ahci: Add JMicron 362 device IDs
[linux/fpc-iii.git] / fs / buffer.c
blob7eb4da4a7c2b253e116a14e64a43522137c73e64
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/cleancache.h>
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 bh->b_end_io = handler;
54 bh->b_private = private;
56 EXPORT_SYMBOL(init_buffer);
58 static int sleep_on_buffer(void *word)
60 io_schedule();
61 return 0;
64 void __lock_buffer(struct buffer_head *bh)
66 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
67 TASK_UNINTERRUPTIBLE);
69 EXPORT_SYMBOL(__lock_buffer);
71 void unlock_buffer(struct buffer_head *bh)
73 clear_bit_unlock(BH_Lock, &bh->b_state);
74 smp_mb__after_clear_bit();
75 wake_up_bit(&bh->b_state, BH_Lock);
77 EXPORT_SYMBOL(unlock_buffer);
80 * Block until a buffer comes unlocked. This doesn't stop it
81 * from becoming locked again - you have to lock it yourself
82 * if you want to preserve its state.
84 void __wait_on_buffer(struct buffer_head * bh)
86 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
88 EXPORT_SYMBOL(__wait_on_buffer);
90 static void
91 __clear_page_buffers(struct page *page)
93 ClearPagePrivate(page);
94 set_page_private(page, 0);
95 page_cache_release(page);
99 static int quiet_error(struct buffer_head *bh)
101 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
102 return 0;
103 return 1;
107 static void buffer_io_error(struct buffer_head *bh)
109 char b[BDEVNAME_SIZE];
110 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
111 bdevname(bh->b_bdev, b),
112 (unsigned long long)bh->b_blocknr);
116 * End-of-IO handler helper function which does not touch the bh after
117 * unlocking it.
118 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
119 * a race there is benign: unlock_buffer() only use the bh's address for
120 * hashing after unlocking the buffer, so it doesn't actually touch the bh
121 * itself.
123 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
125 if (uptodate) {
126 set_buffer_uptodate(bh);
127 } else {
128 /* This happens, due to failed READA attempts. */
129 clear_buffer_uptodate(bh);
131 unlock_buffer(bh);
135 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
136 * unlock the buffer. This is what ll_rw_block uses too.
138 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
140 __end_buffer_read_notouch(bh, uptodate);
141 put_bh(bh);
143 EXPORT_SYMBOL(end_buffer_read_sync);
145 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
147 char b[BDEVNAME_SIZE];
149 if (uptodate) {
150 set_buffer_uptodate(bh);
151 } else {
152 if (!quiet_error(bh)) {
153 buffer_io_error(bh);
154 printk(KERN_WARNING "lost page write due to "
155 "I/O error on %s\n",
156 bdevname(bh->b_bdev, b));
158 set_buffer_write_io_error(bh);
159 clear_buffer_uptodate(bh);
161 unlock_buffer(bh);
162 put_bh(bh);
164 EXPORT_SYMBOL(end_buffer_write_sync);
167 * Various filesystems appear to want __find_get_block to be non-blocking.
168 * But it's the page lock which protects the buffers. To get around this,
169 * we get exclusion from try_to_free_buffers with the blockdev mapping's
170 * private_lock.
172 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
173 * may be quite high. This code could TryLock the page, and if that
174 * succeeds, there is no need to take private_lock. (But if
175 * private_lock is contended then so is mapping->tree_lock).
177 static struct buffer_head *
178 __find_get_block_slow(struct block_device *bdev, sector_t block)
180 struct inode *bd_inode = bdev->bd_inode;
181 struct address_space *bd_mapping = bd_inode->i_mapping;
182 struct buffer_head *ret = NULL;
183 pgoff_t index;
184 struct buffer_head *bh;
185 struct buffer_head *head;
186 struct page *page;
187 int all_mapped = 1;
189 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
190 page = find_get_page(bd_mapping, index);
191 if (!page)
192 goto out;
194 spin_lock(&bd_mapping->private_lock);
195 if (!page_has_buffers(page))
196 goto out_unlock;
197 head = page_buffers(page);
198 bh = head;
199 do {
200 if (!buffer_mapped(bh))
201 all_mapped = 0;
202 else if (bh->b_blocknr == block) {
203 ret = bh;
204 get_bh(bh);
205 goto out_unlock;
207 bh = bh->b_this_page;
208 } while (bh != head);
210 /* we might be here because some of the buffers on this page are
211 * not mapped. This is due to various races between
212 * file io on the block device and getblk. It gets dealt with
213 * elsewhere, don't buffer_error if we had some unmapped buffers
215 if (all_mapped) {
216 char b[BDEVNAME_SIZE];
218 printk("__find_get_block_slow() failed. "
219 "block=%llu, b_blocknr=%llu\n",
220 (unsigned long long)block,
221 (unsigned long long)bh->b_blocknr);
222 printk("b_state=0x%08lx, b_size=%zu\n",
223 bh->b_state, bh->b_size);
224 printk("device %s blocksize: %d\n", bdevname(bdev, b),
225 1 << bd_inode->i_blkbits);
227 out_unlock:
228 spin_unlock(&bd_mapping->private_lock);
229 page_cache_release(page);
230 out:
231 return ret;
234 /* If invalidate_buffers() will trash dirty buffers, it means some kind
235 of fs corruption is going on. Trashing dirty data always imply losing
236 information that was supposed to be just stored on the physical layer
237 by the user.
239 Thus invalidate_buffers in general usage is not allwowed to trash
240 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
241 be preserved. These buffers are simply skipped.
243 We also skip buffers which are still in use. For example this can
244 happen if a userspace program is reading the block device.
246 NOTE: In the case where the user removed a removable-media-disk even if
247 there's still dirty data not synced on disk (due a bug in the device driver
248 or due an error of the user), by not destroying the dirty buffers we could
249 generate corruption also on the next media inserted, thus a parameter is
250 necessary to handle this case in the most safe way possible (trying
251 to not corrupt also the new disk inserted with the data belonging to
252 the old now corrupted disk). Also for the ramdisk the natural thing
253 to do in order to release the ramdisk memory is to destroy dirty buffers.
255 These are two special cases. Normal usage imply the device driver
256 to issue a sync on the device (without waiting I/O completion) and
257 then an invalidate_buffers call that doesn't trash dirty buffers.
259 For handling cache coherency with the blkdev pagecache the 'update' case
260 is been introduced. It is needed to re-read from disk any pinned
261 buffer. NOTE: re-reading from disk is destructive so we can do it only
262 when we assume nobody is changing the buffercache under our I/O and when
263 we think the disk contains more recent information than the buffercache.
264 The update == 1 pass marks the buffers we need to update, the update == 2
265 pass does the actual I/O. */
266 void invalidate_bdev(struct block_device *bdev)
268 struct address_space *mapping = bdev->bd_inode->i_mapping;
270 if (mapping->nrpages == 0)
271 return;
273 invalidate_bh_lrus();
274 lru_add_drain_all(); /* make sure all lru add caches are flushed */
275 invalidate_mapping_pages(mapping, 0, -1);
276 /* 99% of the time, we don't need to flush the cleancache on the bdev.
277 * But, for the strange corners, lets be cautious
279 cleancache_flush_inode(mapping);
281 EXPORT_SYMBOL(invalidate_bdev);
284 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
286 static void free_more_memory(void)
288 struct zone *zone;
289 int nid;
291 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
292 yield();
294 for_each_online_node(nid) {
295 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296 gfp_zone(GFP_NOFS), NULL,
297 &zone);
298 if (zone)
299 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300 GFP_NOFS, NULL);
305 * I/O completion handler for block_read_full_page() - pages
306 * which come unlocked at the end of I/O.
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
310 unsigned long flags;
311 struct buffer_head *first;
312 struct buffer_head *tmp;
313 struct page *page;
314 int page_uptodate = 1;
316 BUG_ON(!buffer_async_read(bh));
318 page = bh->b_page;
319 if (uptodate) {
320 set_buffer_uptodate(bh);
321 } else {
322 clear_buffer_uptodate(bh);
323 if (!quiet_error(bh))
324 buffer_io_error(bh);
325 SetPageError(page);
329 * Be _very_ careful from here on. Bad things can happen if
330 * two buffer heads end IO at almost the same time and both
331 * decide that the page is now completely done.
333 first = page_buffers(page);
334 local_irq_save(flags);
335 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336 clear_buffer_async_read(bh);
337 unlock_buffer(bh);
338 tmp = bh;
339 do {
340 if (!buffer_uptodate(tmp))
341 page_uptodate = 0;
342 if (buffer_async_read(tmp)) {
343 BUG_ON(!buffer_locked(tmp));
344 goto still_busy;
346 tmp = tmp->b_this_page;
347 } while (tmp != bh);
348 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349 local_irq_restore(flags);
352 * If none of the buffers had errors and they are all
353 * uptodate then we can set the page uptodate.
355 if (page_uptodate && !PageError(page))
356 SetPageUptodate(page);
357 unlock_page(page);
358 return;
360 still_busy:
361 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362 local_irq_restore(flags);
363 return;
367 * Completion handler for block_write_full_page() - pages which are unlocked
368 * during I/O, and which have PageWriteback cleared upon I/O completion.
