2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
24 /* Structure holding internal timekeeping values. */
26 /* Current clocksource used for timekeeping. */
27 struct clocksource
*clock
;
28 /* NTP adjusted clock multiplier */
30 /* The shift value of the current clocksource. */
33 /* Number of clock cycles in one NTP interval. */
34 cycle_t cycle_interval
;
35 /* Number of clock shifted nano seconds in one NTP interval. */
37 /* shifted nano seconds left over when rounding cycle_interval */
39 /* Raw nano seconds accumulated per NTP interval. */
42 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
44 /* Difference between accumulated time and NTP time in ntp
45 * shifted nano seconds. */
47 /* Shift conversion between clock shifted nano seconds and
48 * ntp shifted nano seconds. */
51 /* The current time */
52 struct timespec xtime
;
54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
56 * at zero at system boot time, so wall_to_monotonic will be negative,
57 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 * the usual normalization.
60 * wall_to_monotonic is moved after resume from suspend for the
61 * monotonic time not to jump. We need to add total_sleep_time to
62 * wall_to_monotonic to get the real boot based time offset.
64 * - wall_to_monotonic is no longer the boot time, getboottime must be
67 struct timespec wall_to_monotonic
;
68 /* time spent in suspend */
69 struct timespec total_sleep_time
;
70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 struct timespec raw_time
;
73 /* Offset clock monotonic -> clock realtime */
76 /* Offset clock monotonic -> clock boottime */
79 /* Seqlock for all timekeeper values */
83 static struct timekeeper timekeeper
;
86 * This read-write spinlock protects us from races in SMP while
89 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(xtime_lock
);
92 /* flag for if timekeeping is suspended */
93 int __read_mostly timekeeping_suspended
;
98 * timekeeper_setup_internals - Set up internals to use clocksource clock.
100 * @clock: Pointer to clocksource.
102 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
103 * pair and interval request.
105 * Unless you're the timekeeping code, you should not be using this!
107 static void timekeeper_setup_internals(struct clocksource
*clock
)
110 u64 tmp
, ntpinterval
;
112 timekeeper
.clock
= clock
;
113 clock
->cycle_last
= clock
->read(clock
);
115 /* Do the ns -> cycle conversion first, using original mult */
116 tmp
= NTP_INTERVAL_LENGTH
;
117 tmp
<<= clock
->shift
;
119 tmp
+= clock
->mult
/2;
120 do_div(tmp
, clock
->mult
);
124 interval
= (cycle_t
) tmp
;
125 timekeeper
.cycle_interval
= interval
;
127 /* Go back from cycles -> shifted ns */
128 timekeeper
.xtime_interval
= (u64
) interval
* clock
->mult
;
129 timekeeper
.xtime_remainder
= ntpinterval
- timekeeper
.xtime_interval
;
130 timekeeper
.raw_interval
=
131 ((u64
) interval
* clock
->mult
) >> clock
->shift
;
133 timekeeper
.xtime_nsec
= 0;
134 timekeeper
.shift
= clock
->shift
;
136 timekeeper
.ntp_error
= 0;
137 timekeeper
.ntp_error_shift
= NTP_SCALE_SHIFT
- clock
->shift
;
140 * The timekeeper keeps its own mult values for the currently
141 * active clocksource. These value will be adjusted via NTP
142 * to counteract clock drifting.
144 timekeeper
.mult
= clock
->mult
;
147 /* Timekeeper helper functions. */
148 static inline s64
timekeeping_get_ns(void)
150 cycle_t cycle_now
, cycle_delta
;
151 struct clocksource
*clock
;
153 /* read clocksource: */
154 clock
= timekeeper
.clock
;
155 cycle_now
= clock
->read(clock
);
157 /* calculate the delta since the last update_wall_time: */
158 cycle_delta
= (cycle_now
- clock
->cycle_last
) & clock
->mask
;
160 /* return delta convert to nanoseconds using ntp adjusted mult. */
161 return clocksource_cyc2ns(cycle_delta
, timekeeper
.mult
,
165 static inline s64
timekeeping_get_ns_raw(void)
167 cycle_t cycle_now
, cycle_delta
;
168 struct clocksource
*clock
;
170 /* read clocksource: */
171 clock
= timekeeper
.clock
;
172 cycle_now
= clock
->read(clock
);
174 /* calculate the delta since the last update_wall_time: */
175 cycle_delta
= (cycle_now
- clock
->cycle_last
) & clock
->mask
;
177 /* return delta convert to nanoseconds. */
178 return clocksource_cyc2ns(cycle_delta
, clock
->mult
, clock
->shift
);
181 static void update_rt_offset(void)
183 struct timespec tmp
, *wtm
= &timekeeper
.wall_to_monotonic
;
185 set_normalized_timespec(&tmp
, -wtm
->tv_sec
, -wtm
->tv_nsec
);
186 timekeeper
.offs_real
= timespec_to_ktime(tmp
);
189 /* must hold write on timekeeper.lock */
190 static void timekeeping_update(bool clearntp
)
193 timekeeper
.ntp_error
= 0;
197 update_vsyscall(&timekeeper
.xtime
, &timekeeper
.wall_to_monotonic
,
198 timekeeper
.clock
, timekeeper
.mult
);
203 * timekeeping_forward_now - update clock to the current time
205 * Forward the current clock to update its state since the last call to
206 * update_wall_time(). This is useful before significant clock changes,
207 * as it avoids having to deal with this time offset explicitly.
