2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/sched/mm.h>
106 #include <linux/timer.h>
107 #include <linux/string.h>
108 #include <linux/sockios.h>
109 #include <linux/net.h>
110 #include <linux/mm.h>
111 #include <linux/slab.h>
112 #include <linux/interrupt.h>
113 #include <linux/poll.h>
114 #include <linux/tcp.h>
115 #include <linux/init.h>
116 #include <linux/highmem.h>
117 #include <linux/user_namespace.h>
118 #include <linux/static_key.h>
119 #include <linux/memcontrol.h>
120 #include <linux/prefetch.h>
122 #include <linux/uaccess.h>
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <linux/net_tstamp.h>
131 #include <net/xfrm.h>
132 #include <linux/ipsec.h>
133 #include <net/cls_cgroup.h>
134 #include <net/netprio_cgroup.h>
135 #include <linux/sock_diag.h>
137 #include <linux/filter.h>
138 #include <net/sock_reuseport.h>
140 #include <trace/events/sock.h>
143 #include <net/busy_poll.h>
145 static DEFINE_MUTEX(proto_list_mutex
);
146 static LIST_HEAD(proto_list
);
149 * sk_ns_capable - General socket capability test
150 * @sk: Socket to use a capability on or through
151 * @user_ns: The user namespace of the capability to use
152 * @cap: The capability to use
154 * Test to see if the opener of the socket had when the socket was
155 * created and the current process has the capability @cap in the user
156 * namespace @user_ns.
158 bool sk_ns_capable(const struct sock
*sk
,
159 struct user_namespace
*user_ns
, int cap
)
161 return file_ns_capable(sk
->sk_socket
->file
, user_ns
, cap
) &&
162 ns_capable(user_ns
, cap
);
164 EXPORT_SYMBOL(sk_ns_capable
);
167 * sk_capable - Socket global capability test
168 * @sk: Socket to use a capability on or through
169 * @cap: The global capability to use
171 * Test to see if the opener of the socket had when the socket was
172 * created and the current process has the capability @cap in all user
175 bool sk_capable(const struct sock
*sk
, int cap
)
177 return sk_ns_capable(sk
, &init_user_ns
, cap
);
179 EXPORT_SYMBOL(sk_capable
);
182 * sk_net_capable - Network namespace socket capability test
183 * @sk: Socket to use a capability on or through
184 * @cap: The capability to use
186 * Test to see if the opener of the socket had when the socket was created
187 * and the current process has the capability @cap over the network namespace
188 * the socket is a member of.
190 bool sk_net_capable(const struct sock
*sk
, int cap
)
192 return sk_ns_capable(sk
, sock_net(sk
)->user_ns
, cap
);
194 EXPORT_SYMBOL(sk_net_capable
);
197 * Each address family might have different locking rules, so we have
198 * one slock key per address family and separate keys for internal and
201 static struct lock_class_key af_family_keys
[AF_MAX
];
202 static struct lock_class_key af_family_kern_keys
[AF_MAX
];
203 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
204 static struct lock_class_key af_family_kern_slock_keys
[AF_MAX
];
207 * Make lock validator output more readable. (we pre-construct these
208 * strings build-time, so that runtime initialization of socket
212 #define _sock_locks(x) \
213 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
214 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
215 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
216 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
217 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
218 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
219 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
220 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
221 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
222 x "27" , x "28" , x "AF_CAN" , \
223 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
224 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
225 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
226 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
227 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX"
229 static const char *const af_family_key_strings
[AF_MAX
+1] = {
230 _sock_locks("sk_lock-")
232 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
233 _sock_locks("slock-")
235 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
236 _sock_locks("clock-")
239 static const char *const af_family_kern_key_strings
[AF_MAX
+1] = {
240 _sock_locks("k-sk_lock-")
242 static const char *const af_family_kern_slock_key_strings
[AF_MAX
+1] = {
243 _sock_locks("k-slock-")
245 static const char *const af_family_kern_clock_key_strings
[AF_MAX
+1] = {
246 _sock_locks("k-clock-")
248 static const char *const af_family_rlock_key_strings
[AF_MAX
+1] = {
249 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" ,
250 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK",
251 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" ,
252 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" ,
253 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" ,
254 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" ,
255 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" ,
256 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" ,
257 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" ,
258 "rlock-27" , "rlock-28" , "rlock-AF_CAN" ,
259 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" ,
260 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" ,
261 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" ,
262 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" ,
263 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX"
265 static const char *const af_family_wlock_key_strings
[AF_MAX
+1] = {
266 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" ,
267 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK",
268 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" ,
269 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" ,
270 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" ,
271 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" ,
272 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" ,
273 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" ,
274 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" ,
275 "wlock-27" , "wlock-28" , "wlock-AF_CAN" ,
276 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" ,
277 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" ,
278 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" ,
279 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" ,
280 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX"
282 static const char *const af_family_elock_key_strings
[AF_MAX
+1] = {
283 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" ,
284 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK",
285 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" ,
286 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" ,
287 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" ,
288 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" ,
289 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" ,
290 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" ,
291 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" ,
292 "elock-27" , "elock-28" , "elock-AF_CAN" ,
293 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" ,
294 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" ,
295 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" ,
296 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" ,
297 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX"
301 * sk_callback_lock and sk queues locking rules are per-address-family,
302 * so split the lock classes by using a per-AF key:
304 static struct lock_class_key af_callback_keys
[AF_MAX
];
305 static struct lock_class_key af_rlock_keys
[AF_MAX
];
306 static struct lock_class_key af_wlock_keys
[AF_MAX
];
307 static struct lock_class_key af_elock_keys
[AF_MAX
];
308 static struct lock_class_key af_kern_callback_keys
[AF_MAX
];
310 /* Run time adjustable parameters. */
311 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
312 EXPORT_SYMBOL(sysctl_wmem_max
);
313 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
314 EXPORT_SYMBOL(sysctl_rmem_max
);
315 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
316 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
318 /* Maximal space eaten by iovec or ancillary data plus some space */
319 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
320 EXPORT_SYMBOL(sysctl_optmem_max
);
322 int sysctl_tstamp_allow_data __read_mostly
= 1;
324 struct static_key memalloc_socks
= STATIC_KEY_INIT_FALSE
;
325 EXPORT_SYMBOL_GPL(memalloc_socks
);
328 * sk_set_memalloc - sets %SOCK_MEMALLOC
329 * @sk: socket to set it on
331 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
332 * It's the responsibility of the admin to adjust min_free_kbytes
333 * to meet the requirements
335 void sk_set_memalloc(struct sock
*sk
)
337 sock_set_flag(sk
, SOCK_MEMALLOC
);
338 sk
->sk_allocation
|= __GFP_MEMALLOC
;
339 static_key_slow_inc(&memalloc_socks
);
341 EXPORT_SYMBOL_GPL(sk_set_memalloc
);
343 void sk_clear_memalloc(struct sock
*sk
)
345 sock_reset_flag(sk
, SOCK_MEMALLOC
);
346 sk
->sk_allocation
&= ~__GFP_MEMALLOC
;
347 static_key_slow_dec(&memalloc_socks
);
350 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
351 * progress of swapping. SOCK_MEMALLOC may be cleared while
352 * it has rmem allocations due to the last swapfile being deactivated
353 * but there is a risk that the socket is unusable due to exceeding
354 * the rmem limits. Reclaim the reserves and obey rmem limits again.