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
372 char b[BDEVNAME_SIZE];
373 unsigned long flags;
374 struct buffer_head *first;
375 struct buffer_head *tmp;
376 struct page *page;
378 BUG_ON(!buffer_async_write(bh));
380 page = bh->b_page;
381 if (uptodate) {
382 set_buffer_uptodate(bh);
383 } else {
384 if (!quiet_error(bh)) {
385 buffer_io_error(bh);
386 printk(KERN_WARNING "lost page write due to "
387 "I/O error on %s\n",
388 bdevname(bh->b_bdev, b));
390 set_bit(AS_EIO, &page->mapping->flags);
391 set_buffer_write_io_error(bh);
392 clear_buffer_uptodate(bh);
393 SetPageError(page);
396 first = page_buffers(page);
397 local_irq_save(flags);
398 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
400 clear_buffer_async_write(bh);
401 unlock_buffer(bh);
402 tmp = bh->b_this_page;
403 while (tmp != bh) {
404 if (buffer_async_write(tmp)) {
405 BUG_ON(!buffer_locked(tmp));
406 goto still_busy;
408 tmp = tmp->b_this_page;
410 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411 local_irq_restore(flags);
412 end_page_writeback(page);
413 return;
415 still_busy:
416 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417 local_irq_restore(flags);
418 return;
420 EXPORT_SYMBOL(end_buffer_async_write);
423 * If a page's buffers are under async readin (end_buffer_async_read
424 * completion) then there is a possibility that another thread of
425 * control could lock one of the buffers after it has completed
426 * but while some of the other buffers have not completed. This
427 * locked buffer would confuse end_buffer_async_read() into not unlocking
428 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
429 * that this buffer is not under async I/O.
431 * The page comes unlocked when it has no locked buffer_async buffers
432 * left.
434 * PageLocked prevents anyone starting new async I/O reads any of
435 * the buffers.
437 * PageWriteback is used to prevent simultaneous writeout of the same
438 * page.
440 * PageLocked prevents anyone from starting writeback of a page which is
441 * under read I/O (PageWriteback is only ever set against a locked page).
443 static void mark_buffer_async_read(struct buffer_head *bh)
445 bh->b_end_io = end_buffer_async_read;
446 set_buffer_async_read(bh);
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450 bh_end_io_t *handler)
452 bh->b_end_io = handler;
453 set_buffer_async_write(bh);
456 void mark_buffer_async_write(struct buffer_head *bh)
458 mark_buffer_async_write_endio(bh, end_buffer_async_write);
460 EXPORT_SYMBOL(mark_buffer_async_write);
464 * fs/buffer.c contains helper functions for buffer-backed address space's
465 * fsync functions. A common requirement for buffer-based filesystems is
466 * that certain data from the backing blockdev needs to be written out for
467 * a successful fsync(). For example, ext2 indirect blocks need to be
468 * written back and waited upon before fsync() returns.
470 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472 * management of a list of dependent buffers at ->i_mapping->private_list.
474 * Locking is a little subtle: try_to_free_buffers() will remove buffers
475 * from their controlling inode's queue when they are being freed. But
476 * try_to_free_buffers() will be operating against the *blockdev* mapping
477 * at the time, not against the S_ISREG file which depends on those buffers.
478 * So the locking for private_list is via the private_lock in the address_space
479 * which backs the buffers. Which is different from the address_space
480 * against which the buffers are listed. So for a particular address_space,
481 * mapping->private_lock does *not* protect mapping->private_list! In fact,
482 * mapping->private_list will always be protected by the backing blockdev's
483 * ->private_lock.
485 * Which introduces a requirement: all buffers on an address_space's
486 * ->private_list must be from the same address_space: the blockdev's.
488 * address_spaces which do not place buffers at ->private_list via these
489 * utility functions are free to use private_lock and private_list for
490 * whatever they want. The only requirement is that list_empty(private_list)
491 * be true at clear_inode() time.
493 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
494 * filesystems should do that. invalidate_inode_buffers() should just go
495 * BUG_ON(!list_empty).
497 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
498 * take an address_space, not an inode. And it should be called
499 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500 * queued up.
502 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503 * list if it is already on a list. Because if the buffer is on a list,
504 * it *must* already be on the right one. If not, the filesystem is being
505 * silly. This will save a ton of locking. But first we have to ensure
506 * that buffers are taken *off* the old inode's list when they are freed
507 * (presumably in truncate). That requires careful auditing of all
508 * filesystems (do it inside bforget()). It could also be done by bringing
509 * b_inode back.
513 * The buffer's backing address_space's private_lock must be held
515 static void __remove_assoc_queue(struct buffer_head *bh)
517 list_del_init(&bh->b_assoc_buffers);
518 WARN_ON(!bh->b_assoc_map);
519 if (buffer_write_io_error(bh))
520 set_bit(AS_EIO, &bh->b_assoc_map->flags);
521 bh->b_assoc_map = NULL;
524 int inode_has_buffers(struct inode *inode)
526 return !list_empty(&inode->i_data.private_list);
530 * osync is designed to support O_SYNC io. It waits synchronously for
531 * all already-submitted IO to complete, but does not queue any new
532 * writes to the disk.
534 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535 * you dirty the buffers, and then use osync_inode_buffers to wait for
536 * completion. Any other dirty buffers which are not yet queued for
537 * write will not be flushed to disk by the osync.
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
541 struct buffer_head *bh;
542 struct list_head *p;
543 int err = 0;
545 spin_lock(lock);
546 repeat:
547 list_for_each_prev(p, list) {
548 bh = BH_ENTRY(p);
549 if (buffer_locked(bh)) {
550 get_bh(bh);
551 spin_unlock(lock);
552 wait_on_buffer(bh);
553 if (!buffer_uptodate(bh))
554 err = -EIO;
555 brelse(bh);
556 spin_lock(lock);
557 goto repeat;
560 spin_unlock(lock);
561 return err;
564 static void do_thaw_one(struct super_block *sb, void *unused)
566 char b[BDEVNAME_SIZE];
567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568 printk(KERN_WARNING "Emergency Thaw on %s\n",
569 bdevname(sb->s_bdev, b));
572 static void do_thaw_all(struct work_struct *work)
574 iterate_supers(do_thaw_one, NULL);
575 kfree(work);
576 printk(KERN_WARNING "Emergency Thaw complete\n");
580 * emergency_thaw_all -- forcibly thaw every frozen filesystem
582 * Used for emergency unfreeze of all filesystems via SysRq
584 void emergency_thaw_all(void)
586 struct work_struct *work;
588 work = kmalloc(sizeof(*work), GFP_ATOMIC);
589 if (work) {
590 INIT_WORK(work, do_thaw_all);
591 schedule_work(work);
596 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597 * @mapping: the mapping which wants those buffers written
599 * Starts I/O against the buffers at mapping->private_list, and waits upon
600 * that I/O.
602 * Basically, this is a convenience function for fsync().
603 * @mapping is a file or directory which needs those buffers to be written for
604 * a successful fsync().
606 int sync_mapping_buffers(struct address_space *mapping)
608 struct address_space *buffer_mapping = mapping->assoc_mapping;
610 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611 return 0;
613 return fsync_buffers_list(&buffer_mapping->private_lock,
614 &mapping->private_list);
616 EXPORT_SYMBOL(sync_mapping_buffers);
619 * Called when we've recently written block `bblock', and it is known that
620 * `bblock' was for a buffer_boundary() buffer. This means that the block at
621 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
622 * dirty, schedule it for IO. So that indirects merge nicely with their data.
624 void write_boundary_block(struct block_device *bdev,
625 sector_t bblock, unsigned blocksize)
627 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628 if (bh) {
629 if (buffer_dirty(bh))
630 ll_rw_block(WRITE, 1, &bh);
631 put_bh(bh);
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
637 struct address_space *mapping = inode->i_mapping;
638 struct address_space *buffer_mapping = bh->b_page->mapping;
640 mark_buffer_dirty(bh);
641 if (!mapping->assoc_mapping) {
642 mapping->assoc_mapping = buffer_mapping;
643 } else {
644 BUG_ON(mapping->assoc_mapping != buffer_mapping);
646 if (!bh->b_assoc_map) {
647 spin_lock(&buffer_mapping->private_lock);
648 list_move_tail(&bh->b_assoc_buffers,
649 &mapping->private_list);
650 bh->b_assoc_map = mapping;
651 spin_unlock(&buffer_mapping->private_lock);
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
657 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658 * dirty.
660 * If warn is true, then emit a warning if the page is not uptodate and has
661 * not been truncated.
663 static void __set_page_dirty(struct page *page,
664 struct address_space *mapping, int warn)
666 unsigned long flags;
668 spin_lock_irqsave(&mapping->tree_lock, flags);
669 if (page->mapping) { /* Race with truncate? */
670 WARN_ON_ONCE(warn && !PageUptodate(page));
671 account_page_dirtied(page, mapping);
672 radix_tree_tag_set(&mapping->page_tree,
673 page_index(page), PAGECACHE_TAG_DIRTY);
675 spin_unlock_irqrestore(&mapping->tree_lock, flags);
676 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
680 * Add a page to the dirty page list.
682 * It is a sad fact of life that this function is called from several places
683 * deeply under spinlocking. It may not sleep.