209 static void timekeeping_forward_now(void)
211 cycle_t cycle_now
, cycle_delta
;
212 struct clocksource
*clock
;
215 clock
= timekeeper
.clock
;
216 cycle_now
= clock
->read(clock
);
217 cycle_delta
= (cycle_now
- clock
->cycle_last
) & clock
->mask
;
218 clock
->cycle_last
= cycle_now
;
220 nsec
= clocksource_cyc2ns(cycle_delta
, timekeeper
.mult
,
223 /* If arch requires, add in gettimeoffset() */
224 nsec
+= arch_gettimeoffset();
226 timespec_add_ns(&timekeeper
.xtime
, nsec
);
228 nsec
= clocksource_cyc2ns(cycle_delta
, clock
->mult
, clock
->shift
);
229 timespec_add_ns(&timekeeper
.raw_time
, nsec
);
233 * getnstimeofday - Returns the time of day in a timespec
234 * @ts: pointer to the timespec to be set
236 * Returns the time of day in a timespec.
238 void getnstimeofday(struct timespec
*ts
)
243 WARN_ON(timekeeping_suspended
);
246 seq
= read_seqbegin(&timekeeper
.lock
);
248 *ts
= timekeeper
.xtime
;
249 nsecs
= timekeeping_get_ns();
251 /* If arch requires, add in gettimeoffset() */
252 nsecs
+= arch_gettimeoffset();
254 } while (read_seqretry(&timekeeper
.lock
, seq
));
256 timespec_add_ns(ts
, nsecs
);
259 EXPORT_SYMBOL(getnstimeofday
);
261 ktime_t
ktime_get(void)
266 WARN_ON(timekeeping_suspended
);
269 seq
= read_seqbegin(&timekeeper
.lock
);
270 secs
= timekeeper
.xtime
.tv_sec
+
271 timekeeper
.wall_to_monotonic
.tv_sec
;
272 nsecs
= timekeeper
.xtime
.tv_nsec
+
273 timekeeper
.wall_to_monotonic
.tv_nsec
;
274 nsecs
+= timekeeping_get_ns();
275 /* If arch requires, add in gettimeoffset() */
276 nsecs
+= arch_gettimeoffset();
278 } while (read_seqretry(&timekeeper
.lock
, seq
));
280 * Use ktime_set/ktime_add_ns to create a proper ktime on
281 * 32-bit architectures without CONFIG_KTIME_SCALAR.
283 return ktime_add_ns(ktime_set(secs
, 0), nsecs
);
285 EXPORT_SYMBOL_GPL(ktime_get
);
288 * ktime_get_ts - get the monotonic clock in timespec format
289 * @ts: pointer to timespec variable
291 * The function calculates the monotonic clock from the realtime
292 * clock and the wall_to_monotonic offset and stores the result
293 * in normalized timespec format in the variable pointed to by @ts.
295 void ktime_get_ts(struct timespec
*ts
)
297 struct timespec tomono
;
301 WARN_ON(timekeeping_suspended
);
304 seq
= read_seqbegin(&timekeeper
.lock
);
305 *ts
= timekeeper
.xtime
;
306 tomono
= timekeeper
.wall_to_monotonic
;
307 nsecs
= timekeeping_get_ns();
308 /* If arch requires, add in gettimeoffset() */
309 nsecs
+= arch_gettimeoffset();
311 } while (read_seqretry(&timekeeper
.lock
, seq
));
313 set_normalized_timespec(ts
, ts
->tv_sec
+ tomono
.tv_sec
,
314 ts
->tv_nsec
+ tomono
.tv_nsec
+ nsecs
);
316 EXPORT_SYMBOL_GPL(ktime_get_ts
);
318 #ifdef CONFIG_NTP_PPS
321 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
322 * @ts_raw: pointer to the timespec to be set to raw monotonic time
323 * @ts_real: pointer to the timespec to be set to the time of day
325 * This function reads both the time of day and raw monotonic time at the
326 * same time atomically and stores the resulting timestamps in timespec
329 void getnstime_raw_and_real(struct timespec
*ts_raw
, struct timespec
*ts_real
)
332 s64 nsecs_raw
, nsecs_real
;
334 WARN_ON_ONCE(timekeeping_suspended
);
339 seq
= read_seqbegin(&timekeeper
.lock
);
341 *ts_raw
= timekeeper
.raw_time
;
342 *ts_real
= timekeeper
.xtime
;
344 nsecs_raw
= timekeeping_get_ns_raw();
345 nsecs_real
= timekeeping_get_ns();
347 /* If arch requires, add in gettimeoffset() */
348 arch_offset
= arch_gettimeoffset();
349 nsecs_raw
+= arch_offset
;
350 nsecs_real
+= arch_offset
;
352 } while (read_seqretry(&timekeeper
.lock
, seq
));
354 timespec_add_ns(ts_raw
, nsecs_raw
);
355 timespec_add_ns(ts_real
, nsecs_real
);
357 EXPORT_SYMBOL(getnstime_raw_and_real
);
359 #endif /* CONFIG_NTP_PPS */
362 * do_gettimeofday - Returns the time of day in a timeval
363 * @tv: pointer to the timeval to be set
365 * NOTE: Users should be converted to using getnstimeofday()
367 void do_gettimeofday(struct timeval
*tv
)
371 getnstimeofday(&now
);
372 tv
->tv_sec
= now
.tv_sec