358 EXPORT_SYMBOL_GPL(sk_clear_memalloc
);
360 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
363 unsigned int noreclaim_flag
;
365 /* these should have been dropped before queueing */
366 BUG_ON(!sock_flag(sk
, SOCK_MEMALLOC
));
368 noreclaim_flag
= memalloc_noreclaim_save();
369 ret
= sk
->sk_backlog_rcv(sk
, skb
);
370 memalloc_noreclaim_restore(noreclaim_flag
);
374 EXPORT_SYMBOL(__sk_backlog_rcv
);
376 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
380 if (optlen
< sizeof(tv
))
382 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
384 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
388 static int warned __read_mostly
;
391 if (warned
< 10 && net_ratelimit()) {
393 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
394 __func__
, current
->comm
, task_pid_nr(current
));
398 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
399 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
401 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
402 *timeo_p
= tv
.tv_sec
* HZ
+ DIV_ROUND_UP(tv
.tv_usec
, USEC_PER_SEC
/ HZ
);
406 static void sock_warn_obsolete_bsdism(const char *name
)
409 static char warncomm
[TASK_COMM_LEN
];
410 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
411 strcpy(warncomm
, current
->comm
);
412 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
418 static bool sock_needs_netstamp(const struct sock
*sk
)
420 switch (sk
->sk_family
) {
429 static void sock_disable_timestamp(struct sock
*sk
, unsigned long flags
)
431 if (sk
->sk_flags
& flags
) {
432 sk
->sk_flags
&= ~flags
;
433 if (sock_needs_netstamp(sk
) &&
434 !(sk
->sk_flags
& SK_FLAGS_TIMESTAMP
))
435 net_disable_timestamp();
440 int __sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
443 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
445 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
) {
446 atomic_inc(&sk
->sk_drops
);
447 trace_sock_rcvqueue_full(sk
, skb
);
451 if (!sk_rmem_schedule(sk
, skb
, skb
->truesize
)) {
452 atomic_inc(&sk
->sk_drops
);
457 skb_set_owner_r(skb
, sk
);
459 /* we escape from rcu protected region, make sure we dont leak
464 spin_lock_irqsave(&list
->lock
, flags
);
465 sock_skb_set_dropcount(sk
, skb
);
466 __skb_queue_tail(list
, skb
);
467 spin_unlock_irqrestore(&list
->lock
, flags
);
469 if (!sock_flag(sk
, SOCK_DEAD
))
470 sk
->sk_data_ready(sk
);
473 EXPORT_SYMBOL(__sock_queue_rcv_skb
);
475 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
479 err
= sk_filter(sk
, skb
);
483 return __sock_queue_rcv_skb(sk
, skb
);
485 EXPORT_SYMBOL(sock_queue_rcv_skb
);
487 int __sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
,
488 const int nested
, unsigned int trim_cap
, bool refcounted
)
490 int rc
= NET_RX_SUCCESS
;
492 if (sk_filter_trim_cap(sk
, skb
, trim_cap
))
493 goto discard_and_relse
;
497 if (sk_rcvqueues_full(sk
, sk
->sk_rcvbuf
)) {
498 atomic_inc(&sk
->sk_drops
);
499 goto discard_and_relse
;
502 bh_lock_sock_nested(sk
);
505 if (!sock_owned_by_user(sk
)) {
507 * trylock + unlock semantics:
509 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
511 rc
= sk_backlog_rcv(sk
, skb
);
513 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
514 } else if (sk_add_backlog(sk
, skb
, sk
->sk_rcvbuf
)) {
516 atomic_inc(&sk
->sk_drops
);
517 goto discard_and_relse
;
529 EXPORT_SYMBOL(__sk_receive_skb
);
531 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
533 struct dst_entry
*dst
= __sk_dst_get(sk
);
535 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
536 sk_tx_queue_clear(sk
);
537 sk
->sk_dst_pending_confirm
= 0;
538 RCU_INIT_POINTER(sk
->sk_dst_cache
, NULL
);
545 EXPORT_SYMBOL(__sk_dst_check
);
547 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
549 struct dst_entry
*dst
= sk_dst_get(sk
);
551 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
559 EXPORT_SYMBOL(sk_dst_check
);
561 static int sock_setbindtodevice(struct sock
*sk
, char __user
*optval
,
564 int ret
= -ENOPROTOOPT
;
565 #ifdef CONFIG_NETDEVICES
566 struct net
*net
= sock_net(sk
);
567 char devname
[IFNAMSIZ
];
572 if (!ns_capable(net
->user_ns
, CAP_NET_RAW
))
579 /* Bind this socket to a particular device like "eth0",
580 * as specified in the passed interface name. If the
581 * name is "" or the option length is zero the socket
584 if (optlen
> IFNAMSIZ
- 1)
585 optlen
= IFNAMSIZ
- 1;
586 memset(devname
, 0, sizeof(devname
));
589 if (copy_from_user(devname
, optval
, optlen
))
593 if (devname
[0] != '\0') {
594 struct net_device
*dev
;
597 dev
= dev_get_by_name_rcu(net
, devname
);
599 index
= dev
->ifindex
;
607 sk
->sk_bound_dev_if
= index
;
619 static int sock_getbindtodevice(struct sock
*sk
, char __user
*optval
,
620 int __user
*optlen
, int len
)
622 int ret
= -ENOPROTOOPT
;
623 #ifdef CONFIG_NETDEVICES
624 struct net
*net
= sock_net(sk
);
625 char devname
[IFNAMSIZ
];
627 if (sk
->sk_bound_dev_if
== 0) {
636 ret
= netdev_get_name(net
, devname
, sk
->sk_bound_dev_if
);
640 len
= strlen(devname
) + 1;
643 if (copy_to_user(optval
, devname
, len
))
648 if (put_user(len
, optlen
))
659 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
662 sock_set_flag(sk
, bit
);
664 sock_reset_flag(sk
, bit
);
667 bool sk_mc_loop(struct sock
*sk
)
669 if (dev_recursion_level())
673 switch (sk
->sk_family
) {
675 return inet_sk(sk
)->mc_loop
;
676 #if IS_ENABLED(CONFIG_IPV6)
678 return inet6_sk(sk
)->mc_loop
;
684 EXPORT_SYMBOL(sk_mc_loop
);
687 * This is meant for all protocols to use and covers goings on
688 * at the socket level. Everything here is generic.
691 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
692 char __user
*optval
, unsigned int optlen
)
694 struct sock
*sk
= sock
->sk
;
701 * Options without arguments
704 if (optname
== SO_BINDTODEVICE
)
705 return sock_setbindtodevice(sk
, optval
, optlen
);
707 if (optlen
< sizeof(int))
710 if (get_user(val
, (int __user
*)optval
))
713 valbool
= val
? 1 : 0;
719 if (val
&& !capable(CAP_NET_ADMIN
))
722 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
725 sk
->sk_reuse
= (valbool
? SK_CAN_REUSE
: SK_NO_REUSE
);
728 sk
->sk_reuseport
= valbool
;
737 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
740 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
743 /* Don't error on this BSD doesn't and if you think
744 * about it this is right. Otherwise apps have to
745 * play 'guess the biggest size' games. RCVBUF/SNDBUF
746 * are treated in BSD as hints
748 val
= min_t(u32
, val
, sysctl_wmem_max
);
750 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
751 sk
->sk_sndbuf
= max_t(int, val
* 2, SOCK_MIN_SNDBUF
);
752 /* Wake up sending tasks if we upped the value. */
753 sk
->sk_write_space(sk
);
757 if (!capable(CAP_NET_ADMIN
)) {
764 /* Don't error on this BSD doesn't and if you think
765 * about it this is right. Otherwise apps have to
766 * play 'guess the biggest size' games. RCVBUF/SNDBUF
767 * are treated in BSD as hints
769 val
= min_t(u32
, val
, sysctl_rmem_max
);
771 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
773 * We double it on the way in to account for
774 * "struct sk_buff" etc. overhead. Applications
775 * assume that the SO_RCVBUF setting they make will
776 * allow that much actual data to be received on that
779 * Applications are unaware that "struct sk_buff" and
780 * other overheads allocate from the receive buffer
781 * during socket buffer allocation.
783 * And after considering the possible alternatives,
784 * returning the value we actually used in getsockopt
785 * is the most desirable behavior.
787 sk
->sk_rcvbuf
= max_t(int, val
* 2, SOCK_MIN_RCVBUF
);
791 if (!capable(CAP_NET_ADMIN
)) {
798 if (sk
->sk_prot
->keepalive
)
799 sk
->sk_prot
->keepalive(sk
, valbool
);
800 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
804 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
808 sk
->sk_no_check_tx
= valbool
;
812 if ((val
>= 0 && val
<= 6) ||
813 ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
814 sk
->sk_priority
= val
;
820 if (optlen
< sizeof(ling
)) {
821 ret
= -EINVAL
; /* 1003.1g */
824 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
829 sock_reset_flag(sk
, SOCK_LINGER
);
831 #if (BITS_PER_LONG == 32)
832 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
833 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
836 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
837 sock_set_flag(sk
, SOCK_LINGER
);
842 sock_warn_obsolete_bsdism("setsockopt");
847 set_bit(SOCK_PASSCRED
, &sock
->flags
);
849 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
855 if (optname
== SO_TIMESTAMP
)
856 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
858 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
859 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
860 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
862 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
863 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
867 case SO_TIMESTAMPING
:
868 if (val
& ~SOF_TIMESTAMPING_MASK
) {
873 if (val
& SOF_TIMESTAMPING_OPT_ID
&&
874 !(sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)) {
875 if (sk
->sk_protocol
== IPPROTO_TCP
&&
876 sk
->sk_type
== SOCK_STREAM
) {
877 if ((1 << sk
->sk_state
) &
878 (TCPF_CLOSE
| TCPF_LISTEN
)) {
882 sk
->sk_tskey
= tcp_sk(sk
)->snd_una
;
888 if (val
& SOF_TIMESTAMPING_OPT_STATS
&&
889 !(val
& SOF_TIMESTAMPING_OPT_TSONLY
)) {
894 sk
->sk_tsflags
= val
;
895 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
896 sock_enable_timestamp(sk
,
897 SOCK_TIMESTAMPING_RX_SOFTWARE
);
899 sock_disable_timestamp(sk
,
900 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
));
906 sk
->sk_rcvlowat
= val
? : 1;
910 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
914 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
917 case SO_ATTACH_FILTER
:
919 if (optlen
== sizeof(struct sock_fprog
)) {
920 struct sock_fprog fprog
;
923 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
926 ret
= sk_attach_filter(&fprog
, sk
);
932 if (optlen
== sizeof(u32
)) {