685 * If the page has buffers, the uptodate buffers are set dirty, to preserve
686 * dirty-state coherency between the page and the buffers. It the page does
687 * not have buffers then when they are later attached they will all be set
688 * dirty.
690 * The buffers are dirtied before the page is dirtied. There's a small race
691 * window in which a writepage caller may see the page cleanness but not the
692 * buffer dirtiness. That's fine. If this code were to set the page dirty
693 * before the buffers, a concurrent writepage caller could clear the page dirty
694 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
695 * page on the dirty page list.
697 * We use private_lock to lock against try_to_free_buffers while using the
698 * page's buffer list. Also use this to protect against clean buffers being
699 * added to the page after it was set dirty.
701 * FIXME: may need to call ->reservepage here as well. That's rather up to the
702 * address_space though.
704 int __set_page_dirty_buffers(struct page *page)
706 int newly_dirty;
707 struct address_space *mapping = page_mapping(page);
709 if (unlikely(!mapping))
710 return !TestSetPageDirty(page);
712 spin_lock(&mapping->private_lock);
713 if (page_has_buffers(page)) {
714 struct buffer_head *head = page_buffers(page);
715 struct buffer_head *bh = head;
717 do {
718 set_buffer_dirty(bh);
719 bh = bh->b_this_page;
720 } while (bh != head);
722 newly_dirty = !TestSetPageDirty(page);
723 spin_unlock(&mapping->private_lock);
725 if (newly_dirty)
726 __set_page_dirty(page, mapping, 1);
727 return newly_dirty;
729 EXPORT_SYMBOL(__set_page_dirty_buffers);
732 * Write out and wait upon a list of buffers.
734 * We have conflicting pressures: we want to make sure that all
735 * initially dirty buffers get waited on, but that any subsequently
736 * dirtied buffers don't. After all, we don't want fsync to last
737 * forever if somebody is actively writing to the file.
739 * Do this in two main stages: first we copy dirty buffers to a
740 * temporary inode list, queueing the writes as we go. Then we clean
741 * up, waiting for those writes to complete.
743 * During this second stage, any subsequent updates to the file may end
744 * up refiling the buffer on the original inode's dirty list again, so
745 * there is a chance we will end up with a buffer queued for write but
746 * not yet completed on that list. So, as a final cleanup we go through
747 * the osync code to catch these locked, dirty buffers without requeuing
748 * any newly dirty buffers for write.
750 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
752 struct buffer_head *bh;
753 struct list_head tmp;
754 struct address_space *mapping;
755 int err = 0, err2;
756 struct blk_plug plug;
758 INIT_LIST_HEAD(&tmp);
759 blk_start_plug(&plug);
761 spin_lock(lock);
762 while (!list_empty(list)) {
763 bh = BH_ENTRY(list->next);
764 mapping = bh->b_assoc_map;
765 __remove_assoc_queue(bh);
766 /* Avoid race with mark_buffer_dirty_inode() which does
767 * a lockless check and we rely on seeing the dirty bit */
768 smp_mb();
769 if (buffer_dirty(bh) || buffer_locked(bh)) {
770 list_add(&bh->b_assoc_buffers, &tmp);
771 bh->b_assoc_map = mapping;
772 if (buffer_dirty(bh)) {
773 get_bh(bh);
774 spin_unlock(lock);
776 * Ensure any pending I/O completes so that
777 * write_dirty_buffer() actually writes the
778 * current contents - it is a noop if I/O is
779 * still in flight on potentially older
780 * contents.
782 write_dirty_buffer(bh, WRITE_SYNC);
785 * Kick off IO for the previous mapping. Note
786 * that we will not run the very last mapping,
787 * wait_on_buffer() will do that for us
788 * through sync_buffer().
790 brelse(bh);
791 spin_lock(lock);
796 spin_unlock(lock);
797 blk_finish_plug(&plug);
798 spin_lock(lock);
800 while (!list_empty(&tmp)) {
801 bh = BH_ENTRY(tmp.prev);
802 get_bh(bh);
803 mapping = bh->b_assoc_map;
804 __remove_assoc_queue(bh);
805 /* Avoid race with mark_buffer_dirty_inode() which does
806 * a lockless check and we rely on seeing the dirty bit */
807 smp_mb();
808 if (buffer_dirty(bh)) {
809 list_add(&bh->b_assoc_buffers,
810 &mapping->private_list);
811 bh->b_assoc_map = mapping;
813 spin_unlock(lock);
814 wait_on_buffer(bh);
815 if (!buffer_uptodate(bh))
816 err = -EIO;
817 brelse(bh);
818 spin_lock(lock);
821 spin_unlock(lock);
822 err2 = osync_buffers_list(lock, list);
823 if (err)
824 return err;
825 else
826 return err2;
830 * Invalidate any and all dirty buffers on a given inode. We are
831 * probably unmounting the fs, but that doesn't mean we have already
832 * done a sync(). Just drop the buffers from the inode list.
834 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
835 * assumes that all the buffers are against the blockdev. Not true
836 * for reiserfs.
838 void invalidate_inode_buffers(struct inode *inode)
840 if (inode_has_buffers(inode)) {
841 struct address_space *mapping = &inode->i_data;
842 struct list_head *list = &mapping->private_list;
843 struct address_space *buffer_mapping = mapping->assoc_mapping;
845 spin_lock(&buffer_mapping->private_lock);
846 while (!list_empty(list))
847 __remove_assoc_queue(BH_ENTRY(list->next));
848 spin_unlock(&buffer_mapping->private_lock);
851 EXPORT_SYMBOL(invalidate_inode_buffers);
854 * Remove any clean buffers from the inode's buffer list. This is called
855 * when we're trying to free the inode itself. Those buffers can pin it.
857 * Returns true if all buffers were removed.
859 int remove_inode_buffers(struct inode *inode)
861 int ret = 1;
863 if (inode_has_buffers(inode)) {
864 struct address_space *mapping = &inode->i_data;
865 struct list_head *list = &mapping->private_list;
866 struct address_space *buffer_mapping = mapping->assoc_mapping;
868 spin_lock(&buffer_mapping->private_lock);
869 while (!list_empty(list)) {
870 struct buffer_head *bh = BH_ENTRY(list->next);
871 if (buffer_dirty(bh)) {
872 ret = 0;
873 break;
875 __remove_assoc_queue(bh);
877 spin_unlock(&buffer_mapping->private_lock);
879 return ret;
883 * Create the appropriate buffers when given a page for data area and
884 * the size of each buffer.. Use the bh->b_this_page linked list to
885 * follow the buffers created. Return NULL if unable to create more
886 * buffers.
888 * The retry flag is used to differentiate async IO (paging, swapping)
889 * which may not fail from ordinary buffer allocations.
891 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
892 int retry)
894 struct buffer_head *bh, *head;
895 long offset;
897 try_again:
898 head = NULL;
899 offset = PAGE_SIZE;
900 while ((offset -= size) >= 0) {
901 bh = alloc_buffer_head(GFP_NOFS);
902 if (!bh)
903 goto no_grow;
905 bh->b_bdev = NULL;
906 bh->b_this_page = head;
907 bh->b_blocknr = -1;
908 head = bh;
910 bh->b_state = 0;
911 atomic_set(&bh->b_count, 0);
912 bh->b_size = size;
914 /* Link the buffer to its page */
915 set_bh_page(bh, page, offset);
917 init_buffer(bh, NULL, NULL);
919 return head;
921 * In case anything failed, we just free everything we got.
923 no_grow:
924 if (head) {
925 do {
926 bh = head;
927 head = head->b_this_page;
928 free_buffer_head(bh);
929 } while (head);
933 * Return failure for non-async IO requests. Async IO requests
934 * are not allowed to fail, so we have to wait until buffer heads
935 * become available. But we don't want tasks sleeping with
936 * partially complete buffers, so all were released above.
938 if (!retry)
939 return NULL;
941 /* We're _really_ low on memory. Now we just
942 * wait for old buffer heads to become free due to
943 * finishing IO. Since this is an async request and
944 * the reserve list is empty, we're sure there are
945 * async buffer heads in use.
947 free_more_memory();
948 goto try_again;
950 EXPORT_SYMBOL_GPL(alloc_page_buffers);
952 static inline void
953 link_dev_buffers(struct page *page, struct buffer_head *head)
955 struct buffer_head *bh, *tail;
957 bh = head;
958 do {
959 tail = bh;
960 bh = bh->b_this_page;
961 } while (bh);
962 tail->b_this_page = head;
963 attach_page_buffers(page, head);
967 * Initialise the state of a blockdev page's buffers.
969 static sector_t
970 init_page_buffers(struct page *page, struct block_device *bdev,
971 sector_t block, int size)
973 struct buffer_head *head = page_buffers(page);
974 struct buffer_head *bh = head;
975 int uptodate = PageUptodate(page);
976 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode));
978 do {
979 if (!buffer_mapped(bh)) {
980 init_buffer(bh, NULL, NULL);
981 bh->b_bdev = bdev;
982 bh->b_blocknr = block;
983 if (uptodate)
984 set_buffer_uptodate(bh);
985 if (block < end_block)
986 set_buffer_mapped(bh);
988 block++;
989 bh = bh->b_this_page;
990 } while (bh != head);
993 * Caller needs to validate requested block against end of device.
995 return end_block;
999 * Create the page-cache page that contains the requested block.
