net/mlx5e: Fix update of hash function/key via ethtool
[linux/fpc-iii.git] / mm / slub.c
blob7aa0e97af928378430e5ba570e636bdccbae0148
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
38 #include <trace/events/kmem.h>
40 #include "internal.h"
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
48 * slab_mutex
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
95 * Overloading of page flags that are otherwise used for LRU management.
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
118 static inline int kmem_cache_debug(struct kmem_cache *s)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
127 void *fixup_red_left(struct kmem_cache *s, void *p)
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
132 return p;
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139 #else
140 return false;
141 #endif
145 * Issues still to be resolved:
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 * - Variable sizing of the per node arrays
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 #define MIN_PARTIAL 5
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
169 #define MAX_PARTIAL 10
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 #define OO_SHIFT 16
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON 0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
198 * Tracking user of a slab.
200 #define TRACK_ADDRS_COUNT 16
201 struct track {
202 unsigned long addr; /* Called from address */
203 #ifdef CONFIG_STACKTRACE
204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
205 #endif
206 int cpu; /* Was running on cpu */
207 int pid; /* Pid context */
208 unsigned long when; /* When did the operation occur */
211 enum track_item { TRACK_ALLOC, TRACK_FREE };
213 #ifdef CONFIG_SYSFS
214 static int sysfs_slab_add(struct kmem_cache *);
215 static int sysfs_slab_alias(struct kmem_cache *, const char *);
216 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
217 #else
218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
226 #ifdef CONFIG_SLUB_STATS
228 * The rmw is racy on a preemptible kernel but this is acceptable, so
229 * avoid this_cpu_add()'s irq-disable overhead.
231 raw_cpu_inc(s->cpu_slab->stat[si]);
232 #endif
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
239 static inline void *get_freepointer(struct kmem_cache *s, void *object)
241 return *(void **)(object + s->offset);
244 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
246 prefetch(object + s->offset);
249 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
251 void *p;
253 if (!debug_pagealloc_enabled())
254 return get_freepointer(s, object);
256 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
257 return p;
260 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
262 *(void **)(object + s->offset) = fp;
265 /* Loop over all objects in a slab */
266 #define for_each_object(__p, __s, __addr, __objects) \
267 for (__p = fixup_red_left(__s, __addr); \
268 __p < (__addr) + (__objects) * (__s)->size; \
269 __p += (__s)->size)
271 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
272 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
273 __idx <= __objects; \
274 __p += (__s)->size, __idx++)
276 /* Determine object index from a given position */
277 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
279 return (p - addr) / s->size;
282 static inline int order_objects(int order, unsigned long size, int reserved)
284 return ((PAGE_SIZE << order) - reserved) / size;
287 static inline struct kmem_cache_order_objects oo_make(int order,
288 unsigned long size, int reserved)
290 struct kmem_cache_order_objects x = {
291 (order << OO_SHIFT) + order_objects(order, size, reserved)
294 return x;
297 static inline int oo_order(struct kmem_cache_order_objects x)
299 return x.x >> OO_SHIFT;
302 static inline int oo_objects(struct kmem_cache_order_objects x)
304 return x.x & OO_MASK;
308 * Per slab locking using the pagelock
310 static __always_inline void slab_lock(struct page *page)
312 VM_BUG_ON_PAGE(PageTail(page), page);
313 bit_spin_lock(PG_locked, &page->flags);
316 static __always_inline void slab_unlock(struct page *page)
318 VM_BUG_ON_PAGE(PageTail(page), page);
319 __bit_spin_unlock(PG_locked, &page->flags);
322 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
324 struct page tmp;
325 tmp.counters = counters_new;
327 * page->counters can cover frozen/inuse/objects as well
328 * as page->_refcount. If we assign to ->counters directly
329 * we run the risk of losing updates to page->_refcount, so
330 * be careful and only assign to the fields we need.
332 page->frozen = tmp.frozen;
333 page->inuse = tmp.inuse;
334 page->objects = tmp.objects;
337 /* Interrupts must be disabled (for the fallback code to work right) */
338 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
339 void *freelist_old, unsigned long counters_old,
340 void *freelist_new, unsigned long counters_new,
341 const char *n)
343 VM_BUG_ON(!irqs_disabled());
344 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
345 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
346 if (s->flags & __CMPXCHG_DOUBLE) {
347 if (cmpxchg_double(&page->freelist, &page->counters,
348 freelist_old, counters_old,
349 freelist_new, counters_new))
350 return true;
351 } else
352 #endif
354 slab_lock(page);
355 if (page->freelist == freelist_old &&
356 page->counters == counters_old) {
357 page->freelist = freelist_new;
358 set_page_slub_counters(page, counters_new);
359 slab_unlock(page);
360 return true;
362 slab_unlock(page);
365 cpu_relax();
366 stat(s, CMPXCHG_DOUBLE_FAIL);
368 #ifdef SLUB_DEBUG_CMPXCHG
369 pr_info("%s %s: cmpxchg double redo ", n, s->name);
370 #endif
372 return false;
375 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s->flags & __CMPXCHG_DOUBLE) {
383 if (cmpxchg_double(&page->freelist, &page->counters,
384 freelist_old, counters_old,
385 freelist_new, counters_new))
386 return true;
387 } else
388 #endif
390 unsigned long flags;
392 local_irq_save(flags);
393 slab_lock(page);
394 if (page->freelist == freelist_old &&
395 page->counters == counters_old) {
396 page->freelist = freelist_new;
397 set_page_slub_counters(page, counters_new);
398 slab_unlock(page);
399 local_irq_restore(flags);
400 return true;
402 slab_unlock(page);
403 local_irq_restore(flags);
406 cpu_relax();
407 stat(s, CMPXCHG_DOUBLE_FAIL);
409 #ifdef SLUB_DEBUG_CMPXCHG
410 pr_info("%s %s: cmpxchg double redo ", n, s->name);
411 #endif
413 return false;
416 #ifdef CONFIG_SLUB_DEBUG
418 * Determine a map of object in use on a page.
420 * Node listlock must be held to guarantee that the page does
421 * not vanish from under us.
423 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
425 void *p;
426 void *addr = page_address(page);
428 for (p = page->freelist; p; p = get_freepointer(s, p))
429 set_bit(slab_index(p, s, addr), map);
432 static inline int size_from_object(struct kmem_cache *s)
434 if (s->flags & SLAB_RED_ZONE)
435 return s->size - s->red_left_pad;
437 return s->size;
440 static inline void *restore_red_left(struct kmem_cache *s, void *p)
442 if (s->flags & SLAB_RED_ZONE)
443 p -= s->red_left_pad;
445 return p;
449 * Debug settings:
451 #if defined(CONFIG_SLUB_DEBUG_ON)
452 static int slub_debug = DEBUG_DEFAULT_FLAGS;
453 #else
454 static int slub_debug;
455 #endif
457 static char *slub_debug_slabs;
458 static int disable_higher_order_debug;
461 * slub is about to manipulate internal object metadata. This memory lies
462 * outside the range of the allocated object, so accessing it would normally
463 * be reported by kasan as a bounds error. metadata_access_enable() is used
464 * to tell kasan that these accesses are OK.
466 static inline void metadata_access_enable(void)
468 kasan_disable_current();
471 static inline void metadata_access_disable(void)
473 kasan_enable_current();
477 * Object debugging
480 /* Verify that a pointer has an address that is valid within a slab page */
481 static inline int check_valid_pointer(struct kmem_cache *s,
482 struct page *page, void *object)
484 void *base;
486 if (!object)
487 return 1;
489 base = page_address(page);
490 object = restore_red_left(s, object);
491 if (object < base || object >= base + page->objects * s->size ||
492 (object - base) % s->size) {
493 return 0;
496 return 1;
499 static void print_section(char *text, u8 *addr, unsigned int length)
501 metadata_access_enable();
502 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
503 length, 1);
504 metadata_access_disable();
507 static struct track *get_track(struct kmem_cache *s, void *object,
508 enum track_item alloc)
510 struct track *p;
512 if (s->offset)
513 p = object + s->offset + sizeof(void *);
514 else
515 p = object + s->inuse;
517 return p + alloc;
520 static void set_track(struct kmem_cache *s, void *object,
521 enum track_item alloc, unsigned long addr)
523 struct track *p = get_track(s, object, alloc);
525 if (addr) {
526 #ifdef CONFIG_STACKTRACE
527 struct stack_trace trace;
528 int i;
530 trace.nr_entries = 0;
531 trace.max_entries = TRACK_ADDRS_COUNT;
532 trace.entries = p->addrs;
533 trace.skip = 3;
534 metadata_access_enable();
535 save_stack_trace(&trace);
536 metadata_access_disable();
538 /* See rant in lockdep.c */
539 if (trace.nr_entries != 0 &&
540 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
541 trace.nr_entries--;
543 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
544 p->addrs[i] = 0;
545 #endif
546 p->addr = addr;
547 p->cpu = smp_processor_id();
548 p->pid = current->pid;
549 p->when = jiffies;
550 } else
551 memset(p, 0, sizeof(struct track));
554 static void init_tracking(struct kmem_cache *s, void *object)
556 if (!(s->flags & SLAB_STORE_USER))
557 return;
559 set_track(s, object, TRACK_FREE, 0UL);
560 set_track(s, object, TRACK_ALLOC, 0UL);
563 static void print_track(const char *s, struct track *t)
565 if (!t->addr)
566 return;
568 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
569 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
570 #ifdef CONFIG_STACKTRACE
572 int i;
573 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
574 if (t->addrs[i])
575 pr_err("\t%pS\n", (void *)t->addrs[i]);
576 else
577 break;
579 #endif
582 static void print_tracking(struct kmem_cache *s, void *object)
584 if (!(s->flags & SLAB_STORE_USER))
585 return;
587 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
588 print_track("Freed", get_track(s, object, TRACK_FREE));
591 static void print_page_info(struct page *page)
593 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
594 page, page->objects, page->inuse, page->freelist, page->flags);
598 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
600 struct va_format vaf;
601 va_list args;
603 va_start(args, fmt);
604 vaf.fmt = fmt;
605 vaf.va = &args;
606 pr_err("=============================================================================\n");
607 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
608 pr_err("-----------------------------------------------------------------------------\n\n");
610 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
611 va_end(args);
614 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
616 struct va_format vaf;
617 va_list args;
619 va_start(args, fmt);
620 vaf.fmt = fmt;
621 vaf.va = &args;
622 pr_err("FIX %s: %pV\n", s->name, &vaf);
623 va_end(args);
626 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
628 unsigned int off; /* Offset of last byte */
629 u8 *addr = page_address(page);
631 print_tracking(s, p);
633 print_page_info(page);
635 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
636 p, p - addr, get_freepointer(s, p));
638 if (s->flags & SLAB_RED_ZONE)
639 print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
640 else if (p > addr + 16)
641 print_section("Bytes b4 ", p - 16, 16);
643 print_section("Object ", p, min_t(unsigned long, s->object_size,
644 PAGE_SIZE));
645 if (s->flags & SLAB_RED_ZONE)
646 print_section("Redzone ", p + s->object_size,
647 s->inuse - s->object_size);
649 if (s->offset)
650 off = s->offset + sizeof(void *);
651 else
652 off = s->inuse;
654 if (s->flags & SLAB_STORE_USER)
655 off += 2 * sizeof(struct track);
657 off += kasan_metadata_size(s);
659 if (off != size_from_object(s))
660 /* Beginning of the filler is the free pointer */
661 print_section("Padding ", p + off, size_from_object(s) - off);
663 dump_stack();
666 void object_err(struct kmem_cache *s, struct page *page,
667 u8 *object, char *reason)
669 slab_bug(s, "%s", reason);
670 print_trailer(s, page, object);
673 static void slab_err(struct kmem_cache *s, struct page *page,
674 const char *fmt, ...)
676 va_list args;
677 char buf[100];
679 va_start(args, fmt);
680 vsnprintf(buf, sizeof(buf), fmt, args);
681 va_end(args);
682 slab_bug(s, "%s", buf);
683 print_page_info(page);
684 dump_stack();
687 static void init_object(struct kmem_cache *s, void *object, u8 val)
689 u8 *p = object;
691 if (s->flags & SLAB_RED_ZONE)
692 memset(p - s->red_left_pad, val, s->red_left_pad);
694 if (s->flags & __OBJECT_POISON) {
695 memset(p, POISON_FREE, s->object_size - 1);
696 p[s->object_size - 1] = POISON_END;
699 if (s->flags & SLAB_RED_ZONE)
700 memset(p + s->object_size, val, s->inuse - s->object_size);
703 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
704 void *from, void *to)
706 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
707 memset(from, data, to - from);
710 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
711 u8 *object, char *what,
712 u8 *start, unsigned int value, unsigned int bytes)
714 u8 *fault;
715 u8 *end;
717 metadata_access_enable();
718 fault = memchr_inv(start, value, bytes);
719 metadata_access_disable();
720 if (!fault)
721 return 1;
723 end = start + bytes;
724 while (end > fault && end[-1] == value)
725 end--;
727 slab_bug(s, "%s overwritten", what);
728 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
729 fault, end - 1, fault[0], value);
730 print_trailer(s, page, object);
732 restore_bytes(s, what, value, fault, end);
733 return 0;
737 * Object layout:
739 * object address
740 * Bytes of the object to be managed.
741 * If the freepointer may overlay the object then the free
742 * pointer is the first word of the object.
744 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
745 * 0xa5 (POISON_END)
747 * object + s->object_size
748 * Padding to reach word boundary. This is also used for Redzoning.
749 * Padding is extended by another word if Redzoning is enabled and
750 * object_size == inuse.
752 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
753 * 0xcc (RED_ACTIVE) for objects in use.
755 * object + s->inuse
756 * Meta data starts here.
758 * A. Free pointer (if we cannot overwrite object on free)
759 * B. Tracking data for SLAB_STORE_USER
760 * C. Padding to reach required alignment boundary or at mininum
761 * one word if debugging is on to be able to detect writes
762 * before the word boundary.
764 * Padding is done using 0x5a (POISON_INUSE)
766 * object + s->size
767 * Nothing is used beyond s->size.
769 * If slabcaches are merged then the object_size and inuse boundaries are mostly
770 * ignored. And therefore no slab options that rely on these boundaries
771 * may be used with merged slabcaches.
774 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
776 unsigned long off = s->inuse; /* The end of info */
778 if (s->offset)
779 /* Freepointer is placed after the object. */
780 off += sizeof(void *);
782 if (s->flags & SLAB_STORE_USER)
783 /* We also have user information there */
784 off += 2 * sizeof(struct track);
786 off += kasan_metadata_size(s);
788 if (size_from_object(s) == off)
789 return 1;
791 return check_bytes_and_report(s, page, p, "Object padding",
792 p + off, POISON_INUSE, size_from_object(s) - off);
795 /* Check the pad bytes at the end of a slab page */
796 static int slab_pad_check(struct kmem_cache *s, struct page *page)
798 u8 *start;
799 u8 *fault;
800 u8 *end;
801 int length;
802 int remainder;
804 if (!(s->flags & SLAB_POISON))
805 return 1;
807 start = page_address(page);
808 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
809 end = start + length;
810 remainder = length % s->size;
811 if (!remainder)
812 return 1;
814 metadata_access_enable();
815 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
816 metadata_access_disable();
817 if (!fault)
818 return 1;
819 while (end > fault && end[-1] == POISON_INUSE)
820 end--;
822 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
823 print_section("Padding ", end - remainder, remainder);
825 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
826 return 0;
829 static int check_object(struct kmem_cache *s, struct page *page,
830 void *object, u8 val)
832 u8 *p = object;
833 u8 *endobject = object + s->object_size;
835 if (s->flags & SLAB_RED_ZONE) {
836 if (!check_bytes_and_report(s, page, object, "Redzone",
837 object - s->red_left_pad, val, s->red_left_pad))
838 return 0;
840 if (!check_bytes_and_report(s, page, object, "Redzone",
841 endobject, val, s->inuse - s->object_size))
842 return 0;
843 } else {
844 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
845 check_bytes_and_report(s, page, p, "Alignment padding",
846 endobject, POISON_INUSE,
847 s->inuse - s->object_size);
851 if (s->flags & SLAB_POISON) {
852 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
853 (!check_bytes_and_report(s, page, p, "Poison", p,
854 POISON_FREE, s->object_size - 1) ||
855 !check_bytes_and_report(s, page, p, "Poison",
856 p + s->object_size - 1, POISON_END, 1)))
857 return 0;
859 * check_pad_bytes cleans up on its own.
861 check_pad_bytes(s, page, p);
864 if (!s->offset && val == SLUB_RED_ACTIVE)
866 * Object and freepointer overlap. Cannot check
867 * freepointer while object is allocated.
869 return 1;
871 /* Check free pointer validity */
872 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
873 object_err(s, page, p, "Freepointer corrupt");
875 * No choice but to zap it and thus lose the remainder
876 * of the free objects in this slab. May cause
877 * another error because the object count is now wrong.
879 set_freepointer(s, p, NULL);
880 return 0;
882 return 1;
885 static int check_slab(struct kmem_cache *s, struct page *page)
887 int maxobj;
889 VM_BUG_ON(!irqs_disabled());
891 if (!PageSlab(page)) {
892 slab_err(s, page, "Not a valid slab page");
893 return 0;
896 maxobj = order_objects(compound_order(page), s->size, s->reserved);
897 if (page->objects > maxobj) {
898 slab_err(s, page, "objects %u > max %u",
899 page->objects, maxobj);
900 return 0;
902 if (page->inuse > page->objects) {
903 slab_err(s, page, "inuse %u > max %u",
904 page->inuse, page->objects);
905 return 0;
907 /* Slab_pad_check fixes things up after itself */
908 slab_pad_check(s, page);
909 return 1;
913 * Determine if a certain object on a page is on the freelist. Must hold the
914 * slab lock to guarantee that the chains are in a consistent state.
