Btrfs: use right type to get real comparison
[linux/fpc-iii.git] / kernel / time / timekeeping.c
blob32f0cb8f1fe8aac941a5e0c4dea28c6405e5ac7d
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
28 /* NTP adjusted clock multiplier */
29 u32 mult;
30 /* The shift value of the current clocksource. */
31 int shift;
33 /* Number of clock cycles in one NTP interval. */
34 cycle_t cycle_interval;
35 /* Number of clock shifted nano seconds in one NTP interval. */
36 u64 xtime_interval;
37 /* shifted nano seconds left over when rounding cycle_interval */
38 s64 xtime_remainder;
39 /* Raw nano seconds accumulated per NTP interval. */
40 u32 raw_interval;
42 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
43 u64 xtime_nsec;
44 /* Difference between accumulated time and NTP time in ntp
45 * shifted nano seconds. */
46 s64 ntp_error;
47 /* Shift conversion between clock shifted nano seconds and
48 * ntp shifted nano seconds. */
49 int ntp_error_shift;
51 /* The current time */
52 struct timespec xtime;
54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
56 * at zero at system boot time, so wall_to_monotonic will be negative,
57 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 * the usual normalization.
60 * wall_to_monotonic is moved after resume from suspend for the
61 * monotonic time not to jump. We need to add total_sleep_time to
62 * wall_to_monotonic to get the real boot based time offset.
64 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 * used instead.
67 struct timespec wall_to_monotonic;
68 /* time spent in suspend */
69 struct timespec total_sleep_time;
70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 struct timespec raw_time;
73 /* Offset clock monotonic -> clock realtime */
74 ktime_t offs_real;
76 /* Offset clock monotonic -> clock boottime */
77 ktime_t offs_boot;
79 /* Seqlock for all timekeeper values */
80 seqlock_t lock;
83 static struct timekeeper timekeeper;
86 * This read-write spinlock protects us from races in SMP while
87 * playing with xtime.
89 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
92 /* flag for if timekeeping is suspended */
93 int __read_mostly timekeeping_suspended;
97 /**
98 * timekeeper_setup_internals - Set up internals to use clocksource clock.
100 * @clock: Pointer to clocksource.
102 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
103 * pair and interval request.
105 * Unless you're the timekeeping code, you should not be using this!
107 static void timekeeper_setup_internals(struct clocksource *clock)
109 cycle_t interval;
110 u64 tmp, ntpinterval;
112 timekeeper.clock = clock;
113 clock->cycle_last = clock->read(clock);
115 /* Do the ns -> cycle conversion first, using original mult */
116 tmp = NTP_INTERVAL_LENGTH;
117 tmp <<= clock->shift;
118 ntpinterval = tmp;
119 tmp += clock->mult/2;
120 do_div(tmp, clock->mult);
121 if (tmp == 0)
122 tmp = 1;
124 interval = (cycle_t) tmp;
125 timekeeper.cycle_interval = interval;
127 /* Go back from cycles -> shifted ns */
128 timekeeper.xtime_interval = (u64) interval * clock->mult;
129 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
130 timekeeper.raw_interval =
131 ((u64) interval * clock->mult) >> clock->shift;
133 timekeeper.xtime_nsec = 0;
134 timekeeper.shift = clock->shift;
136 timekeeper.ntp_error = 0;
137 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
140 * The timekeeper keeps its own mult values for the currently
141 * active clocksource. These value will be adjusted via NTP
142 * to counteract clock drifting.
144 timekeeper.mult = clock->mult;
147 /* Timekeeper helper functions. */
148 static inline s64 timekeeping_get_ns(void)
150 cycle_t cycle_now, cycle_delta;
151 struct clocksource *clock;
153 /* read clocksource: */
154 clock = timekeeper.clock;
155 cycle_now = clock->read(clock);
157 /* calculate the delta since the last update_wall_time: */
158 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
160 /* return delta convert to nanoseconds using ntp adjusted mult. */
161 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
162 timekeeper.shift);
165 static inline s64 timekeeping_get_ns_raw(void)
167 cycle_t cycle_now, cycle_delta;
168 struct clocksource *clock;
170 /* read clocksource: */
171 clock = timekeeper.clock;
172 cycle_now = clock->read(clock);
174 /* calculate the delta since the last update_wall_time: */
175 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
177 /* return delta convert to nanoseconds. */
178 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
181 static void update_rt_offset(void)
183 struct timespec tmp, *wtm = &timekeeper.wall_to_monotonic;
185 set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec);
186 timekeeper.offs_real = timespec_to_ktime(tmp);
189 /* must hold write on timekeeper.lock */
190 static void timekeeping_update(bool clearntp)
192 if (clearntp) {
193 timekeeper.ntp_error = 0;
194 ntp_clear();
196 update_rt_offset();
197 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
198 timekeeper.clock, timekeeper.mult);
203 * timekeeping_forward_now - update clock to the current time
205 * Forward the current clock to update its state since the last call to
206 * update_wall_time(). This is useful before significant clock changes,
207 * as it avoids having to deal with this time offset explicitly.