1001 * This is used purely for blockdev mappings.
1003 static int
1004 grow_dev_page(struct block_device *bdev, sector_t block,
1005 pgoff_t index, int size, int sizebits, gfp_t gfp)
1007 struct inode *inode = bdev->bd_inode;
1008 struct page *page;
1009 struct buffer_head *bh;
1010 sector_t end_block;
1011 int ret = 0; /* Will call free_more_memory() */
1013 page = find_or_create_page(inode->i_mapping, index,
1014 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp);
1015 if (!page)
1016 return ret;
1018 BUG_ON(!PageLocked(page));
1020 if (page_has_buffers(page)) {
1021 bh = page_buffers(page);
1022 if (bh->b_size == size) {
1023 end_block = init_page_buffers(page, bdev,
1024 (sector_t)index << sizebits,
1025 size);
1026 goto done;
1028 if (!try_to_free_buffers(page))
1029 goto failed;
1033 * Allocate some buffers for this page
1035 bh = alloc_page_buffers(page, size, 0);
1036 if (!bh)
1037 goto failed;
1040 * Link the page to the buffers and initialise them. Take the
1041 * lock to be atomic wrt __find_get_block(), which does not
1042 * run under the page lock.
1044 spin_lock(&inode->i_mapping->private_lock);
1045 link_dev_buffers(page, bh);
1046 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1047 size);
1048 spin_unlock(&inode->i_mapping->private_lock);
1049 done:
1050 ret = (block < end_block) ? 1 : -ENXIO;
1051 failed:
1052 unlock_page(page);
1053 page_cache_release(page);
1054 return ret;
1058 * Create buffers for the specified block device block's page. If
1059 * that page was dirty, the buffers are set dirty also.
1061 static int
1062 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1064 pgoff_t index;
1065 int sizebits;
1067 sizebits = -1;
1068 do {
1069 sizebits++;
1070 } while ((size << sizebits) < PAGE_SIZE);
1072 index = block >> sizebits;
1075 * Check for a block which wants to lie outside our maximum possible
1076 * pagecache index. (this comparison is done using sector_t types).
1078 if (unlikely(index != block >> sizebits)) {
1079 char b[BDEVNAME_SIZE];
1081 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1082 "device %s\n",
1083 __func__, (unsigned long long)block,
1084 bdevname(bdev, b));
1085 return -EIO;
1088 /* Create a page with the proper size buffers.. */
1089 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1092 struct buffer_head *
1093 __getblk_slow(struct block_device *bdev, sector_t block,
1094 unsigned size, gfp_t gfp)
1096 /* Size must be multiple of hard sectorsize */
1097 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1098 (size < 512 || size > PAGE_SIZE))) {
1099 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1100 size);
1101 printk(KERN_ERR "logical block size: %d\n",
1102 bdev_logical_block_size(bdev));
1104 dump_stack();
1105 return NULL;
1108 for (;;) {
1109 struct buffer_head *bh;
1110 int ret;
1112 bh = __find_get_block(bdev, block, size);
1113 if (bh)
1114 return bh;
1116 ret = grow_buffers(bdev, block, size, gfp);
1117 if (ret < 0)
1118 return NULL;
1119 if (ret == 0)
1120 free_more_memory();
1123 EXPORT_SYMBOL(__getblk_slow);
1126 * The relationship between dirty buffers and dirty pages:
1128 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1129 * the page is tagged dirty in its radix tree.
1131 * At all times, the dirtiness of the buffers represents the dirtiness of
1132 * subsections of the page. If the page has buffers, the page dirty bit is
1133 * merely a hint about the true dirty state.
1135 * When a page is set dirty in its entirety, all its buffers are marked dirty
1136 * (if the page has buffers).
1138 * When a buffer is marked dirty, its page is dirtied, but the page's other
1139 * buffers are not.
1141 * Also. When blockdev buffers are explicitly read with bread(), they
1142 * individually become uptodate. But their backing page remains not
1143 * uptodate - even if all of its buffers are uptodate. A subsequent
1144 * block_read_full_page() against that page will discover all the uptodate
1145 * buffers, will set the page uptodate and will perform no I/O.
1149 * mark_buffer_dirty - mark a buffer_head as needing writeout
1150 * @bh: the buffer_head to mark dirty
1152 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1153 * backing page dirty, then tag the page as dirty in its address_space's radix
1154 * tree and then attach the address_space's inode to its superblock's dirty
1155 * inode list.
1157 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1158 * mapping->tree_lock and mapping->host->i_lock.
1160 void mark_buffer_dirty(struct buffer_head *bh)
1162 WARN_ON_ONCE(!buffer_uptodate(bh));
1165 * Very *carefully* optimize the it-is-already-dirty case.
1167 * Don't let the final "is it dirty" escape to before we
1168 * perhaps modified the buffer.
1170 if (buffer_dirty(bh)) {
1171 smp_mb();
1172 if (buffer_dirty(bh))
1173 return;
1176 if (!test_set_buffer_dirty(bh)) {
1177 struct page *page = bh->b_page;
1178 if (!TestSetPageDirty(page)) {
1179 struct address_space *mapping = page_mapping(page);
1180 if (mapping)
1181 __set_page_dirty(page, mapping, 0);
1185 EXPORT_SYMBOL(mark_buffer_dirty);
1188 * Decrement a buffer_head's reference count. If all buffers against a page
1189 * have zero reference count, are clean and unlocked, and if the page is clean
1190 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1191 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1192 * a page but it ends up not being freed, and buffers may later be reattached).
1194 void __brelse(struct buffer_head * buf)
1196 if (atomic_read(&buf->b_count)) {
1197 put_bh(buf);
1198 return;
1200 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1202 EXPORT_SYMBOL(__brelse);
1205 * bforget() is like brelse(), except it discards any
1206 * potentially dirty data.
1208 void __bforget(struct buffer_head *bh)
1210 clear_buffer_dirty(bh);
1211 if (bh->b_assoc_map) {
1212 struct address_space *buffer_mapping = bh->b_page->mapping;
1214 spin_lock(&buffer_mapping->private_lock);
1215 list_del_init(&bh->b_assoc_buffers);
1216 bh->b_assoc_map = NULL;
1217 spin_unlock(&buffer_mapping->private_lock);
1219 __brelse(bh);
1221 EXPORT_SYMBOL(__bforget);
1223 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1225 lock_buffer(bh);
1226 if (buffer_uptodate(bh)) {
1227 unlock_buffer(bh);
1228 return bh;
1229 } else {
1230 get_bh(bh);
1231 bh->b_end_io = end_buffer_read_sync;
1232 submit_bh(READ, bh);
1233 wait_on_buffer(bh);
1234 if (buffer_uptodate(bh))
1235 return bh;
1237 brelse(bh);
1238 return NULL;
1242 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1243 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1244 * refcount elevated by one when they're in an LRU. A buffer can only appear
1245 * once in a particular CPU's LRU. A single buffer can be present in multiple
1246 * CPU's LRUs at the same time.
1248 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1249 * sb_find_get_block().
1251 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1252 * a local interrupt disable for that.
1255 #define BH_LRU_SIZE 8
1257 struct bh_lru {
1258 struct buffer_head *bhs[BH_LRU_SIZE];
1261 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1263 #ifdef CONFIG_SMP
1264 #define bh_lru_lock() local_irq_disable()
1265 #define bh_lru_unlock() local_irq_enable()
1266 #else
1267 #define bh_lru_lock() preempt_disable()
1268 #define bh_lru_unlock() preempt_enable()
1269 #endif
1271 static inline void check_irqs_on(void)
1273 #ifdef irqs_disabled
1274 BUG_ON(irqs_disabled());
1275 #endif
1279 * The LRU management algorithm is dopey-but-simple. Sorry.
1281 static void bh_lru_install(struct buffer_head *bh)
1283 struct buffer_head *evictee = NULL;
1285 check_irqs_on();
1286 bh_lru_lock();
1287 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1288 struct buffer_head *bhs[BH_LRU_SIZE];
1289 int in;
1290 int out = 0;
1292 get_bh(bh);
1293 bhs[out++] = bh;
1294 for (in = 0; in < BH_LRU_SIZE; in++) {
1295 struct buffer_head *bh2 =
1296 __this_cpu_read(bh_lrus.bhs[in]);
1298 if (bh2 == bh) {
1299 __brelse(bh2);
1300 } else {
1301 if (out >= BH_LRU_SIZE) {
1302 BUG_ON(evictee != NULL);
1303 evictee = bh2;
1304 } else {
1305 bhs[out++] = bh2;
1309 while (out < BH_LRU_SIZE)
1310 bhs[out++] = NULL;
1311 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1313 bh_lru_unlock();
1315 if (evictee)
1316 __brelse(evictee);
1320 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1322 static struct buffer_head *
1323 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1325 struct buffer_head *ret = NULL;
1326 unsigned int i;
1328 check_irqs_on();
1329 bh_lru_lock();
1330 for (i = 0; i < BH_LRU_SIZE; i++) {
1331 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1333 if (bh && bh->b_bdev == bdev &&
1334 bh->b_blocknr == block && bh->b_size == size) {
1335 if (i) {
1336 while (i) {
1337 __this_cpu_write(bh_lrus.bhs[i],
1338 __this_cpu_read(bh_lrus.bhs[i - 1]));
1339 i--;
1341 __this_cpu_write(bh_lrus.bhs[0], bh);
1343 get_bh(bh);
1344 ret = bh;
1345 break;
1348 bh_lru_unlock();
1349 return ret;
1353 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1354 * it in the LRU and mark it as accessed. If it is not present then return
1355 * NULL
1357 struct buffer_head *
1358 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1360 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1362 if (bh == NULL) {
1363 bh = __find_get_block_slow(bdev, block);
1364 if (bh)
1365 bh_lru_install(bh);
1367 if (bh)
1368 touch_buffer(bh);
1369 return bh;
1371 EXPORT_SYMBOL(__find_get_block);
1374 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1375 * which corresponds to the passed block_device, block and size. The
1376 * returned buffer has its reference count incremented.