916 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
918 int nr = 0;
919 void *fp;
920 void *object = NULL;
921 int max_objects;
923 fp = page->freelist;
924 while (fp && nr <= page->objects) {
925 if (fp == search)
926 return 1;
927 if (!check_valid_pointer(s, page, fp)) {
928 if (object) {
929 object_err(s, page, object,
930 "Freechain corrupt");
931 set_freepointer(s, object, NULL);
932 } else {
933 slab_err(s, page, "Freepointer corrupt");
934 page->freelist = NULL;
935 page->inuse = page->objects;
936 slab_fix(s, "Freelist cleared");
937 return 0;
939 break;
941 object = fp;
942 fp = get_freepointer(s, object);
943 nr++;
946 max_objects = order_objects(compound_order(page), s->size, s->reserved);
947 if (max_objects > MAX_OBJS_PER_PAGE)
948 max_objects = MAX_OBJS_PER_PAGE;
950 if (page->objects != max_objects) {
951 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
952 page->objects, max_objects);
953 page->objects = max_objects;
954 slab_fix(s, "Number of objects adjusted.");
956 if (page->inuse != page->objects - nr) {
957 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
958 page->inuse, page->objects - nr);
959 page->inuse = page->objects - nr;
960 slab_fix(s, "Object count adjusted.");
962 return search == NULL;
965 static void trace(struct kmem_cache *s, struct page *page, void *object,
966 int alloc)
968 if (s->flags & SLAB_TRACE) {
969 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
970 s->name,
971 alloc ? "alloc" : "free",
972 object, page->inuse,
973 page->freelist);
975 if (!alloc)
976 print_section("Object ", (void *)object,
977 s->object_size);
979 dump_stack();
984 * Tracking of fully allocated slabs for debugging purposes.
986 static void add_full(struct kmem_cache *s,
987 struct kmem_cache_node *n, struct page *page)
989 if (!(s->flags & SLAB_STORE_USER))
990 return;
992 lockdep_assert_held(&n->list_lock);
993 list_add(&page->lru, &n->full);
996 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
998 if (!(s->flags & SLAB_STORE_USER))
999 return;
1001 lockdep_assert_held(&n->list_lock);
1002 list_del(&page->lru);
1005 /* Tracking of the number of slabs for debugging purposes */
1006 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1008 struct kmem_cache_node *n = get_node(s, node);
1010 return atomic_long_read(&n->nr_slabs);
1013 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1015 return atomic_long_read(&n->nr_slabs);
1018 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1020 struct kmem_cache_node *n = get_node(s, node);
1023 * May be called early in order to allocate a slab for the
1024 * kmem_cache_node structure. Solve the chicken-egg
1025 * dilemma by deferring the increment of the count during
1026 * bootstrap (see early_kmem_cache_node_alloc).
1028 if (likely(n)) {
1029 atomic_long_inc(&n->nr_slabs);
1030 atomic_long_add(objects, &n->total_objects);
1033 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1035 struct kmem_cache_node *n = get_node(s, node);
1037 atomic_long_dec(&n->nr_slabs);
1038 atomic_long_sub(objects, &n->total_objects);
1041 /* Object debug checks for alloc/free paths */
1042 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1043 void *object)
1045 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1046 return;
1048 init_object(s, object, SLUB_RED_INACTIVE);
1049 init_tracking(s, object);
1052 static inline int alloc_consistency_checks(struct kmem_cache *s,
1053 struct page *page,
1054 void *object, unsigned long addr)
1056 if (!check_slab(s, page))
1057 return 0;
1059 if (!check_valid_pointer(s, page, object)) {
1060 object_err(s, page, object, "Freelist Pointer check fails");
1061 return 0;
1064 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1065 return 0;
1067 return 1;
1070 static noinline int alloc_debug_processing(struct kmem_cache *s,
1071 struct page *page,
1072 void *object, unsigned long addr)
1074 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1075 if (!alloc_consistency_checks(s, page, object, addr))
1076 goto bad;
1079 /* Success perform special debug activities for allocs */
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_ALLOC, addr);
1082 trace(s, page, object, 1);
1083 init_object(s, object, SLUB_RED_ACTIVE);
1084 return 1;
1086 bad:
1087 if (PageSlab(page)) {
1089 * If this is a slab page then lets do the best we can
1090 * to avoid issues in the future. Marking all objects
1091 * as used avoids touching the remaining objects.
1093 slab_fix(s, "Marking all objects used");
1094 page->inuse = page->objects;
1095 page->freelist = NULL;
1097 return 0;
1100 static inline int free_consistency_checks(struct kmem_cache *s,
1101 struct page *page, void *object, unsigned long addr)
1103 if (!check_valid_pointer(s, page, object)) {
1104 slab_err(s, page, "Invalid object pointer 0x%p", object);
1105 return 0;
1108 if (on_freelist(s, page, object)) {
1109 object_err(s, page, object, "Object already free");
1110 return 0;
1113 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1114 return 0;
1116 if (unlikely(s != page->slab_cache)) {
1117 if (!PageSlab(page)) {
1118 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1119 object);
1120 } else if (!page->slab_cache) {
1121 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1122 object);
1123 dump_stack();
1124 } else
1125 object_err(s, page, object,
1126 "page slab pointer corrupt.");
1127 return 0;
1129 return 1;
1132 /* Supports checking bulk free of a constructed freelist */
1133 static noinline int free_debug_processing(
1134 struct kmem_cache *s, struct page *page,
1135 void *head, void *tail, int bulk_cnt,
1136 unsigned long addr)
1138 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1139 void *object = head;
1140 int cnt = 0;
1141 unsigned long uninitialized_var(flags);
1142 int ret = 0;
1144 spin_lock_irqsave(&n->list_lock, flags);
1145 slab_lock(page);
1147 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1148 if (!check_slab(s, page))
1149 goto out;
1152 next_object:
1153 cnt++;
1155 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1156 if (!free_consistency_checks(s, page, object, addr))
1157 goto out;
1160 if (s->flags & SLAB_STORE_USER)
1161 set_track(s, object, TRACK_FREE, addr);
1162 trace(s, page, object, 0);
1163 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1164 init_object(s, object, SLUB_RED_INACTIVE);
1166 /* Reached end of constructed freelist yet? */
1167 if (object != tail) {
1168 object = get_freepointer(s, object);
1169 goto next_object;
1171 ret = 1;
1173 out:
1174 if (cnt != bulk_cnt)
1175 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1176 bulk_cnt, cnt);
1178 slab_unlock(page);
1179 spin_unlock_irqrestore(&n->list_lock, flags);
1180 if (!ret)
1181 slab_fix(s, "Object at 0x%p not freed", object);
1182 return ret;
1185 static int __init setup_slub_debug(char *str)
1187 slub_debug = DEBUG_DEFAULT_FLAGS;
1188 if (*str++ != '=' || !*str)
1190 * No options specified. Switch on full debugging.
1192 goto out;
1194 if (*str == ',')
1196 * No options but restriction on slabs. This means full
1197 * debugging for slabs matching a pattern.
1199 goto check_slabs;
1201 slub_debug = 0;
1202 if (*str == '-')
1204 * Switch off all debugging measures.
1206 goto out;
1209 * Determine which debug features should be switched on
1211 for (; *str && *str != ','; str++) {
1212 switch (tolower(*str)) {
1213 case 'f':
1214 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1215 break;
1216 case 'z':
1217 slub_debug |= SLAB_RED_ZONE;
1218 break;
1219 case 'p':
1220 slub_debug |= SLAB_POISON;
1221 break;
1222 case 'u':
1223 slub_debug |= SLAB_STORE_USER;
1224 break;
1225 case 't':
1226 slub_debug |= SLAB_TRACE;
1227 break;
1228 case 'a':
1229 slub_debug |= SLAB_FAILSLAB;
1230 break;
1231 case 'o':
1233 * Avoid enabling debugging on caches if its minimum
1234 * order would increase as a result.
1236 disable_higher_order_debug = 1;
1237 break;
1238 default:
1239 pr_err("slub_debug option '%c' unknown. skipped\n",
1240 *str);
1244 check_slabs:
1245 if (*str == ',')
1246 slub_debug_slabs = str + 1;
1247 out:
1248 return 1;
1251 __setup("slub_debug", setup_slub_debug);
1253 unsigned long kmem_cache_flags(unsigned long object_size,
1254 unsigned long flags, const char *name,
1255 void (*ctor)(void *))
1258 * Enable debugging if selected on the kernel commandline.
1260 if (slub_debug && (!slub_debug_slabs || (name &&
1261 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1262 flags |= slub_debug;
1264 return flags;
1266 #else /* !CONFIG_SLUB_DEBUG */
1267 static inline void setup_object_debug(struct kmem_cache *s,
1268 struct page *page, void *object) {}
1270 static inline int alloc_debug_processing(struct kmem_cache *s,
1271 struct page *page, void *object, unsigned long addr) { return 0; }
1273 static inline int free_debug_processing(
1274 struct kmem_cache *s, struct page *page,
1275 void *head, void *tail, int bulk_cnt,
1276 unsigned long addr) { return 0; }
1278 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1279 { return 1; }
1280 static inline int check_object(struct kmem_cache *s, struct page *page,
1281 void *object, u8 val) { return 1; }
1282 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1283 struct page *page) {}
1284 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1285 struct page *page) {}
1286 unsigned long kmem_cache_flags(unsigned long object_size,
1287 unsigned long flags, const char *name,
1288 void (*ctor)(void *))
1290 return flags;
1292 #define slub_debug 0
1294 #define disable_higher_order_debug 0
1296 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1297 { return 0; }
1298 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1299 { return 0; }
1300 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1301 int objects) {}
1302 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1303 int objects) {}
1305 #endif /* CONFIG_SLUB_DEBUG */
1308 * Hooks for other subsystems that check memory allocations. In a typical
1309 * production configuration these hooks all should produce no code at all.
1311 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1313 kmemleak_alloc(ptr, size, 1, flags);
1314 kasan_kmalloc_large(ptr, size, flags);
1317 static inline void kfree_hook(const void *x)
1319 kmemleak_free(x);
1320 kasan_kfree_large(x);
1323 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1325 void *freeptr;
1327 kmemleak_free_recursive(x, s->flags);
1330 * Trouble is that we may no longer disable interrupts in the fast path
1331 * So in order to make the debug calls that expect irqs to be
1332 * disabled we need to disable interrupts temporarily.
1334 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1336 unsigned long flags;
1338 local_irq_save(flags);
1339 kmemcheck_slab_free(s, x, s->object_size);
1340 debug_check_no_locks_freed(x, s->object_size);
1341 local_irq_restore(flags);
1343 #endif
1344 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1345 debug_check_no_obj_freed(x, s->object_size);
1347 freeptr = get_freepointer(s, x);
1349 * kasan_slab_free() may put x into memory quarantine, delaying its
1350 * reuse. In this case the object's freelist pointer is changed.
1352 kasan_slab_free(s, x);
1353 return freeptr;
1356 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1357 void *head, void *tail)
1360 * Compiler cannot detect this function can be removed if slab_free_hook()
1361 * evaluates to nothing. Thus, catch all relevant config debug options here.
1363 #if defined(CONFIG_KMEMCHECK) || \
1364 defined(CONFIG_LOCKDEP) || \
1365 defined(CONFIG_DEBUG_KMEMLEAK) || \
1366 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1367 defined(CONFIG_KASAN)
1369 void *object = head;
1370 void *tail_obj = tail ? : head;
1371 void *freeptr;
1373 do {
1374 freeptr = slab_free_hook(s, object);
1375 } while ((object != tail_obj) && (object = freeptr));
1376 #endif
1379 static void setup_object(struct kmem_cache *s, struct page *page,
1380 void *object)
1382 setup_object_debug(s, page, object);
1383 kasan_init_slab_obj(s, object);
1384 if (unlikely(s->ctor)) {
1385 kasan_unpoison_object_data(s, object);
1386 s->ctor(object);
1387 kasan_poison_object_data(s, object);
1392 * Slab allocation and freeing
1394 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1395 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1397 struct page *page;
1398 int order = oo_order(oo);
1400 flags |= __GFP_NOTRACK;
1402 if (node == NUMA_NO_NODE)
1403 page = alloc_pages(flags, order);
1404 else
1405 page = __alloc_pages_node(node, flags, order);
1407 if (page && memcg_charge_slab(page, flags, order, s)) {
1408 __free_pages(page, order);
1409 page = NULL;
1412 return page;
1415 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1416 /* Pre-initialize the random sequence cache */
1417 static int init_cache_random_seq(struct kmem_cache *s)
1419 int err;
1420 unsigned long i, count = oo_objects(s->oo);
1422 /* Bailout if already initialised */
1423 if (s->random_seq)
1424 return 0;
1426 err = cache_random_seq_create(s, count, GFP_KERNEL);
1427 if (err) {
1428 pr_err("SLUB: Unable to initialize free list for %s\n",
1429 s->name);
1430 return err;
1433 /* Transform to an offset on the set of pages */
1434 if (s->random_seq) {
1435 for (i = 0; i < count; i++)
1436 s->random_seq[i] *= s->size;
1438 return 0;
1441 /* Initialize each random sequence freelist per cache */
1442 static void __init init_freelist_randomization(void)
1444 struct kmem_cache *s;
1446 mutex_lock(&slab_mutex);
1448 list_for_each_entry(s, &slab_caches, list)
1449 init_cache_random_seq(s);
1451 mutex_unlock(&slab_mutex);
1454 /* Get the next entry on the pre-computed freelist randomized */
1455 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1456 unsigned long *pos, void *start,
1457 unsigned long page_limit,
1458 unsigned long freelist_count)
1460 unsigned int idx;
1463 * If the target page allocation failed, the number of objects on the
1464 * page might be smaller than the usual size defined by the cache.
1466 do {
1467 idx = s->random_seq[*pos];
1468 *pos += 1;
1469 if (*pos >= freelist_count)
1470 *pos = 0;
1471 } while (unlikely(idx >= page_limit));
1473 return (char *)start + idx;
1476 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1477 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1479 void *start;
1480 void *cur;
1481 void *next;
1482 unsigned long idx, pos, page_limit, freelist_count;
1484 if (page->objects < 2 || !s->random_seq)
1485 return false;
1487 freelist_count = oo_objects(s->oo);
1488 pos = get_random_int() % freelist_count;
1490 page_limit = page->objects * s->size;
1491 start = fixup_red_left(s, page_address(page));
1493 /* First entry is used as the base of the freelist */
1494 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1495 freelist_count);
1496 page->freelist = cur;
1498 for (idx = 1; idx < page->objects; idx++) {
1499 setup_object(s, page, cur);
1500 next = next_freelist_entry(s, page, &pos, start, page_limit,
1501 freelist_count);
1502 set_freepointer(s, cur, next);
1503 cur = next;
1505 setup_object(s, page, cur);
1506 set_freepointer(s, cur, NULL);
1508 return true;
1510 #else
1511 static inline int init_cache_random_seq(struct kmem_cache *s)
1513 return 0;
1515 static inline void init_freelist_randomization(void) { }
1516 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1518 return false;
1520 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1522 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1524 struct page *page;
1525 struct kmem_cache_order_objects oo = s->oo;
1526 gfp_t alloc_gfp;
1527 void *start, *p;
1528 int idx, order;
1529 bool shuffle;
1531 flags &= gfp_allowed_mask;
1533 if (gfpflags_allow_blocking(flags))
1534 local_irq_enable();
1536 flags |= s->allocflags;
1539 * Let the initial higher-order allocation fail under memory pressure
1540 * so we fall-back to the minimum order allocation.
1542 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1543 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1544 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1546 page = alloc_slab_page(s, alloc_gfp, node, oo);
1547 if (unlikely(!page)) {
1548 oo = s->min;
1549 alloc_gfp = flags;
1551 * Allocation may have failed due to fragmentation.
1552 * Try a lower order alloc if possible
1554 page = alloc_slab_page(s, alloc_gfp, node, oo);
1555 if (unlikely(!page))
1556 goto out;
1557 stat(s, ORDER_FALLBACK);
1560 if (kmemcheck_enabled &&
1561 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1562 int pages = 1 << oo_order(oo);
1564 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1567 * Objects from caches that have a constructor don't get
1568 * cleared when they're allocated, so we need to do it here.