209 static void timekeeping_forward_now(void)
211 cycle_t cycle_now, cycle_delta;
212 struct clocksource *clock;
213 s64 nsec;
215 clock = timekeeper.clock;
216 cycle_now = clock->read(clock);
217 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
218 clock->cycle_last = cycle_now;
220 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
221 timekeeper.shift);
223 /* If arch requires, add in gettimeoffset() */
224 nsec += arch_gettimeoffset();
226 timespec_add_ns(&timekeeper.xtime, nsec);
228 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
229 timespec_add_ns(&timekeeper.raw_time, nsec);
233 * getnstimeofday - Returns the time of day in a timespec
234 * @ts: pointer to the timespec to be set
236 * Returns the time of day in a timespec.
238 void getnstimeofday(struct timespec *ts)
240 unsigned long seq;
241 s64 nsecs;
243 WARN_ON(timekeeping_suspended);
245 do {
246 seq = read_seqbegin(&timekeeper.lock);
248 *ts = timekeeper.xtime;
249 nsecs = timekeeping_get_ns();
251 /* If arch requires, add in gettimeoffset() */
252 nsecs += arch_gettimeoffset();
254 } while (read_seqretry(&timekeeper.lock, seq));
256 timespec_add_ns(ts, nsecs);
259 EXPORT_SYMBOL(getnstimeofday);
261 ktime_t ktime_get(void)
263 unsigned int seq;
264 s64 secs, nsecs;
266 WARN_ON(timekeeping_suspended);
268 do {
269 seq = read_seqbegin(&timekeeper.lock);
270 secs = timekeeper.xtime.tv_sec +
271 timekeeper.wall_to_monotonic.tv_sec;
272 nsecs = timekeeper.xtime.tv_nsec +
273 timekeeper.wall_to_monotonic.tv_nsec;
274 nsecs += timekeeping_get_ns();
275 /* If arch requires, add in gettimeoffset() */
276 nsecs += arch_gettimeoffset();
278 } while (read_seqretry(&timekeeper.lock, seq));
280 * Use ktime_set/ktime_add_ns to create a proper ktime on
281 * 32-bit architectures without CONFIG_KTIME_SCALAR.
283 return ktime_add_ns(ktime_set(secs, 0), nsecs);
285 EXPORT_SYMBOL_GPL(ktime_get);
288 * ktime_get_ts - get the monotonic clock in timespec format
289 * @ts: pointer to timespec variable
291 * The function calculates the monotonic clock from the realtime
292 * clock and the wall_to_monotonic offset and stores the result
293 * in normalized timespec format in the variable pointed to by @ts.
295 void ktime_get_ts(struct timespec *ts)
297 struct timespec tomono;
298 unsigned int seq;
299 s64 nsecs;
301 WARN_ON(timekeeping_suspended);
303 do {
304 seq = read_seqbegin(&timekeeper.lock);
305 *ts = timekeeper.xtime;
306 tomono = timekeeper.wall_to_monotonic;
307 nsecs = timekeeping_get_ns();
308 /* If arch requires, add in gettimeoffset() */
309 nsecs += arch_gettimeoffset();
311 } while (read_seqretry(&timekeeper.lock, seq));
313 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
314 ts->tv_nsec + tomono.tv_nsec + nsecs);
316 EXPORT_SYMBOL_GPL(ktime_get_ts);
318 #ifdef CONFIG_NTP_PPS
321 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
322 * @ts_raw: pointer to the timespec to be set to raw monotonic time
323 * @ts_real: pointer to the timespec to be set to the time of day
325 * This function reads both the time of day and raw monotonic time at the
326 * same time atomically and stores the resulting timestamps in timespec
327 * format.