936 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
939 ret
= sk_attach_bpf(ufd
, sk
);
943 case SO_ATTACH_REUSEPORT_CBPF
:
945 if (optlen
== sizeof(struct sock_fprog
)) {
946 struct sock_fprog fprog
;
949 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
952 ret
= sk_reuseport_attach_filter(&fprog
, sk
);
956 case SO_ATTACH_REUSEPORT_EBPF
:
958 if (optlen
== sizeof(u32
)) {
962 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
965 ret
= sk_reuseport_attach_bpf(ufd
, sk
);
969 case SO_DETACH_FILTER
:
970 ret
= sk_detach_filter(sk
);
974 if (sock_flag(sk
, SOCK_FILTER_LOCKED
) && !valbool
)
977 sock_valbool_flag(sk
, SOCK_FILTER_LOCKED
, valbool
);
982 set_bit(SOCK_PASSSEC
, &sock
->flags
);
984 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
987 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
994 sock_valbool_flag(sk
, SOCK_RXQ_OVFL
, valbool
);
998 sock_valbool_flag(sk
, SOCK_WIFI_STATUS
, valbool
);
1002 if (sock
->ops
->set_peek_off
)
1003 ret
= sock
->ops
->set_peek_off(sk
, val
);
1009 sock_valbool_flag(sk
, SOCK_NOFCS
, valbool
);
1012 case SO_SELECT_ERR_QUEUE
:
1013 sock_valbool_flag(sk
, SOCK_SELECT_ERR_QUEUE
, valbool
);
1016 #ifdef CONFIG_NET_RX_BUSY_POLL
1018 /* allow unprivileged users to decrease the value */
1019 if ((val
> sk
->sk_ll_usec
) && !capable(CAP_NET_ADMIN
))
1025 sk
->sk_ll_usec
= val
;
1030 case SO_MAX_PACING_RATE
:
1032 cmpxchg(&sk
->sk_pacing_status
,
1035 sk
->sk_max_pacing_rate
= val
;
1036 sk
->sk_pacing_rate
= min(sk
->sk_pacing_rate
,
1037 sk
->sk_max_pacing_rate
);
1040 case SO_INCOMING_CPU
:
1041 sk
->sk_incoming_cpu
= val
;
1046 dst_negative_advice(sk
);
1050 if (sk
->sk_family
!= PF_INET
&& sk
->sk_family
!= PF_INET6
)
1052 else if (sk
->sk_protocol
!= IPPROTO_TCP
)
1054 else if (sk
->sk_state
!= TCP_CLOSE
)
1056 else if (val
< 0 || val
> 1)
1059 sock_valbool_flag(sk
, SOCK_ZEROCOPY
, valbool
);
1069 EXPORT_SYMBOL(sock_setsockopt
);
1072 static void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
1073 struct ucred
*ucred
)
1075 ucred
->pid
= pid_vnr(pid
);
1076 ucred
->uid
= ucred
->gid
= -1;
1078 struct user_namespace
*current_ns
= current_user_ns();
1080 ucred
->uid
= from_kuid_munged(current_ns
, cred
->euid
);
1081 ucred
->gid
= from_kgid_munged(current_ns
, cred
->egid
);
1085 static int groups_to_user(gid_t __user
*dst
, const struct group_info
*src
)
1087 struct user_namespace
*user_ns
= current_user_ns();
1090 for (i
= 0; i
< src
->ngroups
; i
++)
1091 if (put_user(from_kgid_munged(user_ns
, src
->gid
[i
]), dst
+ i
))
1097 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
1098 char __user
*optval
, int __user
*optlen
)
1100 struct sock
*sk
= sock
->sk
;
1109 int lv
= sizeof(int);
1112 if (get_user(len
, optlen
))
1117 memset(&v
, 0, sizeof(v
));
1121 v
.val
= sock_flag(sk
, SOCK_DBG
);
1125 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
1129 v
.val
= sock_flag(sk
, SOCK_BROADCAST
);
1133 v
.val
= sk
->sk_sndbuf
;
1137 v
.val
= sk
->sk_rcvbuf
;
1141 v
.val
= sk
->sk_reuse
;
1145 v
.val
= sk
->sk_reuseport
;
1149 v
.val
= sock_flag(sk
, SOCK_KEEPOPEN
);
1153 v
.val
= sk
->sk_type
;
1157 v
.val
= sk
->sk_protocol
;
1161 v
.val
= sk
->sk_family
;
1165 v
.val
= -sock_error(sk
);
1167 v
.val
= xchg(&sk
->sk_err_soft
, 0);
1171 v
.val
= sock_flag(sk
, SOCK_URGINLINE
);
1175 v
.val
= sk
->sk_no_check_tx
;
1179 v
.val
= sk
->sk_priority
;
1183 lv
= sizeof(v
.ling
);
1184 v
.ling
.l_onoff
= sock_flag(sk
, SOCK_LINGER
);
1185 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
1189 sock_warn_obsolete_bsdism("getsockopt");
1193 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
1194 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1197 case SO_TIMESTAMPNS
:
1198 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1201 case SO_TIMESTAMPING
:
1202 v
.val
= sk
->sk_tsflags
;
1206 lv
= sizeof(struct timeval
);
1207 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1211 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
1212 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * USEC_PER_SEC
) / HZ
;
1217 lv
= sizeof(struct timeval
);
1218 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1222 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
1223 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * USEC_PER_SEC
) / HZ
;
1228 v
.val
= sk
->sk_rcvlowat
;
1236 v
.val
= !!test_bit(SOCK_PASSCRED
, &sock
->flags
);
1241 struct ucred peercred
;
1242 if (len
> sizeof(peercred
))
1243 len
= sizeof(peercred
);
1244 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
1245 if (copy_to_user(optval
, &peercred
, len
))
1254 if (!sk
->sk_peer_cred
)
1257 n
= sk
->sk_peer_cred
->group_info
->ngroups
;
1258 if (len
< n
* sizeof(gid_t
)) {
1259 len
= n
* sizeof(gid_t
);
1260 return put_user(len
, optlen
) ? -EFAULT
: -ERANGE
;
1262 len
= n
* sizeof(gid_t
);
1264 ret
= groups_to_user((gid_t __user
*)optval
,
1265 sk
->sk_peer_cred
->group_info
);
1275 if (sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &lv
, 2))
1279 if (copy_to_user(optval
, address
, len
))
1284 /* Dubious BSD thing... Probably nobody even uses it, but
1285 * the UNIX standard wants it for whatever reason... -DaveM
1288 v
.val
= sk
->sk_state
== TCP_LISTEN
;
1292 v
.val
= !!test_bit(SOCK_PASSSEC
, &sock
->flags
);
1296 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
1299 v
.val
= sk
->sk_mark
;
1303 v
.val
= sock_flag(sk
, SOCK_RXQ_OVFL
);
1306 case SO_WIFI_STATUS
:
1307 v
.val
= sock_flag(sk
, SOCK_WIFI_STATUS
);
1311 if (!sock
->ops
->set_peek_off
)
1314 v
.val
= sk
->sk_peek_off
;
1317 v
.val
= sock_flag(sk
, SOCK_NOFCS
);
1320 case SO_BINDTODEVICE
:
1321 return sock_getbindtodevice(sk
, optval
, optlen
, len
);
1324 len
= sk_get_filter(sk
, (struct sock_filter __user
*)optval
, len
);
1330 case SO_LOCK_FILTER
:
1331 v
.val
= sock_flag(sk
, SOCK_FILTER_LOCKED
);
1334 case SO_BPF_EXTENSIONS
:
1335 v
.val
= bpf_tell_extensions();
1338 case SO_SELECT_ERR_QUEUE
:
1339 v
.val
= sock_flag(sk
, SOCK_SELECT_ERR_QUEUE
);
1342 #ifdef CONFIG_NET_RX_BUSY_POLL
1344 v
.val
= sk
->sk_ll_usec
;
1348 case SO_MAX_PACING_RATE
:
1349 v
.val
= sk
->sk_max_pacing_rate
;
1352 case SO_INCOMING_CPU
:
1353 v
.val
= sk
->sk_incoming_cpu
;
1358 u32 meminfo
[SK_MEMINFO_VARS
];
1360 if (get_user(len
, optlen
))
1363 sk_get_meminfo(sk
, meminfo
);
1365 len
= min_t(unsigned int, len
, sizeof(meminfo
));
1366 if (copy_to_user(optval
, &meminfo
, len
))
1372 #ifdef CONFIG_NET_RX_BUSY_POLL
1373 case SO_INCOMING_NAPI_ID
:
1374 v
.val
= READ_ONCE(sk
->sk_napi_id
);
1376 /* aggregate non-NAPI IDs down to 0 */
1377 if (v
.val
< MIN_NAPI_ID
)
1387 v
.val64
= sock_gen_cookie(sk
);
1391 v
.val
= sock_flag(sk
, SOCK_ZEROCOPY
);
1395 /* We implement the SO_SNDLOWAT etc to not be settable
1398 return -ENOPROTOOPT
;
1403 if (copy_to_user(optval
, &v
, len
))
1406 if (put_user(len
, optlen
))
1412 * Initialize an sk_lock.
1414 * (We also register the sk_lock with the lock validator.)
1416 static inline void sock_lock_init(struct sock
*sk
)
1418 if (sk
->sk_kern_sock
)
1419 sock_lock_init_class_and_name(
1421 af_family_kern_slock_key_strings
[sk
->sk_family
],
1422 af_family_kern_slock_keys
+ sk
->sk_family
,
1423 af_family_kern_key_strings
[sk
->sk_family
],
1424 af_family_kern_keys
+ sk
->sk_family
);
1426 sock_lock_init_class_and_name(
1428 af_family_slock_key_strings
[sk
->sk_family
],
1429 af_family_slock_keys
+ sk
->sk_family
,
1430 af_family_key_strings
[sk
->sk_family
],
1431 af_family_keys
+ sk
->sk_family
);
1435 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1436 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1437 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1439 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1441 #ifdef CONFIG_SECURITY_NETWORK
1442 void *sptr
= nsk
->sk_security
;
1444 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1446 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1447 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1449 #ifdef CONFIG_SECURITY_NETWORK
1450 nsk
->sk_security
= sptr
;
1451 security_sk_clone(osk
, nsk
);
1455 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1459 struct kmem_cache
*slab
;
1463 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1466 if (priority
& __GFP_ZERO
)
1467 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1469 sk
= kmalloc(prot
->obj_size
, priority
);
1472 kmemcheck_annotate_bitfield(sk
, flags
);
1474 if (security_sk_alloc(sk
, family
, priority
))
1477 if (!try_module_get(prot
->owner
))
1479 sk_tx_queue_clear(sk
);
1485 security_sk_free(sk
);
1488 kmem_cache_free(slab
, sk
);
1494 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1496 struct kmem_cache
*slab
;
1497 struct module
*owner
;
1499 owner
= prot
->owner
;
1502 cgroup_sk_free(&sk
->sk_cgrp_data
);
1503 mem_cgroup_sk_free(sk
);
1504 security_sk_free(sk
);
1506 kmem_cache_free(slab
, sk
);
1513 * sk_alloc - All socket objects are allocated here
1514 * @net: the applicable net namespace
1515 * @family: protocol family
1516 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1517 * @prot: struct proto associated with this new sock instance
1518 * @kern: is this to be a kernel socket?
1520 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1521 struct proto
*prot
, int kern
)
1525 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1527 sk
->sk_family
= family
;
1529 * See comment in struct sock definition to understand
1530 * why we need sk_prot_creator -acme
1532 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1533 sk
->sk_kern_sock
= kern
;
1535 sk
->sk_net_refcnt
= kern
? 0 : 1;
1536 if (likely(sk
->sk_net_refcnt
))
1538 sock_net_set(sk
, net
);
1539 refcount_set(&sk
->sk_wmem_alloc
, 1);
1541 mem_cgroup_sk_alloc(sk
);
1542 cgroup_sk_alloc(&sk
->sk_cgrp_data
);
1543 sock_update_classid(&sk
->sk_cgrp_data
);
1544 sock_update_netprioidx(&sk
->sk_cgrp_data
);
1549 EXPORT_SYMBOL(sk_alloc
);
1551 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1552 * grace period. This is the case for UDP sockets and TCP listeners.
