2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
5 * (C) 2004 Nadia Yvette Chambers, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
41 #include <linux/sched/task.h>
42 #include <linux/idr.h>
44 struct pid init_struct_pid
= INIT_STRUCT_PID
;
46 int pid_max
= PID_MAX_DEFAULT
;
48 #define RESERVED_PIDS 300
50 int pid_max_min
= RESERVED_PIDS
+ 1;
51 int pid_max_max
= PID_MAX_LIMIT
;
54 * PID-map pages start out as NULL, they get allocated upon
55 * first use and are never deallocated. This way a low pid_max
56 * value does not cause lots of bitmaps to be allocated, but
57 * the scheme scales to up to 4 million PIDs, runtime.
59 struct pid_namespace init_pid_ns
= {
62 .pid_allocated
= PIDNS_ADDING
,
64 .child_reaper
= &init_task
,
65 .user_ns
= &init_user_ns
,
66 .ns
.inum
= PROC_PID_INIT_INO
,
68 .ns
.ops
= &pidns_operations
,
71 EXPORT_SYMBOL_GPL(init_pid_ns
);
74 * Note: disable interrupts while the pidmap_lock is held as an
75 * interrupt might come in and do read_lock(&tasklist_lock).
77 * If we don't disable interrupts there is a nasty deadlock between
78 * detach_pid()->free_pid() and another cpu that does
79 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
80 * read_lock(&tasklist_lock);
82 * After we clean up the tasklist_lock and know there are no
83 * irq handlers that take it we can leave the interrupts enabled.
84 * For now it is easier to be safe than to prove it can't happen.
87 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(pidmap_lock
);
89 void put_pid(struct pid
*pid
)
91 struct pid_namespace
*ns
;
96 ns
= pid
->numbers
[pid
->level
].ns
;
97 if ((atomic_read(&pid
->count
) == 1) ||
98 atomic_dec_and_test(&pid
->count
)) {
99 kmem_cache_free(ns
->pid_cachep
, pid
);
103 EXPORT_SYMBOL_GPL(put_pid
);
105 static void delayed_put_pid(struct rcu_head
*rhp
)
107 struct pid
*pid
= container_of(rhp
, struct pid
, rcu
);
111 void free_pid(struct pid
*pid
)
113 /* We can be called with write_lock_irq(&tasklist_lock) held */
117 spin_lock_irqsave(&pidmap_lock
, flags
);
118 for (i
= 0; i
<= pid
->level
; i
++) {
119 struct upid
*upid
= pid
->numbers
+ i
;
120 struct pid_namespace
*ns
= upid
->ns
;
121 switch (--ns
->pid_allocated
) {
124 /* When all that is left in the pid namespace
125 * is the reaper wake up the reaper. The reaper
126 * may be sleeping in zap_pid_ns_processes().
128 wake_up_process(ns
->child_reaper
);
131 /* Handle a fork failure of the first process */
132 WARN_ON(ns
->child_reaper
);
133 ns
->pid_allocated
= 0;
136 schedule_work(&ns
->proc_work
);
140 idr_remove(&ns
->idr
, upid
->nr
);
142 spin_unlock_irqrestore(&pidmap_lock
, flags
);
144 call_rcu(&pid
->rcu
, delayed_put_pid
);
147 struct pid
*alloc_pid(struct pid_namespace
*ns
)
152 struct pid_namespace
*tmp
;
154 int retval
= -ENOMEM
;
156 pid
= kmem_cache_alloc(ns
->pid_cachep
, GFP_KERNEL
);
158 return ERR_PTR(retval
);
161 pid
->level
= ns
->level
;
163 for (i
= ns
->level
; i
>= 0; i
--) {
166 idr_preload(GFP_KERNEL
);
167 spin_lock_irq(&pidmap_lock
);
170 * init really needs pid 1, but after reaching the maximum
171 * wrap back to RESERVED_PIDS
173 if (idr_get_cursor(&tmp
->idr
) > RESERVED_PIDS
)
174 pid_min
= RESERVED_PIDS
;
177 * Store a null pointer so find_pid_ns does not find
178 * a partially initialized PID (see below).