329 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
331 unsigned long seq;
332 s64 nsecs_raw, nsecs_real;
334 WARN_ON_ONCE(timekeeping_suspended);
336 do {
337 u32 arch_offset;
339 seq = read_seqbegin(&timekeeper.lock);
341 *ts_raw = timekeeper.raw_time;
342 *ts_real = timekeeper.xtime;
344 nsecs_raw = timekeeping_get_ns_raw();
345 nsecs_real = timekeeping_get_ns();
347 /* If arch requires, add in gettimeoffset() */
348 arch_offset = arch_gettimeoffset();
349 nsecs_raw += arch_offset;
350 nsecs_real += arch_offset;
352 } while (read_seqretry(&timekeeper.lock, seq));
354 timespec_add_ns(ts_raw, nsecs_raw);
355 timespec_add_ns(ts_real, nsecs_real);
357 EXPORT_SYMBOL(getnstime_raw_and_real);
359 #endif /* CONFIG_NTP_PPS */
362 * do_gettimeofday - Returns the time of day in a timeval
363 * @tv: pointer to the timeval to be set
365 * NOTE: Users should be converted to using getnstimeofday()
367 void do_gettimeofday(struct timeval *tv)
369 struct timespec now;
371 getnstimeofday(&now);
372 tv->tv_sec = now.tv_sec;
373 tv->tv_usec = now.tv_nsec/1000;
376 EXPORT_SYMBOL(do_gettimeofday);
378 * do_settimeofday - Sets the time of day
379 * @tv: pointer to the timespec variable containing the new time
381 * Sets the time of day to the new time and update NTP and notify hrtimers
383 int do_settimeofday(const struct timespec *tv)
385 struct timespec ts_delta;
386 unsigned long flags;
388 if (!timespec_valid_strict(tv))
389 return -EINVAL;
391 write_seqlock_irqsave(&timekeeper.lock, flags);
393 timekeeping_forward_now();
395 ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
396 ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
397 timekeeper.wall_to_monotonic =
398 timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
400 timekeeper.xtime = *tv;
401 timekeeping_update(true);
403 write_sequnlock_irqrestore(&timekeeper.lock, flags);
405 /* signal hrtimers about time change */
406 clock_was_set();
408 return 0;
411 EXPORT_SYMBOL(do_settimeofday);
415 * timekeeping_inject_offset - Adds or subtracts from the current time.
416 * @tv: pointer to the timespec variable containing the offset
418 * Adds or subtracts an offset value from the current time.
420 int timekeeping_inject_offset(struct timespec *ts)
422 unsigned long flags;
423 struct timespec tmp;
424 int ret = 0;
426 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
427 return -EINVAL;
429 write_seqlock_irqsave(&timekeeper.lock, flags);
431 timekeeping_forward_now();
433 tmp = timespec_add(timekeeper.xtime, *ts);
434 if (!timespec_valid_strict(&tmp)) {
435 ret = -EINVAL;
436 goto error;
439 timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
440 timekeeper.wall_to_monotonic =
441 timespec_sub(timekeeper.wall_to_monotonic, *ts);
443 error: /* even if we error out, we forwarded the time, so call update */
444 timekeeping_update(true);
446 write_sequnlock_irqrestore(&timekeeper.lock, flags);
448 /* signal hrtimers about time change */
449 clock_was_set();
451 return ret;
453 EXPORT_SYMBOL(timekeeping_inject_offset);
456 * change_clocksource - Swaps clocksources if a new one is available
458 * Accumulates current time interval and initializes new clocksource
460 static int change_clocksource(void *data)
462 struct clocksource *new, *old;
463 unsigned long flags;
465 new = (struct clocksource *) data;
467 write_seqlock_irqsave(&timekeeper.lock, flags);
469 timekeeping_forward_now();
470 if (!new->enable || new->enable(new) == 0) {
471 old = timekeeper.clock;
472 timekeeper_setup_internals(new);
473 if (old->disable)
474 old->disable(old);
476 timekeeping_update(true);
478 write_sequnlock_irqrestore(&timekeeper.lock, flags);
480 return 0;
484 * timekeeping_notify - Install a new clock source
485 * @clock: pointer to the clock source
487 * This function is called from clocksource.c after a new, better clock
488 * source has been registered. The caller holds the clocksource_mutex.
490 void timekeeping_notify(struct clocksource *clock)
492 if (timekeeper.clock == clock)
493 return;
494 stop_machine(change_clocksource, clock, NULL);
495 tick_clock_notify();
499 * ktime_get_real - get the real (wall-) time in ktime_t format
501 * returns the time in ktime_t format
503 ktime_t ktime_get_real(void)
505 struct timespec now;
507 getnstimeofday(&now);
509 return timespec_to_ktime(now);
511 EXPORT_SYMBOL_GPL(ktime_get_real);
514 * getrawmonotonic - Returns the raw monotonic time in a timespec
515 * @ts: pointer to the timespec to be set
517 * Returns the raw monotonic time (completely un-modified by ntp)
519 void getrawmonotonic(struct timespec *ts)
521 unsigned long seq;
522 s64 nsecs;
524 do {
525 seq = read_seqbegin(&timekeeper.lock);
526 nsecs = timekeeping_get_ns_raw();
527 *ts = timekeeper.raw_time;
529 } while (read_seqretry(&timekeeper.lock, seq));
531 timespec_add_ns(ts, nsecs);
533 EXPORT_SYMBOL(getrawmonotonic);
537 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
539 int timekeeping_valid_for_hres(void)
541 unsigned long seq;
542 int ret;
544 do {
545 seq = read_seqbegin(&timekeeper.lock);
547 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
549 } while (read_seqretry(&timekeeper.lock, seq));
551 return ret;
555 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
557 u64 timekeeping_max_deferment(void)
559 unsigned long seq;
560 u64 ret;
561 do {
562 seq = read_seqbegin(&timekeeper.lock);
564 ret = timekeeper.clock->max_idle_ns;
566 } while (read_seqretry(&timekeeper.lock, seq));
568 return ret;
572 * read_persistent_clock - Return time from the persistent clock.