1554 static void __sk_destruct(struct rcu_head
*head
)
1556 struct sock
*sk
= container_of(head
, struct sock
, sk_rcu
);
1557 struct sk_filter
*filter
;
1559 if (sk
->sk_destruct
)
1560 sk
->sk_destruct(sk
);
1562 filter
= rcu_dereference_check(sk
->sk_filter
,
1563 refcount_read(&sk
->sk_wmem_alloc
) == 0);
1565 sk_filter_uncharge(sk
, filter
);
1566 RCU_INIT_POINTER(sk
->sk_filter
, NULL
);
1568 if (rcu_access_pointer(sk
->sk_reuseport_cb
))
1569 reuseport_detach_sock(sk
);
1571 sock_disable_timestamp(sk
, SK_FLAGS_TIMESTAMP
);
1573 if (atomic_read(&sk
->sk_omem_alloc
))
1574 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1575 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1577 if (sk
->sk_frag
.page
) {
1578 put_page(sk
->sk_frag
.page
);
1579 sk
->sk_frag
.page
= NULL
;
1582 if (sk
->sk_peer_cred
)
1583 put_cred(sk
->sk_peer_cred
);
1584 put_pid(sk
->sk_peer_pid
);
1585 if (likely(sk
->sk_net_refcnt
))
1586 put_net(sock_net(sk
));
1587 sk_prot_free(sk
->sk_prot_creator
, sk
);
1590 void sk_destruct(struct sock
*sk
)
1592 if (sock_flag(sk
, SOCK_RCU_FREE
))
1593 call_rcu(&sk
->sk_rcu
, __sk_destruct
);
1595 __sk_destruct(&sk
->sk_rcu
);
1598 static void __sk_free(struct sock
*sk
)
1600 if (unlikely(sock_diag_has_destroy_listeners(sk
) && sk
->sk_net_refcnt
))
1601 sock_diag_broadcast_destroy(sk
);
1606 void sk_free(struct sock
*sk
)
1609 * We subtract one from sk_wmem_alloc and can know if
1610 * some packets are still in some tx queue.
1611 * If not null, sock_wfree() will call __sk_free(sk) later
1613 if (refcount_dec_and_test(&sk
->sk_wmem_alloc
))
1616 EXPORT_SYMBOL(sk_free
);
1618 static void sk_init_common(struct sock
*sk
)
1620 skb_queue_head_init(&sk
->sk_receive_queue
);
1621 skb_queue_head_init(&sk
->sk_write_queue
);
1622 skb_queue_head_init(&sk
->sk_error_queue
);
1624 rwlock_init(&sk
->sk_callback_lock
);
1625 lockdep_set_class_and_name(&sk
->sk_receive_queue
.lock
,
1626 af_rlock_keys
+ sk
->sk_family
,
1627 af_family_rlock_key_strings
[sk
->sk_family
]);
1628 lockdep_set_class_and_name(&sk
->sk_write_queue
.lock
,
1629 af_wlock_keys
+ sk
->sk_family
,
1630 af_family_wlock_key_strings
[sk
->sk_family
]);
1631 lockdep_set_class_and_name(&sk
->sk_error_queue
.lock
,
1632 af_elock_keys
+ sk
->sk_family
,
1633 af_family_elock_key_strings
[sk
->sk_family
]);
1634 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
1635 af_callback_keys
+ sk
->sk_family
,
1636 af_family_clock_key_strings
[sk
->sk_family
]);
1640 * sk_clone_lock - clone a socket, and lock its clone
1641 * @sk: the socket to clone
1642 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1644 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1646 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
)
1649 bool is_charged
= true;
1651 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1652 if (newsk
!= NULL
) {
1653 struct sk_filter
*filter
;
1655 sock_copy(newsk
, sk
);
1657 newsk
->sk_prot_creator
= sk
->sk_prot
;
1660 if (likely(newsk
->sk_net_refcnt
))
1661 get_net(sock_net(newsk
));
1662 sk_node_init(&newsk
->sk_node
);
1663 sock_lock_init(newsk
);
1664 bh_lock_sock(newsk
);
1665 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1666 newsk
->sk_backlog
.len
= 0;
1668 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1670 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1672 refcount_set(&newsk
->sk_wmem_alloc
, 1);
1673 atomic_set(&newsk
->sk_omem_alloc
, 0);
1674 sk_init_common(newsk
);
1676 newsk
->sk_dst_cache
= NULL
;
1677 newsk
->sk_dst_pending_confirm
= 0;
1678 newsk
->sk_wmem_queued
= 0;
1679 newsk
->sk_forward_alloc
= 0;
1681 /* sk->sk_memcg will be populated at accept() time */
1682 newsk
->sk_memcg
= NULL
;
1684 atomic_set(&newsk
->sk_drops
, 0);
1685 newsk
->sk_send_head
= NULL
;
1686 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1687 atomic_set(&newsk
->sk_zckey
, 0);
1689 sock_reset_flag(newsk
, SOCK_DONE
);
1690 cgroup_sk_alloc(&newsk
->sk_cgrp_data
);
1693 filter
= rcu_dereference(sk
->sk_filter
);
1695 /* though it's an empty new sock, the charging may fail
1696 * if sysctl_optmem_max was changed between creation of
1697 * original socket and cloning
1699 is_charged
= sk_filter_charge(newsk
, filter
);
1700 RCU_INIT_POINTER(newsk
->sk_filter
, filter
);
1703 if (unlikely(!is_charged
|| xfrm_sk_clone_policy(newsk
, sk
))) {
1704 /* We need to make sure that we don't uncharge the new
1705 * socket if we couldn't charge it in the first place
1706 * as otherwise we uncharge the parent's filter.
1709 RCU_INIT_POINTER(newsk
->sk_filter
, NULL
);
1710 sk_free_unlock_clone(newsk
);
1714 RCU_INIT_POINTER(newsk
->sk_reuseport_cb
, NULL
);
1717 newsk
->sk_err_soft
= 0;
1718 newsk
->sk_priority
= 0;
1719 newsk
->sk_incoming_cpu
= raw_smp_processor_id();
1720 atomic64_set(&newsk
->sk_cookie
, 0);
1723 * Before updating sk_refcnt, we must commit prior changes to memory
1724 * (Documentation/RCU/rculist_nulls.txt for details)
1727 refcount_set(&newsk
->sk_refcnt
, 2);
1730 * Increment the counter in the same struct proto as the master
1731 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1732 * is the same as sk->sk_prot->socks, as this field was copied
1735 * This _changes_ the previous behaviour, where
1736 * tcp_create_openreq_child always was incrementing the
1737 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1738 * to be taken into account in all callers. -acme
1740 sk_refcnt_debug_inc(newsk
);
1741 sk_set_socket(newsk
, NULL
);
1742 newsk
->sk_wq
= NULL
;
1744 if (newsk
->sk_prot
->sockets_allocated
)
1745 sk_sockets_allocated_inc(newsk
);
1747 if (sock_needs_netstamp(sk
) &&
1748 newsk
->sk_flags
& SK_FLAGS_TIMESTAMP
)
1749 net_enable_timestamp();
1754 EXPORT_SYMBOL_GPL(sk_clone_lock
);
1756 void sk_free_unlock_clone(struct sock
*sk
)
1758 /* It is still raw copy of parent, so invalidate
1759 * destructor and make plain sk_free() */
1760 sk
->sk_destruct
= NULL
;
1764 EXPORT_SYMBOL_GPL(sk_free_unlock_clone
);
1766 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1770 sk_dst_set(sk
, dst
);
1771 sk
->sk_route_caps
= dst
->dev
->features
;
1772 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1773 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1774 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1775 if (sk_can_gso(sk
)) {
1776 if (dst
->header_len
&& !xfrm_dst_offload_ok(dst
)) {
1777 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1779 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1780 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1781 max_segs
= max_t(u32
, dst
->dev
->gso_max_segs
, 1);
1784 sk
->sk_gso_max_segs
= max_segs
;
1786 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1789 * Simple resource managers for sockets.
1794 * Write buffer destructor automatically called from kfree_skb.
1796 void sock_wfree(struct sk_buff
*skb
)
1798 struct sock
*sk
= skb
->sk
;
1799 unsigned int len
= skb
->truesize
;
1801 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1803 * Keep a reference on sk_wmem_alloc, this will be released
1804 * after sk_write_space() call
1806 WARN_ON(refcount_sub_and_test(len
- 1, &sk
->sk_wmem_alloc
));
1807 sk
->sk_write_space(sk
);
1811 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1812 * could not do because of in-flight packets
1814 if (refcount_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1817 EXPORT_SYMBOL(sock_wfree
);
1819 /* This variant of sock_wfree() is used by TCP,
1820 * since it sets SOCK_USE_WRITE_QUEUE.
1822 void __sock_wfree(struct sk_buff
*skb
)
1824 struct sock
*sk
= skb
->sk
;
1826 if (refcount_sub_and_test(skb
->truesize
, &sk
->sk_wmem_alloc
))
1830 void skb_set_owner_w(struct sk_buff
*skb
, struct sock
*sk
)
1835 if (unlikely(!sk_fullsock(sk
))) {
1836 skb
->destructor
= sock_edemux
;
1841 skb
->destructor
= sock_wfree
;
1842 skb_set_hash_from_sk(skb
, sk
);
1844 * We used to take a refcount on sk, but following operation
1845 * is enough to guarantee sk_free() wont free this sock until
1846 * all in-flight packets are completed
1848 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
1850 EXPORT_SYMBOL(skb_set_owner_w
);
1852 /* This helper is used by netem, as it can hold packets in its
1853 * delay queue. We want to allow the owner socket to send more
1854 * packets, as if they were already TX completed by a typical driver.
1855 * But we also want to keep skb->sk set because some packet schedulers
1856 * rely on it (sch_fq for example).
