rtnetlink: check DO_SETLINK_NOTIFY correctly in do_setlink
[linux/fpc-iii.git] / arch / powerpc / mm / tlb_hash64.c
blob881ebd53ffc27c8840ae57b088c4d247ba7ef191
1 /*
2 * This file contains the routines for flushing entries from the
3 * TLB and MMU hash table.
5 * Derived from arch/ppc64/mm/init.c:
6 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
8 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
9 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
10 * Copyright (C) 1996 Paul Mackerras
12 * Derived from "arch/i386/mm/init.c"
13 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
15 * Dave Engebretsen <engebret@us.ibm.com>
16 * Rework for PPC64 port.
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/hardirq.h>
28 #include <asm/pgalloc.h>
29 #include <asm/tlbflush.h>
30 #include <asm/tlb.h>
31 #include <asm/bug.h>
32 #include <asm/pte-walk.h>
35 #include <trace/events/thp.h>
37 DEFINE_PER_CPU(struct ppc64_tlb_batch, ppc64_tlb_batch);
40 * A linux PTE was changed and the corresponding hash table entry
41 * neesd to be flushed. This function will either perform the flush
42 * immediately or will batch it up if the current CPU has an active
43 * batch on it.
45 void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
46 pte_t *ptep, unsigned long pte, int huge)
48 unsigned long vpn;
49 struct ppc64_tlb_batch *batch = &get_cpu_var(ppc64_tlb_batch);
50 unsigned long vsid;
51 unsigned int psize;
52 int ssize;
53 real_pte_t rpte;
54 int i;
56 i = batch->index;
58 /* Get page size (maybe move back to caller).
60 * NOTE: when using special 64K mappings in 4K environment like
61 * for SPEs, we obtain the page size from the slice, which thus
62 * must still exist (and thus the VMA not reused) at the time
63 * of this call
65 if (huge) {
66 #ifdef CONFIG_HUGETLB_PAGE
67 psize = get_slice_psize(mm, addr);
68 /* Mask the address for the correct page size */
69 addr &= ~((1UL << mmu_psize_defs[psize].shift) - 1);
70 #else
71 BUG();
72 psize = pte_pagesize_index(mm, addr, pte); /* shutup gcc */
73 #endif
74 } else {
75 psize = pte_pagesize_index(mm, addr, pte);
76 /* Mask the address for the standard page size. If we
77 * have a 64k page kernel, but the hardware does not
78 * support 64k pages, this might be different from the
79 * hardware page size encoded in the slice table. */
80 addr &= PAGE_MASK;
84 /* Build full vaddr */
85 if (!is_kernel_addr(addr)) {
86 ssize = user_segment_size(addr);
87 vsid = get_vsid(mm->context.id, addr, ssize);
88 } else {
89 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
90 ssize = mmu_kernel_ssize;
92 WARN_ON(vsid == 0);
93 vpn = hpt_vpn(addr, vsid, ssize);
94 rpte = __real_pte(__pte(pte), ptep);
97 * Check if we have an active batch on this CPU. If not, just
98 * flush now and return.
100 if (!batch->active) {
101 flush_hash_page(vpn, rpte, psize, ssize, mm_is_thread_local(mm));
102 put_cpu_var(ppc64_tlb_batch);
103 return;
107 * This can happen when we are in the middle of a TLB batch and
108 * we encounter memory pressure (eg copy_page_range when it tries
109 * to allocate a new pte). If we have to reclaim memory and end
110 * up scanning and resetting referenced bits then our batch context
111 * will change mid stream.
113 * We also need to ensure only one page size is present in a given
114 * batch
116 if (i != 0 && (mm != batch->mm || batch->psize != psize ||
117 batch->ssize != ssize)) {
118 __flush_tlb_pending(batch);
119 i = 0;
121 if (i == 0) {
122 batch->mm = mm;
123 batch->psize = psize;
124 batch->ssize = ssize;
126 batch->pte[i] = rpte;
127 batch->vpn[i] = vpn;
128 batch->index = ++i;
129 if (i >= PPC64_TLB_BATCH_NR)
130 __flush_tlb_pending(batch);
131 put_cpu_var(ppc64_tlb_batch);
135 * This function is called when terminating an mmu batch or when a batch
136 * is full. It will perform the flush of all the entries currently stored
137 * in a batch.