574 * Weak dummy function for arches that do not yet support it.
575 * Reads the time from the battery backed persistent clock.
576 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
578 * XXX - Do be sure to remove it once all arches implement it.
580 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
582 ts->tv_sec = 0;
583 ts->tv_nsec = 0;
587 * read_boot_clock - Return time of the system start.
589 * Weak dummy function for arches that do not yet support it.
590 * Function to read the exact time the system has been started.
591 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
593 * XXX - Do be sure to remove it once all arches implement it.
595 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
597 ts->tv_sec = 0;
598 ts->tv_nsec = 0;
602 * timekeeping_init - Initializes the clocksource and common timekeeping values
604 void __init timekeeping_init(void)
606 struct clocksource *clock;
607 unsigned long flags;
608 struct timespec now, boot;
610 read_persistent_clock(&now);
611 if (!timespec_valid_strict(&now)) {
612 pr_warn("WARNING: Persistent clock returned invalid value!\n"
613 " Check your CMOS/BIOS settings.\n");
614 now.tv_sec = 0;
615 now.tv_nsec = 0;
618 read_boot_clock(&boot);
619 if (!timespec_valid_strict(&boot)) {
620 pr_warn("WARNING: Boot clock returned invalid value!\n"
621 " Check your CMOS/BIOS settings.\n");
622 boot.tv_sec = 0;
623 boot.tv_nsec = 0;
626 seqlock_init(&timekeeper.lock);
628 ntp_init();
630 write_seqlock_irqsave(&timekeeper.lock, flags);
631 clock = clocksource_default_clock();
632 if (clock->enable)
633 clock->enable(clock);
634 timekeeper_setup_internals(clock);
636 timekeeper.xtime.tv_sec = now.tv_sec;
637 timekeeper.xtime.tv_nsec = now.tv_nsec;
638 timekeeper.raw_time.tv_sec = 0;
639 timekeeper.raw_time.tv_nsec = 0;
640 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
641 boot.tv_sec = timekeeper.xtime.tv_sec;
642 boot.tv_nsec = timekeeper.xtime.tv_nsec;
644 set_normalized_timespec(&timekeeper.wall_to_monotonic,
645 -boot.tv_sec, -boot.tv_nsec);
646 update_rt_offset();
647 timekeeper.total_sleep_time.tv_sec = 0;
648 timekeeper.total_sleep_time.tv_nsec = 0;
649 write_sequnlock_irqrestore(&timekeeper.lock, flags);
652 /* time in seconds when suspend began */
653 static struct timespec timekeeping_suspend_time;
655 static void update_sleep_time(struct timespec t)
657 timekeeper.total_sleep_time = t;
658 timekeeper.offs_boot = timespec_to_ktime(t);
662 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
663 * @delta: pointer to a timespec delta value
665 * Takes a timespec offset measuring a suspend interval and properly
666 * adds the sleep offset to the timekeeping variables.
668 static void __timekeeping_inject_sleeptime(struct timespec *delta)
670 if (!timespec_valid_strict(delta)) {
671 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
672 "sleep delta value!\n");
673 return;
676 timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
677 timekeeper.wall_to_monotonic =
678 timespec_sub(timekeeper.wall_to_monotonic, *delta);
679 update_sleep_time(timespec_add(timekeeper.total_sleep_time, *delta));
684 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
685 * @delta: pointer to a timespec delta value
687 * This hook is for architectures that cannot support read_persistent_clock
688 * because their RTC/persistent clock is only accessible when irqs are enabled.
690 * This function should only be called by rtc_resume(), and allows
691 * a suspend offset to be injected into the timekeeping values.
693 void timekeeping_inject_sleeptime(struct timespec *delta)
695 unsigned long flags;
696 struct timespec ts;
698 /* Make sure we don't set the clock twice */
699 read_persistent_clock(&ts);
700 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
701 return;
703 write_seqlock_irqsave(&timekeeper.lock, flags);
705 timekeeping_forward_now();
707 __timekeeping_inject_sleeptime(delta);
709 timekeeping_update(true);
711 write_sequnlock_irqrestore(&timekeeper.lock, flags);
713 /* signal hrtimers about time change */
714 clock_was_set();
719 * timekeeping_resume - Resumes the generic timekeeping subsystem.
721 * This is for the generic clocksource timekeeping.
722 * xtime/wall_to_monotonic/jiffies/etc are
723 * still managed by arch specific suspend/resume code.