1570 if (s->ctor)
1571 kmemcheck_mark_uninitialized_pages(page, pages);
1572 else
1573 kmemcheck_mark_unallocated_pages(page, pages);
1576 page->objects = oo_objects(oo);
1578 order = compound_order(page);
1579 page->slab_cache = s;
1580 __SetPageSlab(page);
1581 if (page_is_pfmemalloc(page))
1582 SetPageSlabPfmemalloc(page);
1584 start = page_address(page);
1586 if (unlikely(s->flags & SLAB_POISON))
1587 memset(start, POISON_INUSE, PAGE_SIZE << order);
1589 kasan_poison_slab(page);
1591 shuffle = shuffle_freelist(s, page);
1593 if (!shuffle) {
1594 for_each_object_idx(p, idx, s, start, page->objects) {
1595 setup_object(s, page, p);
1596 if (likely(idx < page->objects))
1597 set_freepointer(s, p, p + s->size);
1598 else
1599 set_freepointer(s, p, NULL);
1601 page->freelist = fixup_red_left(s, start);
1604 page->inuse = page->objects;
1605 page->frozen = 1;
1607 out:
1608 if (gfpflags_allow_blocking(flags))
1609 local_irq_disable();
1610 if (!page)
1611 return NULL;
1613 mod_zone_page_state(page_zone(page),
1614 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1615 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1616 1 << oo_order(oo));
1618 inc_slabs_node(s, page_to_nid(page), page->objects);
1620 return page;
1623 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1625 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1626 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1627 flags &= ~GFP_SLAB_BUG_MASK;
1628 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1629 invalid_mask, &invalid_mask, flags, &flags);
1632 return allocate_slab(s,
1633 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1636 static void __free_slab(struct kmem_cache *s, struct page *page)
1638 int order = compound_order(page);
1639 int pages = 1 << order;
1641 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1642 void *p;
1644 slab_pad_check(s, page);
1645 for_each_object(p, s, page_address(page),
1646 page->objects)
1647 check_object(s, page, p, SLUB_RED_INACTIVE);
1650 kmemcheck_free_shadow(page, compound_order(page));
1652 mod_zone_page_state(page_zone(page),
1653 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1654 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1655 -pages);
1657 __ClearPageSlabPfmemalloc(page);
1658 __ClearPageSlab(page);
1660 page_mapcount_reset(page);
1661 if (current->reclaim_state)
1662 current->reclaim_state->reclaimed_slab += pages;
1663 memcg_uncharge_slab(page, order, s);
1664 __free_pages(page, order);
1667 #define need_reserve_slab_rcu \
1668 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1670 static void rcu_free_slab(struct rcu_head *h)
1672 struct page *page;
1674 if (need_reserve_slab_rcu)
1675 page = virt_to_head_page(h);
1676 else
1677 page = container_of((struct list_head *)h, struct page, lru);
1679 __free_slab(page->slab_cache, page);
1682 static void free_slab(struct kmem_cache *s, struct page *page)
1684 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1685 struct rcu_head *head;
1687 if (need_reserve_slab_rcu) {
1688 int order = compound_order(page);
1689 int offset = (PAGE_SIZE << order) - s->reserved;
1691 VM_BUG_ON(s->reserved != sizeof(*head));
1692 head = page_address(page) + offset;
1693 } else {
1694 head = &page->rcu_head;
1697 call_rcu(head, rcu_free_slab);
1698 } else
1699 __free_slab(s, page);
1702 static void discard_slab(struct kmem_cache *s, struct page *page)
1704 dec_slabs_node(s, page_to_nid(page), page->objects);
1705 free_slab(s, page);
1709 * Management of partially allocated slabs.
1711 static inline void
1712 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1714 n->nr_partial++;
1715 if (tail == DEACTIVATE_TO_TAIL)
1716 list_add_tail(&page->lru, &n->partial);
1717 else
1718 list_add(&page->lru, &n->partial);
1721 static inline void add_partial(struct kmem_cache_node *n,
1722 struct page *page, int tail)
1724 lockdep_assert_held(&n->list_lock);
1725 __add_partial(n, page, tail);
1728 static inline void remove_partial(struct kmem_cache_node *n,
1729 struct page *page)
1731 lockdep_assert_held(&n->list_lock);
1732 list_del(&page->lru);
1733 n->nr_partial--;
1737 * Remove slab from the partial list, freeze it and
1738 * return the pointer to the freelist.
1740 * Returns a list of objects or NULL if it fails.
1742 static inline void *acquire_slab(struct kmem_cache *s,
1743 struct kmem_cache_node *n, struct page *page,
1744 int mode, int *objects)
1746 void *freelist;
1747 unsigned long counters;
1748 struct page new;
1750 lockdep_assert_held(&n->list_lock);
1753 * Zap the freelist and set the frozen bit.
1754 * The old freelist is the list of objects for the
1755 * per cpu allocation list.
1757 freelist = page->freelist;
1758 counters = page->counters;
1759 new.counters = counters;
1760 *objects = new.objects - new.inuse;
1761 if (mode) {
1762 new.inuse = page->objects;
1763 new.freelist = NULL;
1764 } else {
1765 new.freelist = freelist;
1768 VM_BUG_ON(new.frozen);
1769 new.frozen = 1;
1771 if (!__cmpxchg_double_slab(s, page,
1772 freelist, counters,
1773 new.freelist, new.counters,
1774 "acquire_slab"))
1775 return NULL;
1777 remove_partial(n, page);
1778 WARN_ON(!freelist);
1779 return freelist;
1782 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1783 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1786 * Try to allocate a partial slab from a specific node.
1788 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1789 struct kmem_cache_cpu *c, gfp_t flags)
1791 struct page *page, *page2;
1792 void *object = NULL;
1793 int available = 0;
1794 int objects;
1797 * Racy check. If we mistakenly see no partial slabs then we
1798 * just allocate an empty slab. If we mistakenly try to get a
1799 * partial slab and there is none available then get_partials()
1800 * will return NULL.
1802 if (!n || !n->nr_partial)
1803 return NULL;
1805 spin_lock(&n->list_lock);
1806 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1807 void *t;
1809 if (!pfmemalloc_match(page, flags))
1810 continue;
1812 t = acquire_slab(s, n, page, object == NULL, &objects);
1813 if (!t)
1814 break;
1816 available += objects;
1817 if (!object) {
1818 c->page = page;
1819 stat(s, ALLOC_FROM_PARTIAL);
1820 object = t;
1821 } else {
1822 put_cpu_partial(s, page, 0);
1823 stat(s, CPU_PARTIAL_NODE);
1825 if (!kmem_cache_has_cpu_partial(s)
1826 || available > s->cpu_partial / 2)
1827 break;
1830 spin_unlock(&n->list_lock);
1831 return object;
1835 * Get a page from somewhere. Search in increasing NUMA distances.
1837 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1838 struct kmem_cache_cpu *c)
1840 #ifdef CONFIG_NUMA
1841 struct zonelist *zonelist;
1842 struct zoneref *z;
1843 struct zone *zone;
1844 enum zone_type high_zoneidx = gfp_zone(flags);
1845 void *object;
1846 unsigned int cpuset_mems_cookie;
1849 * The defrag ratio allows a configuration of the tradeoffs between
1850 * inter node defragmentation and node local allocations. A lower
1851 * defrag_ratio increases the tendency to do local allocations
1852 * instead of attempting to obtain partial slabs from other nodes.
1854 * If the defrag_ratio is set to 0 then kmalloc() always
1855 * returns node local objects. If the ratio is higher then kmalloc()
1856 * may return off node objects because partial slabs are obtained
1857 * from other nodes and filled up.
1859 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1860 * (which makes defrag_ratio = 1000) then every (well almost)
1861 * allocation will first attempt to defrag slab caches on other nodes.
1862 * This means scanning over all nodes to look for partial slabs which
1863 * may be expensive if we do it every time we are trying to find a slab
1864 * with available objects.
1866 if (!s->remote_node_defrag_ratio ||
1867 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1868 return NULL;
1870 do {
1871 cpuset_mems_cookie = read_mems_allowed_begin();
1872 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1873 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1874 struct kmem_cache_node *n;
1876 n = get_node(s, zone_to_nid(zone));
1878 if (n && cpuset_zone_allowed(zone, flags) &&
1879 n->nr_partial > s->min_partial) {
1880 object = get_partial_node(s, n, c, flags);
1881 if (object) {
1883 * Don't check read_mems_allowed_retry()
1884 * here - if mems_allowed was updated in
1885 * parallel, that was a harmless race
1886 * between allocation and the cpuset
1887 * update
1889 return object;
1893 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1894 #endif
1895 return NULL;
1899 * Get a partial page, lock it and return it.
1901 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1902 struct kmem_cache_cpu *c)
1904 void *object;
1905 int searchnode = node;
1907 if (node == NUMA_NO_NODE)
1908 searchnode = numa_mem_id();
1909 else if (!node_present_pages(node))
1910 searchnode = node_to_mem_node(node);
1912 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1913 if (object || node != NUMA_NO_NODE)
1914 return object;
1916 return get_any_partial(s, flags, c);
1919 #ifdef CONFIG_PREEMPT
1921 * Calculate the next globally unique transaction for disambiguiation
1922 * during cmpxchg. The transactions start with the cpu number and are then
1923 * incremented by CONFIG_NR_CPUS.
1925 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1926 #else
1928 * No preemption supported therefore also no need to check for
1929 * different cpus.
1931 #define TID_STEP 1
1932 #endif
1934 static inline unsigned long next_tid(unsigned long tid)
1936 return tid + TID_STEP;
1939 static inline unsigned int tid_to_cpu(unsigned long tid)
1941 return tid % TID_STEP;
1944 static inline unsigned long tid_to_event(unsigned long tid)
1946 return tid / TID_STEP;
1949 static inline unsigned int init_tid(int cpu)
1951 return cpu;
1954 static inline void note_cmpxchg_failure(const char *n,
1955 const struct kmem_cache *s, unsigned long tid)
1957 #ifdef SLUB_DEBUG_CMPXCHG
1958 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1960 pr_info("%s %s: cmpxchg redo ", n, s->name);
1962 #ifdef CONFIG_PREEMPT
1963 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1964 pr_warn("due to cpu change %d -> %d\n",
1965 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1966 else
1967 #endif
1968 if (tid_to_event(tid) != tid_to_event(actual_tid))
1969 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1970 tid_to_event(tid), tid_to_event(actual_tid));
1971 else
1972 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1973 actual_tid, tid, next_tid(tid));
1974 #endif
1975 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1978 static void init_kmem_cache_cpus(struct kmem_cache *s)
1980 int cpu;
1982 for_each_possible_cpu(cpu)
1983 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1987 * Remove the cpu slab
1989 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1990 void *freelist)
1992 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1993 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1994 int lock = 0;
1995 enum slab_modes l = M_NONE, m = M_NONE;
1996 void *nextfree;
1997 int tail = DEACTIVATE_TO_HEAD;
1998 struct page new;
1999 struct page old;
2001 if (page->freelist) {
2002 stat(s, DEACTIVATE_REMOTE_FREES);
2003 tail = DEACTIVATE_TO_TAIL;
2007 * Stage one: Free all available per cpu objects back
2008 * to the page freelist while it is still frozen. Leave the
2009 * last one.
2011 * There is no need to take the list->lock because the page
2012 * is still frozen.
2014 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2015 void *prior;
2016 unsigned long counters;
2018 do {
2019 prior = page->freelist;
2020 counters = page->counters;
2021 set_freepointer(s, freelist, prior);
2022 new.counters = counters;
2023 new.inuse--;
2024 VM_BUG_ON(!new.frozen);
2026 } while (!__cmpxchg_double_slab(s, page,
2027 prior, counters,
2028 freelist, new.counters,
2029 "drain percpu freelist"));
2031 freelist = nextfree;
2035 * Stage two: Ensure that the page is unfrozen while the
2036 * list presence reflects the actual number of objects
2037 * during unfreeze.
2039 * We setup the list membership and then perform a cmpxchg
2040 * with the count. If there is a mismatch then the page
2041 * is not unfrozen but the page is on the wrong list.
2043 * Then we restart the process which may have to remove
2044 * the page from the list that we just put it on again
2045 * because the number of objects in the slab may have
2046 * changed.
2048 redo:
2050 old.freelist = page->freelist;
2051 old.counters = page->counters;
2052 VM_BUG_ON(!old.frozen);
2054 /* Determine target state of the slab */
2055 new.counters = old.counters;
2056 if (freelist) {
2057 new.inuse--;
2058 set_freepointer(s, freelist, old.freelist);
2059 new.freelist = freelist;
2060 } else
2061 new.freelist = old.freelist;
2063 new.frozen = 0;
2065 if (!new.inuse && n->nr_partial >= s->min_partial)
2066 m = M_FREE;
2067 else if (new.freelist) {
2068 m = M_PARTIAL;
2069 if (!lock) {
2070 lock = 1;
2072 * Taking the spinlock removes the possiblity
2073 * that acquire_slab() will see a slab page that
2074 * is frozen
2076 spin_lock(&n->list_lock);
2078 } else {
2079 m = M_FULL;
2080 if (kmem_cache_debug(s) && !lock) {
2081 lock = 1;
2083 * This also ensures that the scanning of full
2084 * slabs from diagnostic functions will not see
2085 * any frozen slabs.
2087 spin_lock(&n->list_lock);
2091 if (l != m) {
2093 if (l == M_PARTIAL)
2095 remove_partial(n, page);
2097 else if (l == M_FULL)
2099 remove_full(s, n, page);
2101 if (m == M_PARTIAL) {
2103 add_partial(n, page, tail);
2104 stat(s, tail);
2106 } else if (m == M_FULL) {
2108 stat(s, DEACTIVATE_FULL);
2109 add_full(s, n, page);
2114 l = m;
2115 if (!__cmpxchg_double_slab(s, page,
2116 old.freelist, old.counters,
2117 new.freelist, new.counters,
2118 "unfreezing slab"))
2119 goto redo;
2121 if (lock)
2122 spin_unlock(&n->list_lock);
2124 if (m == M_FREE) {
2125 stat(s, DEACTIVATE_EMPTY);
2126 discard_slab(s, page);
2127 stat(s, FREE_SLAB);
2132 * Unfreeze all the cpu partial slabs.
2134 * This function must be called with interrupts disabled
2135 * for the cpu using c (or some other guarantee must be there
2136 * to guarantee no concurrent accesses).
2138 static void unfreeze_partials(struct kmem_cache *s,
2139 struct kmem_cache_cpu *c)
2141 #ifdef CONFIG_SLUB_CPU_PARTIAL
2142 struct kmem_cache_node *n = NULL, *n2 = NULL;
2143 struct page *page, *discard_page = NULL;
2145 while ((page = c->partial)) {
2146 struct page new;
2147 struct page old;
2149 c->partial = page->next;
2151 n2 = get_node(s, page_to_nid(page));
2152 if (n != n2) {
2153 if (n)
2154 spin_unlock(&n->list_lock);
2156 n = n2;
2157 spin_lock(&n->list_lock);
2160 do {
2162 old.freelist = page->freelist;
2163 old.counters = page->counters;
2164 VM_BUG_ON(!old.frozen);
2166 new.counters = old.counters;
2167 new.freelist = old.freelist;
2169 new.frozen = 0;
2171 } while (!__cmpxchg_double_slab(s, page,
2172 old.freelist, old.counters,
2173 new.freelist, new.counters,
2174 "unfreezing slab"));
2176 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2177 page->next = discard_page;
2178 discard_page = page;
2179 } else {
2180 add_partial(n, page, DEACTIVATE_TO_TAIL);
2181 stat(s, FREE_ADD_PARTIAL);
2185 if (n)
2186 spin_unlock(&n->list_lock);
2188 while (discard_page) {
2189 page = discard_page;
2190 discard_page = discard_page->next;
2192 stat(s, DEACTIVATE_EMPTY);
2193 discard_slab(s, page);
2194 stat(s, FREE_SLAB);
2196 #endif
2200 * Put a page that was just frozen (in __slab_free) into a partial page
2201 * slot if available. This is done without interrupts disabled and without
2202 * preemption disabled. The cmpxchg is racy and may put the partial page
2203 * onto a random cpus partial slot.
2205 * If we did not find a slot then simply move all the partials to the
2206 * per node partial list.
2208 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2210 #ifdef CONFIG_SLUB_CPU_PARTIAL
2211 struct page *oldpage;
2212 int pages;
2213 int pobjects;
2215 preempt_disable();
2216 do {
2217 pages = 0;
2218 pobjects = 0;
2219 oldpage = this_cpu_read(s->cpu_slab->partial);
2221 if (oldpage) {
2222 pobjects = oldpage->pobjects;
2223 pages = oldpage->pages;
2224 if (drain && pobjects > s->cpu_partial) {
2225 unsigned long flags;
2227 * partial array is full. Move the existing
2228 * set to the per node partial list.
2230 local_irq_save(flags);
2231 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2232 local_irq_restore(flags);
2233 oldpage = NULL;
2234 pobjects = 0;
2235 pages = 0;
2236 stat(s, CPU_PARTIAL_DRAIN);
2240 pages++;
2241 pobjects += page->objects - page->inuse;
2243 page->pages = pages;
2244 page->pobjects = pobjects;
2245 page->next = oldpage;
2247 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2248 != oldpage);
2249 if (unlikely(!s->cpu_partial)) {
2250 unsigned long flags;
2252 local_irq_save(flags);
2253 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2254 local_irq_restore(flags);
2256 preempt_enable();
2257 #endif
2260 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2262 stat(s, CPUSLAB_FLUSH);
2263 deactivate_slab(s, c->page, c->freelist);
2265 c->tid = next_tid(c->tid);
2266 c->page = NULL;
2267 c->freelist = NULL;
2271 * Flush cpu slab.
2273 * Called from IPI handler with interrupts disabled.
2275 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2277 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2279 if (likely(c)) {
2280 if (c->page)
2281 flush_slab(s, c);
2283 unfreeze_partials(s, c);
2287 static void flush_cpu_slab(void *d)
2289 struct kmem_cache *s = d;
2291 __flush_cpu_slab(s, smp_processor_id());
2294 static bool has_cpu_slab(int cpu, void *info)
2296 struct kmem_cache *s = info;
2297 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2299 return c->page || c->partial;
2302 static void flush_all(struct kmem_cache *s)
2304 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2308 * Use the cpu notifier to insure that the cpu slabs are flushed when
2309 * necessary.
2311 static int slub_cpu_dead(unsigned int cpu)
2313 struct kmem_cache *s;
2314 unsigned long flags;
2316 mutex_lock(&slab_mutex);
2317 list_for_each_entry(s, &slab_caches, list) {
2318 local_irq_save(flags);
2319 __flush_cpu_slab(s, cpu);
2320 local_irq_restore(flags);
2322 mutex_unlock(&slab_mutex);
2323 return 0;
2327 * Check if the objects in a per cpu structure fit numa
2328 * locality expectations.