;
373 tv
->tv_usec
= now
.tv_nsec
/1000;
376 EXPORT_SYMBOL(do_gettimeofday
);
378 * do_settimeofday - Sets the time of day
379 * @tv: pointer to the timespec variable containing the new time
381 * Sets the time of day to the new time and update NTP and notify hrtimers
383 int do_settimeofday(const struct timespec
*tv
)
385 struct timespec ts_delta
;
388 if (!timespec_valid_strict(tv
))
391 write_seqlock_irqsave(&timekeeper
.lock
, flags
);
393 timekeeping_forward_now();
395 ts_delta
.tv_sec
= tv
->tv_sec
- timekeeper
.xtime
.tv_sec
;
396 ts_delta
.tv_nsec
= tv
->tv_nsec
- timekeeper
.xtime
.tv_nsec
;
397 timekeeper
.wall_to_monotonic
=
398 timespec_sub(timekeeper
.wall_to_monotonic
, ts_delta
);
400 timekeeper
.xtime
= *tv
;
401 timekeeping_update(true);
403 write_sequnlock_irqrestore(&timekeeper
.lock
, flags
);
405 /* signal hrtimers about time change */
411 EXPORT_SYMBOL(do_settimeofday
);
415 * timekeeping_inject_offset - Adds or subtracts from the current time.
416 * @tv: pointer to the timespec variable containing the offset
418 * Adds or subtracts an offset value from the current time.
420 int timekeeping_inject_offset(struct timespec
*ts
)
426 if ((unsigned long)ts
->tv_nsec
>= NSEC_PER_SEC
)
429 write_seqlock_irqsave(&timekeeper
.lock
, flags
);
431 timekeeping_forward_now();
433 tmp
= timespec_add(timekeeper
.xtime
, *ts
);
434 if (!timespec_valid_strict(&tmp
)) {
439 timekeeper
.xtime
= timespec_add(timekeeper
.xtime
, *ts
);
440 timekeeper
.wall_to_monotonic
=
441 timespec_sub(timekeeper
.wall_to_monotonic
, *ts
);
443 error
: /* even if we error out, we forwarded the time, so call update */
444 timekeeping_update(true);
446 write_sequnlock_irqrestore(&timekeeper
.lock
, flags
);
448 /* signal hrtimers about time change */
453 EXPORT_SYMBOL(timekeeping_inject_offset
);
456 * change_clocksource - Swaps clocksources if a new one is available
458 * Accumulates current time interval and initializes new clocksource
460 static int change_clocksource(void *data
)
462 struct clocksource
*new, *old
;
465 new = (struct clocksource
*) data
;
467 write_seqlock_irqsave(&timekeeper
.lock
, flags
);
469 timekeeping_forward_now();
470 if (!new->enable
|| new->enable(new) == 0) {
471 old
= timekeeper
.clock
;
472 timekeeper_setup_internals(new);
476 timekeeping_update(true);
478 write_sequnlock_irqrestore(&timekeeper
.lock
, flags
);
484 * timekeeping_notify - Install a new clock source
485 * @clock: pointer to the clock source
487 * This function is called from clocksource.c after a new, better clock
488 * source has been registered. The caller holds the clocksource_mutex.
490 void timekeeping_notify(struct clocksource
*clock
)
492 if (timekeeper
.clock
== clock
)
494 stop_machine(change_clocksource
, clock
, NULL
);
499 * ktime_get_real - get the real (wall-) time in ktime_t format
501 * returns the time in ktime_t format
503 ktime_t
ktime_get_real(void)
507 getnstimeofday(&now
);
509 return timespec_to_ktime(now
);
511 EXPORT_SYMBOL_GPL(ktime_get_real
);
514 * getrawmonotonic - Returns the raw monotonic time in a timespec
515 * @ts: pointer to the timespec to be set
517 * Returns the raw monotonic time (completely un-modified by ntp)
519 void getrawmonotonic(struct timespec
*ts
)
525 seq
= read_seqbegin(&timekeeper
.lock
);
526 nsecs
= timekeeping_get_ns_raw();
527 *ts
= timekeeper
.raw_time
;
529 } while (read_seqretry(&timekeeper
.lock
, seq
));
531 timespec_add_ns(ts
, nsecs
);
533 EXPORT_SYMBOL(getrawmonotonic
);
537 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
539 int timekeeping_valid_for_hres(void)
545 seq
= read_seqbegin(&timekeeper
.lock
);
547 ret
= timekeeper
.clock
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
;
549 } while (read_seqretry(&timekeeper
.lock
, seq
));
555 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
557 u64
timekeeping_max_deferment(void)
562 seq
= read_seqbegin(&timekeeper
.lock
);
564 ret
= timekeeper
.clock
->max_idle_ns
;
566 } while (read_seqretry(&timekeeper
.lock
, seq
));
572 * read_persistent_clock - Return time from the persistent clock.