1378 * __getblk_gfp() will lock up the machine if grow_dev_page's
1379 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1381 struct buffer_head *
1382 __getblk_gfp(struct block_device *bdev, sector_t block,
1383 unsigned size, gfp_t gfp)
1385 struct buffer_head *bh = __find_get_block(bdev, block, size);
1387 might_sleep();
1388 if (bh == NULL)
1389 bh = __getblk_slow(bdev, block, size, gfp);
1390 return bh;
1392 EXPORT_SYMBOL(__getblk_gfp);
1395 * Do async read-ahead on a buffer..
1397 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1399 struct buffer_head *bh = __getblk(bdev, block, size);
1400 if (likely(bh)) {
1401 ll_rw_block(READA, 1, &bh);
1402 brelse(bh);
1405 EXPORT_SYMBOL(__breadahead);
1408 * __bread_gfp() - reads a specified block and returns the bh
1409 * @bdev: the block_device to read from
1410 * @block: number of block
1411 * @size: size (in bytes) to read
1412 * @gfp: page allocation flag
1414 * Reads a specified block, and returns buffer head that contains it.
1415 * The page cache can be allocated from non-movable area
1416 * not to prevent page migration if you set gfp to zero.
1417 * It returns NULL if the block was unreadable.
1419 struct buffer_head *
1420 __bread_gfp(struct block_device *bdev, sector_t block,
1421 unsigned size, gfp_t gfp)
1423 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1425 if (likely(bh) && !buffer_uptodate(bh))
1426 bh = __bread_slow(bh);
1427 return bh;
1429 EXPORT_SYMBOL(__bread_gfp);
1432 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1433 * This doesn't race because it runs in each cpu either in irq
1434 * or with preempt disabled.
1436 static void invalidate_bh_lru(void *arg)
1438 struct bh_lru *b = &get_cpu_var(bh_lrus);
1439 int i;
1441 for (i = 0; i < BH_LRU_SIZE; i++) {
1442 brelse(b->bhs[i]);
1443 b->bhs[i] = NULL;
1445 put_cpu_var(bh_lrus);
1448 void invalidate_bh_lrus(void)
1450 on_each_cpu(invalidate_bh_lru, NULL, 1);
1452 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1454 void set_bh_page(struct buffer_head *bh,
1455 struct page *page, unsigned long offset)
1457 bh->b_page = page;
1458 BUG_ON(offset >= PAGE_SIZE);
1459 if (PageHighMem(page))
1461 * This catches illegal uses and preserves the offset:
1463 bh->b_data = (char *)(0 + offset);
1464 else
1465 bh->b_data = page_address(page) + offset;
1467 EXPORT_SYMBOL(set_bh_page);
1470 * Called when truncating a buffer on a page completely.
1472 static void discard_buffer(struct buffer_head * bh)
1474 lock_buffer(bh);
1475 clear_buffer_dirty(bh);
1476 bh->b_bdev = NULL;
1477 clear_buffer_mapped(bh);
1478 clear_buffer_req(bh);
1479 clear_buffer_new(bh);
1480 clear_buffer_delay(bh);
1481 clear_buffer_unwritten(bh);
1482 unlock_buffer(bh);
1486 * block_invalidatepage - invalidate part or all of a buffer-backed page
1488 * @page: the page which is affected
1489 * @offset: the index of the truncation point
1491 * block_invalidatepage() is called when all or part of the page has become
1492 * invalidated by a truncate operation.
1494 * block_invalidatepage() does not have to release all buffers, but it must
1495 * ensure that no dirty buffer is left outside @offset and that no I/O
1496 * is underway against any of the blocks which are outside the truncation
1497 * point. Because the caller is about to free (and possibly reuse) those
1498 * blocks on-disk.
1500 void block_invalidatepage(struct page *page, unsigned long offset)
1502 struct buffer_head *head, *bh, *next;
1503 unsigned int curr_off = 0;
1505 BUG_ON(!PageLocked(page));
1506 if (!page_has_buffers(page))
1507 goto out;
1509 head = page_buffers(page);
1510 bh = head;
1511 do {
1512 unsigned int next_off = curr_off + bh->b_size;
1513 next = bh->b_this_page;
1516 * is this block fully invalidated?
1518 if (offset <= curr_off)
1519 discard_buffer(bh);
1520 curr_off = next_off;
1521 bh = next;
1522 } while (bh != head);
1525 * We release buffers only if the entire page is being invalidated.
1526 * The get_block cached value has been unconditionally invalidated,
1527 * so real IO is not possible anymore.
1529 if (offset == 0)
1530 try_to_release_page(page, 0);
1531 out:
1532 return;
1534 EXPORT_SYMBOL(block_invalidatepage);
1537 * We attach and possibly dirty the buffers atomically wrt
1538 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1539 * is already excluded via the page lock.
1541 void create_empty_buffers(struct page *page,
1542 unsigned long blocksize, unsigned long b_state)
1544 struct buffer_head *bh, *head, *tail;
1546 head = alloc_page_buffers(page, blocksize, 1);
1547 bh = head;
1548 do {
1549 bh->b_state |= b_state;
1550 tail = bh;
1551 bh = bh->b_this_page;
1552 } while (bh);
1553 tail->b_this_page = head;
1555 spin_lock(&page->mapping->private_lock);
1556 if (PageUptodate(page) || PageDirty(page)) {
1557 bh = head;
1558 do {
1559 if (PageDirty(page))
1560 set_buffer_dirty(bh);
1561 if (PageUptodate(page))
1562 set_buffer_uptodate(bh);
1563 bh = bh->b_this_page;
1564 } while (bh != head);
1566 attach_page_buffers(page, head);
1567 spin_unlock(&page->mapping->private_lock);
1569 EXPORT_SYMBOL(create_empty_buffers);
1572 * We are taking a block for data and we don't want any output from any
1573 * buffer-cache aliases starting from return from that function and
1574 * until the moment when something will explicitly mark the buffer
1575 * dirty (hopefully that will not happen until we will free that block ;-)
1576 * We don't even need to mark it not-uptodate - nobody can expect
1577 * anything from a newly allocated buffer anyway. We used to used
1578 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1579 * don't want to mark the alias unmapped, for example - it would confuse
1580 * anyone who might pick it with bread() afterwards...
1582 * Also.. Note that bforget() doesn't lock the buffer. So there can
1583 * be writeout I/O going on against recently-freed buffers. We don't
1584 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1585 * only if we really need to. That happens here.
1587 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1589 struct buffer_head *old_bh;
1591 might_sleep();
1593 old_bh = __find_get_block_slow(bdev, block);
1594 if (old_bh) {
1595 clear_buffer_dirty(old_bh);
1596 wait_on_buffer(old_bh);
1597 clear_buffer_req(old_bh);
1598 __brelse(old_bh);
1601 EXPORT_SYMBOL(unmap_underlying_metadata);
1604 * NOTE! All mapped/uptodate combinations are valid:
1606 * Mapped Uptodate Meaning
1608 * No No "unknown" - must do get_block()
1609 * No Yes "hole" - zero-filled
1610 * Yes No "allocated" - allocated on disk, not read in
1611 * Yes Yes "valid" - allocated and up-to-date in memory.
1613 * "Dirty" is valid only with the last case (mapped+uptodate).
1617 * While block_write_full_page is writing back the dirty buffers under
1618 * the page lock, whoever dirtied the buffers may decide to clean them
1619 * again at any time. We handle that by only looking at the buffer
1620 * state inside lock_buffer().
1622 * If block_write_full_page() is called for regular writeback
1623 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1624 * locked buffer. This only can happen if someone has written the buffer
1625 * directly, with submit_bh(). At the address_space level PageWriteback
1626 * prevents this contention from occurring.
1628 * If block_write_full_page() is called with wbc->sync_mode ==
1629 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1630 * causes the writes to be flagged as synchronous writes.
1632 static int __block_write_full_page(struct inode *inode, struct page *page,
1633 get_block_t *get_block, struct writeback_control *wbc,
1634 bh_end_io_t *handler)
1636 int err;
1637 sector_t block;
1638 sector_t last_block;
1639 struct buffer_head *bh, *head;
1640 const unsigned blocksize = 1 << inode->i_blkbits;
1641 int nr_underway = 0;
1642 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1643 WRITE_SYNC : WRITE);
1645 BUG_ON(!PageLocked(page));
1647 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1649 if (!page_has_buffers(page)) {
1650 create_empty_buffers(page, blocksize,
1651 (1 << BH_Dirty)|(1 << BH_Uptodate));
1655 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1656 * here, and the (potentially unmapped) buffers may become dirty at
1657 * any time. If a buffer becomes dirty here after we've inspected it
1658 * then we just miss that fact, and the page stays dirty.