2330 static inline int node_match(struct page *page, int node)
2332 #ifdef CONFIG_NUMA
2333 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2334 return 0;
2335 #endif
2336 return 1;
2339 #ifdef CONFIG_SLUB_DEBUG
2340 static int count_free(struct page *page)
2342 return page->objects - page->inuse;
2345 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2347 return atomic_long_read(&n->total_objects);
2349 #endif /* CONFIG_SLUB_DEBUG */
2351 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2352 static unsigned long count_partial(struct kmem_cache_node *n,
2353 int (*get_count)(struct page *))
2355 unsigned long flags;
2356 unsigned long x = 0;
2357 struct page *page;
2359 spin_lock_irqsave(&n->list_lock, flags);
2360 list_for_each_entry(page, &n->partial, lru)
2361 x += get_count(page);
2362 spin_unlock_irqrestore(&n->list_lock, flags);
2363 return x;
2365 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2367 static noinline void
2368 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2370 #ifdef CONFIG_SLUB_DEBUG
2371 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2372 DEFAULT_RATELIMIT_BURST);
2373 int node;
2374 struct kmem_cache_node *n;
2376 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2377 return;
2379 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2380 nid, gfpflags, &gfpflags);
2381 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2382 s->name, s->object_size, s->size, oo_order(s->oo),
2383 oo_order(s->min));
2385 if (oo_order(s->min) > get_order(s->object_size))
2386 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2387 s->name);
2389 for_each_kmem_cache_node(s, node, n) {
2390 unsigned long nr_slabs;
2391 unsigned long nr_objs;
2392 unsigned long nr_free;
2394 nr_free = count_partial(n, count_free);
2395 nr_slabs = node_nr_slabs(n);
2396 nr_objs = node_nr_objs(n);
2398 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2399 node, nr_slabs, nr_objs, nr_free);
2401 #endif
2404 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2405 int node, struct kmem_cache_cpu **pc)
2407 void *freelist;
2408 struct kmem_cache_cpu *c = *pc;
2409 struct page *page;
2411 freelist = get_partial(s, flags, node, c);
2413 if (freelist)
2414 return freelist;
2416 page = new_slab(s, flags, node);
2417 if (page) {
2418 c = raw_cpu_ptr(s->cpu_slab);
2419 if (c->page)
2420 flush_slab(s, c);
2423 * No other reference to the page yet so we can
2424 * muck around with it freely without cmpxchg
2426 freelist = page->freelist;
2427 page->freelist = NULL;
2429 stat(s, ALLOC_SLAB);
2430 c->page = page;
2431 *pc = c;
2432 } else
2433 freelist = NULL;
2435 return freelist;
2438 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2440 if (unlikely(PageSlabPfmemalloc(page)))
2441 return gfp_pfmemalloc_allowed(gfpflags);
2443 return true;
2447 * Check the page->freelist of a page and either transfer the freelist to the
2448 * per cpu freelist or deactivate the page.
2450 * The page is still frozen if the return value is not NULL.
2452 * If this function returns NULL then the page has been unfrozen.
2454 * This function must be called with interrupt disabled.
2456 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2458 struct page new;
2459 unsigned long counters;
2460 void *freelist;
2462 do {
2463 freelist = page->freelist;
2464 counters = page->counters;
2466 new.counters = counters;
2467 VM_BUG_ON(!new.frozen);
2469 new.inuse = page->objects;
2470 new.frozen = freelist != NULL;
2472 } while (!__cmpxchg_double_slab(s, page,
2473 freelist, counters,
2474 NULL, new.counters,
2475 "get_freelist"));
2477 return freelist;
2481 * Slow path. The lockless freelist is empty or we need to perform
2482 * debugging duties.
2484 * Processing is still very fast if new objects have been freed to the
2485 * regular freelist. In that case we simply take over the regular freelist
2486 * as the lockless freelist and zap the regular freelist.
2488 * If that is not working then we fall back to the partial lists. We take the
2489 * first element of the freelist as the object to allocate now and move the
2490 * rest of the freelist to the lockless freelist.
2492 * And if we were unable to get a new slab from the partial slab lists then
2493 * we need to allocate a new slab. This is the slowest path since it involves
2494 * a call to the page allocator and the setup of a new slab.
2496 * Version of __slab_alloc to use when we know that interrupts are
2497 * already disabled (which is the case for bulk allocation).
2499 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2500 unsigned long addr, struct kmem_cache_cpu *c)
2502 void *freelist;
2503 struct page *page;
2505 page = c->page;
2506 if (!page)
2507 goto new_slab;
2508 redo:
2510 if (unlikely(!node_match(page, node))) {
2511 int searchnode = node;
2513 if (node != NUMA_NO_NODE && !node_present_pages(node))
2514 searchnode = node_to_mem_node(node);
2516 if (unlikely(!node_match(page, searchnode))) {
2517 stat(s, ALLOC_NODE_MISMATCH);
2518 deactivate_slab(s, page, c->freelist);
2519 c->page = NULL;
2520 c->freelist = NULL;
2521 goto new_slab;
2526 * By rights, we should be searching for a slab page that was
2527 * PFMEMALLOC but right now, we are losing the pfmemalloc
2528 * information when the page leaves the per-cpu allocator
2530 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2531 deactivate_slab(s, page, c->freelist);
2532 c->page = NULL;
2533 c->freelist = NULL;
2534 goto new_slab;
2537 /* must check again c->freelist in case of cpu migration or IRQ */
2538 freelist = c->freelist;
2539 if (freelist)
2540 goto load_freelist;
2542 freelist = get_freelist(s, page);
2544 if (!freelist) {
2545 c->page = NULL;
2546 stat(s, DEACTIVATE_BYPASS);
2547 goto new_slab;
2550 stat(s, ALLOC_REFILL);
2552 load_freelist:
2554 * freelist is pointing to the list of objects to be used.
2555 * page is pointing to the page from which the objects are obtained.
2556 * That page must be frozen for per cpu allocations to work.
2558 VM_BUG_ON(!c->page->frozen);
2559 c->freelist = get_freepointer(s, freelist);
2560 c->tid = next_tid(c->tid);
2561 return freelist;
2563 new_slab:
2565 if (c->partial) {
2566 page = c->page = c->partial;
2567 c->partial = page->next;
2568 stat(s, CPU_PARTIAL_ALLOC);
2569 c->freelist = NULL;
2570 goto redo;
2573 freelist = new_slab_objects(s, gfpflags, node, &c);
2575 if (unlikely(!freelist)) {
2576 slab_out_of_memory(s, gfpflags, node);
2577 return NULL;
2580 page = c->page;
2581 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2582 goto load_freelist;
2584 /* Only entered in the debug case */
2585 if (kmem_cache_debug(s) &&
2586 !alloc_debug_processing(s, page, freelist, addr))
2587 goto new_slab; /* Slab failed checks. Next slab needed */
2589 deactivate_slab(s, page, get_freepointer(s, freelist));
2590 c->page = NULL;
2591 c->freelist = NULL;
2592 return freelist;
2596 * Another one that disabled interrupt and compensates for possible
2597 * cpu changes by refetching the per cpu area pointer.
2599 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2600 unsigned long addr, struct kmem_cache_cpu *c)
2602 void *p;
2603 unsigned long flags;
2605 local_irq_save(flags);
2606 #ifdef CONFIG_PREEMPT
2608 * We may have been preempted and rescheduled on a different
2609 * cpu before disabling interrupts. Need to reload cpu area
2610 * pointer.
2612 c = this_cpu_ptr(s->cpu_slab);
2613 #endif
2615 p = ___slab_alloc(s, gfpflags, node, addr, c);
2616 local_irq_restore(flags);
2617 return p;
2621 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2622 * have the fastpath folded into their functions. So no function call
2623 * overhead for requests that can be satisfied on the fastpath.
2625 * The fastpath works by first checking if the lockless freelist can be used.
2626 * If not then __slab_alloc is called for slow processing.
2628 * Otherwise we can simply pick the next object from the lockless free list.
2630 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2631 gfp_t gfpflags, int node, unsigned long addr)
2633 void *object;
2634 struct kmem_cache_cpu *c;
2635 struct page *page;
2636 unsigned long tid;
2638 s = slab_pre_alloc_hook(s, gfpflags);
2639 if (!s)
2640 return NULL;
2641 redo:
2643 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2644 * enabled. We may switch back and forth between cpus while
2645 * reading from one cpu area. That does not matter as long
2646 * as we end up on the original cpu again when doing the cmpxchg.
2648 * We should guarantee that tid and kmem_cache are retrieved on
2649 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2650 * to check if it is matched or not.
2652 do {
2653 tid = this_cpu_read(s->cpu_slab->tid);
2654 c = raw_cpu_ptr(s->cpu_slab);
2655 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2656 unlikely(tid != READ_ONCE(c->tid)));
2659 * Irqless object alloc/free algorithm used here depends on sequence
2660 * of fetching cpu_slab's data. tid should be fetched before anything
2661 * on c to guarantee that object and page associated with previous tid
2662 * won't be used with current tid. If we fetch tid first, object and
2663 * page could be one associated with next tid and our alloc/free
2664 * request will be failed. In this case, we will retry. So, no problem.
2666 barrier();
2669 * The transaction ids are globally unique per cpu and per operation on
2670 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2671 * occurs on the right processor and that there was no operation on the
2672 * linked list in between.
2675 object = c->freelist;
2676 page = c->page;
2677 if (unlikely(!object || !node_match(page, node))) {
2678 object = __slab_alloc(s, gfpflags, node, addr, c);
2679 stat(s, ALLOC_SLOWPATH);
2680 } else {
2681 void *next_object = get_freepointer_safe(s, object);
2684 * The cmpxchg will only match if there was no additional
2685 * operation and if we are on the right processor.
2687 * The cmpxchg does the following atomically (without lock
2688 * semantics!)
2689 * 1. Relocate first pointer to the current per cpu area.
2690 * 2. Verify that tid and freelist have not been changed
2691 * 3. If they were not changed replace tid and freelist
2693 * Since this is without lock semantics the protection is only
2694 * against code executing on this cpu *not* from access by
2695 * other cpus.
2697 if (unlikely(!this_cpu_cmpxchg_double(
2698 s->cpu_slab->freelist, s->cpu_slab->tid,
2699 object, tid,
2700 next_object, next_tid(tid)))) {
2702 note_cmpxchg_failure("slab_alloc", s, tid);
2703 goto redo;
2705 prefetch_freepointer(s, next_object);
2706 stat(s, ALLOC_FASTPATH);
2709 if (unlikely(gfpflags & __GFP_ZERO) && object)
2710 memset(object, 0, s->object_size);
2712 slab_post_alloc_hook(s, gfpflags, 1, &object);
2714 return object;
2717 static __always_inline void *slab_alloc(struct kmem_cache *s,
2718 gfp_t gfpflags, unsigned long addr)
2720 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2723 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2725 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2727 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2728 s->size, gfpflags);
2730 return ret;
2732 EXPORT_SYMBOL(kmem_cache_alloc);
2734 #ifdef CONFIG_TRACING
2735 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2737 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2738 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2739 kasan_kmalloc(s, ret, size, gfpflags);
2740 return ret;
2742 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2743 #endif
2745 #ifdef CONFIG_NUMA
2746 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2748 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2750 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2751 s->object_size, s->size, gfpflags, node);
2753 return ret;
2755 EXPORT_SYMBOL(kmem_cache_alloc_node);
2757 #ifdef CONFIG_TRACING
2758 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2759 gfp_t gfpflags,
2760 int node, size_t size)
2762 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2764 trace_kmalloc_node(_RET_IP_, ret,
2765 size, s->size, gfpflags, node);
2767 kasan_kmalloc(s, ret, size, gfpflags);
2768 return ret;
2770 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2771 #endif
2772 #endif
2775 * Slow path handling. This may still be called frequently since objects
2776 * have a longer lifetime than the cpu slabs in most processing loads.
2778 * So we still attempt to reduce cache line usage. Just take the slab
2779 * lock and free the item. If there is no additional partial page
2780 * handling required then we can return immediately.
2782 static void __slab_free(struct kmem_cache *s, struct page *page,
2783 void *head, void *tail, int cnt,
2784 unsigned long addr)
2787 void *prior;
2788 int was_frozen;
2789 struct page new;
2790 unsigned long counters;
2791 struct kmem_cache_node *n = NULL;
2792 unsigned long uninitialized_var(flags);
2794 stat(s, FREE_SLOWPATH);
2796 if (kmem_cache_debug(s) &&
2797 !free_debug_processing(s, page, head, tail, cnt, addr))
2798 return;
2800 do {
2801 if (unlikely(n)) {
2802 spin_unlock_irqrestore(&n->list_lock, flags);
2803 n = NULL;
2805 prior = page->freelist;
2806 counters = page->counters;
2807 set_freepointer(s, tail, prior);
2808 new.counters = counters;
2809 was_frozen = new.frozen;
2810 new.inuse -= cnt;
2811 if ((!new.inuse || !prior) && !was_frozen) {
2813 if (kmem_cache_has_cpu_partial(s) && !prior) {
2816 * Slab was on no list before and will be
2817 * partially empty
2818 * We can defer the list move and instead
2819 * freeze it.
2821 new.frozen = 1;
2823 } else { /* Needs to be taken off a list */
2825 n = get_node(s, page_to_nid(page));
2827 * Speculatively acquire the list_lock.
2828 * If the cmpxchg does not succeed then we may
2829 * drop the list_lock without any processing.
2831 * Otherwise the list_lock will synchronize with
2832 * other processors updating the list of slabs.
2834 spin_lock_irqsave(&n->list_lock, flags);
2839 } while (!cmpxchg_double_slab(s, page,
2840 prior, counters,
2841 head, new.counters,
2842 "__slab_free"));
2844 if (likely(!n)) {
2847 * If we just froze the page then put it onto the
2848 * per cpu partial list.
2850 if (new.frozen && !was_frozen) {
2851 put_cpu_partial(s, page, 1);
2852 stat(s, CPU_PARTIAL_FREE);
2855 * The list lock was not taken therefore no list
2856 * activity can be necessary.
2858 if (was_frozen)
2859 stat(s, FREE_FROZEN);
2860 return;
2863 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2864 goto slab_empty;
2867 * Objects left in the slab. If it was not on the partial list before
2868 * then add it.
2870 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2871 if (kmem_cache_debug(s))
2872 remove_full(s, n, page);
2873 add_partial(n, page, DEACTIVATE_TO_TAIL);
2874 stat(s, FREE_ADD_PARTIAL);
2876 spin_unlock_irqrestore(&n->list_lock, flags);
2877 return;
2879 slab_empty:
2880 if (prior) {
2882 * Slab on the partial list.
2884 remove_partial(n, page);
2885 stat(s, FREE_REMOVE_PARTIAL);
2886 } else {
2887 /* Slab must be on the full list */
2888 remove_full(s, n, page);
2891 spin_unlock_irqrestore(&n->list_lock, flags);
2892 stat(s, FREE_SLAB);
2893 discard_slab(s, page);
2897 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2898 * can perform fastpath freeing without additional function calls.
2900 * The fastpath is only possible if we are freeing to the current cpu slab
2901 * of this processor. This typically the case if we have just allocated
2902 * the item before.
2904 * If fastpath is not possible then fall back to __slab_free where we deal
2905 * with all sorts of special processing.
2907 * Bulk free of a freelist with several objects (all pointing to the
2908 * same page) possible by specifying head and tail ptr, plus objects
2909 * count (cnt). Bulk free indicated by tail pointer being set.
2911 static __always_inline void do_slab_free(struct kmem_cache *s,
2912 struct page *page, void *head, void *tail,
2913 int cnt, unsigned long addr)
2915 void *tail_obj = tail ? : head;
2916 struct kmem_cache_cpu *c;
2917 unsigned long tid;
2918 redo:
2920 * Determine the currently cpus per cpu slab.
2921 * The cpu may change afterward. However that does not matter since
2922 * data is retrieved via this pointer. If we are on the same cpu
2923 * during the cmpxchg then the free will succeed.
2925 do {
2926 tid = this_cpu_read(s->cpu_slab->tid);
2927 c = raw_cpu_ptr(s->cpu_slab);
2928 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2929 unlikely(tid != READ_ONCE(c->tid)));
2931 /* Same with comment on barrier() in slab_alloc_node() */
2932 barrier();
2934 if (likely(page == c->page)) {
2935 set_freepointer(s, tail_obj, c->freelist);
2937 if (unlikely(!this_cpu_cmpxchg_double(
2938 s->cpu_slab->freelist, s->cpu_slab->tid,
2939 c->freelist, tid,
2940 head, next_tid(tid)))) {
2942 note_cmpxchg_failure("slab_free", s, tid);
2943 goto redo;
2945 stat(s, FREE_FASTPATH);
2946 } else
2947 __slab_free(s, page, head, tail_obj, cnt, addr);
2951 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2952 void *head, void *tail, int cnt,
2953 unsigned long addr)
2955 slab_free_freelist_hook(s, head, tail);
2957 * slab_free_freelist_hook() could have put the items into quarantine.
2958 * If so, no need to free them.
2960 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
2961 return;
2962 do_slab_free(s, page, head, tail, cnt, addr);
2965 #ifdef CONFIG_KASAN
2966 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2968 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2970 #endif
2972 void kmem_cache_free(struct kmem_cache *s, void *x)
2974 s = cache_from_obj(s, x);
2975 if (!s)
2976 return;
2977 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2978 trace_kmem_cache_free(_RET_IP_, x);
2980 EXPORT_SYMBOL(kmem_cache_free);
2982 struct detached_freelist {
2983 struct page *page;
2984 void *tail;
2985 void *freelist;
2986 int cnt;
2987 struct kmem_cache *s;
2991 * This function progressively scans the array with free objects (with
2992 * a limited look ahead) and extract objects belonging to the same
2993 * page. It builds a detached freelist directly within the given
2994 * page/objects. This can happen without any need for
2995 * synchronization, because the objects are owned by running process.