574 * Weak dummy function for arches that do not yet support it.
575 * Reads the time from the battery backed persistent clock.
576 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
578 * XXX - Do be sure to remove it once all arches implement it.
580 void __attribute__((weak
)) read_persistent_clock(struct timespec
*ts
)
587 * read_boot_clock - Return time of the system start.
589 * Weak dummy function for arches that do not yet support it.
590 * Function to read the exact time the system has been started.
591 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
593 * XXX - Do be sure to remove it once all arches implement it.
595 void __attribute__((weak
)) read_boot_clock(struct timespec
*ts
)
602 * timekeeping_init - Initializes the clocksource and common timekeeping values
604 void __init
timekeeping_init(void)
606 struct clocksource
*clock
;
608 struct timespec now
, boot
;
610 read_persistent_clock(&now
);
611 if (!timespec_valid_strict(&now
)) {
612 pr_warn("WARNING: Persistent clock returned invalid value!\n"
613 " Check your CMOS/BIOS settings.\n");
618 read_boot_clock(&boot
);
619 if (!timespec_valid_strict(&boot
)) {
620 pr_warn("WARNING: Boot clock returned invalid value!\n"
621 " Check your CMOS/BIOS settings.\n");
626 seqlock_init(&timekeeper
.lock
);
630 write_seqlock_irqsave(&timekeeper
.lock
, flags
);
631 clock
= clocksource_default_clock();
633 clock
->enable(clock
);
634 timekeeper_setup_internals(clock
);
636 timekeeper
.xtime
.tv_sec
= now
.tv_sec
;
637 timekeeper
.xtime
.tv_nsec
= now
.tv_nsec
;
638 timekeeper
.raw_time
.tv_sec
= 0;
639 timekeeper
.raw_time
.tv_nsec
= 0;
640 if (boot
.tv_sec
== 0 && boot
.tv_nsec
== 0) {
641 boot
.tv_sec
= timekeeper
.xtime
.tv_sec
;
642 boot
.tv_nsec
= timekeeper
.xtime
.tv_nsec
;
644 set_normalized_timespec(&timekeeper
.wall_to_monotonic
,
645 -boot
.tv_sec
, -boot
.tv_nsec
);
647 timekeeper
.total_sleep_time
.tv_sec
= 0;
648 timekeeper
.total_sleep_time
.tv_nsec
= 0;
649 write_sequnlock_irqrestore(&timekeeper
.lock
, flags
);
652 /* time in seconds when suspend began */
653 static struct timespec timekeeping_suspend_time
;
655 static void update_sleep_time(struct timespec t
)
657 timekeeper
.total_sleep_time
= t
;
658 timekeeper
.offs_boot
= timespec_to_ktime(t
);
662 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
663 * @delta: pointer to a timespec delta value
665 * Takes a timespec offset measuring a suspend interval and properly
666 * adds the sleep offset to the timekeeping variables.
668 static void __timekeeping_inject_sleeptime(struct timespec
*delta
)
670 if (!timespec_valid_strict(delta
)) {
671 printk(KERN_WARNING
"__timekeeping_inject_sleeptime: Invalid "
672 "sleep delta value!\n");
676 timekeeper
.xtime
= timespec_add(timekeeper
.xtime
, *delta
);
677 timekeeper
.wall_to_monotonic
=
678 timespec_sub(timekeeper
.wall_to_monotonic
, *delta
);
679 update_sleep_time(timespec_add(timekeeper
.total_sleep_time
, *delta
));
684 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
685 * @delta: pointer to a timespec delta value
687 * This hook is for architectures that cannot support read_persistent_clock
688 * because their RTC/persistent clock is only accessible when irqs are enabled.
690 * This function should only be called by rtc_resume(), and allows
691 * a suspend offset to be injected into the timekeeping values.
693 void timekeeping_inject_sleeptime(struct timespec
*delta
)
698 /* Make sure we don't set the clock twice */
699 read_persistent_clock(&ts
);
700 if (!(ts
.tv_sec
== 0 && ts
.tv_nsec
== 0))
703 write_seqlock_irqsave(&timekeeper
.lock
, flags
);
705 timekeeping_forward_now();
707 __timekeeping_inject_sleeptime(delta
);
709 timekeeping_update(true);
711 write_sequnlock_irqrestore(&timekeeper
.lock
, flags
);
713 /* signal hrtimers about time change */
719 * timekeeping_resume - Resumes the generic timekeeping subsystem.
721 * This is for the generic clocksource timekeeping.
722 * xtime/wall_to_monotonic/jiffies/etc are
723 * still managed by arch specific suspend/resume code.