725 static void timekeeping_resume(void)
727 unsigned long flags;
728 struct timespec ts;
730 read_persistent_clock(&ts);
732 clocksource_resume();
734 write_seqlock_irqsave(&timekeeper.lock, flags);
736 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
737 ts = timespec_sub(ts, timekeeping_suspend_time);
738 __timekeeping_inject_sleeptime(&ts);
740 /* re-base the last cycle value */
741 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
742 timekeeper.ntp_error = 0;
743 timekeeping_suspended = 0;
744 timekeeping_update(false);
745 write_sequnlock_irqrestore(&timekeeper.lock, flags);
747 touch_softlockup_watchdog();
749 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
751 /* Resume hrtimers */
752 hrtimers_resume();
755 static int timekeeping_suspend(void)
757 unsigned long flags;
758 struct timespec delta, delta_delta;
759 static struct timespec old_delta;
761 read_persistent_clock(&timekeeping_suspend_time);
763 write_seqlock_irqsave(&timekeeper.lock, flags);
764 timekeeping_forward_now();
765 timekeeping_suspended = 1;
768 * To avoid drift caused by repeated suspend/resumes,
769 * which each can add ~1 second drift error,
770 * try to compensate so the difference in system time
771 * and persistent_clock time stays close to constant.
773 delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
774 delta_delta = timespec_sub(delta, old_delta);
775 if (abs(delta_delta.tv_sec) >= 2) {
777 * if delta_delta is too large, assume time correction
778 * has occured and set old_delta to the current delta.
780 old_delta = delta;
781 } else {
782 /* Otherwise try to adjust old_system to compensate */
783 timekeeping_suspend_time =
784 timespec_add(timekeeping_suspend_time, delta_delta);
786 write_sequnlock_irqrestore(&timekeeper.lock, flags);
788 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
789 clocksource_suspend();
791 return 0;
794 /* sysfs resume/suspend bits for timekeeping */
795 static struct syscore_ops timekeeping_syscore_ops = {
796 .resume = timekeeping_resume,
797 .suspend = timekeeping_suspend,
800 static int __init timekeeping_init_ops(void)
802 register_syscore_ops(&timekeeping_syscore_ops);
803 return 0;
806 device_initcall(timekeeping_init_ops);
809 * If the error is already larger, we look ahead even further
810 * to compensate for late or lost adjustments.
812 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
813 s64 *offset)
815 s64 tick_error, i;
816 u32 look_ahead, adj;
817 s32 error2, mult;
820 * Use the current error value to determine how much to look ahead.
821 * The larger the error the slower we adjust for it to avoid problems
822 * with losing too many ticks, otherwise we would overadjust and
823 * produce an even larger error. The smaller the adjustment the
824 * faster we try to adjust for it, as lost ticks can do less harm
825 * here. This is tuned so that an error of about 1 msec is adjusted
826 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
828 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
829 error2 = abs(error2);
830 for (look_ahead = 0; error2 > 0; look_ahead++)
831 error2 >>= 2;
834 * Now calculate the error in (1 << look_ahead) ticks, but first
835 * remove the single look ahead already included in the error.
837 tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
838 tick_error -= timekeeper.xtime_interval >> 1;
839 error = ((error - tick_error) >> look_ahead) + tick_error;
841 /* Finally calculate the adjustment shift value. */
842 i = *interval;
843 mult = 1;
844 if (error < 0) {
845 error = -error;
846 *interval = -*interval;
847 *offset = -*offset;
848 mult = -1;
850 for (adj = 0; error > i; adj++)
851 error >>= 1;
853 *interval <<= adj;
854 *offset <<= adj;
855 return mult << adj;
859 * Adjust the multiplier to reduce the error value,
860 * this is optimized for the most common adjustments of -1,0,1,
861 * for other values we can do a bit more work.
863 static void timekeeping_adjust(s64 offset)
865 s64 error, interval = timekeeper.cycle_interval;
866 int adj;
869 * The point of this is to check if the error is greater than half
870 * an interval.
872 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
874 * Note we subtract one in the shift, so that error is really error*2.
875 * This "saves" dividing(shifting) interval twice, but keeps the
876 * (error > interval) comparison as still measuring if error is
877 * larger than half an interval.
879 * Note: It does not "save" on aggravation when reading the code.
881 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
882 if (error > interval) {
884 * We now divide error by 4(via shift), which checks if
885 * the error is greater than twice the interval.
886 * If it is greater, we need a bigadjust, if its smaller,
887 * we can adjust by 1.
889 error >>= 2;
891 * XXX - In update_wall_time, we round up to the next
892 * nanosecond, and store the amount rounded up into
893 * the error. This causes the likely below to be unlikely.
895 * The proper fix is to avoid rounding up by using
896 * the high precision timekeeper.xtime_nsec instead of
897 * xtime.tv_nsec everywhere. Fixing this will take some
898 * time.