2996 * The freelist is build up as a single linked list in the objects.
2997 * The idea is, that this detached freelist can then be bulk
2998 * transferred to the real freelist(s), but only requiring a single
2999 * synchronization primitive. Look ahead in the array is limited due
3000 * to performance reasons.
3002 static inline
3003 int build_detached_freelist(struct kmem_cache *s, size_t size,
3004 void **p, struct detached_freelist *df)
3006 size_t first_skipped_index = 0;
3007 int lookahead = 3;
3008 void *object;
3009 struct page *page;
3011 /* Always re-init detached_freelist */
3012 df->page = NULL;
3014 do {
3015 object = p[--size];
3016 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3017 } while (!object && size);
3019 if (!object)
3020 return 0;
3022 page = virt_to_head_page(object);
3023 if (!s) {
3024 /* Handle kalloc'ed objects */
3025 if (unlikely(!PageSlab(page))) {
3026 BUG_ON(!PageCompound(page));
3027 kfree_hook(object);
3028 __free_pages(page, compound_order(page));
3029 p[size] = NULL; /* mark object processed */
3030 return size;
3032 /* Derive kmem_cache from object */
3033 df->s = page->slab_cache;
3034 } else {
3035 df->s = cache_from_obj(s, object); /* Support for memcg */
3038 /* Start new detached freelist */
3039 df->page = page;
3040 set_freepointer(df->s, object, NULL);
3041 df->tail = object;
3042 df->freelist = object;
3043 p[size] = NULL; /* mark object processed */
3044 df->cnt = 1;
3046 while (size) {
3047 object = p[--size];
3048 if (!object)
3049 continue; /* Skip processed objects */
3051 /* df->page is always set at this point */
3052 if (df->page == virt_to_head_page(object)) {
3053 /* Opportunity build freelist */
3054 set_freepointer(df->s, object, df->freelist);
3055 df->freelist = object;
3056 df->cnt++;
3057 p[size] = NULL; /* mark object processed */
3059 continue;
3062 /* Limit look ahead search */
3063 if (!--lookahead)
3064 break;
3066 if (!first_skipped_index)
3067 first_skipped_index = size + 1;
3070 return first_skipped_index;
3073 /* Note that interrupts must be enabled when calling this function. */
3074 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3076 if (WARN_ON(!size))
3077 return;
3079 do {
3080 struct detached_freelist df;
3082 size = build_detached_freelist(s, size, p, &df);
3083 if (unlikely(!df.page))
3084 continue;
3086 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3087 } while (likely(size));
3089 EXPORT_SYMBOL(kmem_cache_free_bulk);
3091 /* Note that interrupts must be enabled when calling this function. */
3092 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3093 void **p)
3095 struct kmem_cache_cpu *c;
3096 int i;
3098 /* memcg and kmem_cache debug support */
3099 s = slab_pre_alloc_hook(s, flags);
3100 if (unlikely(!s))
3101 return false;
3103 * Drain objects in the per cpu slab, while disabling local
3104 * IRQs, which protects against PREEMPT and interrupts
3105 * handlers invoking normal fastpath.
3107 local_irq_disable();
3108 c = this_cpu_ptr(s->cpu_slab);
3110 for (i = 0; i < size; i++) {
3111 void *object = c->freelist;
3113 if (unlikely(!object)) {
3115 * Invoking slow path likely have side-effect
3116 * of re-populating per CPU c->freelist
3118 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3119 _RET_IP_, c);
3120 if (unlikely(!p[i]))
3121 goto error;
3123 c = this_cpu_ptr(s->cpu_slab);
3124 continue; /* goto for-loop */
3126 c->freelist = get_freepointer(s, object);
3127 p[i] = object;
3129 c->tid = next_tid(c->tid);
3130 local_irq_enable();
3132 /* Clear memory outside IRQ disabled fastpath loop */
3133 if (unlikely(flags & __GFP_ZERO)) {
3134 int j;
3136 for (j = 0; j < i; j++)
3137 memset(p[j], 0, s->object_size);
3140 /* memcg and kmem_cache debug support */
3141 slab_post_alloc_hook(s, flags, size, p);
3142 return i;
3143 error:
3144 local_irq_enable();
3145 slab_post_alloc_hook(s, flags, i, p);
3146 __kmem_cache_free_bulk(s, i, p);
3147 return 0;
3149 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3153 * Object placement in a slab is made very easy because we always start at
3154 * offset 0. If we tune the size of the object to the alignment then we can
3155 * get the required alignment by putting one properly sized object after
3156 * another.
3158 * Notice that the allocation order determines the sizes of the per cpu
3159 * caches. Each processor has always one slab available for allocations.
3160 * Increasing the allocation order reduces the number of times that slabs
3161 * must be moved on and off the partial lists and is therefore a factor in
3162 * locking overhead.
3166 * Mininum / Maximum order of slab pages. This influences locking overhead
3167 * and slab fragmentation. A higher order reduces the number of partial slabs
3168 * and increases the number of allocations possible without having to
3169 * take the list_lock.
3171 static int slub_min_order;
3172 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3173 static int slub_min_objects;
3176 * Calculate the order of allocation given an slab object size.
3178 * The order of allocation has significant impact on performance and other
3179 * system components. Generally order 0 allocations should be preferred since
3180 * order 0 does not cause fragmentation in the page allocator. Larger objects
3181 * be problematic to put into order 0 slabs because there may be too much
3182 * unused space left. We go to a higher order if more than 1/16th of the slab
3183 * would be wasted.
3185 * In order to reach satisfactory performance we must ensure that a minimum
3186 * number of objects is in one slab. Otherwise we may generate too much
3187 * activity on the partial lists which requires taking the list_lock. This is
3188 * less a concern for large slabs though which are rarely used.
3190 * slub_max_order specifies the order where we begin to stop considering the
3191 * number of objects in a slab as critical. If we reach slub_max_order then
3192 * we try to keep the page order as low as possible. So we accept more waste
3193 * of space in favor of a small page order.
3195 * Higher order allocations also allow the placement of more objects in a
3196 * slab and thereby reduce object handling overhead. If the user has
3197 * requested a higher mininum order then we start with that one instead of
3198 * the smallest order which will fit the object.
3200 static inline int slab_order(int size, int min_objects,
3201 int max_order, int fract_leftover, int reserved)
3203 int order;
3204 int rem;
3205 int min_order = slub_min_order;
3207 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3208 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3210 for (order = max(min_order, get_order(min_objects * size + reserved));
3211 order <= max_order; order++) {
3213 unsigned long slab_size = PAGE_SIZE << order;
3215 rem = (slab_size - reserved) % size;
3217 if (rem <= slab_size / fract_leftover)
3218 break;
3221 return order;
3224 static inline int calculate_order(int size, int reserved)
3226 int order;
3227 int min_objects;
3228 int fraction;
3229 int max_objects;
3232 * Attempt to find best configuration for a slab. This
3233 * works by first attempting to generate a layout with
3234 * the best configuration and backing off gradually.
3236 * First we increase the acceptable waste in a slab. Then
3237 * we reduce the minimum objects required in a slab.
3239 min_objects = slub_min_objects;
3240 if (!min_objects)
3241 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3242 max_objects = order_objects(slub_max_order, size, reserved);
3243 min_objects = min(min_objects, max_objects);
3245 while (min_objects > 1) {
3246 fraction = 16;
3247 while (fraction >= 4) {
3248 order = slab_order(size, min_objects,
3249 slub_max_order, fraction, reserved);
3250 if (order <= slub_max_order)
3251 return order;
3252 fraction /= 2;
3254 min_objects--;
3258 * We were unable to place multiple objects in a slab. Now
3259 * lets see if we can place a single object there.
3261 order = slab_order(size, 1, slub_max_order, 1, reserved);
3262 if (order <= slub_max_order)
3263 return order;
3266 * Doh this slab cannot be placed using slub_max_order.
3268 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3269 if (order < MAX_ORDER)
3270 return order;
3271 return -ENOSYS;
3274 static void
3275 init_kmem_cache_node(struct kmem_cache_node *n)
3277 n->nr_partial = 0;
3278 spin_lock_init(&n->list_lock);
3279 INIT_LIST_HEAD(&n->partial);
3280 #ifdef CONFIG_SLUB_DEBUG
3281 atomic_long_set(&n->nr_slabs, 0);
3282 atomic_long_set(&n->total_objects, 0);
3283 INIT_LIST_HEAD(&n->full);
3284 #endif
3287 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3289 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3290 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3293 * Must align to double word boundary for the double cmpxchg
3294 * instructions to work; see __pcpu_double_call_return_bool().
3296 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3297 2 * sizeof(void *));
3299 if (!s->cpu_slab)
3300 return 0;
3302 init_kmem_cache_cpus(s);
3304 return 1;
3307 static struct kmem_cache *kmem_cache_node;
3310 * No kmalloc_node yet so do it by hand. We know that this is the first
3311 * slab on the node for this slabcache. There are no concurrent accesses
3312 * possible.
3314 * Note that this function only works on the kmem_cache_node
3315 * when allocating for the kmem_cache_node. This is used for bootstrapping
3316 * memory on a fresh node that has no slab structures yet.
3318 static void early_kmem_cache_node_alloc(int node)
3320 struct page *page;
3321 struct kmem_cache_node *n;
3323 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3325 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3327 BUG_ON(!page);
3328 if (page_to_nid(page) != node) {
3329 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3330 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3333 n = page->freelist;
3334 BUG_ON(!n);
3335 page->freelist = get_freepointer(kmem_cache_node, n);
3336 page->inuse = 1;
3337 page->frozen = 0;
3338 kmem_cache_node->node[node] = n;
3339 #ifdef CONFIG_SLUB_DEBUG
3340 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3341 init_tracking(kmem_cache_node, n);
3342 #endif
3343 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3344 GFP_KERNEL);
3345 init_kmem_cache_node(n);
3346 inc_slabs_node(kmem_cache_node, node, page->objects);
3349 * No locks need to be taken here as it has just been
3350 * initialized and there is no concurrent access.
3352 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3355 static void free_kmem_cache_nodes(struct kmem_cache *s)
3357 int node;
3358 struct kmem_cache_node *n;
3360 for_each_kmem_cache_node(s, node, n) {
3361 kmem_cache_free(kmem_cache_node, n);
3362 s->node[node] = NULL;
3366 void __kmem_cache_release(struct kmem_cache *s)
3368 cache_random_seq_destroy(s);
3369 free_percpu(s->cpu_slab);
3370 free_kmem_cache_nodes(s);
3373 static int init_kmem_cache_nodes(struct kmem_cache *s)
3375 int node;
3377 for_each_node_state(node, N_NORMAL_MEMORY) {
3378 struct kmem_cache_node *n;
3380 if (slab_state == DOWN) {
3381 early_kmem_cache_node_alloc(node);
3382 continue;
3384 n = kmem_cache_alloc_node(kmem_cache_node,
3385 GFP_KERNEL, node);
3387 if (!n) {
3388 free_kmem_cache_nodes(s);
3389 return 0;
3392 s->node[node] = n;
3393 init_kmem_cache_node(n);
3395 return 1;
3398 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3400 if (min < MIN_PARTIAL)
3401 min = MIN_PARTIAL;
3402 else if (min > MAX_PARTIAL)
3403 min = MAX_PARTIAL;
3404 s->min_partial = min;
3408 * calculate_sizes() determines the order and the distribution of data within
3409 * a slab object.
3411 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3413 unsigned long flags = s->flags;
3414 size_t size = s->object_size;
3415 int order;
3418 * Round up object size to the next word boundary. We can only
3419 * place the free pointer at word boundaries and this determines
3420 * the possible location of the free pointer.
3422 size = ALIGN(size, sizeof(void *));
3424 #ifdef CONFIG_SLUB_DEBUG
3426 * Determine if we can poison the object itself. If the user of
3427 * the slab may touch the object after free or before allocation
3428 * then we should never poison the object itself.
3430 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3431 !s->ctor)
3432 s->flags |= __OBJECT_POISON;
3433 else
3434 s->flags &= ~__OBJECT_POISON;
3438 * If we are Redzoning then check if there is some space between the
3439 * end of the object and the free pointer. If not then add an
3440 * additional word to have some bytes to store Redzone information.
3442 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3443 size += sizeof(void *);
3444 #endif
3447 * With that we have determined the number of bytes in actual use
3448 * by the object. This is the potential offset to the free pointer.
3450 s->inuse = size;
3452 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3453 s->ctor)) {
3455 * Relocate free pointer after the object if it is not
3456 * permitted to overwrite the first word of the object on
3457 * kmem_cache_free.
3459 * This is the case if we do RCU, have a constructor or
3460 * destructor or are poisoning the objects.
3462 s->offset = size;
3463 size += sizeof(void *);
3466 #ifdef CONFIG_SLUB_DEBUG
3467 if (flags & SLAB_STORE_USER)
3469 * Need to store information about allocs and frees after
3470 * the object.
3472 size += 2 * sizeof(struct track);
3473 #endif
3475 kasan_cache_create(s, &size, &s->flags);
3476 #ifdef CONFIG_SLUB_DEBUG
3477 if (flags & SLAB_RED_ZONE) {
3479 * Add some empty padding so that we can catch
3480 * overwrites from earlier objects rather than let
3481 * tracking information or the free pointer be
3482 * corrupted if a user writes before the start
3483 * of the object.
3485 size += sizeof(void *);
3487 s->red_left_pad = sizeof(void *);
3488 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3489 size += s->red_left_pad;
3491 #endif
3494 * SLUB stores one object immediately after another beginning from
3495 * offset 0. In order to align the objects we have to simply size
3496 * each object to conform to the alignment.
3498 size = ALIGN(size, s->align);
3499 s->size = size;
3500 if (forced_order >= 0)
3501 order = forced_order;
3502 else
3503 order = calculate_order(size, s->reserved);
3505 if (order < 0)
3506 return 0;
3508 s->allocflags = 0;
3509 if (order)
3510 s->allocflags |= __GFP_COMP;
3512 if (s->flags & SLAB_CACHE_DMA)
3513 s->allocflags |= GFP_DMA;
3515 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3516 s->allocflags |= __GFP_RECLAIMABLE;
3519 * Determine the number of objects per slab
3521 s->oo = oo_make(order, size, s->reserved);
3522 s->min = oo_make(get_order(size), size, s->reserved);
3523 if (oo_objects(s->oo) > oo_objects(s->max))
3524 s->max = s->oo;
3526 return !!oo_objects(s->oo);
3529 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3531 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3532 s->reserved = 0;
3534 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3535 s->reserved = sizeof(struct rcu_head);
3537 if (!calculate_sizes(s, -1))
3538 goto error;
3539 if (disable_higher_order_debug) {
3541 * Disable debugging flags that store metadata if the min slab
3542 * order increased.
3544 if (get_order(s->size) > get_order(s->object_size)) {
3545 s->flags &= ~DEBUG_METADATA_FLAGS;
3546 s->offset = 0;
3547 if (!calculate_sizes(s, -1))
3548 goto error;
3552 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3553 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3554 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3555 /* Enable fast mode */
3556 s->flags |= __CMPXCHG_DOUBLE;
3557 #endif
3560 * The larger the object size is, the more pages we want on the partial
3561 * list to avoid pounding the page allocator excessively.
3563 set_min_partial(s, ilog2(s->size) / 2);
3566 * cpu_partial determined the maximum number of objects kept in the
3567 * per cpu partial lists of a processor.
3569 * Per cpu partial lists mainly contain slabs that just have one
3570 * object freed. If they are used for allocation then they can be
3571 * filled up again with minimal effort. The slab will never hit the
3572 * per node partial lists and therefore no locking will be required.
3574 * This setting also determines
3576 * A) The number of objects from per cpu partial slabs dumped to the
3577 * per node list when we reach the limit.
3578 * B) The number of objects in cpu partial slabs to extract from the
3579 * per node list when we run out of per cpu objects. We only fetch
3580 * 50% to keep some capacity around for frees.
3582 if (!kmem_cache_has_cpu_partial(s))
3583 s->cpu_partial = 0;
3584 else if (s->size >= PAGE_SIZE)
3585 s->cpu_partial = 2;
3586 else if (s->size >= 1024)
3587 s->cpu_partial = 6;
3588 else if (s->size >= 256)
3589 s->cpu_partial = 13;
3590 else
3591 s->cpu_partial = 30;
3593 #ifdef CONFIG_NUMA
3594 s->remote_node_defrag_ratio = 1000;
3595 #endif
3597 /* Initialize the pre-computed randomized freelist if slab is up */
3598 if (slab_state >= UP) {
3599 if (init_cache_random_seq(s))
3600 goto error;
3603 if (!init_kmem_cache_nodes(s))
3604 goto error;
3606 if (alloc_kmem_cache_cpus(s))
3607 return 0;
3609 free_kmem_cache_nodes(s);
3610 error:
3611 if (flags & SLAB_PANIC)
3612 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3613 s->name, (unsigned long)s->size, s->size,
3614 oo_order(s->oo), s->offset, flags);
3615 return -EINVAL;
3618 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3619 const char *text)
3621 #ifdef CONFIG_SLUB_DEBUG
3622 void *addr = page_address(page);
3623 void *p;
3624 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3625 sizeof(long), GFP_ATOMIC);
3626 if (!map)
3627 return;
3628 slab_err(s, page, text, s->name);
3629 slab_lock(page);
3631 get_map(s, page, map);
3632 for_each_object(p, s, addr, page->objects) {
3634 if (!test_bit(slab_index(p, s, addr), map)) {
3635 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3636 print_tracking(s, p);
3639 slab_unlock(page);
3640 kfree(map);
3641 #endif
3645 * Attempt to free all partial slabs on a node.