725 static void timekeeping_resume(void)
730 read_persistent_clock(&ts
);
732 clocksource_resume();
734 write_seqlock_irqsave(&timekeeper
.lock
, flags
);
736 if (timespec_compare(&ts
, &timekeeping_suspend_time
) > 0) {
737 ts
= timespec_sub(ts
, timekeeping_suspend_time
);
738 __timekeeping_inject_sleeptime(&ts
);
740 /* re-base the last cycle value */
741 timekeeper
.clock
->cycle_last
= timekeeper
.clock
->read(timekeeper
.clock
);
742 timekeeper
.ntp_error
= 0;
743 timekeeping_suspended
= 0;
744 timekeeping_update(false);
745 write_sequnlock_irqrestore(&timekeeper
.lock
, flags
);
747 touch_softlockup_watchdog();
749 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME
, NULL
);
751 /* Resume hrtimers */
755 static int timekeeping_suspend(void)
758 struct timespec delta
, delta_delta
;
759 static struct timespec old_delta
;
761 read_persistent_clock(&timekeeping_suspend_time
);
763 write_seqlock_irqsave(&timekeeper
.lock
, flags
);
764 timekeeping_forward_now();
765 timekeeping_suspended
= 1;
768 * To avoid drift caused by repeated suspend/resumes,
769 * which each can add ~1 second drift error,
770 * try to compensate so the difference in system time
771 * and persistent_clock time stays close to constant.
773 delta
= timespec_sub(timekeeper
.xtime
, timekeeping_suspend_time
);
774 delta_delta
= timespec_sub(delta
, old_delta
);
775 if (abs(delta_delta
.tv_sec
) >= 2) {
777 * if delta_delta is too large, assume time correction
778 * has occured and set old_delta to the current delta.
782 /* Otherwise try to adjust old_system to compensate */
783 timekeeping_suspend_time
=
784 timespec_add(timekeeping_suspend_time
, delta_delta
);
786 write_sequnlock_irqrestore(&timekeeper
.lock
, flags
);
788 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND
, NULL
);
789 clocksource_suspend();
794 /* sysfs resume/suspend bits for timekeeping */
795 static struct syscore_ops timekeeping_syscore_ops
= {
796 .resume
= timekeeping_resume
,
797 .suspend
= timekeeping_suspend
,
800 static int __init
timekeeping_init_ops(void)
802 register_syscore_ops(&timekeeping_syscore_ops
);
806 device_initcall(timekeeping_init_ops
);
809 * If the error is already larger, we look ahead even further
810 * to compensate for late or lost adjustments.
812 static __always_inline
int timekeeping_bigadjust(s64 error
, s64
*interval
,
820 * Use the current error value to determine how much to look ahead.
821 * The larger the error the slower we adjust for it to avoid problems
822 * with losing too many ticks, otherwise we would overadjust and
823 * produce an even larger error. The smaller the adjustment the
824 * faster we try to adjust for it, as lost ticks can do less harm
825 * here. This is tuned so that an error of about 1 msec is adjusted
826 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
828 error2
= timekeeper
.ntp_error
>> (NTP_SCALE_SHIFT
+ 22 - 2 * SHIFT_HZ
);
829 error2
= abs(error2
);
830 for (look_ahead
= 0; error2
> 0; look_ahead
++)
834 * Now calculate the error in (1 << look_ahead) ticks, but first
835 * remove the single look ahead already included in the error.
837 tick_error
= ntp_tick_length() >> (timekeeper
.ntp_error_shift
+ 1);
838 tick_error
-= timekeeper
.xtime_interval
>> 1;
839 error
= ((error
- tick_error
) >> look_ahead
) + tick_error
;
841 /* Finally calculate the adjustment shift value. */
846 *interval
= -*interval
;
850 for (adj
= 0; error
> i
; adj
++)
859 * Adjust the multiplier to reduce the error value,
860 * this is optimized for the most common adjustments of -1,0,1,
861 * for other values we can do a bit more work.
863 static void timekeeping_adjust(s64 offset
)
865 s64 error
, interval
= timekeeper
.cycle_interval
;
869 * The point of this is to check if the error is greater than half
872 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
874 * Note we subtract one in the shift, so that error is really error*2.
875 * This "saves" dividing(shifting) interval twice, but keeps the
876 * (error > interval) comparison as still measuring if error is
877 * larger than half an interval.
879 * Note: It does not "save" on aggravation when reading the code.
881 error
= timekeeper
.ntp_error
>> (timekeeper
.ntp_error_shift
- 1);
882 if (error
> interval
) {
884 * We now divide error by 4(via shift), which checks if
885 * the error is greater than twice the interval.
886 * If it is greater, we need a bigadjust, if its smaller,
887 * we can adjust by 1.
891 * XXX - In update_wall_time, we round up to the next
892 * nanosecond, and store the amount rounded up into
893 * the error. This causes the likely below to be unlikely.
895 * The proper fix is to avoid rounding up by using
896 * the high precision timekeeper.xtime_nsec instead of
897 * xtime.tv_nsec everywhere. Fixing this will take some
900 if (likely(error
<= interval
))
903 adj
= timekeeping_bigadjust(error
, &interval
, &offset
);
904 } else if (error
< -interval
) {
905 /* See comment above, this is just switched for the negative */
907 if (likely(error
>= -interval
)) {
909 interval
= -interval
;
912 adj
= timekeeping_bigadjust(error
, &interval
, &offset
);
913 } else /* No adjustment needed */
916 if (unlikely(timekeeper
.clock
->maxadj
&&
917 (timekeeper
.mult
+ adj
>
918 timekeeper
.clock
->mult
+ timekeeper
.clock
->maxadj
))) {
919 printk_once(KERN_WARNING
920 "Adjusting %s more than 11%% (%ld vs %ld)\n",
921 timekeeper
.clock
->name
, (long)timekeeper
.mult
+ adj
,
922 (long)timekeeper
.clock
->mult
+
923 timekeeper
.clock
->maxadj
);
926 * So the following can be confusing.
