unsigned long free_kbytes;
3181 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3183 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3184 return 0;
3186 subsys_initcall(init_admin_reserve);
3189 * Reinititalise user and admin reserves if memory is added or removed.
3191 * The default user reserve max is 128MB, and the default max for the
3192 * admin reserve is 8MB. These are usually, but not always, enough to
3193 * enable recovery from a memory hogging process using login/sshd, a shell,
3194 * and tools like top. It may make sense to increase or even disable the
3195 * reserve depending on the existence of swap or variations in the recovery
3196 * tools. So, the admin may have changed them.
3198 * If memory is added and the reserves have been eliminated or increased above
3199 * the default max, then we'll trust the admin.
3201 * If memory is removed and there isn't enough free memory, then we
3202 * need to reset the reserves.
3204 * Otherwise keep the reserve set by the admin.
3206 static int reserve_mem_notifier(struct notifier_block *nb,
3207 unsigned long action, void *data)
3209 unsigned long tmp, free_kbytes;
3211 switch (action) {
3212 case MEM_ONLINE:
3213 /* Default max is 128MB. Leave alone if modified by operator. */
3214 tmp = sysctl_user_reserve_kbytes;
3215 if (0 < tmp && tmp < (1UL << 17))
3216 init_user_reserve();
3218 /* Default max is 8MB. Leave alone if modified by operator. */
3219 tmp = sysctl_admin_reserve_kbytes;
3220 if (0 < tmp && tmp < (1UL << 13))
3221 init_admin_reserve();
3223 break;
3224 case MEM_OFFLINE:
3225 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3227 if (sysctl_user_reserve_kbytes > free_kbytes) {
3228 init_user_reserve();
3229 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3230 sysctl_user_reserve_kbytes);
3233 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3234 init_admin_reserve();
3235 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3236 sysctl_admin_reserve_kbytes);
3238 break;
3239 default:
3240 break;
3242 return NOTIFY_OK;
3245 static struct notifier_block reserve_mem_nb = {
3246 .notifier_call = reserve_mem_notifier,
3249 static int __meminit init_reserve_notifier(void)
3251 if (register_hotmemory_notifier(&reserve_mem_nb))
3252 printk("Failed registering memory add/remove notifier for admin reserve");
3254 return 0;
3256 subsys_initcall(init_reserve_notifier);