3646 * This is called from __kmem_cache_shutdown(). We must take list_lock
3647 * because sysfs file might still access partial list after the shutdowning.
3649 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3651 LIST_HEAD(discard);
3652 struct page *page, *h;
3654 BUG_ON(irqs_disabled());
3655 spin_lock_irq(&n->list_lock);
3656 list_for_each_entry_safe(page, h, &n->partial, lru) {
3657 if (!page->inuse) {
3658 remove_partial(n, page);
3659 list_add(&page->lru, &discard);
3660 } else {
3661 list_slab_objects(s, page,
3662 "Objects remaining in %s on __kmem_cache_shutdown()");
3665 spin_unlock_irq(&n->list_lock);
3667 list_for_each_entry_safe(page, h, &discard, lru)
3668 discard_slab(s, page);
3672 * Release all resources used by a slab cache.
3674 int __kmem_cache_shutdown(struct kmem_cache *s)
3676 int node;
3677 struct kmem_cache_node *n;
3679 flush_all(s);
3680 /* Attempt to free all objects */
3681 for_each_kmem_cache_node(s, node, n) {
3682 free_partial(s, n);
3683 if (n->nr_partial || slabs_node(s, node))
3684 return 1;
3686 return 0;
3689 /********************************************************************
3690 * Kmalloc subsystem
3691 *******************************************************************/
3693 static int __init setup_slub_min_order(char *str)
3695 get_option(&str, &slub_min_order);
3697 return 1;
3700 __setup("slub_min_order=", setup_slub_min_order);
3702 static int __init setup_slub_max_order(char *str)
3704 get_option(&str, &slub_max_order);
3705 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3707 return 1;
3710 __setup("slub_max_order=", setup_slub_max_order);
3712 static int __init setup_slub_min_objects(char *str)
3714 get_option(&str, &slub_min_objects);
3716 return 1;
3719 __setup("slub_min_objects=", setup_slub_min_objects);
3721 void *__kmalloc(size_t size, gfp_t flags)
3723 struct kmem_cache *s;
3724 void *ret;
3726 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3727 return kmalloc_large(size, flags);
3729 s = kmalloc_slab(size, flags);
3731 if (unlikely(ZERO_OR_NULL_PTR(s)))
3732 return s;
3734 ret = slab_alloc(s, flags, _RET_IP_);
3736 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3738 kasan_kmalloc(s, ret, size, flags);
3740 return ret;
3742 EXPORT_SYMBOL(__kmalloc);
3744 #ifdef CONFIG_NUMA
3745 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3747 struct page *page;
3748 void *ptr = NULL;
3750 flags |= __GFP_COMP | __GFP_NOTRACK;
3751 page = alloc_pages_node(node, flags, get_order(size));
3752 if (page)
3753 ptr = page_address(page);
3755 kmalloc_large_node_hook(ptr, size, flags);
3756 return ptr;
3759 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3761 struct kmem_cache *s;
3762 void *ret;
3764 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3765 ret = kmalloc_large_node(size, flags, node);
3767 trace_kmalloc_node(_RET_IP_, ret,
3768 size, PAGE_SIZE << get_order(size),
3769 flags, node);
3771 return ret;
3774 s = kmalloc_slab(size, flags);
3776 if (unlikely(ZERO_OR_NULL_PTR(s)))
3777 return s;
3779 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3781 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3783 kasan_kmalloc(s, ret, size, flags);
3785 return ret;
3787 EXPORT_SYMBOL(__kmalloc_node);
3788 #endif
3790 #ifdef CONFIG_HARDENED_USERCOPY
3792 * Rejects objects that are incorrectly sized.
3794 * Returns NULL if check passes, otherwise const char * to name of cache
3795 * to indicate an error.
3797 const char *__check_heap_object(const void *ptr, unsigned long n,
3798 struct page *page)
3800 struct kmem_cache *s;
3801 unsigned long offset;
3802 size_t object_size;
3804 /* Find object and usable object size. */
3805 s = page->slab_cache;
3806 object_size = slab_ksize(s);
3808 /* Reject impossible pointers. */
3809 if (ptr < page_address(page))
3810 return s->name;
3812 /* Find offset within object. */
3813 offset = (ptr - page_address(page)) % s->size;
3815 /* Adjust for redzone and reject if within the redzone. */
3816 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3817 if (offset < s->red_left_pad)
3818 return s->name;
3819 offset -= s->red_left_pad;
3822 /* Allow address range falling entirely within object size. */
3823 if (offset <= object_size && n <= object_size - offset)
3824 return NULL;
3826 return s->name;
3828 #endif /* CONFIG_HARDENED_USERCOPY */
3830 static size_t __ksize(const void *object)
3832 struct page *page;
3834 if (unlikely(object == ZERO_SIZE_PTR))
3835 return 0;
3837 page = virt_to_head_page(object);
3839 if (unlikely(!PageSlab(page))) {
3840 WARN_ON(!PageCompound(page));
3841 return PAGE_SIZE << compound_order(page);
3844 return slab_ksize(page->slab_cache);
3847 size_t ksize(const void *object)
3849 size_t size = __ksize(object);
3850 /* We assume that ksize callers could use whole allocated area,
3851 * so we need to unpoison this area.
3853 kasan_unpoison_shadow(object, size);
3854 return size;
3856 EXPORT_SYMBOL(ksize);
3858 void kfree(const void *x)
3860 struct page *page;
3861 void *object = (void *)x;
3863 trace_kfree(_RET_IP_, x);
3865 if (unlikely(ZERO_OR_NULL_PTR(x)))
3866 return;
3868 page = virt_to_head_page(x);
3869 if (unlikely(!PageSlab(page))) {
3870 BUG_ON(!PageCompound(page));
3871 kfree_hook(x);
3872 __free_pages(page, compound_order(page));
3873 return;
3875 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3877 EXPORT_SYMBOL(kfree);
3879 #define SHRINK_PROMOTE_MAX 32
3882 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3883 * up most to the head of the partial lists. New allocations will then
3884 * fill those up and thus they can be removed from the partial lists.
3886 * The slabs with the least items are placed last. This results in them
3887 * being allocated from last increasing the chance that the last objects
3888 * are freed in them.
3890 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3892 int node;
3893 int i;
3894 struct kmem_cache_node *n;
3895 struct page *page;
3896 struct page *t;
3897 struct list_head discard;
3898 struct list_head promote[SHRINK_PROMOTE_MAX];
3899 unsigned long flags;
3900 int ret = 0;
3902 if (deactivate) {
3904 * Disable empty slabs caching. Used to avoid pinning offline
3905 * memory cgroups by kmem pages that can be freed.
3907 s->cpu_partial = 0;
3908 s->min_partial = 0;
3911 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3912 * so we have to make sure the change is visible.
3914 synchronize_sched();
3917 flush_all(s);
3918 for_each_kmem_cache_node(s, node, n) {
3919 INIT_LIST_HEAD(&discard);
3920 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3921 INIT_LIST_HEAD(promote + i);
3923 spin_lock_irqsave(&n->list_lock, flags);
3926 * Build lists of slabs to discard or promote.
3928 * Note that concurrent frees may occur while we hold the
3929 * list_lock. page->inuse here is the upper limit.
3931 list_for_each_entry_safe(page, t, &n->partial, lru) {
3932 int free = page->objects - page->inuse;
3934 /* Do not reread page->inuse */
3935 barrier();
3937 /* We do not keep full slabs on the list */
3938 BUG_ON(free <= 0);
3940 if (free == page->objects) {
3941 list_move(&page->lru, &discard);
3942 n->nr_partial--;
3943 } else if (free <= SHRINK_PROMOTE_MAX)
3944 list_move(&page->lru, promote + free - 1);
3948 * Promote the slabs filled up most to the head of the
3949 * partial list.
3951 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3952 list_splice(promote + i, &n->partial);
3954 spin_unlock_irqrestore(&n->list_lock, flags);
3956 /* Release empty slabs */
3957 list_for_each_entry_safe(page, t, &discard, lru)
3958 discard_slab(s, page);
3960 if (slabs_node(s, node))
3961 ret = 1;
3964 return ret;
3967 static int slab_mem_going_offline_callback(void *arg)
3969 struct kmem_cache *s;
3971 mutex_lock(&slab_mutex);
3972 list_for_each_entry(s, &slab_caches, list)
3973 __kmem_cache_shrink(s, false);
3974 mutex_unlock(&slab_mutex);
3976 return 0;
3979 static void slab_mem_offline_callback(void *arg)
3981 struct kmem_cache_node *n;
3982 struct kmem_cache *s;
3983 struct memory_notify *marg = arg;
3984 int offline_node;
3986 offline_node = marg->status_change_nid_normal;
3989 * If the node still has available memory. we need kmem_cache_node
3990 * for it yet.
3992 if (offline_node < 0)
3993 return;
3995 mutex_lock(&slab_mutex);
3996 list_for_each_entry(s, &slab_caches, list) {
3997 n = get_node(s, offline_node);
3998 if (n) {
4000 * if n->nr_slabs > 0, slabs still exist on the node
4001 * that is going down. We were unable to free them,
4002 * and offline_pages() function shouldn't call this
4003 * callback. So, we must fail.
4005 BUG_ON(slabs_node(s, offline_node));
4007 s->node[offline_node] = NULL;
4008 kmem_cache_free(kmem_cache_node, n);
4011 mutex_unlock(&slab_mutex);
4014 static int slab_mem_going_online_callback(void *arg)
4016 struct kmem_cache_node *n;
4017 struct kmem_cache *s;
4018 struct memory_notify *marg = arg;
4019 int nid = marg->status_change_nid_normal;
4020 int ret = 0;
4023 * If the node's memory is already available, then kmem_cache_node is
4024 * already created. Nothing to do.
4026 if (nid < 0)
4027 return 0;
4030 * We are bringing a node online. No memory is available yet. We must
4031 * allocate a kmem_cache_node structure in order to bring the node
4032 * online.
4034 mutex_lock(&slab_mutex);
4035 list_for_each_entry(s, &slab_caches, list) {
4037 * XXX: kmem_cache_alloc_node will fallback to other nodes
4038 * since memory is not yet available from the node that
4039 * is brought up.
4041 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4042 if (!n) {
4043 ret = -ENOMEM;
4044 goto out;
4046 init_kmem_cache_node(n);
4047 s->node[nid] = n;
4049 out:
4050 mutex_unlock(&slab_mutex);
4051 return ret;
4054 static int slab_memory_callback(struct notifier_block *self,
4055 unsigned long action, void *arg)
4057 int ret = 0;
4059 switch (action) {
4060 case MEM_GOING_ONLINE:
4061 ret = slab_mem_going_online_callback(arg);
4062 break;
4063 case MEM_GOING_OFFLINE:
4064 ret = slab_mem_going_offline_callback(arg);
4065 break;
4066 case MEM_OFFLINE:
4067 case MEM_CANCEL_ONLINE:
4068 slab_mem_offline_callback(arg);
4069 break;
4070 case MEM_ONLINE:
4071 case MEM_CANCEL_OFFLINE:
4072 break;
4074 if (ret)
4075 ret = notifier_from_errno(ret);
4076 else
4077 ret = NOTIFY_OK;
4078 return ret;
4081 static struct notifier_block slab_memory_callback_nb = {
4082 .notifier_call = slab_memory_callback,
4083 .priority = SLAB_CALLBACK_PRI,
4086 /********************************************************************
4087 * Basic setup of slabs
4088 *******************************************************************/
4091 * Used for early kmem_cache structures that were allocated using
4092 * the page allocator. Allocate them properly then fix up the pointers
4093 * that may be pointing to the wrong kmem_cache structure.
4096 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4098 int node;
4099 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4100 struct kmem_cache_node *n;
4102 memcpy(s, static_cache, kmem_cache->object_size);
4105 * This runs very early, and only the boot processor is supposed to be
4106 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4107 * IPIs around.
4109 __flush_cpu_slab(s, smp_processor_id());
4110 for_each_kmem_cache_node(s, node, n) {
4111 struct page *p;
4113 list_for_each_entry(p, &n->partial, lru)
4114 p->slab_cache = s;
4116 #ifdef CONFIG_SLUB_DEBUG
4117 list_for_each_entry(p, &n->full, lru)
4118 p->slab_cache = s;
4119 #endif
4121 slab_init_memcg_params(s);
4122 list_add(&s->list, &slab_caches);
4123 return s;
4126 void __init kmem_cache_init(void)
4128 static __initdata struct kmem_cache boot_kmem_cache,
4129 boot_kmem_cache_node;
4131 if (debug_guardpage_minorder())
4132 slub_max_order = 0;
4134 kmem_cache_node = &boot_kmem_cache_node;
4135 kmem_cache = &boot_kmem_cache;
4137 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4138 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4140 register_hotmemory_notifier(&slab_memory_callback_nb);
4142 /* Able to allocate the per node structures */
4143 slab_state = PARTIAL;
4145 create_boot_cache(kmem_cache, "kmem_cache",
4146 offsetof(struct kmem_cache, node) +
4147 nr_node_ids * sizeof(struct kmem_cache_node *),
4148 SLAB_HWCACHE_ALIGN);
4150 kmem_cache = bootstrap(&boot_kmem_cache);
4153 * Allocate kmem_cache_node properly from the kmem_cache slab.
4154 * kmem_cache_node is separately allocated so no need to
4155 * update any list pointers.
4157 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4159 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4160 setup_kmalloc_cache_index_table();
4161 create_kmalloc_caches(0);
4163 /* Setup random freelists for each cache */
4164 init_freelist_randomization();
4166 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4167 slub_cpu_dead);
4169 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4170 cache_line_size(),
4171 slub_min_order, slub_max_order, slub_min_objects,
4172 nr_cpu_ids, nr_node_ids);
4175 void __init kmem_cache_init_late(void)
4179 struct kmem_cache *
4180 __kmem_cache_alias(const char *name, size_t size, size_t align,
4181 unsigned long flags, void (*ctor)(void *))
4183 struct kmem_cache *s, *c;
4185 s = find_mergeable(size, align, flags, name, ctor);
4186 if (s) {
4187 s->refcount++;
4190 * Adjust the object sizes so that we clear
4191 * the complete object on kzalloc.
4193 s->object_size = max(s->object_size, (int)size);
4194 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4196 for_each_memcg_cache(c, s) {
4197 c->object_size = s->object_size;
4198 c->inuse = max_t(int, c->inuse,
4199 ALIGN(size, sizeof(void *)));
4202 if (sysfs_slab_alias(s, name)) {
4203 s->refcount--;
4204 s = NULL;
4208 return s;
4211 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4213 int err;
4215 err = kmem_cache_open(s, flags);
4216 if (err)
4217 return err;
4219 /* Mutex is not taken during early boot */
4220 if (slab_state <= UP)
4221 return 0;
4223 memcg_propagate_slab_attrs(s);
4224 err = sysfs_slab_add(s);
4225 if (err)
4226 __kmem_cache_release(s);
4228 return err;
4231 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4233 struct kmem_cache *s;
4234 void *ret;
4236 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4237 return kmalloc_large(size, gfpflags);
4239 s = kmalloc_slab(size, gfpflags);
4241 if (unlikely(ZERO_OR_NULL_PTR(s)))
4242 return s;
4244 ret = slab_alloc(s, gfpflags, caller);
4246 /* Honor the call site pointer we received. */
4247 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4249 return ret;
4252 #ifdef CONFIG_NUMA
4253 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4254 int node, unsigned long caller)
4256 struct kmem_cache *s;
4257 void *ret;
4259 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4260 ret = kmalloc_large_node(size, gfpflags, node);
4262 trace_kmalloc_node(caller, ret,
4263 size, PAGE_SIZE << get_order(size),
4264 gfpflags, node);
4266 return ret;
4269 s = kmalloc_slab(size, gfpflags);
4271 if (unlikely(ZERO_OR_NULL_PTR(s)))
4272 return s;
4274 ret = slab_alloc_node(s, gfpflags, node, caller);
4276 /* Honor the call site pointer we received. */
4277 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4279 return ret;
4281 #endif
4283 #ifdef CONFIG_SYSFS
4284 static int count_inuse(struct page *page)
4286 return page->inuse;
4289 static int count_total(struct page *page)
4291 return page->objects;
4293 #endif
4295 #ifdef CONFIG_SLUB_DEBUG
4296 static int validate_slab(struct kmem_cache *s, struct page *page,
4297 unsigned long *map)
4299 void *p;
4300 void *addr = page_address(page);
4302 if (!check_slab(s, page) ||
4303 !on_freelist(s, page, NULL))
4304 return 0;
4306 /* Now we know that a valid freelist exists */
4307 bitmap_zero(map, page->objects);
4309 get_map(s, page, map);
4310 for_each_object(p, s, addr, page->objects) {
4311 if (test_bit(slab_index(p, s, addr), map))
4312 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4313 return 0;
4316 for_each_object(p, s, addr, page->objects)
4317 if (!test_bit(slab_index(p, s, addr), map))
4318 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4319 return 0;
4320 return 1;
4323 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4324 unsigned long *map)
4326 slab_lock(page);
4327 validate_slab(s, page, map);
4328 slab_unlock(page);
4331 static int validate_slab_node(struct kmem_cache *s,
4332 struct kmem_cache_node *n, unsigned long *map)
4334 unsigned long count = 0;
4335 struct page *page;
4336 unsigned long flags;
4338 spin_lock_irqsave(&n->list_lock, flags);
4340 list_for_each_entry(page, &n->partial, lru) {
4341 validate_slab_slab(s, page, map);
4342 count++;
4344 if (count != n->nr_partial)
4345 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4346 s->name, count, n->nr_partial);
4348 if (!(s->flags & SLAB_STORE_USER))
4349 goto out;
4351 list_for_each_entry(page, &n->full, lru) {
4352 validate_slab_slab(s, page, map);
4353 count++;
4355 if (count != atomic_long_read(&n->nr_slabs))
4356 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4357 s->name, count, atomic_long_read(&n->nr_slabs));
4359 out:
4360 spin_unlock_irqrestore(&n->list_lock, flags);
4361 return count;
4364 static long validate_slab_cache(struct kmem_cache *s)
4366 int node;
4367 unsigned long count = 0;
4368 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4369 sizeof(unsigned long), GFP_KERNEL);
4370 struct kmem_cache_node *n;
4372 if (!map)
4373 return -ENOMEM;
4375 flush_all(s);
4376 for_each_kmem_cache_node(s, node, n)
4377 count += validate_slab_node(s, n, map);
4378 kfree(map);
4379 return count;
4382 * Generate lists of code addresses where slabcache objects are allocated
4383 * and freed.