928 * To keep things simple, lets assume adj == 1 for now.
930 * When adj != 1, remember that the interval and offset values
931 * have been appropriately scaled so the math is the same.
933 * The basic idea here is that we're increasing the multiplier
934 * by one, this causes the xtime_interval to be incremented by
935 * one cycle_interval. This is because:
936 * xtime_interval = cycle_interval * mult
937 * So if mult is being incremented by one:
938 * xtime_interval = cycle_interval * (mult + 1)
940 * xtime_interval = (cycle_interval * mult) + cycle_interval
941 * Which can be shortened to:
942 * xtime_interval += cycle_interval
944 * So offset stores the non-accumulated cycles. Thus the current
945 * time (in shifted nanoseconds) is:
946 * now = (offset * adj) + xtime_nsec
947 * Now, even though we're adjusting the clock frequency, we have
948 * to keep time consistent. In other words, we can't jump back
949 * in time, and we also want to avoid jumping forward in time.
951 * So given the same offset value, we need the time to be the same
952 * both before and after the freq adjustment.
953 * now = (offset * adj_1) + xtime_nsec_1
954 * now = (offset * adj_2) + xtime_nsec_2
956 * (offset * adj_1) + xtime_nsec_1 =
957 * (offset * adj_2) + xtime_nsec_2
961 * (offset * adj_1) + xtime_nsec_1 =
962 * (offset * (adj_1+1)) + xtime_nsec_2
963 * (offset * adj_1) + xtime_nsec_1 =
964 * (offset * adj_1) + offset + xtime_nsec_2
965 * Canceling the sides:
966 * xtime_nsec_1 = offset + xtime_nsec_2
968 * xtime_nsec_2 = xtime_nsec_1 - offset
969 * Which simplfies to:
970 * xtime_nsec -= offset
972 * XXX - TODO: Doc ntp_error calculation.
974 timekeeper
.mult
+= adj
;
975 timekeeper
.xtime_interval
+= interval
;
976 timekeeper
.xtime_nsec
-= offset
;
977 timekeeper
.ntp_error
-= (interval
- offset
) <<
978 timekeeper
.ntp_error_shift
;
983 * logarithmic_accumulation - shifted accumulation of cycles
985 * This functions accumulates a shifted interval of cycles into
986 * into a shifted interval nanoseconds. Allows for O(log) accumulation
989 * Returns the unconsumed cycles.
991 static cycle_t
logarithmic_accumulation(cycle_t offset
, int shift
,
992 unsigned int *clock_set
)
994 u64 nsecps
= (u64
)NSEC_PER_SEC
<< timekeeper
.shift
;
997 /* If the offset is smaller than a shifted interval, do nothing */
998 if (offset
< timekeeper
.cycle_interval
<<shift
)
1001 /* Accumulate one shifted interval */
1002 offset
-= timekeeper
.cycle_interval
<< shift
;
1003 timekeeper
.clock
->cycle_last
+= timekeeper
.cycle_interval
<< shift
;
1005 timekeeper
.xtime_nsec
+= timekeeper
.xtime_interval
<< shift
;
1006 while (timekeeper
.xtime_nsec
>= nsecps
) {
1008 timekeeper
.xtime_nsec
-= nsecps
;
1009 timekeeper
.xtime
.tv_sec
++;
1010 leap
= second_overflow(timekeeper
.xtime
.tv_sec
);
1011 timekeeper
.xtime
.tv_sec
+= leap
;
1012 timekeeper
.wall_to_monotonic
.tv_sec
-= leap
;
1017 /* Accumulate raw time */
1018 raw_nsecs
= (u64
)timekeeper
.raw_interval
<< shift
;
1019 raw_nsecs
+= timekeeper
.raw_time
.tv_nsec
;
1020 if (raw_nsecs
>= NSEC_PER_SEC
) {
1021 u64 raw_secs
= raw_nsecs
;
1022 raw_nsecs
= do_div(raw_secs
, NSEC_PER_SEC
);
1023 timekeeper
.raw_time
.tv_sec
+= raw_secs
;
1025 timekeeper
.raw_time
.tv_nsec
= raw_nsecs
;
1027 /* Accumulate error between NTP and clock interval */
1028 timekeeper
.ntp_error
+= ntp_tick_length() << shift
;
1029 timekeeper
.ntp_error
-=
1030 (timekeeper
.xtime_interval
+ timekeeper
.xtime_remainder
) <<
1031 (timekeeper
.ntp_error_shift
+ shift
);
1038 * update_wall_time - Uses the current clocksource to increment the wall time
1041 static void update_wall_time(void)
1043 struct clocksource
*clock
;
1045 int shift
= 0, maxshift
;
1046 unsigned int clock_set
= 0;
1047 unsigned long flags
;
1049 write_seqlock_irqsave(&timekeeper
.lock
, flags
);
1051 /* Make sure we're fully resumed: */
1052 if (unlikely(timekeeping_suspended
))
1055 clock
= timekeeper
.clock
;
1057 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1058 offset
= timekeeper