1858 void skb_orphan_partial(struct sk_buff
*skb
)
1860 if (skb_is_tcp_pure_ack(skb
))
1863 if (skb
->destructor
== sock_wfree
1865 || skb
->destructor
== tcp_wfree
1868 struct sock
*sk
= skb
->sk
;
1870 if (refcount_inc_not_zero(&sk
->sk_refcnt
)) {
1871 WARN_ON(refcount_sub_and_test(skb
->truesize
, &sk
->sk_wmem_alloc
));
1872 skb
->destructor
= sock_efree
;
1878 EXPORT_SYMBOL(skb_orphan_partial
);
1881 * Read buffer destructor automatically called from kfree_skb.
1883 void sock_rfree(struct sk_buff
*skb
)
1885 struct sock
*sk
= skb
->sk
;
1886 unsigned int len
= skb
->truesize
;
1888 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1889 sk_mem_uncharge(sk
, len
);
1891 EXPORT_SYMBOL(sock_rfree
);
1894 * Buffer destructor for skbs that are not used directly in read or write
1895 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1897 void sock_efree(struct sk_buff
*skb
)
1901 EXPORT_SYMBOL(sock_efree
);
1903 kuid_t
sock_i_uid(struct sock
*sk
)
1907 read_lock_bh(&sk
->sk_callback_lock
);
1908 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: GLOBAL_ROOT_UID
;
1909 read_unlock_bh(&sk
->sk_callback_lock
);
1912 EXPORT_SYMBOL(sock_i_uid
);
1914 unsigned long sock_i_ino(struct sock
*sk
)
1918 read_lock_bh(&sk
->sk_callback_lock
);
1919 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1920 read_unlock_bh(&sk
->sk_callback_lock
);
1923 EXPORT_SYMBOL(sock_i_ino
);
1926 * Allocate a skb from the socket's send buffer.
1928 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1931 if (force
|| refcount_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1932 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1934 skb_set_owner_w(skb
, sk
);
1940 EXPORT_SYMBOL(sock_wmalloc
);
1942 static void sock_ofree(struct sk_buff
*skb
)
1944 struct sock
*sk
= skb
->sk
;
1946 atomic_sub(skb
->truesize
, &sk
->sk_omem_alloc
);
1949 struct sk_buff
*sock_omalloc(struct sock
*sk
, unsigned long size
,
1952 struct sk_buff
*skb
;
1954 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1955 if (atomic_read(&sk
->sk_omem_alloc
) + SKB_TRUESIZE(size
) >
1959 skb
= alloc_skb(size
, priority
);
1963 atomic_add(skb
->truesize
, &sk
->sk_omem_alloc
);
1965 skb
->destructor
= sock_ofree
;
1970 * Allocate a memory block from the socket's option memory buffer.
1972 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1974 if ((unsigned int)size
<= sysctl_optmem_max
&&
1975 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1977 /* First do the add, to avoid the race if kmalloc
1980 atomic_add(size
, &sk
->sk_omem_alloc
);
1981 mem
= kmalloc(size
, priority
);
1984 atomic_sub(size
, &sk
->sk_omem_alloc
);
1988 EXPORT_SYMBOL(sock_kmalloc
);
1990 /* Free an option memory block. Note, we actually want the inline
1991 * here as this allows gcc to detect the nullify and fold away the
1992 * condition entirely.
1994 static inline void __sock_kfree_s(struct sock
*sk
, void *mem
, int size
,
1997 if (WARN_ON_ONCE(!mem
))
2003 atomic_sub(size
, &sk
->sk_omem_alloc
);
2006 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
2008 __sock_kfree_s(sk
, mem
, size
, false);
2010 EXPORT_SYMBOL(sock_kfree_s
);
2012 void sock_kzfree_s(struct sock
*sk
, void *mem
, int size
)
2014 __sock_kfree_s(sk
, mem
, size
, true);
2016 EXPORT_SYMBOL(sock_kzfree_s
);
2018 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2019 I think, these locks should be removed for datagram sockets.
2021 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
2025 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
2029 if (signal_pending(current
))
2031 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
2032 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
2033 if (refcount_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
2035 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
2039 timeo
= schedule_timeout(timeo
);
2041 finish_wait(sk_sleep(sk
), &wait
);
2047 * Generic send/receive buffer handlers
2050 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
2051 unsigned long data_len
, int noblock
,
2052 int *errcode
, int max_page_order
)
2054 struct sk_buff
*skb
;
2058 timeo
= sock_sndtimeo(sk
, noblock
);
2060 err
= sock_error(sk
);
2065 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
2068 if (sk_wmem_alloc_get(sk
) < sk
->sk_sndbuf
)
2071 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
2072 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
2076 if (signal_pending(current
))
2078 timeo
= sock_wait_for_wmem(sk
, timeo
);
2080 skb
= alloc_skb_with_frags(header_len
, data_len
, max_page_order
,
2081 errcode
, sk
->sk_allocation
);
2083 skb_set_owner_w(skb
, sk
);
2087 err
= sock_intr_errno(timeo
);
2092 EXPORT_SYMBOL(sock_alloc_send_pskb
);
2094 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
2095 int noblock
, int *errcode
)
2097 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
, 0);
2099 EXPORT_SYMBOL(sock_alloc_send_skb
);
2101 int __sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
, struct cmsghdr
*cmsg
,
2102 struct sockcm_cookie
*sockc
)
2106 switch (cmsg
->cmsg_type
) {
2108 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
2110 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
2112 sockc
->mark
= *(u32
*)CMSG_DATA(cmsg
);
2114 case SO_TIMESTAMPING
:
2115 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
2118 tsflags
= *(u32
*)CMSG_DATA(cmsg
);
2119 if (tsflags
& ~SOF_TIMESTAMPING_TX_RECORD_MASK
)
2122 sockc
->tsflags
&= ~SOF_TIMESTAMPING_TX_RECORD_MASK
;
2123 sockc
->tsflags
|= tsflags
;
2125 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2127 case SCM_CREDENTIALS
:
2134 EXPORT_SYMBOL(__sock_cmsg_send
);
2136 int sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
,
2137 struct sockcm_cookie
*sockc
)
2139 struct cmsghdr
*cmsg
;
2142 for_each_cmsghdr(cmsg
, msg
) {
2143 if (!CMSG_OK(msg
, cmsg
))
2145 if (cmsg
->cmsg_level
!= SOL_SOCKET
)
2147 ret
= __sock_cmsg_send(sk
, msg
, cmsg
, sockc
);
2153 EXPORT_SYMBOL(sock_cmsg_send
);
2155 static void sk_enter_memory_pressure(struct sock
*sk
)
2157 if (!sk
->sk_prot
->enter_memory_pressure
)
2160 sk
->sk_prot
->enter_memory_pressure(sk
);
2163 static void sk_leave_memory_pressure(struct sock
*sk
)
2165 if (sk
->sk_prot
->leave_memory_pressure
) {
2166 sk
->sk_prot
->leave_memory_pressure(sk
);
2168 unsigned long *memory_pressure
= sk
->sk_prot
->memory_pressure
;
2170 if (memory_pressure
&& *memory_pressure
)
2171 *memory_pressure
= 0;
2175 /* On 32bit arches, an skb frag is limited to 2^15 */
2176 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2179 * skb_page_frag_refill - check that a page_frag contains enough room
2180 * @sz: minimum size of the fragment we want to get
2181 * @pfrag: pointer to page_frag
2182 * @gfp: priority for memory allocation
2184 * Note: While this allocator tries to use high order pages, there is
2185 * no guarantee that allocations succeed. Therefore, @sz MUST be
2186 * less or equal than PAGE_SIZE.
2188 bool skb_page_frag_refill(unsigned int sz
, struct page_frag
*pfrag
, gfp_t gfp
)
2191 if (page_ref_count(pfrag
->page
) == 1) {
2195 if (pfrag
->offset
+ sz
<= pfrag
->size
)
2197 put_page(pfrag
->page
);
2201 if (SKB_FRAG_PAGE_ORDER
) {
2202 /* Avoid direct reclaim but allow kswapd to wake */
2203 pfrag
->page
= alloc_pages((gfp
& ~__GFP_DIRECT_RECLAIM
) |
2204 __GFP_COMP
| __GFP_NOWARN
|
2206 SKB_FRAG_PAGE_ORDER
);
2207 if (likely(pfrag
->page
)) {
2208 pfrag
->size
= PAGE_SIZE
<< SKB_FRAG_PAGE_ORDER
;
2212 pfrag
->page
= alloc_page(gfp
);
2213 if (likely(pfrag
->page
)) {
2214 pfrag
->size
= PAGE_SIZE
;
2219 EXPORT_SYMBOL(skb_page_frag_refill
);
2221 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
)
2223 if (likely(skb_page_frag_refill(32U, pfrag
, sk
->sk_allocation
)))
2226 sk_enter_memory_pressure(sk
);
2227 sk_stream_moderate_sndbuf(sk
);
2230 EXPORT_SYMBOL(sk_page_frag_refill
);
2232 static void __lock_sock(struct sock
*sk
)
2233 __releases(&sk
->sk_lock
.slock
)
2234 __acquires(&sk
->sk_lock
.slock
)
2239 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
2240 TASK_UNINTERRUPTIBLE
);
2241 spin_unlock_bh(&sk
->sk_lock
.slock
);
2243 spin_lock_bh(&sk
->sk_lock
.slock
);
2244 if (!sock_owned_by_user(sk
))
2247 finish_wait(&sk
->sk_lock
.wq
, &wait
);
2250 static void __release_sock(struct sock
*sk
)
2251 __releases(&sk
->sk_lock
.slock
)
2252 __acquires(&sk
->sk_lock
.slock
)
2254 struct sk_buff
*skb
, *next
;
2256 while ((skb
= sk
->sk_backlog
.head
) != NULL
) {
2257 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
2259 spin_unlock_bh(&sk
->sk_lock
.slock
);
2264 WARN_ON_ONCE(skb_dst_is_noref(skb
));
2266 sk_backlog_rcv(sk
, skb
);
2271 } while (skb
!= NULL
);
2273 spin_lock_bh(&sk
->sk_lock
.slock
);
2277 * Doing the zeroing here guarantee we can not loop forever
2278 * while a wild producer attempts to flood us.