900 if (likely(error <= interval))
901 adj = 1;
902 else
903 adj = timekeeping_bigadjust(error, &interval, &offset);
904 } else if (error < -interval) {
905 /* See comment above, this is just switched for the negative */
906 error >>= 2;
907 if (likely(error >= -interval)) {
908 adj = -1;
909 interval = -interval;
910 offset = -offset;
911 } else
912 adj = timekeeping_bigadjust(error, &interval, &offset);
913 } else /* No adjustment needed */
914 return;
916 if (unlikely(timekeeper.clock->maxadj &&
917 (timekeeper.mult + adj >
918 timekeeper.clock->mult + timekeeper.clock->maxadj))) {
919 printk_once(KERN_WARNING
920 "Adjusting %s more than 11%% (%ld vs %ld)\n",
921 timekeeper.clock->name, (long)timekeeper.mult + adj,
922 (long)timekeeper.clock->mult +
923 timekeeper.clock->maxadj);
926 * So the following can be confusing.
928 * To keep things simple, lets assume adj == 1 for now.
930 * When adj != 1, remember that the interval and offset values
931 * have been appropriately scaled so the math is the same.
933 * The basic idea here is that we're increasing the multiplier
934 * by one, this causes the xtime_interval to be incremented by
935 * one cycle_interval. This is because:
936 * xtime_interval = cycle_interval * mult
937 * So if mult is being incremented by one:
938 * xtime_interval = cycle_interval * (mult + 1)
939 * Its the same as:
940 * xtime_interval = (cycle_interval * mult) + cycle_interval
941 * Which can be shortened to:
942 * xtime_interval += cycle_interval
944 * So offset stores the non-accumulated cycles. Thus the current
945 * time (in shifted nanoseconds) is:
946 * now = (offset * adj) + xtime_nsec
947 * Now, even though we're adjusting the clock frequency, we have
948 * to keep time consistent. In other words, we can't jump back
949 * in time, and we also want to avoid jumping forward in time.
951 * So given the same offset value, we need the time to be the same
952 * both before and after the freq adjustment.
953 * now = (offset * adj_1) + xtime_nsec_1
954 * now = (offset * adj_2) + xtime_nsec_2
955 * So:
956 * (offset * adj_1) + xtime_nsec_1 =
957 * (offset * adj_2) + xtime_nsec_2
958 * And we know:
959 * adj_2 = adj_1 + 1
960 * So:
961 * (offset * adj_1) + xtime_nsec_1 =
962 * (offset * (adj_1+1)) + xtime_nsec_2
963 * (offset * adj_1) + xtime_nsec_1 =
964 * (offset * adj_1) + offset + xtime_nsec_2
965 * Canceling the sides:
966 * xtime_nsec_1 = offset + xtime_nsec_2
967 * Which gives us:
968 * xtime_nsec_2 = xtime_nsec_1 - offset
969 * Which simplfies to:
970 * xtime_nsec -= offset
972 * XXX - TODO: Doc ntp_error calculation.
974 timekeeper.mult += adj;
975 timekeeper.xtime_interval += interval;
976 timekeeper.xtime_nsec -= offset;
977 timekeeper.ntp_error -= (interval - offset) <<
978 timekeeper.ntp_error_shift;
983 * logarithmic_accumulation - shifted accumulation of cycles
985 * This functions accumulates a shifted interval of cycles into
986 * into a shifted interval nanoseconds. Allows for O(log) accumulation
987 * loop.
989 * Returns the unconsumed cycles.