.cycle_interval
;
1060 offset
= (clock
->read(clock
) - clock
->cycle_last
) & clock
->mask
;
1062 /* Check if there's really nothing to do */
1063 if (offset
< timekeeper
.cycle_interval
)
1066 timekeeper
.xtime_nsec
= (s64
)timekeeper
.xtime
.tv_nsec
<<
1069 * With NO_HZ we may have to accumulate many cycle_intervals
1070 * (think "ticks") worth of time at once. To do this efficiently,
1071 * we calculate the largest doubling multiple of cycle_intervals
1072 * that is smaller than the offset. We then accumulate that
1073 * chunk in one go, and then try to consume the next smaller
1076 shift
= ilog2(offset
) - ilog2(timekeeper
.cycle_interval
);
1077 shift
= max(0, shift
);
1078 /* Bound shift to one less than what overflows tick_length */
1079 maxshift
= (64 - (ilog2(ntp_tick_length())+1)) - 1;
1080 shift
= min(shift
, maxshift
);
1081 while (offset
>= timekeeper
.cycle_interval
) {
1082 offset
= logarithmic_accumulation(offset
, shift
, &clock_set
);
1083 if(offset
< timekeeper
.cycle_interval
<<shift
)
1087 /* correct the clock when NTP error is too big */
1088 timekeeping_adjust(offset
);
1091 * Since in the loop above, we accumulate any amount of time
1092 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1093 * xtime_nsec to be fairly small after the loop. Further, if we're
1094 * slightly speeding the clocksource up in timekeeping_adjust(),
1095 * its possible the required corrective factor to xtime_nsec could
1096 * cause it to underflow.
1098 * Now, we cannot simply roll the accumulated second back, since
1099 * the NTP subsystem has been notified via second_overflow. So
1100 * instead we push xtime_nsec forward by the amount we underflowed,
1101 * and add that amount into the error.
1103 * We'll correct this error next time through this function, when
1104 * xtime_nsec is not as small.
1106 if (unlikely((s64
)timekeeper
.xtime_nsec
< 0)) {
1107 s64 neg
= -(s64
)timekeeper
.xtime_nsec
;
1108 timekeeper
.xtime_nsec
= 0;
1109 timekeeper
.ntp_error
+= neg
<< timekeeper
.ntp_error_shift
;
1114 * Store full nanoseconds into xtime after rounding it up and
1115 * add the remainder to the error difference.
1117 timekeeper
.xtime
.tv_nsec
= ((s64
)timekeeper
.xtime_nsec
>>
1118 timekeeper
.shift
) + 1;
1119 timekeeper
.xtime_nsec
-= (s64
)timekeeper
.xtime
.tv_nsec
<<
1121 timekeeper
.ntp_error
+= timekeeper
.xtime_nsec
<<
1122 timekeeper
.ntp_error_shift
;
1125 * Finally, make sure that after the rounding
1126 * xtime.tv_nsec isn't larger than NSEC_PER_SEC
1128 if (unlikely(timekeeper
.xtime
.tv_nsec
>= NSEC_PER_SEC
)) {
1130 timekeeper
.xtime
.tv_nsec
-= NSEC_PER_SEC
;
1131 timekeeper
.xtime
.tv_sec
++;
1132 leap
= second_overflow(timekeeper
.xtime
.tv_sec
);
1133 timekeeper
.xtime
.tv_sec
+= leap
;
1134 timekeeper
.wall_to_monotonic
.tv_sec
-= leap
;
1139 timekeeping_update(false);
1142 write_sequnlock_irqrestore(&timekeeper
.lock
, flags
);
1145 clock_was_set_delayed();
1149 * getboottime - Return the real time of system boot.
1150 * @ts: pointer to the timespec to be set
1152 * Returns the wall-time of boot in a timespec.
1154 * This is based on the wall_to_monotonic offset and the total suspend
1155 * time. Calls to settimeofday will affect the value returned (which
1156 * basically means that however wrong your real time clock is at boot time,
1157 * you get the right time here).
1159 void getboottime(struct timespec
*ts
)
1161 struct timespec boottime
= {
1162 .tv_sec
= timekeeper
.wall_to_monotonic
.tv_sec
+
1163 timekeeper
.total_sleep_time
.tv_sec
,
1164 .tv_nsec
= timekeeper
.wall_to_monotonic
.tv_nsec
+
1165 timekeeper
.total_sleep_time
.tv_nsec
1168 set_normalized_timespec(ts
, -boottime
.tv_sec
, -boottime
.tv_nsec
);
1170 EXPORT_SYMBOL_GPL(getboottime
);
1174 * get_monotonic_boottime - Returns monotonic time since boot
1175 * @ts: pointer to the timespec to be set
1177 * Returns the monotonic time since boot in a timespec.
1179 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1180 * includes the time spent in suspend.