180 nr
= idr_alloc_cyclic(&tmp
->idr
, NULL
, pid_min
,
181 pid_max
, GFP_ATOMIC
);
182 spin_unlock_irq(&pidmap_lock
);
190 pid
->numbers
[i
].nr
= nr
;
191 pid
->numbers
[i
].ns
= tmp
;
195 if (unlikely(is_child_reaper(pid
))) {
196 if (pid_ns_prepare_proc(ns
)) {
197 disable_pid_allocation(ns
);
203 atomic_set(&pid
->count
, 1);
204 for (type
= 0; type
< PIDTYPE_MAX
; ++type
)
205 INIT_HLIST_HEAD(&pid
->tasks
[type
]);
207 upid
= pid
->numbers
+ ns
->level
;
208 spin_lock_irq(&pidmap_lock
);
209 if (!(ns
->pid_allocated
& PIDNS_ADDING
))
211 for ( ; upid
>= pid
->numbers
; --upid
) {
212 /* Make the PID visible to find_pid_ns. */
213 idr_replace(&upid
->ns
->idr
, pid
, upid
->nr
);
214 upid
->ns
->pid_allocated
++;
216 spin_unlock_irq(&pidmap_lock
);
221 spin_unlock_irq(&pidmap_lock
);
225 spin_lock_irq(&pidmap_lock
);
226 while (++i
<= ns
->level
)
227 idr_remove(&ns
->idr
, (pid
->numbers
+ i
)->nr
);
229 spin_unlock_irq(&pidmap_lock
);
231 kmem_cache_free(ns
->pid_cachep
, pid
);
232 return ERR_PTR(retval
);
235 void disable_pid_allocation(struct pid_namespace
*ns
)
237 spin_lock_irq(&pidmap_lock
);
238 ns
->pid_allocated
&= ~PIDNS_ADDING
;
239 spin_unlock_irq(&pidmap_lock
);
242 struct pid
*find_pid_ns(int nr
, struct pid_namespace
*ns
)
244 return idr_find(&ns
->idr
, nr
);
246 EXPORT_SYMBOL_GPL(find_pid_ns
);
248 struct pid
*find_vpid(int nr
)
250 return find_pid_ns(nr
, task_active_pid_ns(current
));
252 EXPORT_SYMBOL_GPL(find_vpid
);
255 * attach_pid() must be called with the tasklist_lock write-held.
257 void attach_pid(struct task_struct
*task
, enum pid_type type
)
259 struct pid_link
*link
= &task
->pids
[type
];
260 hlist_add_head_rcu(&link
->node
, &link
->pid
->tasks
[type
]);
263 static void __change_pid(struct task_struct
*task
, enum pid_type type
,
266 struct pid_link
*link
;
270 link
= &task
->pids
[type
];
273 hlist_del_rcu(&link
->node
);
276 for (tmp
= PIDTYPE_MAX
; --tmp
>= 0; )
277 if (!hlist_empty(&pid
->tasks
[tmp
]))
283 void detach_pid(struct task_struct
*task
, enum pid_type type
)
285 __change_pid(task
, type
, NULL
);
288 void change_pid(struct task_struct
*task
, enum pid_type type
,
291 __change_pid(task
, type
, pid
);
292 attach_pid(task
, type
);
295 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
296 void transfer_pid(struct task_struct
*old
, struct task_struct
*new,
299 new->pids
[type
].pid
= old
->pids
[type
].pid
;
300 hlist_replace_rcu(&old
->pids
[type
].node
, &new->pids
[type
].node
);
303 struct task_struct
*pid_task(struct pid
*pid
, enum pid_type type
)
305 struct task_struct
*result
= NULL
;
307 struct hlist_node
*first
;
308 first
= rcu_dereference_check(hlist_first_rcu(&pid
->tasks
[type
]),
309 lockdep_tasklist_lock_is_held());
311 result
= hlist_entry(first
, struct task_struct
, pids
[(type
)].node
);
315 EXPORT_SYMBOL(pid_task
);
318 * Must be called under rcu_read_lock().