4386 struct location {
4387 unsigned long count;
4388 unsigned long addr;
4389 long long sum_time;
4390 long min_time;
4391 long max_time;
4392 long min_pid;
4393 long max_pid;
4394 DECLARE_BITMAP(cpus, NR_CPUS);
4395 nodemask_t nodes;
4398 struct loc_track {
4399 unsigned long max;
4400 unsigned long count;
4401 struct location *loc;
4404 static void free_loc_track(struct loc_track *t)
4406 if (t->max)
4407 free_pages((unsigned long)t->loc,
4408 get_order(sizeof(struct location) * t->max));
4411 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4413 struct location *l;
4414 int order;
4416 order = get_order(sizeof(struct location) * max);
4418 l = (void *)__get_free_pages(flags, order);
4419 if (!l)
4420 return 0;
4422 if (t->count) {
4423 memcpy(l, t->loc, sizeof(struct location) * t->count);
4424 free_loc_track(t);
4426 t->max = max;
4427 t->loc = l;
4428 return 1;
4431 static int add_location(struct loc_track *t, struct kmem_cache *s,
4432 const struct track *track)
4434 long start, end, pos;
4435 struct location *l;
4436 unsigned long caddr;
4437 unsigned long age = jiffies - track->when;
4439 start = -1;
4440 end = t->count;
4442 for ( ; ; ) {
4443 pos = start + (end - start + 1) / 2;
4446 * There is nothing at "end". If we end up there
4447 * we need to add something to before end.
4449 if (pos == end)
4450 break;
4452 caddr = t->loc[pos].addr;
4453 if (track->addr == caddr) {
4455 l = &t->loc[pos];
4456 l->count++;
4457 if (track->when) {
4458 l->sum_time += age;
4459 if (age < l->min_time)
4460 l->min_time = age;
4461 if (age > l->max_time)
4462 l->max_time = age;
4464 if (track->pid < l->min_pid)
4465 l->min_pid = track->pid;
4466 if (track->pid > l->max_pid)
4467 l->max_pid = track->pid;
4469 cpumask_set_cpu(track->cpu,
4470 to_cpumask(l->cpus));
4472 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4473 return 1;
4476 if (track->addr < caddr)
4477 end = pos;
4478 else
4479 start = pos;
4483 * Not found. Insert new tracking element.
4485 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4486 return 0;
4488 l = t->loc + pos;
4489 if (pos < t->count)
4490 memmove(l + 1, l,
4491 (t->count - pos) * sizeof(struct location));
4492 t->count++;
4493 l->count = 1;
4494 l->addr = track->addr;
4495 l->sum_time = age;
4496 l->min_time = age;
4497 l->max_time = age;
4498 l->min_pid = track->pid;
4499 l->max_pid = track->pid;
4500 cpumask_clear(to_cpumask(l->cpus));
4501 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4502 nodes_clear(l->nodes);
4503 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4504 return 1;
4507 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4508 struct page *page, enum track_item alloc,
4509 unsigned long *map)
4511 void *addr = page_address(page);
4512 void *p;
4514 bitmap_zero(map, page->objects);
4515 get_map(s, page, map);
4517 for_each_object(p, s, addr, page->objects)
4518 if (!test_bit(slab_index(p, s, addr), map))
4519 add_location(t, s, get_track(s, p, alloc));
4522 static int list_locations(struct kmem_cache *s, char *buf,
4523 enum track_item alloc)
4525 int len = 0;
4526 unsigned long i;
4527 struct loc_track t = { 0, 0, NULL };
4528 int node;
4529 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4530 sizeof(unsigned long), GFP_KERNEL);
4531 struct kmem_cache_node *n;
4533 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4534 GFP_TEMPORARY)) {
4535 kfree(map);
4536 return sprintf(buf, "Out of memory\n");
4538 /* Push back cpu slabs */
4539 flush_all(s);
4541 for_each_kmem_cache_node(s, node, n) {
4542 unsigned long flags;
4543 struct page *page;
4545 if (!atomic_long_read(&n->nr_slabs))
4546 continue;
4548 spin_lock_irqsave(&n->list_lock, flags);
4549 list_for_each_entry(page, &n->partial, lru)
4550 process_slab(&t, s, page, alloc, map);
4551 list_for_each_entry(page, &n->full, lru)
4552 process_slab(&t, s, page, alloc, map);
4553 spin_unlock_irqrestore(&n->list_lock, flags);
4556 for (i = 0; i < t.count; i++) {
4557 struct location *l = &t.loc[i];
4559 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4560 break;
4561 len += sprintf(buf + len, "%7ld ", l->count);
4563 if (l->addr)
4564 len += sprintf(buf + len, "%pS", (void *)l->addr);
4565 else
4566 len += sprintf(buf + len, "<not-available>");
4568 if (l->sum_time != l->min_time) {
4569 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4570 l->min_time,
4571 (long)div_u64(l->sum_time, l->count),
4572 l->max_time);
4573 } else
4574 len += sprintf(buf + len, " age=%ld",
4575 l->min_time);
4577 if (l->min_pid != l->max_pid)
4578 len += sprintf(buf + len, " pid=%ld-%ld",
4579 l->min_pid, l->max_pid);
4580 else
4581 len += sprintf(buf + len, " pid=%ld",
4582 l->min_pid);
4584 if (num_online_cpus() > 1 &&
4585 !cpumask_empty(to_cpumask(l->cpus)) &&
4586 len < PAGE_SIZE - 60)
4587 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4588 " cpus=%*pbl",
4589 cpumask_pr_args(to_cpumask(l->cpus)));
4591 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4592 len < PAGE_SIZE - 60)
4593 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4594 " nodes=%*pbl",
4595 nodemask_pr_args(&l->nodes));
4597 len += sprintf(buf + len, "\n");
4600 free_loc_track(&t);
4601 kfree(map);
4602 if (!t.count)
4603 len += sprintf(buf, "No data\n");
4604 return len;
4606 #endif
4608 #ifdef SLUB_RESILIENCY_TEST
4609 static void __init resiliency_test(void)
4611 u8 *p;
4613 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4615 pr_err("SLUB resiliency testing\n");
4616 pr_err("-----------------------\n");
4617 pr_err("A. Corruption after allocation\n");
4619 p = kzalloc(16, GFP_KERNEL);
4620 p[16] = 0x12;
4621 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4622 p + 16);
4624 validate_slab_cache(kmalloc_caches[4]);
4626 /* Hmmm... The next two are dangerous */
4627 p = kzalloc(32, GFP_KERNEL);
4628 p[32 + sizeof(void *)] = 0x34;
4629 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4631 pr_err("If allocated object is overwritten then not detectable\n\n");
4633 validate_slab_cache(kmalloc_caches[5]);
4634 p = kzalloc(64, GFP_KERNEL);
4635 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4636 *p = 0x56;
4637 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4639 pr_err("If allocated object is overwritten then not detectable\n\n");
4640 validate_slab_cache(kmalloc_caches[6]);
4642 pr_err("\nB. Corruption after free\n");
4643 p = kzalloc(128, GFP_KERNEL);
4644 kfree(p);
4645 *p = 0x78;
4646 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4647 validate_slab_cache(kmalloc_caches[7]);
4649 p = kzalloc(256, GFP_KERNEL);
4650 kfree(p);
4651 p[50] = 0x9a;
4652 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4653 validate_slab_cache(kmalloc_caches[8]);
4655 p = kzalloc(512, GFP_KERNEL);
4656 kfree(p);
4657 p[512] = 0xab;
4658 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4659 validate_slab_cache(kmalloc_caches[9]);
4661 #else
4662 #ifdef CONFIG_SYSFS
4663 static void resiliency_test(void) {};
4664 #endif
4665 #endif
4667 #ifdef CONFIG_SYSFS
4668 enum slab_stat_type {
4669 SL_ALL, /* All slabs */
4670 SL_PARTIAL, /* Only partially allocated slabs */
4671 SL_CPU, /* Only slabs used for cpu caches */
4672 SL_OBJECTS, /* Determine allocated objects not slabs */
4673 SL_TOTAL /* Determine object capacity not slabs */
4676 #define SO_ALL (1 << SL_ALL)
4677 #define SO_PARTIAL (1 << SL_PARTIAL)
4678 #define SO_CPU (1 << SL_CPU)
4679 #define SO_OBJECTS (1 << SL_OBJECTS)
4680 #define SO_TOTAL (1 << SL_TOTAL)
4682 static ssize_t show_slab_objects(struct kmem_cache *s,
4683 char *buf, unsigned long flags)
4685 unsigned long total = 0;
4686 int node;
4687 int x;
4688 unsigned long *nodes;
4690 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4691 if (!nodes)
4692 return -ENOMEM;
4694 if (flags & SO_CPU) {
4695 int cpu;
4697 for_each_possible_cpu(cpu) {
4698 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4699 cpu);
4700 int node;
4701 struct page *page;
4703 page = READ_ONCE(c->page);
4704 if (!page)
4705 continue;
4707 node = page_to_nid(page);
4708 if (flags & SO_TOTAL)
4709 x = page->objects;
4710 else if (flags & SO_OBJECTS)
4711 x = page->inuse;
4712 else
4713 x = 1;
4715 total += x;
4716 nodes[node] += x;
4718 page = READ_ONCE(c->partial);
4719 if (page) {
4720 node = page_to_nid(page);
4721 if (flags & SO_TOTAL)
4722 WARN_ON_ONCE(1);
4723 else if (flags & SO_OBJECTS)
4724 WARN_ON_ONCE(1);
4725 else
4726 x = page->pages;
4727 total += x;
4728 nodes[node] += x;
4733 get_online_mems();
4734 #ifdef CONFIG_SLUB_DEBUG
4735 if (flags & SO_ALL) {
4736 struct kmem_cache_node *n;
4738 for_each_kmem_cache_node(s, node, n) {
4740 if (flags & SO_TOTAL)
4741 x = atomic_long_read(&n->total_objects);
4742 else if (flags & SO_OBJECTS)
4743 x = atomic_long_read(&n->total_objects) -
4744 count_partial(n, count_free);
4745 else
4746 x = atomic_long_read(&n->nr_slabs);
4747 total += x;
4748 nodes[node] += x;
4751 } else
4752 #endif
4753 if (flags & SO_PARTIAL) {
4754 struct kmem_cache_node *n;
4756 for_each_kmem_cache_node(s, node, n) {
4757 if (flags & SO_TOTAL)
4758 x = count_partial(n, count_total);
4759 else if (flags & SO_OBJECTS)
4760 x = count_partial(n, count_inuse);
4761 else
4762 x = n->nr_partial;
4763 total += x;
4764 nodes[node] += x;
4767 x = sprintf(buf, "%lu", total);
4768 #ifdef CONFIG_NUMA
4769 for (node = 0; node < nr_node_ids; node++)
4770 if (nodes[node])
4771 x += sprintf(buf + x, " N%d=%lu",
4772 node, nodes[node]);
4773 #endif
4774 put_online_mems();
4775 kfree(nodes);
4776 return x + sprintf(buf + x, "\n");
4779 #ifdef CONFIG_SLUB_DEBUG
4780 static int any_slab_objects(struct kmem_cache *s)
4782 int node;
4783 struct kmem_cache_node *n;
4785 for_each_kmem_cache_node(s, node, n)
4786 if (atomic_long_read(&n->total_objects))
4787 return 1;
4789 return 0;
4791 #endif
4793 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4794 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4796 struct slab_attribute {
4797 struct attribute attr;
4798 ssize_t (*show)(struct kmem_cache *s, char *buf);
4799 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4802 #define SLAB_ATTR_RO(_name) \
4803 static struct slab_attribute _name##_attr = \
4804 __ATTR(_name, 0400, _name##_show, NULL)
4806 #define SLAB_ATTR(_name) \
4807 static struct slab_attribute _name##_attr = \
4808 __ATTR(_name, 0600, _name##_show, _name##_store)
4810 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4812 return sprintf(buf, "%d\n", s->size);
4814 SLAB_ATTR_RO(slab_size);
4816 static ssize_t align_show(struct kmem_cache *s, char *buf)
4818 return sprintf(buf, "%d\n", s->align);
4820 SLAB_ATTR_RO(align);
4822 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4824 return sprintf(buf, "%d\n", s->object_size);
4826 SLAB_ATTR_RO(object_size);
4828 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4830 return sprintf(buf, "%d\n", oo_objects(s->oo));
4832 SLAB_ATTR_RO(objs_per_slab);
4834 static ssize_t order_store(struct kmem_cache *s,
4835 const char *buf, size_t length)
4837 unsigned long order;
4838 int err;
4840 err = kstrtoul(buf, 10, &order);
4841 if (err)
4842 return err;
4844 if (order > slub_max_order || order < slub_min_order)
4845 return -EINVAL;
4847 calculate_sizes(s, order);
4848 return length;
4851 static ssize_t order_show(struct kmem_cache *s, char *buf)
4853 return sprintf(buf, "%d\n", oo_order(s->oo));
4855 SLAB_ATTR(order);
4857 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4859 return sprintf(buf, "%lu\n", s->min_partial);
4862 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4863 size_t length)
4865 unsigned long min;
4866 int err;
4868 err = kstrtoul(buf, 10, &min);
4869 if (err)
4870 return err;
4872 set_min_partial(s, min);
4873 return length;
4875 SLAB_ATTR(min_partial);
4877 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4879 return sprintf(buf, "%u\n", s->cpu_partial);
4882 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4883 size_t length)
4885 unsigned long objects;
4886 int err;
4888 err = kstrtoul(buf, 10, &objects);
4889 if (err)
4890 return err;
4891 if (objects && !kmem_cache_has_cpu_partial(s))
4892 return -EINVAL;
4894 s->cpu_partial = objects;
4895 flush_all(s);
4896 return length;
4898 SLAB_ATTR(cpu_partial);
4900 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4902 if (!s->ctor)
4903 return 0;
4904 return sprintf(buf, "%pS\n", s->ctor);
4906 SLAB_ATTR_RO(ctor);
4908 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4910 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4912 SLAB_ATTR_RO(aliases);
4914 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4916 return show_slab_objects(s, buf, SO_PARTIAL);
4918 SLAB_ATTR_RO(partial);
4920 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4922 return show_slab_objects(s, buf, SO_CPU);
4924 SLAB_ATTR_RO(cpu_slabs);
4926 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4928 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4930 SLAB_ATTR_RO(objects);
4932 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4934 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4936 SLAB_ATTR_RO(objects_partial);
4938 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4940 int objects = 0;
4941 int pages = 0;
4942 int cpu;
4943 int len;
4945 for_each_online_cpu(cpu) {
4946 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4948 if (page) {
4949 pages += page->pages;
4950 objects += page->pobjects;
4954 len = sprintf(buf, "%d(%d)", objects, pages);
4956 #ifdef CONFIG_SMP
4957 for_each_online_cpu(cpu) {
4958 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4960 if (page && len < PAGE_SIZE - 20)
4961 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4962 page->pobjects, page->pages);
4964 #endif
4965 return len + sprintf(buf + len, "\n");
4967 SLAB_ATTR_RO(slabs_cpu_partial);
4969 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4971 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4974 static ssize_t reclaim_account_store(struct kmem_cache *s,
4975 const char *buf, size_t length)
4977 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4978 if (buf[0] == '1')
4979 s->flags |= SLAB_RECLAIM_ACCOUNT;
4980 return length;
4982 SLAB_ATTR(reclaim_account);
4984 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4986 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4988 SLAB_ATTR_RO(hwcache_align);
4990 #ifdef CONFIG_ZONE_DMA
4991 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4993 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4995 SLAB_ATTR_RO(cache_dma);
4996 #endif
4998 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5000 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
5002 SLAB_ATTR_RO(destroy_by_rcu);
5004 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5006 return sprintf(buf, "%d\n", s->reserved);
5008 SLAB_ATTR_RO(reserved);
5010 #ifdef CONFIG_SLUB_DEBUG
5011 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5013 return show_slab_objects(s, buf, SO_ALL);
5015 SLAB_ATTR_RO(slabs);
5017 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5019 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5021 SLAB_ATTR_RO(total_objects);
5023 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5025 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5028 static ssize_t sanity_checks_store(struct kmem_cache *s,
5029 const char *buf, size_t length)
5031 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5032 if (buf[0] == '1') {
5033 s->flags &= ~__CMPXCHG_DOUBLE;
5034 s->flags |= SLAB_CONSISTENCY_CHECKS;
5036 return length;
5038 SLAB_ATTR(sanity_checks);
5040 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5042 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5045 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5046 size_t length)
5049 * Tracing a merged cache is going to give confusing results
5050 * as well as cause other issues like converting a mergeable
5051 * cache into an umergeable one.