1660 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1661 * handle that here by just cleaning them.
1664 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1665 head = page_buffers(page);
1666 bh = head;
1669 * Get all the dirty buffers mapped to disk addresses and
1670 * handle any aliases from the underlying blockdev's mapping.
1672 do {
1673 if (block > last_block) {
1675 * mapped buffers outside i_size will occur, because
1676 * this page can be outside i_size when there is a
1677 * truncate in progress.
1680 * The buffer was zeroed by block_write_full_page()
1682 clear_buffer_dirty(bh);
1683 set_buffer_uptodate(bh);
1684 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1685 buffer_dirty(bh)) {
1686 WARN_ON(bh->b_size != blocksize);
1687 err = get_block(inode, block, bh, 1);
1688 if (err)
1689 goto recover;
1690 clear_buffer_delay(bh);
1691 if (buffer_new(bh)) {
1692 /* blockdev mappings never come here */
1693 clear_buffer_new(bh);
1694 unmap_underlying_metadata(bh->b_bdev,
1695 bh->b_blocknr);
1698 bh = bh->b_this_page;
1699 block++;
1700 } while (bh != head);
1702 do {
1703 if (!buffer_mapped(bh))
1704 continue;
1706 * If it's a fully non-blocking write attempt and we cannot
1707 * lock the buffer then redirty the page. Note that this can
1708 * potentially cause a busy-wait loop from writeback threads
1709 * and kswapd activity, but those code paths have their own
1710 * higher-level throttling.
1712 if (wbc->sync_mode != WB_SYNC_NONE) {
1713 lock_buffer(bh);
1714 } else if (!trylock_buffer(bh)) {
1715 redirty_page_for_writepage(wbc, page);
1716 continue;
1718 if (test_clear_buffer_dirty(bh)) {
1719 mark_buffer_async_write_endio(bh, handler);
1720 } else {
1721 unlock_buffer(bh);
1723 } while ((bh = bh->b_this_page) != head);
1726 * The page and its buffers are protected by PageWriteback(), so we can
1727 * drop the bh refcounts early.
1729 BUG_ON(PageWriteback(page));
1730 set_page_writeback(page);
1732 do {
1733 struct buffer_head *next = bh->b_this_page;
1734 if (buffer_async_write(bh)) {
1735 submit_bh(write_op, bh);
1736 nr_underway++;
1738 bh = next;
1739 } while (bh != head);
1740 unlock_page(page);
1742 err = 0;
1743 done:
1744 if (nr_underway == 0) {
1746 * The page was marked dirty, but the buffers were
1747 * clean. Someone wrote them back by hand with
1748 * ll_rw_block/submit_bh. A rare case.
1750 end_page_writeback(page);
1753 * The page and buffer_heads can be released at any time from
1754 * here on.
1757 return err;
1759 recover:
1761 * ENOSPC, or some other error. We may already have added some
1762 * blocks to the file, so we need to write these out to avoid
1763 * exposing stale data.
1764 * The page is currently locked and not marked for writeback
1766 bh = head;
1767 /* Recovery: lock and submit the mapped buffers */
1768 do {
1769 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1770 !buffer_delay(bh)) {
1771 lock_buffer(bh);
1772 mark_buffer_async_write_endio(bh, handler);
1773 } else {
1775 * The buffer may have been set dirty during
1776 * attachment to a dirty page.
1778 clear_buffer_dirty(bh);
1780 } while ((bh = bh->b_this_page) != head);
1781 SetPageError(page);
1782 BUG_ON(PageWriteback(page));
1783 mapping_set_error(page->mapping, err);
1784 set_page_writeback(page);
1785 do {
1786 struct buffer_head *next = bh->b_this_page;
1787 if (buffer_async_write(bh)) {
1788 clear_buffer_dirty(bh);
1789 submit_bh(write_op, bh);
1790 nr_underway++;
1792 bh = next;
1793 } while (bh != head);
1794 unlock_page(page);
1795 goto done;
1799 * If a page has any new buffers, zero them out here, and mark them uptodate
1800 * and dirty so they'll be written out (in order to prevent uninitialised
1801 * block data from leaking). And clear the new bit.
1803 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1805 unsigned int block_start, block_end;
1806 struct buffer_head *head, *bh;
1808 BUG_ON(!PageLocked(page));
1809 if (!page_has_buffers(page))
1810 return;
1812 bh = head = page_buffers(page);
1813 block_start = 0;
1814 do {
1815 block_end = block_start + bh->b_size;
1817 if (buffer_new(bh)) {
1818 if (block_end > from && block_start < to) {
1819 if (!PageUptodate(page)) {
1820 unsigned start, size;
1822 start = max(from, block_start);
1823 size = min(to, block_end) - start;
1825 zero_user(page, start, size);
1826 set_buffer_uptodate(bh);
1829 clear_buffer_new(bh);
1830 mark_buffer_dirty(bh);
1834 block_start = block_end;
1835 bh = bh->b_this_page;
1836 } while (bh != head);
1838 EXPORT_SYMBOL(page_zero_new_buffers);
1840 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1841 get_block_t *get_block)
1843 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1844 unsigned to = from + len;
1845 struct inode *inode = page->mapping->host;
1846 unsigned block_start, block_end;
1847 sector_t block;
1848 int err = 0;
1849 unsigned blocksize, bbits;
1850 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1852 BUG_ON(!PageLocked(page));
1853 BUG_ON(from > PAGE_CACHE_SIZE);
1854 BUG_ON(to > PAGE_CACHE_SIZE);
1855 BUG_ON(from > to);
1857 blocksize = 1 << inode->i_blkbits;
1858 if (!page_has_buffers(page))
1859 create_empty_buffers(page, blocksize, 0);
1860 head = page_buffers(page);
1862 bbits = inode->i_blkbits;
1863 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1865 for(bh = head, block_start = 0; bh != head || !block_start;
1866 block++, block_start=block_end, bh = bh->b_this_page) {
1867 block_end = block_start + blocksize;
1868 if (block_end <= from || block_start >= to) {
1869 if (PageUptodate(page)) {
1870 if (!buffer_uptodate(bh))
1871 set_buffer_uptodate(bh);
1873 continue;
1875 if (buffer_new(bh))
1876 clear_buffer_new(bh);
1877 if (!buffer_mapped(bh)) {
1878 WARN_ON(bh->b_size != blocksize);
1879 err = get_block(inode, block, bh, 1);
1880 if (err)
1881 break;
1882 if (buffer_new(bh)) {
1883 unmap_underlying_metadata(bh->b_bdev,
1884 bh->b_blocknr);
1885 if (PageUptodate(page)) {
1886 clear_buffer_new(bh);
1887 set_buffer_uptodate(bh);
1888 mark_buffer_dirty(bh);
1889 continue;
1891 if (block_end > to || block_start < from)
1892 zero_user_segments(page,
1893 to, block_end,
1894 block_start, from);
1895 continue;
1898 if (PageUptodate(page)) {
1899 if (!buffer_uptodate(bh))
1900 set_buffer_uptodate(bh);
1901 continue;
1903 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1904 !buffer_unwritten(bh) &&
1905 (block_start < from || block_end > to)) {
1906 ll_rw_block(READ, 1, &bh);
1907 *wait_bh++=bh;
1911 * If we issued read requests - let them complete.
1913 while(wait_bh > wait) {
1914 wait_on_buffer(*--wait_bh);
1915 if (!buffer_uptodate(*wait_bh))
1916 err = -EIO;
1918 if (unlikely(err))
1919 page_zero_new_buffers(page, from, to);
1920 return err;
1922 EXPORT_SYMBOL(__block_write_begin);
1924 static int __block_commit_write(struct inode *inode, struct page *page,
1925 unsigned from, unsigned to)
1927 unsigned block_start, block_end;
1928 int partial = 0;
1929 unsigned blocksize;
1930 struct buffer_head *bh, *head;
1932 blocksize = 1 << inode->i_blkbits;
1934 for(bh = head = page_buffers(page), block_start = 0;
1935 bh != head || !block_start;
1936 block_start=block_end, bh = bh->b_this_page) {
1937 block_end = block_start + blocksize;
1938 if (block_end <= from || block_start >= to) {
1939 if (!buffer_uptodate(bh))
1940 partial = 1;
1941 } else {
1942 set_buffer_uptodate(bh);
1943 mark_buffer_dirty(bh);
1945 clear_buffer_new(bh);
1949 * If this is a partial write which happened to make all buffers
1950 * uptodate then we can optimize away a bogus readpage() for
1951 * the next read(). Here we 'discover' whether the page went
1952 * uptodate as a result of this (potentially partial) write.
1954 if (!partial)
1955 SetPageUptodate(page);
1956 return 0;
1960 * block_write_begin takes care of the basic task of block allocation and
1961 * bringing partial write blocks uptodate first.
1963 * The filesystem needs to handle block truncation upon failure.