991 static cycle_t logarithmic_accumulation(cycle_t offset, int shift,
992 unsigned int *clock_set)
994 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
995 u64 raw_nsecs;
997 /* If the offset is smaller than a shifted interval, do nothing */
998 if (offset < timekeeper.cycle_interval<<shift)
999 return offset;
1001 /* Accumulate one shifted interval */
1002 offset -= timekeeper.cycle_interval << shift;
1003 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
1005 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
1006 while (timekeeper.xtime_nsec >= nsecps) {
1007 int leap;
1008 timekeeper.xtime_nsec -= nsecps;
1009 timekeeper.xtime.tv_sec++;
1010 leap = second_overflow(timekeeper.xtime.tv_sec);
1011 timekeeper.xtime.tv_sec += leap;
1012 timekeeper.wall_to_monotonic.tv_sec -= leap;
1013 if (leap)
1014 *clock_set = 1;
1017 /* Accumulate raw time */
1018 raw_nsecs = (u64)timekeeper.raw_interval << shift;
1019 raw_nsecs += timekeeper.raw_time.tv_nsec;
1020 if (raw_nsecs >= NSEC_PER_SEC) {
1021 u64 raw_secs = raw_nsecs;
1022 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1023 timekeeper.raw_time.tv_sec += raw_secs;
1025 timekeeper.raw_time.tv_nsec = raw_nsecs;
1027 /* Accumulate error between NTP and clock interval */
1028 timekeeper.ntp_error += ntp_tick_length() << shift;
1029 timekeeper.ntp_error -=
1030 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
1031 (timekeeper.ntp_error_shift + shift);
1033 return offset;
1038 * update_wall_time - Uses the current clocksource to increment the wall time
1041 static void update_wall_time(void)
1043 struct clocksource *clock;
1044 cycle_t offset;
1045 int shift = 0, maxshift;
1046 unsigned int clock_set = 0;
1047 unsigned long flags;
1049 write_seqlock_irqsave(&timekeeper.lock, flags);
1051 /* Make sure we're fully resumed: */
1052 if (unlikely(timekeeping_suspended))
1053 goto out;
1055 clock = timekeeper.clock;
1057 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1058 offset = timekeeper.cycle_interval;
1059 #else
1060 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1061 #endif
1062 /* Check if there's really nothing to do */
1063 if (offset < timekeeper.cycle_interval)
1064 goto out;
1066 timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
1067 timekeeper.shift;
1069 * With NO_HZ we may have to accumulate many cycle_intervals
1070 * (think "ticks") worth of time at once. To do this efficiently,
1071 * we calculate the largest doubling multiple of cycle_intervals
1072 * that is smaller than the offset. We then accumulate that
1073 * chunk in one go, and then try to consume the next smaller
1074 * doubled multiple.
1076 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1077 shift = max(0, shift);
1078 /* Bound shift to one less than what overflows tick_length */
1079 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1080 shift = min(shift, maxshift);
1081 while (offset >= timekeeper.cycle_interval) {
1082 offset = logarithmic_accumulation(offset, shift, &clock_set);
1083 if(offset < timekeeper.cycle_interval<<shift)
1084 shift--;
1087 /* correct the clock when NTP error is too big */
1088 timekeeping_adjust(offset);
1091 * Since in the loop above, we accumulate any amount of time
1092 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1093 * xtime_nsec to be fairly small after the loop. Further, if we're
1094 * slightly speeding the clocksource up in timekeeping_adjust(),
1095 * its possible the required corrective factor to xtime_nsec could
1096 * cause it to underflow.
1098 * Now, we cannot simply roll the accumulated second back, since
1099 * the NTP subsystem has been notified via second_overflow. So
1100 * instead we push xtime_nsec forward by the amount we underflowed,
1101 * and add that amount into the error.
1103 * We'll correct this error next time through this function, when
1104 * xtime_nsec is not as small.
1106 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1107 s64 neg = -(s64)timekeeper.xtime_nsec;
1108 timekeeper.xtime_nsec = 0;
1109 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1114 * Store full nanoseconds into xtime after rounding it up and
1115 * add the remainder to the error difference.
1117 timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
1118 timekeeper.shift) + 1;
1119 timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
1120 timekeeper.shift;
1121 timekeeper.ntp_error += timekeeper.xtime_nsec <<
1122 timekeeper.ntp_error_shift;
1125 * Finally, make sure that after the rounding
1126 * xtime.tv_nsec isn't larger than NSEC_PER_SEC
1128 if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1129 int leap;
1130 timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
1131 timekeeper.xtime.tv_sec++;
1132 leap = second_overflow(timekeeper.xtime.tv_sec);
1133 timekeeper.xtime.tv_sec += leap;
1134 timekeeper.wall_to_monotonic.tv_sec -= leap;
1135 if (leap)
1136 clock_set = 1;
1139 timekeeping_update(false);
1141 out:
1142 write_sequnlock_irqrestore(&timekeeper.lock, flags);
1144 if (clock_set)
1145 clock_was_set_delayed();
1149 * getboottime - Return the real time of system boot.
1150 * @ts: pointer to the timespec to be set
1152 * Returns the wall-time of boot in a timespec.
1154 * This is based on the wall_to_monotonic offset and the total suspend
1155 * time. Calls to settimeofday will affect the value returned (which
1156 * basically means that however wrong your real time clock is at boot time,
1157 * you get the right time here).
1159 void getboottime(struct timespec *ts)
1161 struct timespec boottime = {
1162 .tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1163 timekeeper.total_sleep_time.tv_sec,
1164 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1165 timekeeper.total_sleep_time.tv_nsec
1168 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1170 EXPORT_SYMBOL_GPL(getboottime);
1174 * get_monotonic_boottime - Returns monotonic time since boot
1175 * @ts: pointer to the timespec to be set
1177 * Returns the monotonic time since boot in a timespec.
1179 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1180 * includes the time spent in suspend.