320 struct task_struct
*find_task_by_pid_ns(pid_t nr
, struct pid_namespace
*ns
)
322 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
323 "find_task_by_pid_ns() needs rcu_read_lock() protection");
324 return pid_task(find_pid_ns(nr
, ns
), PIDTYPE_PID
);
327 struct task_struct
*find_task_by_vpid(pid_t vnr
)
329 return find_task_by_pid_ns(vnr
, task_active_pid_ns(current
));
332 struct pid
*get_task_pid(struct task_struct
*task
, enum pid_type type
)
336 if (type
!= PIDTYPE_PID
)
337 task
= task
->group_leader
;
338 pid
= get_pid(rcu_dereference(task
->pids
[type
].pid
));
342 EXPORT_SYMBOL_GPL(get_task_pid
);
344 struct task_struct
*get_pid_task(struct pid
*pid
, enum pid_type type
)
346 struct task_struct
*result
;
348 result
= pid_task(pid
, type
);
350 get_task_struct(result
);
354 EXPORT_SYMBOL_GPL(get_pid_task
);
356 struct pid
*find_get_pid(pid_t nr
)
361 pid
= get_pid(find_vpid(nr
));
366 EXPORT_SYMBOL_GPL(find_get_pid
);
368 pid_t
pid_nr_ns(struct pid
*pid
, struct pid_namespace
*ns
)
373 if (pid
&& ns
->level
<= pid
->level
) {
374 upid
= &pid
->numbers
[ns
->level
];
380 EXPORT_SYMBOL_GPL(pid_nr_ns
);
382 pid_t
pid_vnr(struct pid
*pid
)
384 return pid_nr_ns(pid
, task_active_pid_ns(current
));
386 EXPORT_SYMBOL_GPL(pid_vnr
);
388 pid_t
__task_pid_nr_ns(struct task_struct
*task
, enum pid_type type
,
389 struct pid_namespace
*ns
)
395 ns
= task_active_pid_ns(current
);
396 if (likely(pid_alive(task
))) {
397 if (type
!= PIDTYPE_PID
) {
398 if (type
== __PIDTYPE_TGID
)
401 task
= task
->group_leader
;
403 nr
= pid_nr_ns(rcu_dereference(task
->pids
[type
].pid
), ns
);
409 EXPORT_SYMBOL(__task_pid_nr_ns
);
411 struct pid_namespace
*task_active_pid_ns(struct task_struct
*tsk
)
413 return ns_of_pid(task_pid(tsk
));
415 EXPORT_SYMBOL_GPL(task_active_pid_ns
);
418 * Used by proc to find the first pid that is greater than or equal to nr.
420 * If there is a pid at nr this function is exactly the same as find_pid_ns.
422 struct pid
*find_ge_pid(int nr
, struct pid_namespace
*ns
)
424 return idr_get_next(&ns
->idr
, &nr
);
427 void __init
pid_idr_init(void)
429 /* Verify no one has done anything silly: */
430 BUILD_BUG_ON(PID_MAX_LIMIT
>= PIDNS_ADDING
);
432 /* bump default and minimum pid_max based on number of cpus */
433 pid_max
= min(pid_max_max
, max_t(int, pid_max
,
434 PIDS_PER_CPU_DEFAULT
* num_possible_cpus()));
435 pid_max_min
= max_t(int, pid_max_min
,
436 PIDS_PER_CPU_MIN
* num_possible_cpus());
437 pr_info("pid_max: default: %u minimum: %u\n", pid_max
, pid_max_min
);
439 idr_init(&init_pid_ns
.idr
);
441 init_pid_ns
.pid_cachep
= KMEM_CACHE(pid
,
442 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
| SLAB_ACCOUNT
);