5053 if (s->refcount > 1)
5054 return -EINVAL;
5056 s->flags &= ~SLAB_TRACE;
5057 if (buf[0] == '1') {
5058 s->flags &= ~__CMPXCHG_DOUBLE;
5059 s->flags |= SLAB_TRACE;
5061 return length;
5063 SLAB_ATTR(trace);
5065 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5067 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5070 static ssize_t red_zone_store(struct kmem_cache *s,
5071 const char *buf, size_t length)
5073 if (any_slab_objects(s))
5074 return -EBUSY;
5076 s->flags &= ~SLAB_RED_ZONE;
5077 if (buf[0] == '1') {
5078 s->flags |= SLAB_RED_ZONE;
5080 calculate_sizes(s, -1);
5081 return length;
5083 SLAB_ATTR(red_zone);
5085 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5090 static ssize_t poison_store(struct kmem_cache *s,
5091 const char *buf, size_t length)
5093 if (any_slab_objects(s))
5094 return -EBUSY;
5096 s->flags &= ~SLAB_POISON;
5097 if (buf[0] == '1') {
5098 s->flags |= SLAB_POISON;
5100 calculate_sizes(s, -1);
5101 return length;
5103 SLAB_ATTR(poison);
5105 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5107 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5110 static ssize_t store_user_store(struct kmem_cache *s,
5111 const char *buf, size_t length)
5113 if (any_slab_objects(s))
5114 return -EBUSY;
5116 s->flags &= ~SLAB_STORE_USER;
5117 if (buf[0] == '1') {
5118 s->flags &= ~__CMPXCHG_DOUBLE;
5119 s->flags |= SLAB_STORE_USER;
5121 calculate_sizes(s, -1);
5122 return length;
5124 SLAB_ATTR(store_user);
5126 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5128 return 0;
5131 static ssize_t validate_store(struct kmem_cache *s,
5132 const char *buf, size_t length)
5134 int ret = -EINVAL;
5136 if (buf[0] == '1') {
5137 ret = validate_slab_cache(s);
5138 if (ret >= 0)
5139 ret = length;
5141 return ret;
5143 SLAB_ATTR(validate);
5145 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5147 if (!(s->flags & SLAB_STORE_USER))
5148 return -ENOSYS;
5149 return list_locations(s, buf, TRACK_ALLOC);
5151 SLAB_ATTR_RO(alloc_calls);
5153 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5155 if (!(s->flags & SLAB_STORE_USER))
5156 return -ENOSYS;
5157 return list_locations(s, buf, TRACK_FREE);
5159 SLAB_ATTR_RO(free_calls);
5160 #endif /* CONFIG_SLUB_DEBUG */
5162 #ifdef CONFIG_FAILSLAB
5163 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5165 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5168 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5169 size_t length)
5171 if (s->refcount > 1)
5172 return -EINVAL;
5174 s->flags &= ~SLAB_FAILSLAB;
5175 if (buf[0] == '1')
5176 s->flags |= SLAB_FAILSLAB;
5177 return length;
5179 SLAB_ATTR(failslab);
5180 #endif
5182 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5184 return 0;
5187 static ssize_t shrink_store(struct kmem_cache *s,
5188 const char *buf, size_t length)
5190 if (buf[0] == '1')
5191 kmem_cache_shrink(s);
5192 else
5193 return -EINVAL;
5194 return length;
5196 SLAB_ATTR(shrink);
5198 #ifdef CONFIG_NUMA
5199 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5201 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5204 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5205 const char *buf, size_t length)
5207 unsigned long ratio;
5208 int err;
5210 err = kstrtoul(buf, 10, &ratio);
5211 if (err)
5212 return err;
5214 if (ratio <= 100)
5215 s->remote_node_defrag_ratio = ratio * 10;
5217 return length;
5219 SLAB_ATTR(remote_node_defrag_ratio);
5220 #endif
5222 #ifdef CONFIG_SLUB_STATS
5223 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5225 unsigned long sum = 0;
5226 int cpu;
5227 int len;
5228 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5230 if (!data)
5231 return -ENOMEM;
5233 for_each_online_cpu(cpu) {
5234 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5236 data[cpu] = x;
5237 sum += x;
5240 len = sprintf(buf, "%lu", sum);
5242 #ifdef CONFIG_SMP
5243 for_each_online_cpu(cpu) {
5244 if (data[cpu] && len < PAGE_SIZE - 20)
5245 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5247 #endif
5248 kfree(data);
5249 return len + sprintf(buf + len, "\n");
5252 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5254 int cpu;
5256 for_each_online_cpu(cpu)
5257 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5260 #define STAT_ATTR(si, text) \
5261 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5263 return show_stat(s, buf, si); \
5265 static ssize_t text##_store(struct kmem_cache *s, \
5266 const char *buf, size_t length) \
5268 if (buf[0] != '0') \
5269 return -EINVAL; \
5270 clear_stat(s, si); \
5271 return length; \
5273 SLAB_ATTR(text); \
5275 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5276 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5277 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5278 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5279 STAT_ATTR(FREE_FROZEN, free_frozen);
5280 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5281 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5282 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5283 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5284 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5285 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5286 STAT_ATTR(FREE_SLAB, free_slab);
5287 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5288 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5289 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5290 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5291 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5292 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5293 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5294 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5295 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5296 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5297 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5298 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5299 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5300 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5301 #endif
5303 static struct attribute *slab_attrs[] = {
5304 &slab_size_attr.attr,
5305 &object_size_attr.attr,
5306 &objs_per_slab_attr.attr,
5307 &order_attr.attr,
5308 &min_partial_attr.attr,
5309 &cpu_partial_attr.attr,
5310 &objects_attr.attr,
5311 &objects_partial_attr.attr,
5312 &partial_attr.attr,
5313 &cpu_slabs_attr.attr,
5314 &ctor_attr.attr,
5315 &aliases_attr.attr,
5316 &align_attr.attr,
5317 &hwcache_align_attr.attr,
5318 &reclaim_account_attr.attr,
5319 &destroy_by_rcu_attr.attr,
5320 &shrink_attr.attr,
5321 &reserved_attr.attr,
5322 &slabs_cpu_partial_attr.attr,
5323 #ifdef CONFIG_SLUB_DEBUG
5324 &total_objects_attr.attr,
5325 &slabs_attr.attr,
5326 &sanity_checks_attr.attr,
5327 &trace_attr.attr,
5328 &red_zone_attr.attr,
5329 &poison_attr.attr,
5330 &store_user_attr.attr,
5331 &validate_attr.attr,
5332 &alloc_calls_attr.attr,
5333 &free_calls_attr.attr,
5334 #endif
5335 #ifdef CONFIG_ZONE_DMA
5336 &cache_dma_attr.attr,
5337 #endif
5338 #ifdef CONFIG_NUMA
5339 &remote_node_defrag_ratio_attr.attr,
5340 #endif
5341 #ifdef CONFIG_SLUB_STATS
5342 &alloc_fastpath_attr.attr,
5343 &alloc_slowpath_attr.attr,
5344 &free_fastpath_attr.attr,
5345 &free_slowpath_attr.attr,
5346 &free_frozen_attr.attr,
5347 &free_add_partial_attr.attr,
5348 &free_remove_partial_attr.attr,
5349 &alloc_from_partial_attr.attr,
5350 &alloc_slab_attr.attr,
5351 &alloc_refill_attr.attr,
5352 &alloc_node_mismatch_attr.attr,
5353 &free_slab_attr.attr,
5354 &cpuslab_flush_attr.attr,
5355 &deactivate_full_attr.attr,
5356 &deactivate_empty_attr.attr,
5357 &deactivate_to_head_attr.attr,
5358 &deactivate_to_tail_attr.attr,
5359 &deactivate_remote_frees_attr.attr,
5360 &deactivate_bypass_attr.attr,
5361 &order_fallback_attr.attr,
5362 &cmpxchg_double_fail_attr.attr,
5363 &cmpxchg_double_cpu_fail_attr.attr,
5364 &cpu_partial_alloc_attr.attr,
5365 &cpu_partial_free_attr.attr,
5366 &cpu_partial_node_attr.attr,
5367 &cpu_partial_drain_attr.attr,
5368 #endif
5369 #ifdef CONFIG_FAILSLAB
5370 &failslab_attr.attr,
5371 #endif
5373 NULL
5376 static struct attribute_group slab_attr_group = {
5377 .attrs = slab_attrs,
5380 static ssize_t slab_attr_show(struct kobject *kobj,
5381 struct attribute *attr,
5382 char *buf)
5384 struct slab_attribute *attribute;
5385 struct kmem_cache *s;
5386 int err;
5388 attribute = to_slab_attr(attr);
5389 s = to_slab(kobj);
5391 if (!attribute->show)
5392 return -EIO;
5394 err = attribute->show(s, buf);
5396 return err;
5399 static ssize_t slab_attr_store(struct kobject *kobj,
5400 struct attribute *attr,
5401 const char *buf, size_t len)
5403 struct slab_attribute *attribute;
5404 struct kmem_cache *s;
5405 int err;
5407 attribute = to_slab_attr(attr);
5408 s = to_slab(kobj);
5410 if (!attribute->store)
5411 return -EIO;
5413 err = attribute->store(s, buf, len);
5414 #ifdef CONFIG_MEMCG
5415 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5416 struct kmem_cache *c;
5418 mutex_lock(&slab_mutex);
5419 if (s->max_attr_size < len)
5420 s->max_attr_size = len;
5423 * This is a best effort propagation, so this function's return
5424 * value will be determined by the parent cache only. This is
5425 * basically because not all attributes will have a well
5426 * defined semantics for rollbacks - most of the actions will
5427 * have permanent effects.
5429 * Returning the error value of any of the children that fail
5430 * is not 100 % defined, in the sense that users seeing the
5431 * error code won't be able to know anything about the state of
5432 * the cache.
5434 * Only returning the error code for the parent cache at least
5435 * has well defined semantics. The cache being written to
5436 * directly either failed or succeeded, in which case we loop
5437 * through the descendants with best-effort propagation.
5439 for_each_memcg_cache(c, s)
5440 attribute->store(c, buf, len);
5441 mutex_unlock(&slab_mutex);
5443 #endif
5444 return err;
5447 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5449 #ifdef CONFIG_MEMCG
5450 int i;
5451 char *buffer = NULL;
5452 struct kmem_cache *root_cache;
5454 if (is_root_cache(s))
5455 return;
5457 root_cache = s->memcg_params.root_cache;
5460 * This mean this cache had no attribute written. Therefore, no point
5461 * in copying default values around
5463 if (!root_cache->max_attr_size)
5464 return;
5466 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5467 char mbuf[64];
5468 char *buf;
5469 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5471 if (!attr || !attr->store || !attr->show)
5472 continue;
5475 * It is really bad that we have to allocate here, so we will
5476 * do it only as a fallback. If we actually allocate, though,
5477 * we can just use the allocated buffer until the end.
5479 * Most of the slub attributes will tend to be very small in
5480 * size, but sysfs allows buffers up to a page, so they can
5481 * theoretically happen.
5483 if (buffer)
5484 buf = buffer;
5485 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5486 buf = mbuf;
5487 else {
5488 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5489 if (WARN_ON(!buffer))
5490 continue;
5491 buf = buffer;
5494 attr->show(root_cache, buf);
5495 attr->store(s, buf, strlen(buf));
5498 if (buffer)
5499 free_page((unsigned long)buffer);
5500 #endif
5503 static void kmem_cache_release(struct kobject *k)
5505 slab_kmem_cache_release(to_slab(k));
5508 static const struct sysfs_ops slab_sysfs_ops = {
5509 .show = slab_attr_show,
5510 .store = slab_attr_store,
5513 static struct kobj_type slab_ktype = {
5514 .sysfs_ops = &slab_sysfs_ops,
5515 .release = kmem_cache_release,
5518 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5520 struct kobj_type *ktype = get_ktype(kobj);
5522 if (ktype == &slab_ktype)
5523 return 1;
5524 return 0;
5527 static const struct kset_uevent_ops slab_uevent_ops = {
5528 .filter = uevent_filter,
5531 static struct kset *slab_kset;
5533 static inline struct kset *cache_kset(struct kmem_cache *s)
5535 #ifdef CONFIG_MEMCG
5536 if (!is_root_cache(s))
5537 return s->memcg_params.root_cache->memcg_kset;
5538 #endif
5539 return slab_kset;
5542 #define ID_STR_LENGTH 64
5544 /* Create a unique string id for a slab cache:
5546 * Format :[flags-]size
5548 static char *create_unique_id(struct kmem_cache *s)
5550 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5551 char *p = name;
5553 BUG_ON(!name);
5555 *p++ = ':';
5557 * First flags affecting slabcache operations. We will only
5558 * get here for aliasable slabs so we do not need to support
5559 * too many flags. The flags here must cover all flags that
5560 * are matched during merging to guarantee that the id is
5561 * unique.
5563 if (s->flags & SLAB_CACHE_DMA)
5564 *p++ = 'd';
5565 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5566 *p++ = 'a';
5567 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5568 *p++ = 'F';
5569 if (!(s->flags & SLAB_NOTRACK))
5570 *p++ = 't';
5571 if (s->flags & SLAB_ACCOUNT)
5572 *p++ = 'A';
5573 if (p != name + 1)
5574 *p++ = '-';
5575 p += sprintf(p, "%07d", s->size);
5577 BUG_ON(p > name + ID_STR_LENGTH - 1);
5578 return name;
5581 static int sysfs_slab_add(struct kmem_cache *s)
5583 int err;
5584 const char *name;
5585 int unmergeable = slab_unmergeable(s);
5587 if (unmergeable) {
5589 * Slabcache can never be merged so we can use the name proper.
5590 * This is typically the case for debug situations. In that
5591 * case we can catch duplicate names easily.
5593 sysfs_remove_link(&slab_kset->kobj, s->name);
5594 name = s->name;
5595 } else {
5597 * Create a unique name for the slab as a target
5598 * for the symlinks.
5600 name = create_unique_id(s);
5603 s->kobj.kset = cache_kset(s);
5604 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5605 if (err)
5606 goto out;
5608 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5609 if (err)
5610 goto out_del_kobj;
5612 #ifdef CONFIG_MEMCG
5613 if (is_root_cache(s)) {
5614 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5615 if (!s->memcg_kset) {
5616 err = -ENOMEM;
5617 goto out_del_kobj;
5620 #endif
5622 kobject_uevent(&s->kobj, KOBJ_ADD);
5623 if (!unmergeable) {
5624 /* Setup first alias */
5625 sysfs_slab_alias(s, s->name);
5627 out:
5628 if (!unmergeable)
5629 kfree(name);
5630 return err;
5631 out_del_kobj:
5632 kobject_del(&s->kobj);
5633 goto out;
5636 void sysfs_slab_remove(struct kmem_cache *s)
5638 if (slab_state < FULL)
5640 * Sysfs has not been setup yet so no need to remove the
5641 * cache from sysfs.
5643 return;
5645 #ifdef CONFIG_MEMCG
5646 kset_unregister(s->memcg_kset);
5647 #endif
5648 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5649 kobject_del(&s->kobj);
5650 kobject_put(&s->kobj);
5654 * Need to buffer aliases during bootup until sysfs becomes
5655 * available lest we lose that information.
5657 struct saved_alias {
5658 struct kmem_cache *s;
5659 const char *name;
5660 struct saved_alias *next;
5663 static struct saved_alias *alias_list;
5665 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5667 struct saved_alias *al;
5669 if (slab_state == FULL) {
5671 * If we have a leftover link then remove it.
5673 sysfs_remove_link(&slab_kset->kobj, name);
5674 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5677 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5678 if (!al)
5679 return -ENOMEM;
5681 al->s = s;
5682 al->name = name;
5683 al->next = alias_list;
5684 alias_list = al;
5685 return 0;
5688 static int __init slab_sysfs_init(void)
5690 struct kmem_cache *s;
5691 int err;
5693 mutex_lock(&slab_mutex);
5695 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5696 if (!slab_kset) {
5697 mutex_unlock(&slab_mutex);
5698 pr_err("Cannot register slab subsystem.\n");
5699 return -ENOSYS;
5702 slab_state = FULL;
5704 list_for_each_entry(s, &slab_caches, list) {
5705 err = sysfs_slab_add(s);
5706 if (err)
5707 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5708 s->name);
5711 while (alias_list) {
5712 struct saved_alias *al = alias_list;
5714 alias_list = alias_list->next;
5715 err = sysfs_slab_alias(al->s, al->name);
5716 if (err)
5717 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5718 al->name);
5719 kfree(al);
5722 mutex_unlock(&slab_mutex);
5723 resiliency_test();
5724 return 0;
5727 __initcall(slab_sysfs_init);
5728 #endif /* CONFIG_SYSFS */
5731 * The /proc/slabinfo ABI
5733 #ifdef CONFIG_SLABINFO
5734 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5736 unsigned long nr_slabs = 0;
5737 unsigned long nr_objs = 0;
5738 unsigned long nr_free = 0;
5739 int node;
5740 struct kmem_cache_node *n;
5742 for_each_kmem_cache_node(s, node, n) {
5743 nr_slabs += node_nr_slabs(n);
5744 nr_objs += node_nr_objs(n);
5745 nr_free += count_partial(n, count_free);
5748 sinfo->active_objs = nr_objs - nr_free;
5749 sinfo->num_objs = nr_objs;
5750 sinfo->active_slabs = nr_slabs;
5751 sinfo->num_slabs = nr_slabs;
5752 sinfo->objects_per_slab = oo_objects(s->oo);
5753 sinfo->cache_order = oo_order(s->oo);
5756 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5760 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5761 size_t count, loff_t *ppos)
5763 return -EIO;
5765 #endif /* CONFIG_SLABINFO */