1182 void get_monotonic_boottime(struct timespec *ts)
1184 struct timespec tomono, sleep;
1185 unsigned int seq;
1186 s64 nsecs;
1188 WARN_ON(timekeeping_suspended);
1190 do {
1191 seq = read_seqbegin(&timekeeper.lock);
1192 *ts = timekeeper.xtime;
1193 tomono = timekeeper.wall_to_monotonic;
1194 sleep = timekeeper.total_sleep_time;
1195 nsecs = timekeeping_get_ns();
1197 } while (read_seqretry(&timekeeper.lock, seq));
1199 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1200 (s64)ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1202 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1205 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1207 * Returns the monotonic time since boot in a ktime
1209 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1210 * includes the time spent in suspend.
1212 ktime_t ktime_get_boottime(void)
1214 struct timespec ts;
1216 get_monotonic_boottime(&ts);
1217 return timespec_to_ktime(ts);
1219 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1222 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1223 * @ts: pointer to the timespec to be converted
1225 void monotonic_to_bootbased(struct timespec *ts)
1227 *ts = timespec_add(*ts, timekeeper.total_sleep_time);
1229 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1231 unsigned long get_seconds(void)
1233 return timekeeper.xtime.tv_sec;
1235 EXPORT_SYMBOL(get_seconds);
1237 struct timespec __current_kernel_time(void)
1239 return timekeeper.xtime;
1242 struct timespec current_kernel_time(void)
1244 struct timespec now;
1245 unsigned long seq;
1247 do {
1248 seq = read_seqbegin(&timekeeper.lock);
1250 now = timekeeper.xtime;
1251 } while (read_seqretry(&timekeeper.lock, seq));
1253 return now;
1255 EXPORT_SYMBOL(current_kernel_time);
1257 struct timespec get_monotonic_coarse(void)
1259 struct timespec now, mono;
1260 unsigned long seq;
1262 do {
1263 seq = read_seqbegin(&timekeeper.lock);
1265 now = timekeeper.xtime;
1266 mono = timekeeper.wall_to_monotonic;
1267 } while (read_seqretry(&timekeeper.lock, seq));
1269 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1270 now.tv_nsec + mono.tv_nsec);
1271 return now;
1275 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1276 * without sampling the sequence number in xtime_lock.
1277 * jiffies is defined in the linker script...
1279 void do_timer(unsigned long ticks)
1281 jiffies_64 += ticks;
1282 update_wall_time();
1283 calc_global_load(ticks);
1287 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1288 * and sleep offsets.
1289 * @xtim: pointer to timespec to be set with xtime
1290 * @wtom: pointer to timespec to be set with wall_to_monotonic
1291 * @sleep: pointer to timespec to be set with time in suspend
1293 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1294 struct timespec *wtom, struct timespec *sleep)
1296 unsigned long seq;
1298 do {
1299 seq = read_seqbegin(&timekeeper.lock);
1300 *xtim = timekeeper.xtime;
1301 *wtom = timekeeper.wall_to_monotonic;
1302 *sleep = timekeeper.total_sleep_time;
1303 } while (read_seqretry(&timekeeper.lock, seq));
1306 #ifdef CONFIG_HIGH_RES_TIMERS
1308 * ktime_get_update_offsets - hrtimer helper
1309 * @offs_real: pointer to storage for monotonic -> realtime offset
1310 * @offs_boot: pointer to storage for monotonic -> boottime offset
1312 * Returns current monotonic time and updates the offsets
1313 * Called from hrtimer_interupt() or retrigger_next_event()
1315 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1317 ktime_t now;
1318 unsigned int seq;
1319 u64 secs, nsecs;
1321 do {
1322 seq = read_seqbegin(&timekeeper.lock);
1324 secs = timekeeper.xtime.tv_sec;
1325 nsecs = timekeeper.xtime.tv_nsec;
1326 nsecs += timekeeping_get_ns();
1327 /* If arch requires, add in gettimeoffset() */
1328 nsecs += arch_gettimeoffset();
1330 *offs_real = timekeeper.offs_real;
1331 *offs_boot = timekeeper.offs_boot;
1332 } while (read_seqretry(&timekeeper.lock, seq));
1334 now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1335 now = ktime_sub(now, *offs_real);
1336 return now;
1338 #endif
1341 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1343 ktime_t ktime_get_monotonic_offset(void)
1345 unsigned long seq;
1346 struct timespec wtom;
1348 do {
1349 seq = read_seqbegin(&timekeeper.lock);
1350 wtom = timekeeper.wall_to_monotonic;
1351 } while (read_seqretry(&timekeeper.lock, seq));
1353 return timespec_to_ktime(wtom);
1355 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1359 * xtime_update() - advances the timekeeping infrastructure
1360 * @ticks: number of ticks, that have elapsed since the last call.
1362 * Must be called with interrupts disabled.
1364 void xtime_update(unsigned long ticks)
1366 write_seqlock(&xtime_lock);
1367 do_timer(ticks);
1368 write_sequnlock(&xtime_lock);