2280 sk
->sk_backlog
.len
= 0;
2283 void __sk_flush_backlog(struct sock
*sk
)
2285 spin_lock_bh(&sk
->sk_lock
.slock
);
2287 spin_unlock_bh(&sk
->sk_lock
.slock
);
2291 * sk_wait_data - wait for data to arrive at sk_receive_queue
2292 * @sk: sock to wait on
2293 * @timeo: for how long
2294 * @skb: last skb seen on sk_receive_queue
2296 * Now socket state including sk->sk_err is changed only under lock,
2297 * hence we may omit checks after joining wait queue.
2298 * We check receive queue before schedule() only as optimization;
2299 * it is very likely that release_sock() added new data.
2301 int sk_wait_data(struct sock
*sk
, long *timeo
, const struct sk_buff
*skb
)
2303 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
2306 add_wait_queue(sk_sleep(sk
), &wait
);
2307 sk_set_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2308 rc
= sk_wait_event(sk
, timeo
, skb_peek_tail(&sk
->sk_receive_queue
) != skb
, &wait
);
2309 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2310 remove_wait_queue(sk_sleep(sk
), &wait
);
2313 EXPORT_SYMBOL(sk_wait_data
);
2316 * __sk_mem_raise_allocated - increase memory_allocated
2318 * @size: memory size to allocate
2319 * @amt: pages to allocate
2320 * @kind: allocation type
2322 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2324 int __sk_mem_raise_allocated(struct sock
*sk
, int size
, int amt
, int kind
)
2326 struct proto
*prot
= sk
->sk_prot
;
2327 long allocated
= sk_memory_allocated_add(sk
, amt
);
2329 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
&&
2330 !mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
))
2331 goto suppress_allocation
;
2334 if (allocated
<= sk_prot_mem_limits(sk
, 0)) {
2335 sk_leave_memory_pressure(sk
);
2339 /* Under pressure. */
2340 if (allocated
> sk_prot_mem_limits(sk
, 1))
2341 sk_enter_memory_pressure(sk
);
2343 /* Over hard limit. */
2344 if (allocated
> sk_prot_mem_limits(sk
, 2))
2345 goto suppress_allocation
;
2347 /* guarantee minimum buffer size under pressure */
2348 if (kind
== SK_MEM_RECV
) {
2349 if (atomic_read(&sk
->sk_rmem_alloc
) < prot
->sysctl_rmem
[0])
2352 } else { /* SK_MEM_SEND */
2353 if (sk
->sk_type
== SOCK_STREAM
) {
2354 if (sk
->sk_wmem_queued
< prot
->sysctl_wmem
[0])
2356 } else if (refcount_read(&sk
->sk_wmem_alloc
) <
2357 prot
->sysctl_wmem
[0])
2361 if (sk_has_memory_pressure(sk
)) {
2364 if (!sk_under_memory_pressure(sk
))
2366 alloc
= sk_sockets_allocated_read_positive(sk
);
2367 if (sk_prot_mem_limits(sk
, 2) > alloc
*
2368 sk_mem_pages(sk
->sk_wmem_queued
+
2369 atomic_read(&sk
->sk_rmem_alloc
) +
2370 sk
->sk_forward_alloc
))
2374 suppress_allocation
:
2376 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
2377 sk_stream_moderate_sndbuf(sk
);
2379 /* Fail only if socket is _under_ its sndbuf.
2380 * In this case we cannot block, so that we have to fail.
2382 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
2386 trace_sock_exceed_buf_limit(sk
, prot
, allocated
);
2388 sk_memory_allocated_sub(sk
, amt
);
2390 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2391 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amt
);
2395 EXPORT_SYMBOL(__sk_mem_raise_allocated
);
2398 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2400 * @size: memory size to allocate
2401 * @kind: allocation type
2403 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2404 * rmem allocation. This function assumes that protocols which have
2405 * memory_pressure use sk_wmem_queued as write buffer accounting.
2407 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
2409 int ret
, amt
= sk_mem_pages(size
);
2411 sk
->sk_forward_alloc
+= amt
<< SK_MEM_QUANTUM_SHIFT
;
2412 ret
= __sk_mem_raise_allocated(sk
, size
, amt
, kind
);
2414 sk
->sk_forward_alloc
-= amt
<< SK_MEM_QUANTUM_SHIFT
;
2417 EXPORT_SYMBOL(__sk_mem_schedule
);
2420 * __sk_mem_reduce_allocated - reclaim memory_allocated
2422 * @amount: number of quanta
2424 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2426 void __sk_mem_reduce_allocated(struct sock
*sk
, int amount
)
2428 sk_memory_allocated_sub(sk
, amount
);
2430 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2431 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amount
);
2433 if (sk_under_memory_pressure(sk
) &&
2434 (sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)))
2435 sk_leave_memory_pressure(sk
);
2437 EXPORT_SYMBOL(__sk_mem_reduce_allocated
);
2440 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2442 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2444 void __sk_mem_reclaim(struct sock
*sk
, int amount
)
2446 amount
>>= SK_MEM_QUANTUM_SHIFT
;
2447 sk
->sk_forward_alloc
-= amount
<< SK_MEM_QUANTUM_SHIFT
;
2448 __sk_mem_reduce_allocated(sk
, amount
);
2450 EXPORT_SYMBOL(__sk_mem_reclaim
);
2452 int sk_set_peek_off(struct sock
*sk
, int val
)
2454 sk
->sk_peek_off
= val
;
2457 EXPORT_SYMBOL_GPL(sk_set_peek_off
);
2460 * Set of default routines for initialising struct proto_ops when
2461 * the protocol does not support a particular function. In certain
2462 * cases where it makes no sense for a protocol to have a "do nothing"
2463 * function, some default processing is provided.
2466 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
2470 EXPORT_SYMBOL(sock_no_bind
);
2472 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
2477 EXPORT_SYMBOL(sock_no_connect
);
2479 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
2483 EXPORT_SYMBOL(sock_no_socketpair
);
2485 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
,
2490 EXPORT_SYMBOL(sock_no_accept
);
2492 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
2497 EXPORT_SYMBOL(sock_no_getname
);
2499 unsigned int sock_no_poll(struct file
*file
, struct socket
*sock
, poll_table
*pt
)
2503 EXPORT_SYMBOL(sock_no_poll
);
2505 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
2509 EXPORT_SYMBOL(sock_no_ioctl
);
2511 int sock_no_listen(struct socket
*sock
, int backlog
)
2515 EXPORT_SYMBOL(sock_no_listen
);
2517 int sock_no_shutdown(struct socket
*sock
, int how
)
2521 EXPORT_SYMBOL(sock_no_shutdown
);
2523 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
2524 char __user
*optval
, unsigned int optlen
)
2528 EXPORT_SYMBOL(sock_no_setsockopt
);
2530 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
2531 char __user
*optval
, int __user
*optlen
)
2535 EXPORT_SYMBOL(sock_no_getsockopt
);
2537 int sock_no_sendmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
)
2541 EXPORT_SYMBOL(sock_no_sendmsg
);
2543 int sock_no_sendmsg_locked(struct sock
*sk
, struct msghdr
*m
, size_t len
)
2547 EXPORT_SYMBOL(sock_no_sendmsg_locked
);
2549 int sock_no_recvmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
,
2554 EXPORT_SYMBOL(sock_no_recvmsg
);
2556 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
2558 /* Mirror missing mmap method error code */
2561 EXPORT_SYMBOL(sock_no_mmap
);
2563 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
2566 struct msghdr msg
= {.msg_flags
= flags
};
2568 char *kaddr
= kmap(page
);
2569 iov
.iov_base
= kaddr
+ offset
;
2571 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
2575 EXPORT_SYMBOL(sock_no_sendpage
);
2577 ssize_t
sock_no_sendpage_locked(struct sock
*sk
, struct page
*page
,
2578 int offset
, size_t size
, int flags
)
2581 struct msghdr msg
= {.msg_flags
= flags
};
2583 char *kaddr
= kmap(page
);
2585 iov
.iov_base
= kaddr
+ offset
;
2587 res
= kernel_sendmsg_locked(sk
, &msg
, &iov
, 1, size
);
2591 EXPORT_SYMBOL(sock_no_sendpage_locked
);
2594 * Default Socket Callbacks
2597 static void sock_def_wakeup(struct sock
*sk
)
2599 struct socket_wq
*wq
;
2602 wq
= rcu_dereference(sk
->sk_wq
);
2603 if (skwq_has_sleeper(wq
))
2604 wake_up_interruptible_all(&wq
->wait
);
2608 static void sock_def_error_report(struct sock
*sk
)
2610 struct socket_wq
*wq
;
2613 wq
= rcu_dereference(sk
->sk_wq
);
2614 if (skwq_has_sleeper(wq
))
2615 wake_up_interruptible_poll(&wq
->wait
, POLLERR
);
2616 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
2620 static void sock_def_readable(struct sock
*sk
)
2622 struct socket_wq
*wq
;
2625 wq
= rcu_dereference(sk
->sk_wq
);
2626 if (skwq_has_sleeper(wq
))
2627 wake_up_interruptible_sync_poll(&wq
->wait
, POLLIN
| POLLPRI
|
2628 POLLRDNORM
| POLLRDBAND
);
2629 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
2633 static void sock_def_write_space(struct sock
*sk
)
2635 struct socket_wq
*wq
;
2639 /* Do not wake up a writer until he can make "significant"
2642 if ((refcount_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
2643 wq
= rcu_dereference(sk
->sk_wq
);
2644 if (skwq_has_sleeper(wq
))
2645 wake_up_interruptible_sync_poll(&wq
->wait
, POLLOUT
|
2646 POLLWRNORM
| POLLWRBAND
);
2648 /* Should agree with poll, otherwise some programs break */
2649 if (sock_writeable(sk
))
2650 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