1182 void get_monotonic_boottime(struct timespec
*ts
)
1184 struct timespec tomono
, sleep
;
1188 WARN_ON(timekeeping_suspended
);
1191 seq
= read_seqbegin(&timekeeper
.lock
);
1192 *ts
= timekeeper
.xtime
;
1193 tomono
= timekeeper
.wall_to_monotonic
;
1194 sleep
= timekeeper
.total_sleep_time
;
1195 nsecs
= timekeeping_get_ns();
1197 } while (read_seqretry(&timekeeper
.lock
, seq
));
1199 set_normalized_timespec(ts
, ts
->tv_sec
+ tomono
.tv_sec
+ sleep
.tv_sec
,
1200 (s64
)ts
->tv_nsec
+ tomono
.tv_nsec
+ sleep
.tv_nsec
+ nsecs
);
1202 EXPORT_SYMBOL_GPL(get_monotonic_boottime
);
1205 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1207 * Returns the monotonic time since boot in a ktime
1209 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1210 * includes the time spent in suspend.
1212 ktime_t
ktime_get_boottime(void)
1216 get_monotonic_boottime(&ts
);
1217 return timespec_to_ktime(ts
);
1219 EXPORT_SYMBOL_GPL(ktime_get_boottime
);
1222 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1223 * @ts: pointer to the timespec to be converted
1225 void monotonic_to_bootbased(struct timespec
*ts
)
1227 *ts
= timespec_add(*ts
, timekeeper
.total_sleep_time
);
1229 EXPORT_SYMBOL_GPL(monotonic_to_bootbased
);
1231 unsigned long get_seconds(void)
1233 return timekeeper
.xtime
.tv_sec
;
1235 EXPORT_SYMBOL(get_seconds
);
1237 struct timespec
__current_kernel_time(void)
1239 return timekeeper
.xtime
;
1242 struct timespec
current_kernel_time(void)
1244 struct timespec now
;
1248 seq
= read_seqbegin(&timekeeper
.lock
);
1250 now
= timekeeper
.xtime
;
1251 } while (read_seqretry(&timekeeper
.lock
, seq
));
1255 EXPORT_SYMBOL(current_kernel_time
);
1257 struct timespec
get_monotonic_coarse(void)
1259 struct timespec now
, mono
;
1263 seq
= read_seqbegin(&timekeeper
.lock
);
1265 now
= timekeeper
.xtime
;
1266 mono
= timekeeper
.wall_to_monotonic
;
1267 } while (read_seqretry(&timekeeper
.lock
, seq
));
1269 set_normalized_timespec(&now
, now
.tv_sec
+ mono
.tv_sec
,
1270 now
.tv_nsec
+ mono
.tv_nsec
);
1275 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1276 * without sampling the sequence number in xtime_lock.
1277 * jiffies is defined in the linker script...
1279 void do_timer(unsigned long ticks
)
1281 jiffies_64
+= ticks
;
1283 calc_global_load(ticks
);
1287 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1288 * and sleep offsets.
1289 * @xtim: pointer to timespec to be set with xtime
1290 * @wtom: pointer to timespec to be set with wall_to_monotonic
1291 * @sleep: pointer to timespec to be set with time in suspend
1293 void get_xtime_and_monotonic_and_sleep_offset(struct timespec
*xtim
,
1294 struct timespec
*wtom
, struct timespec
*sleep
)
1299 seq
= read_seqbegin(&timekeeper
.lock
);
1300 *xtim
= timekeeper
.xtime
;
1301 *wtom
= timekeeper
.wall_to_monotonic
;
1302 *sleep
= timekeeper
.total_sleep_time
;
1303 } while (read_seqretry(&timekeeper
.lock
, seq
));
1306 #ifdef CONFIG_HIGH_RES_TIMERS
1308 * ktime_get_update_offsets - hrtimer helper
1309 * @offs_real: pointer to storage for monotonic -> realtime offset
1310 * @offs_boot: pointer to storage for monotonic -> boottime offset
1312 * Returns current monotonic time and updates the offsets
1313 * Called from hrtimer_interupt() or retrigger_next_event()
1315 ktime_t
ktime_get_update_offsets(ktime_t
*offs_real
, ktime_t
*offs_boot
)
1322 seq
= read_seqbegin(&timekeeper
.lock
);
1324 secs
= timekeeper
.xtime
.tv_sec
;
1325 nsecs
= timekeeper
.xtime
.tv_nsec
;
1326 nsecs
+= timekeeping_get_ns();
1327 /* If arch requires, add in gettimeoffset() */
1328 nsecs
+= arch_gettimeoffset();
1330 *offs_real
= timekeeper
.offs_real
;
1331 *offs_boot
= timekeeper
.offs_boot
;
1332 } while (read_seqretry(&timekeeper
.lock
, seq
));
1334 now
= ktime_add_ns(ktime_set(secs
, 0), nsecs
);
1335 now
= ktime_sub(now
, *offs_real
);
1341 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1343 ktime_t
ktime_get_monotonic_offset(void)
1346 struct timespec wtom
;
1349 seq
= read_seqbegin(&timekeeper
.lock
);
1350 wtom
= timekeeper
.wall_to_monotonic
;
1351 } while (read_seqretry(&timekeeper
.lock
, seq
));
1353 return timespec_to_ktime(wtom
);
1355 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset
);
1359 * xtime_update() - advances the timekeeping infrastructure
1360 * @ticks: number of ticks, that have elapsed since the last call.
1362 * Must be called with interrupts disabled.
1364 void xtime_update(unsigned long ticks
)
1366 write_seqlock(&xtime_lock
);
1368 write_sequnlock(&xtime_lock
);