1965 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1966 unsigned flags, struct page **pagep, get_block_t *get_block)
1968 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1969 struct page *page;
1970 int status;
1972 page = grab_cache_page_write_begin(mapping, index, flags);
1973 if (!page)
1974 return -ENOMEM;
1976 status = __block_write_begin(page, pos, len, get_block);
1977 if (unlikely(status)) {
1978 unlock_page(page);
1979 page_cache_release(page);
1980 page = NULL;
1983 *pagep = page;
1984 return status;
1986 EXPORT_SYMBOL(block_write_begin);
1988 int block_write_end(struct file *file, struct address_space *mapping,
1989 loff_t pos, unsigned len, unsigned copied,
1990 struct page *page, void *fsdata)
1992 struct inode *inode = mapping->host;
1993 unsigned start;
1995 start = pos & (PAGE_CACHE_SIZE - 1);
1997 if (unlikely(copied < len)) {
1999 * The buffers that were written will now be uptodate, so we
2000 * don't have to worry about a readpage reading them and
2001 * overwriting a partial write. However if we have encountered
2002 * a short write and only partially written into a buffer, it
2003 * will not be marked uptodate, so a readpage might come in and
2004 * destroy our partial write.
2006 * Do the simplest thing, and just treat any short write to a
2007 * non uptodate page as a zero-length write, and force the
2008 * caller to redo the whole thing.
2010 if (!PageUptodate(page))
2011 copied = 0;
2013 page_zero_new_buffers(page, start+copied, start+len);
2015 flush_dcache_page(page);
2017 /* This could be a short (even 0-length) commit */
2018 __block_commit_write(inode, page, start, start+copied);
2020 return copied;
2022 EXPORT_SYMBOL(block_write_end);
2024 int generic_write_end(struct file *file, struct address_space *mapping,
2025 loff_t pos, unsigned len, unsigned copied,
2026 struct page *page, void *fsdata)
2028 struct inode *inode = mapping->host;
2029 loff_t old_size = inode->i_size;
2030 int i_size_changed = 0;
2032 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2035 * No need to use i_size_read() here, the i_size
2036 * cannot change under us because we hold i_mutex.
2038 * But it's important to update i_size while still holding page lock:
2039 * page writeout could otherwise come in and zero beyond i_size.
2041 if (pos+copied > inode->i_size) {
2042 i_size_write(inode, pos+copied);
2043 i_size_changed = 1;
2046 unlock_page(page);
2047 page_cache_release(page);
2049 if (old_size < pos)
2050 pagecache_isize_extended(inode, old_size, pos);
2052 * Don't mark the inode dirty under page lock. First, it unnecessarily
2053 * makes the holding time of page lock longer. Second, it forces lock
2054 * ordering of page lock and transaction start for journaling
2055 * filesystems.
2057 if (i_size_changed)
2058 mark_inode_dirty(inode);
2060 return copied;
2062 EXPORT_SYMBOL(generic_write_end);
2065 * block_is_partially_uptodate checks whether buffers within a page are
2066 * uptodate or not.
2068 * Returns true if all buffers which correspond to a file portion
2069 * we want to read are uptodate.
2071 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2072 unsigned long from)
2074 struct inode *inode = page->mapping->host;
2075 unsigned block_start, block_end, blocksize;
2076 unsigned to;
2077 struct buffer_head *bh, *head;
2078 int ret = 1;
2080 if (!page_has_buffers(page))
2081 return 0;
2083 blocksize = 1 << inode->i_blkbits;
2084 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2085 to = from + to;
2086 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2087 return 0;
2089 head = page_buffers(page);
2090 bh = head;
2091 block_start = 0;
2092 do {
2093 block_end = block_start + blocksize;
2094 if (block_end > from && block_start < to) {
2095 if (!buffer_uptodate(bh)) {
2096 ret = 0;
2097 break;
2099 if (block_end >= to)
2100 break;
2102 block_start = block_end;
2103 bh = bh->b_this_page;
2104 } while (bh != head);
2106 return ret;
2108 EXPORT_SYMBOL(block_is_partially_uptodate);
2111 * Generic "read page" function for block devices that have the normal
2112 * get_block functionality. This is most of the block device filesystems.
2113 * Reads the page asynchronously --- the unlock_buffer() and
2114 * set/clear_buffer_uptodate() functions propagate buffer state into the
2115 * page struct once IO has completed.
2117 int block_read_full_page(struct page *page, get_block_t *get_block)
2119 struct inode *inode = page->mapping->host;
2120 sector_t iblock, lblock;
2121 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2122 unsigned int blocksize;
2123 int nr, i;
2124 int fully_mapped = 1;
2126 BUG_ON(!PageLocked(page));
2127 blocksize = 1 << inode->i_blkbits;
2128 if (!page_has_buffers(page))
2129 create_empty_buffers(page, blocksize, 0);
2130 head = page_buffers(page);
2132 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2133 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2134 bh = head;
2135 nr = 0;
2136 i = 0;
2138 do {
2139 if (buffer_uptodate(bh))
2140 continue;
2142 if (!buffer_mapped(bh)) {
2143 int err = 0;
2145 fully_mapped = 0;
2146 if (iblock < lblock) {
2147 WARN_ON(bh->b_size != blocksize);
2148 err = get_block(inode, iblock, bh, 0);
2149 if (err)
2150 SetPageError(page);
2152 if (!buffer_mapped(bh)) {
2153 zero_user(page, i * blocksize, blocksize);
2154 if (!err)
2155 set_buffer_uptodate(bh);
2156 continue;
2159 * get_block() might have updated the buffer
2160 * synchronously
2162 if (buffer_uptodate(bh))
2163 continue;
2165 arr[nr++] = bh;
2166 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2168 if (fully_mapped)
2169 SetPageMappedToDisk(page);
2171 if (!nr) {
2173 * All buffers are uptodate - we can set the page uptodate
2174 * as well. But not if get_block() returned an error.
2176 if (!PageError(page))
2177 SetPageUptodate(page);
2178 unlock_page(page);
2179 return 0;
2182 /* Stage two: lock the buffers */
2183 for (i = 0; i < nr; i++) {
2184 bh = arr[i];
2185 lock_buffer(bh);
2186 mark_buffer_async_read(bh);
2190 * Stage 3: start the IO. Check for uptodateness
2191 * inside the buffer lock in case another process reading
2192 * the underlying blockdev brought it uptodate (the sct fix).
2194 for (i = 0; i < nr; i++) {
2195 bh = arr[i];
2196 if (buffer_uptodate(bh))
2197 end_buffer_async_read(bh, 1);
2198 else
2199 submit_bh(READ, bh);
2201 return 0;
2203 EXPORT_SYMBOL(block_read_full_page);
2205 /* utility function for filesystems that need to do work on expanding
2206 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2207 * deal with the hole.
2209 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2211 struct address_space *mapping = inode->i_mapping;
2212 struct page *page;
2213 void *fsdata;
2214 int err;
2216 err = inode_newsize_ok(inode, size);
2217 if (err)
2218 goto out;
2220 err = pagecache_write_begin(NULL, mapping, size, 0,
2221 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2222 &page, &fsdata);
2223 if (err)
2224 goto out;
2226 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2227 BUG_ON(err > 0);
2229 out:
2230 return err;
2232 EXPORT_SYMBOL(generic_cont_expand_simple);
2234 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2235 loff_t pos, loff_t *bytes)
2237 struct inode *inode = mapping->host;
2238 unsigned blocksize = 1 << inode->i_blkbits;
2239 struct page *page;
2240 void *fsdata;
2241 pgoff_t index, curidx;
2242 loff_t curpos;
2243 unsigned zerofrom, offset, len;
2244 int err = 0;
2246 index = pos >> PAGE_CACHE_SHIFT;
2247 offset = pos & ~PAGE_CACHE_MASK;
2249 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2250 zerofrom = curpos & ~PAGE_CACHE_MASK;
2251 if (zerofrom & (blocksize-1)) {
2252 *bytes |= (blocksize-1);
2253 (*bytes)++;
2255 len = PAGE_CACHE_SIZE - zerofrom;
2257 err = pagecache_write_begin(file, mapping, curpos, len,
2258 AOP_FLAG_UNINTERRUPTIBLE,
2259 &page, &fsdata);
2260 if (err)
2261 goto out;
2262 zero_user(page, zerofrom, len);
2263 err = pagecache_write_end(file, mapping, curpos, len, len,
2264 page, fsdata);
2265 if (err < 0)
2266 goto out;
2267 BUG_ON(err != len);
2268 err = 0;
2270 balance_dirty_pages_ratelimited(mapping);
2272 if (unlikely(fatal_signal_pending(current))) {
2273 err = -EINTR;
2274 goto out;
2278 /* page covers the boundary, find the boundary offset */
2279 if (index == curidx) {
2280 zerofrom = curpos & ~PAGE_CACHE_MASK;
2281 /* if we will expand the thing last block will be filled */
2282 if (offset <= zerofrom) {
2283 goto out;
2285 if (zerofrom & (blocksize-1)) {
2286 *bytes |= (blocksize-1);
2287 (*bytes)++;
2289 len = offset - zerofrom;
2291 err = pagecache_write_begin(file, mapping, curpos, len,
2292 AOP_FLAG_UNINTERRUPTIBLE,
2293 &page, &fsdata);
2294 if (err)
2295 goto out;
2296 zero_user(page, zerofrom, len);
2297 err = pagecache_write_end(file, mapping, curpos, len, len,
2298 page, fsdata);
2299 if (err < 0)
2300 goto out;
2301 BUG_ON(err != len);
2302 err = 0;
2304 out:
2305 return err;
2309 * For moronic filesystems that do not allow holes in file.