2656 static void sock_def_destruct(struct sock
*sk
)
2660 void sk_send_sigurg(struct sock
*sk
)
2662 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
2663 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
2664 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
2666 EXPORT_SYMBOL(sk_send_sigurg
);
2668 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
2669 unsigned long expires
)
2671 if (!mod_timer(timer
, expires
))
2674 EXPORT_SYMBOL(sk_reset_timer
);
2676 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
2678 if (del_timer(timer
))
2681 EXPORT_SYMBOL(sk_stop_timer
);
2683 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
2686 sk
->sk_send_head
= NULL
;
2688 init_timer(&sk
->sk_timer
);
2690 sk
->sk_allocation
= GFP_KERNEL
;
2691 sk
->sk_rcvbuf
= sysctl_rmem_default
;
2692 sk
->sk_sndbuf
= sysctl_wmem_default
;
2693 sk
->sk_state
= TCP_CLOSE
;
2694 sk_set_socket(sk
, sock
);
2696 sock_set_flag(sk
, SOCK_ZAPPED
);
2699 sk
->sk_type
= sock
->type
;
2700 sk
->sk_wq
= sock
->wq
;
2702 sk
->sk_uid
= SOCK_INODE(sock
)->i_uid
;
2705 sk
->sk_uid
= make_kuid(sock_net(sk
)->user_ns
, 0);
2708 rwlock_init(&sk
->sk_callback_lock
);
2709 if (sk
->sk_kern_sock
)
2710 lockdep_set_class_and_name(
2711 &sk
->sk_callback_lock
,
2712 af_kern_callback_keys
+ sk
->sk_family
,
2713 af_family_kern_clock_key_strings
[sk
->sk_family
]);
2715 lockdep_set_class_and_name(
2716 &sk
->sk_callback_lock
,
2717 af_callback_keys
+ sk
->sk_family
,
2718 af_family_clock_key_strings
[sk
->sk_family
]);
2720 sk
->sk_state_change
= sock_def_wakeup
;
2721 sk
->sk_data_ready
= sock_def_readable
;
2722 sk
->sk_write_space
= sock_def_write_space
;
2723 sk
->sk_error_report
= sock_def_error_report
;
2724 sk
->sk_destruct
= sock_def_destruct
;
2726 sk
->sk_frag
.page
= NULL
;
2727 sk
->sk_frag
.offset
= 0;
2728 sk
->sk_peek_off
= -1;
2730 sk
->sk_peer_pid
= NULL
;
2731 sk
->sk_peer_cred
= NULL
;
2732 sk
->sk_write_pending
= 0;
2733 sk
->sk_rcvlowat
= 1;
2734 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2735 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2737 sk
->sk_stamp
= SK_DEFAULT_STAMP
;
2738 atomic_set(&sk
->sk_zckey
, 0);
2740 #ifdef CONFIG_NET_RX_BUSY_POLL
2742 sk
->sk_ll_usec
= sysctl_net_busy_read
;
2745 sk
->sk_max_pacing_rate
= ~0U;
2746 sk
->sk_pacing_rate
= ~0U;
2747 sk
->sk_incoming_cpu
= -1;
2749 * Before updating sk_refcnt, we must commit prior changes to memory
2750 * (Documentation/RCU/rculist_nulls.txt for details)
2753 refcount_set(&sk
->sk_refcnt
, 1);
2754 atomic_set(&sk
->sk_drops
, 0);
2756 EXPORT_SYMBOL(sock_init_data
);
2758 void lock_sock_nested(struct sock
*sk
, int subclass
)
2761 spin_lock_bh(&sk
->sk_lock
.slock
);
2762 if (sk
->sk_lock
.owned
)
2764 sk
->sk_lock
.owned
= 1;
2765 spin_unlock(&sk
->sk_lock
.slock
);
2767 * The sk_lock has mutex_lock() semantics here:
2769 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2772 EXPORT_SYMBOL(lock_sock_nested
);
2774 void release_sock(struct sock
*sk
)
2776 spin_lock_bh(&sk
->sk_lock
.slock
);
2777 if (sk
->sk_backlog
.tail
)
2780 /* Warning : release_cb() might need to release sk ownership,
2781 * ie call sock_release_ownership(sk) before us.
2783 if (sk
->sk_prot
->release_cb
)
2784 sk
->sk_prot
->release_cb(sk
);
2786 sock_release_ownership(sk
);
2787 if (waitqueue_active(&sk
->sk_lock
.wq
))
2788 wake_up(&sk
->sk_lock
.wq
);
2789 spin_unlock_bh(&sk
->sk_lock
.slock
);
2791 EXPORT_SYMBOL(release_sock
);
2794 * lock_sock_fast - fast version of lock_sock
2797 * This version should be used for very small section, where process wont block
2798 * return false if fast path is taken:
2800 * sk_lock.slock locked, owned = 0, BH disabled
2802 * return true if slow path is taken:
2804 * sk_lock.slock unlocked, owned = 1, BH enabled
2806 bool lock_sock_fast(struct sock
*sk
)
2809 spin_lock_bh(&sk
->sk_lock
.slock
);
2811 if (!sk
->sk_lock
.owned
)
2813 * Note : We must disable BH
2818 sk
->sk_lock
.owned
= 1;
2819 spin_unlock(&sk
->sk_lock
.slock
);
2821 * The sk_lock has mutex_lock() semantics here:
2823 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2827 EXPORT_SYMBOL(lock_sock_fast
);
2829 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2832 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2833 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2834 tv
= ktime_to_timeval(sk
->sk_stamp
);
2835 if (tv
.tv_sec
== -1)
2837 if (tv
.tv_sec
== 0) {
2838 sk
->sk_stamp
= ktime_get_real();
2839 tv
= ktime_to_timeval(sk
->sk_stamp
);
2841 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2843 EXPORT_SYMBOL(sock_get_timestamp
);
2845 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2848 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2849 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2850 ts
= ktime_to_timespec(sk
->sk_stamp
);
2851 if (ts
.tv_sec
== -1)
2853 if (ts
.tv_sec
== 0) {
2854 sk
->sk_stamp
= ktime_get_real();
2855 ts
= ktime_to_timespec(sk
->sk_stamp
);
2857 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2859 EXPORT_SYMBOL(sock_get_timestampns
);
2861 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2863 if (!sock_flag(sk
, flag
)) {
2864 unsigned long previous_flags
= sk
->sk_flags
;
2866 sock_set_flag(sk
, flag
);
2868 * we just set one of the two flags which require net
2869 * time stamping, but time stamping might have been on
2870 * already because of the other one
2872 if (sock_needs_netstamp(sk
) &&
2873 !(previous_flags
& SK_FLAGS_TIMESTAMP
))
2874 net_enable_timestamp();
2878 int sock_recv_errqueue(struct sock
*sk
, struct msghdr
*msg
, int len
,
2879 int level
, int type
)
2881 struct sock_exterr_skb
*serr
;
2882 struct sk_buff
*skb
;
2886 skb
= sock_dequeue_err_skb(sk
);
2892 msg
->msg_flags
|= MSG_TRUNC
;
2895 err
= skb_copy_datagram_msg(skb
, 0, msg
, copied
);
2899 sock_recv_timestamp(msg
, sk
, skb
);
2901 serr
= SKB_EXT_ERR(skb
);
2902 put_cmsg(msg
, level
, type
, sizeof(serr
->ee
), &serr
->ee
);
2904 msg
->msg_flags
|= MSG_ERRQUEUE
;
2912 EXPORT_SYMBOL(sock_recv_errqueue
);
2915 * Get a socket option on an socket.
2917 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2918 * asynchronous errors should be reported by getsockopt. We assume
2919 * this means if you specify SO_ERROR (otherwise whats the point of it).
2921 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2922 char __user
*optval
, int __user
*optlen
)
2924 struct sock
*sk
= sock
->sk
;
2926 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2928 EXPORT_SYMBOL(sock_common_getsockopt
);
2930 #ifdef CONFIG_COMPAT
2931 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2932 char __user
*optval
, int __user
*optlen
)
2934 struct sock
*sk
= sock
->sk
;
2936 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
2937 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
2939 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2941 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
2944 int sock_common_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
,
2947 struct sock
*sk
= sock
->sk
;
2951 err
= sk
->sk_prot
->recvmsg(sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2952 flags
& ~MSG_DONTWAIT
, &addr_len
);
2954 msg
->msg_namelen
= addr_len
;
2957 EXPORT_SYMBOL(sock_common_recvmsg
);
2960 * Set socket options on an inet socket.
2962 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2963 char __user
*optval
, unsigned int optlen
)
2965 struct sock
*sk
= sock
->sk
;
2967 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2969 EXPORT_SYMBOL(sock_common_setsockopt
);
2971 #ifdef CONFIG_COMPAT
2972 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2973 char __user
*optval
, unsigned int optlen
)
2975 struct sock
*sk
= sock
->sk
;
2977 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2978 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2980 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2982 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
2985 void sk_common_release(struct sock
*sk
)
2987 if (sk
->sk_prot
->destroy
)
2988 sk
->sk_prot
->destroy(sk
);
2991 * Observation: when sock_common_release is called, processes have
2992 * no access to socket. But net still has.
2993 * Step one, detach it from networking:
2995 * A. Remove from hash tables.
2998 sk
->sk_prot
->unhash(sk
);
3001 * In this point socket cannot receive new packets, but it is possible
3002 * that some packets are in flight because some CPU runs receiver and
3003 * did hash table lookup before we unhashed socket. They will achieve
3004 * receive queue and will be purged by socket destructor.
3006 * Also we still have packets pending on receive queue and probably,
3007 * our own packets waiting in device queues. sock_destroy will drain
3008 * receive queue, but transmitted packets will delay socket destruction
3009 * until the last reference will be released.