139 * Must be called from within some kind of spinlock/non-preempt region...
141 void __flush_tlb_pending(struct ppc64_tlb_batch *batch)
143 int i, local;
145 i = batch->index;
146 local = mm_is_thread_local(batch->mm);
147 if (i == 1)
148 flush_hash_page(batch->vpn[0], batch->pte[0],
149 batch->psize, batch->ssize, local);
150 else
151 flush_hash_range(i, local);
152 batch->index = 0;
155 void hash__tlb_flush(struct mmu_gather *tlb)
157 struct ppc64_tlb_batch *tlbbatch = &get_cpu_var(ppc64_tlb_batch);
159 /* If there's a TLB batch pending, then we must flush it because the
160 * pages are going to be freed and we really don't want to have a CPU
161 * access a freed page because it has a stale TLB
163 if (tlbbatch->index)
164 __flush_tlb_pending(tlbbatch);
166 put_cpu_var(ppc64_tlb_batch);
170 * __flush_hash_table_range - Flush all HPTEs for a given address range
171 * from the hash table (and the TLB). But keeps
172 * the linux PTEs intact.
174 * @mm : mm_struct of the target address space (generally init_mm)
175 * @start : starting address
176 * @end : ending address (not included in the flush)
178 * This function is mostly to be used by some IO hotplug code in order
179 * to remove all hash entries from a given address range used to map IO
180 * space on a removed PCI-PCI bidge without tearing down the full mapping
181 * since 64K pages may overlap with other bridges when using 64K pages
182 * with 4K HW pages on IO space.
184 * Because of that usage pattern, it is implemented for small size rather
185 * than speed.
187 void __flush_hash_table_range(struct mm_struct *mm, unsigned long start,
188 unsigned long end)
190 bool is_thp;
191 int hugepage_shift;
192 unsigned long flags;
194 start = _ALIGN_DOWN(start, PAGE_SIZE);
195 end = _ALIGN_UP(end, PAGE_SIZE);
197 BUG_ON(!mm->pgd);
199 /* Note: Normally, we should only ever use a batch within a
200 * PTE locked section. This violates the rule, but will work
201 * since we don't actually modify the PTEs, we just flush the
202 * hash while leaving the PTEs intact (including their reference
203 * to being hashed). This is not the most performance oriented
204 * way to do things but is fine for our needs here.
206 local_irq_save(flags);
207 arch_enter_lazy_mmu_mode();
208 for (; start < end; start += PAGE_SIZE) {
209 pte_t *ptep = find_current_mm_pte(mm->pgd, start, &is_thp,
210 &hugepage_shift);
211 unsigned long pte;
213 if (ptep == NULL)
214 continue;
215 pte = pte_val(*ptep);
216 if (is_thp)
217 trace_hugepage_invalidate(start, pte);
218 if (!(pte & H_PAGE_HASHPTE))
219 continue;
220 if (unlikely(is_thp))
221 hpte_do_hugepage_flush(mm, start, (pmd_t *)ptep, pte);
222 else
223 hpte_need_flush(mm, start, ptep, pte, hugepage_shift);
225 arch_leave_lazy_mmu_mode();
226 local_irq_restore(flags);
229 void flush_tlb_pmd_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr)
231 pte_t *pte;
232 pte_t *start_pte;
233 unsigned long flags;
235 addr = _ALIGN_DOWN(addr, PMD_SIZE);
236 /* Note: Normally, we should only ever use a batch within a
237 * PTE locked section. This violates the rule, but will work
238 * since we don't actually modify the PTEs, we just flush the
239 * hash while leaving the PTEs intact (including their reference
240 * to being hashed). This is not the most performance oriented
241 * way to do things but is fine for our needs here.
243 local_irq_save(flags);
244 arch_enter_lazy_mmu_mode();
245 start_pte = pte_offset_map(pmd, addr);
246 for (pte = start_pte; pte < start_pte + PTRS_PER_PTE; pte++) {
247 unsigned long pteval = pte_val(*pte);
248 if (pteval & H_PAGE_HASHPTE)
249 hpte_need_flush(mm, addr, pte, pteval, 0);
250 addr += PAGE_SIZE;
252 arch_leave_lazy_mmu_mode();
253 local_irq_restore(flags);