3014 xfrm_sk_free_policy(sk
);
3016 sk_refcnt_debug_release(sk
);
3020 EXPORT_SYMBOL(sk_common_release
);
3022 void sk_get_meminfo(const struct sock
*sk
, u32
*mem
)
3024 memset(mem
, 0, sizeof(*mem
) * SK_MEMINFO_VARS
);
3026 mem
[SK_MEMINFO_RMEM_ALLOC
] = sk_rmem_alloc_get(sk
);
3027 mem
[SK_MEMINFO_RCVBUF
] = sk
->sk_rcvbuf
;
3028 mem
[SK_MEMINFO_WMEM_ALLOC
] = sk_wmem_alloc_get(sk
);
3029 mem
[SK_MEMINFO_SNDBUF
] = sk
->sk_sndbuf
;
3030 mem
[SK_MEMINFO_FWD_ALLOC
] = sk
->sk_forward_alloc
;
3031 mem
[SK_MEMINFO_WMEM_QUEUED
] = sk
->sk_wmem_queued
;
3032 mem
[SK_MEMINFO_OPTMEM
] = atomic_read(&sk
->sk_omem_alloc
);
3033 mem
[SK_MEMINFO_BACKLOG
] = sk
->sk_backlog
.len
;
3034 mem
[SK_MEMINFO_DROPS
] = atomic_read(&sk
->sk_drops
);
3037 #ifdef CONFIG_PROC_FS
3038 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3040 int val
[PROTO_INUSE_NR
];
3043 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
3045 #ifdef CONFIG_NET_NS
3046 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
3048 __this_cpu_add(net
->core
.inuse
->val
[prot
->inuse_idx
], val
);
3050 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
3052 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
3054 int cpu
, idx
= prot
->inuse_idx
;
3057 for_each_possible_cpu(cpu
)
3058 res
+= per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[idx
];
3060 return res
>= 0 ? res
: 0;
3062 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
3064 static int __net_init
sock_inuse_init_net(struct net
*net
)
3066 net
->core
.inuse
= alloc_percpu(struct prot_inuse
);
3067 return net
->core
.inuse
? 0 : -ENOMEM
;
3070 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
3072 free_percpu(net
->core
.inuse
);
3075 static struct pernet_operations net_inuse_ops
= {
3076 .init
= sock_inuse_init_net
,
3077 .exit
= sock_inuse_exit_net
,
3080 static __init
int net_inuse_init(void)
3082 if (register_pernet_subsys(&net_inuse_ops
))
3083 panic("Cannot initialize net inuse counters");
3088 core_initcall(net_inuse_init
);
3090 static DEFINE_PER_CPU(struct prot_inuse
, prot_inuse
);
3092 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
3094 __this_cpu_add(prot_inuse
.val
[prot
->inuse_idx
], val
);
3096 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
3098 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
3100 int cpu
, idx
= prot
->inuse_idx
;
3103 for_each_possible_cpu(cpu
)
3104 res
+= per_cpu(prot_inuse
, cpu
).val
[idx
];
3106 return res
>= 0 ? res
: 0;
3108 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
3111 static void assign_proto_idx(struct proto
*prot
)
3113 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
3115 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
3116 pr_err("PROTO_INUSE_NR exhausted\n");
3120 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
3123 static void release_proto_idx(struct proto
*prot
)
3125 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
3126 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
3129 static inline void assign_proto_idx(struct proto
*prot
)
3133 static inline void release_proto_idx(struct proto
*prot
)
3138 static void req_prot_cleanup(struct request_sock_ops
*rsk_prot
)
3142 kfree(rsk_prot
->slab_name
);
3143 rsk_prot
->slab_name
= NULL
;
3144 kmem_cache_destroy(rsk_prot
->slab
);
3145 rsk_prot
->slab
= NULL
;
3148 static int req_prot_init(const struct proto
*prot
)
3150 struct request_sock_ops
*rsk_prot
= prot
->rsk_prot
;
3155 rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s",
3157 if (!rsk_prot
->slab_name
)
3160 rsk_prot
->slab
= kmem_cache_create(rsk_prot
->slab_name
,
3161 rsk_prot
->obj_size
, 0,
3162 prot
->slab_flags
, NULL
);
3164 if (!rsk_prot
->slab
) {
3165 pr_crit("%s: Can't create request sock SLAB cache!\n",
3172 int proto_register(struct proto
*prot
, int alloc_slab
)
3175 prot
->slab
= kmem_cache_create(prot
->name
, prot
->obj_size
, 0,
3176 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
3179 if (prot
->slab
== NULL
) {
3180 pr_crit("%s: Can't create sock SLAB cache!\n",
3185 if (req_prot_init(prot
))
3186 goto out_free_request_sock_slab
;
3188 if (prot
->twsk_prot
!= NULL
) {
3189 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
3191 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
3192 goto out_free_request_sock_slab
;
3194 prot
->twsk_prot
->twsk_slab
=
3195 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
3196 prot
->twsk_prot
->twsk_obj_size
,
3200 if (prot
->twsk_prot
->twsk_slab
== NULL
)
3201 goto out_free_timewait_sock_slab_name
;
3205 mutex_lock(&proto_list_mutex
);
3206 list_add(&prot
->node
, &proto_list
);
3207 assign_proto_idx(prot
);
3208 mutex_unlock(&proto_list_mutex
);
3211 out_free_timewait_sock_slab_name
:
3212 kfree(prot
->twsk_prot
->twsk_slab_name
);
3213 out_free_request_sock_slab
:
3214 req_prot_cleanup(prot
->rsk_prot
);
3216 kmem_cache_destroy(prot
->slab
);
3221 EXPORT_SYMBOL(proto_register
);
3223 void proto_unregister(struct proto
*prot
)
3225 mutex_lock(&proto_list_mutex
);
3226 release_proto_idx(prot
);
3227 list_del(&prot
->node
);
3228 mutex_unlock(&proto_list_mutex
);
3230 kmem_cache_destroy(prot
->slab
);
3233 req_prot_cleanup(prot
->rsk_prot
);
3235 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
3236 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
3237 kfree(prot
->twsk_prot
->twsk_slab_name
);
3238 prot
->twsk_prot
->twsk_slab
= NULL
;
3241 EXPORT_SYMBOL(proto_unregister
);
3243 #ifdef CONFIG_PROC_FS
3244 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
3245 __acquires(proto_list_mutex
)
3247 mutex_lock(&proto_list_mutex
);
3248 return seq_list_start_head(&proto_list
, *pos
);
3251 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
3253 return seq_list_next(v
, &proto_list
, pos
);
3256 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
3257 __releases(proto_list_mutex
)
3259 mutex_unlock(&proto_list_mutex
);
3262 static char proto_method_implemented(const void *method
)
3264 return method
== NULL
? 'n' : 'y';
3266 static long sock_prot_memory_allocated(struct proto
*proto
)
3268 return proto
->memory_allocated
!= NULL
? proto_memory_allocated(proto
) : -1L;
3271 static char *sock_prot_memory_pressure(struct proto
*proto
)
3273 return proto
->memory_pressure
!= NULL
?
3274 proto_memory_pressure(proto
) ? "yes" : "no" : "NI";
3277 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
3280 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3281 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3284 sock_prot_inuse_get(seq_file_net(seq
), proto
),
3285 sock_prot_memory_allocated(proto
),
3286 sock_prot_memory_pressure(proto
),
3288 proto
->slab
== NULL
? "no" : "yes",
3289 module_name(proto
->owner
),
3290 proto_method_implemented(proto
->close
),
3291 proto_method_implemented(proto
->connect
),
3292 proto_method_implemented(proto
->disconnect
),
3293 proto_method_implemented(proto
->accept
),
3294 proto_method_implemented(proto
->ioctl
),
3295 proto_method_implemented(proto
->init
),
3296 proto_method_implemented(proto
->destroy
),
3297 proto_method_implemented(proto
->shutdown
),
3298 proto_method_implemented(proto
->setsockopt
),
3299 proto_method_implemented(proto
->getsockopt
),
3300 proto_method_implemented(proto
->sendmsg
),
3301 proto_method_implemented(proto
->recvmsg
),
3302 proto_method_implemented(proto
->sendpage
),
3303 proto_method_implemented(proto
->bind
),
3304 proto_method_implemented(proto
->backlog_rcv
),
3305 proto_method_implemented(proto
->hash
),
3306 proto_method_implemented(proto
->unhash
),
3307 proto_method_implemented(proto
->get_port
),
3308 proto_method_implemented(proto
->enter_memory_pressure
));
3311 static int proto_seq_show(struct seq_file
*seq
, void *v
)
3313 if (v
== &proto_list
)
3314 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3323 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3325 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
3329 static const struct seq_operations proto_seq_ops
= {
3330 .start
= proto_seq_start
,
3331 .next
= proto_seq_next
,
3332 .stop
= proto_seq_stop
,
3333 .show
= proto_seq_show
,
3336 static int proto_seq_open(struct inode
*inode
, struct file
*file
)
3338 return seq_open_net(inode
, file
, &proto_seq_ops
,
3339 sizeof(struct seq_net_private
));
3342 static const struct file_operations proto_seq_fops
= {
3343 .owner
= THIS_MODULE
,
3344 .open
= proto_seq_open
,
3346 .llseek
= seq_lseek
,
3347 .release
= seq_release_net
,
3350 static __net_init
int proto_init_net(struct net
*net
)
3352 if (!proc_create("protocols", S_IRUGO
, net
->proc_net
, &proto_seq_fops
))
3358 static __net_exit
void proto_exit_net(struct net
*net
)
3360 remove_proc_entry("protocols", net
->proc_net
);
3364 static __net_initdata
struct pernet_operations proto_net_ops
= {
3365 .init
= proto_init_net
,
3366 .exit
= proto_exit_net
,
3369 static int __init
proto_init(void)
3371 return register_pernet_subsys(&proto_net_ops
);
3374 subsys_initcall(proto_init
);
3376 #endif /* PROC_FS */
3378 #ifdef CONFIG_NET_RX_BUSY_POLL
3379 bool sk_busy_loop_end(void *p
, unsigned long start_time
)
3381 struct sock
*sk
= p
;
3383 return !skb_queue_empty(&sk
->sk_receive_queue
) ||
3384 sk_busy_loop_timeout(sk
, start_time
);
3386 EXPORT_SYMBOL(sk_busy_loop_end
);
3387 #endif /* CONFIG_NET_RX_BUSY_POLL */