2310 * We may have to extend the file.
2312 int cont_write_begin(struct file *file, struct address_space *mapping,
2313 loff_t pos, unsigned len, unsigned flags,
2314 struct page **pagep, void **fsdata,
2315 get_block_t *get_block, loff_t *bytes)
2317 struct inode *inode = mapping->host;
2318 unsigned blocksize = 1 << inode->i_blkbits;
2319 unsigned zerofrom;
2320 int err;
2322 err = cont_expand_zero(file, mapping, pos, bytes);
2323 if (err)
2324 return err;
2326 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2327 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2328 *bytes |= (blocksize-1);
2329 (*bytes)++;
2332 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2334 EXPORT_SYMBOL(cont_write_begin);
2336 int block_commit_write(struct page *page, unsigned from, unsigned to)
2338 struct inode *inode = page->mapping->host;
2339 __block_commit_write(inode,page,from,to);
2340 return 0;
2342 EXPORT_SYMBOL(block_commit_write);
2345 * block_page_mkwrite() is not allowed to change the file size as it gets
2346 * called from a page fault handler when a page is first dirtied. Hence we must
2347 * be careful to check for EOF conditions here. We set the page up correctly
2348 * for a written page which means we get ENOSPC checking when writing into
2349 * holes and correct delalloc and unwritten extent mapping on filesystems that
2350 * support these features.
2352 * We are not allowed to take the i_mutex here so we have to play games to
2353 * protect against truncate races as the page could now be beyond EOF. Because
2354 * truncate writes the inode size before removing pages, once we have the
2355 * page lock we can determine safely if the page is beyond EOF. If it is not
2356 * beyond EOF, then the page is guaranteed safe against truncation until we
2357 * unlock the page.
2359 * Direct callers of this function should call vfs_check_frozen() so that page
2360 * fault does not busyloop until the fs is thawed.
2362 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2363 get_block_t get_block)
2365 struct page *page = vmf->page;
2366 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2367 unsigned long end;
2368 loff_t size;
2369 int ret;
2371 lock_page(page);
2372 size = i_size_read(inode);
2373 if ((page->mapping != inode->i_mapping) ||
2374 (page_offset(page) > size)) {
2375 /* We overload EFAULT to mean page got truncated */
2376 ret = -EFAULT;
2377 goto out_unlock;
2380 /* page is wholly or partially inside EOF */
2381 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2382 end = size & ~PAGE_CACHE_MASK;
2383 else
2384 end = PAGE_CACHE_SIZE;
2386 ret = __block_write_begin(page, 0, end, get_block);
2387 if (!ret)
2388 ret = block_commit_write(page, 0, end);
2390 if (unlikely(ret < 0))
2391 goto out_unlock;
2393 * Freezing in progress? We check after the page is marked dirty and
2394 * with page lock held so if the test here fails, we are sure freezing
2395 * code will wait during syncing until the page fault is done - at that
2396 * point page will be dirty and unlocked so freezing code will write it
2397 * and writeprotect it again.
2399 set_page_dirty(page);
2400 if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2401 ret = -EAGAIN;
2402 goto out_unlock;
2404 wait_on_page_writeback(page);
2405 return 0;
2406 out_unlock:
2407 unlock_page(page);
2408 return ret;
2410 EXPORT_SYMBOL(__block_page_mkwrite);
2412 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2413 get_block_t get_block)
2415 int ret;
2416 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2419 * This check is racy but catches the common case. The check in
2420 * __block_page_mkwrite() is reliable.
2422 vfs_check_frozen(sb, SB_FREEZE_WRITE);
2423 ret = __block_page_mkwrite(vma, vmf, get_block);
2424 return block_page_mkwrite_return(ret);
2426 EXPORT_SYMBOL(block_page_mkwrite);
2429 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2430 * immediately, while under the page lock. So it needs a special end_io
2431 * handler which does not touch the bh after unlocking it.
2433 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2435 __end_buffer_read_notouch(bh, uptodate);
2439 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2440 * the page (converting it to circular linked list and taking care of page
2441 * dirty races).
2443 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2445 struct buffer_head *bh;
2447 BUG_ON(!PageLocked(page));
2449 spin_lock(&page->mapping->private_lock);
2450 bh = head;
2451 do {
2452 if (PageDirty(page))
2453 set_buffer_dirty(bh);
2454 if (!bh->b_this_page)
2455 bh->b_this_page = head;
2456 bh = bh->b_this_page;
2457 } while (bh != head);
2458 attach_page_buffers(page, head);
2459 spin_unlock(&page->mapping->private_lock);
2463 * On entry, the page is fully not uptodate.
2464 * On exit the page is fully uptodate in the areas outside (from,to)
2465 * The filesystem needs to handle block truncation upon failure.
2467 int nobh_write_begin(struct address_space *mapping,
2468 loff_t pos, unsigned len, unsigned flags,
2469 struct page **pagep, void **fsdata,
2470 get_block_t *get_block)
2472 struct inode *inode = mapping->host;
2473 const unsigned blkbits = inode->i_blkbits;
2474 const unsigned blocksize = 1 << blkbits;
2475 struct buffer_head *head, *bh;
2476 struct page *page;
2477 pgoff_t index;
2478 unsigned from, to;
2479 unsigned block_in_page;
2480 unsigned block_start, block_end;
2481 sector_t block_in_file;
2482 int nr_reads = 0;
2483 int ret = 0;
2484 int is_mapped_to_disk = 1;
2486 index = pos >> PAGE_CACHE_SHIFT;
2487 from = pos & (PAGE_CACHE_SIZE - 1);
2488 to = from + len;
2490 page = grab_cache_page_write_begin(mapping, index, flags);
2491 if (!page)
2492 return -ENOMEM;
2493 *pagep = page;
2494 *fsdata = NULL;
2496 if (page_has_buffers(page)) {
2497 ret = __block_write_begin(page, pos, len, get_block);
2498 if (unlikely(ret))
2499 goto out_release;
2500 return ret;
2503 if (PageMappedToDisk(page))
2504 return 0;
2507 * Allocate buffers so that we can keep track of state, and potentially
2508 * attach them to the page if an error occurs. In the common case of
2509 * no error, they will just be freed again without ever being attached
2510 * to the page (which is all OK, because we're under the page lock).
2512 * Be careful: the buffer linked list is a NULL terminated one, rather
2513 * than the circular one we're used to.
2515 head = alloc_page_buffers(page, blocksize, 0);
2516 if (!head) {
2517 ret = -ENOMEM;
2518 goto out_release;
2521 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2524 * We loop across all blocks in the page, whether or not they are
2525 * part of the affected region. This is so we can discover if the
2526 * page is fully mapped-to-disk.
2528 for (block_start = 0, block_in_page = 0, bh = head;
2529 block_start < PAGE_CACHE_SIZE;
2530 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2531 int create;
2533 block_end = block_start + blocksize;
2534 bh->b_state = 0;
2535 create = 1;
2536 if (block_start >= to)
2537 create = 0;
2538 ret = get_block(inode, block_in_file + block_in_page,
2539 bh, create);
2540 if (ret)
2541 goto failed;
2542 if (!buffer_mapped(bh))
2543 is_mapped_to_disk = 0;
2544 if (buffer_new(bh))
2545 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2546 if (PageUptodate(page)) {
2547 set_buffer_uptodate(bh);
2548 continue;
2550 if (buffer_new(bh) || !buffer_mapped(bh)) {
2551 zero_user_segments(page, block_start, from,
2552 to, block_end);
2553 continue;
2555 if (buffer_uptodate(bh))
2556 continue; /* reiserfs does this */
2557 if (block_start < from || block_end > to) {
2558 lock_buffer(bh);
2559 bh->b_end_io = end_buffer_read_nobh;
2560 submit_bh(READ, bh);
2561 nr_reads++;
2565 if (nr_reads) {
2567 * The page is locked, so these buffers are protected from
2568 * any VM or truncate activity. Hence we don't need to care
2569 * for the buffer_head refcounts.
2571 for (bh = head; bh; bh = bh->b_this_page) {
2572 wait_on_buffer(bh);
2573 if (!buffer_uptodate(bh))
2574 ret = -EIO;
2576 if (ret)
2577 goto failed;
2580 if (is_mapped_to_disk)
2581 SetPageMappedToDisk(page);
2583 *fsdata = head; /* to be released by nobh_write_end */
2585 return 0;
2587 failed:
2588 BUG_ON(!ret);
2590 * Error recovery is a bit difficult. We need to zero out blocks that
2591 * were newly allocated, and dirty them to ensure they get written out.
2592 * Buffers need to be attached to the page at this point, otherwise
2593 * the handling of potential IO errors during writeout would be hard
2594 * (could try doing synchronous writeout, but what if that fails too?)
2596 attach_nobh_buffers(page, head);
2597 page_zero_new_buffers(page, from, to);
2599 out_release:
2600 unlock_page(page);
2601 page_cache_release(page);
2602 *pagep = NULL;
2604 return ret;
2606 EXPORT_SYMBOL(nobh_write_begin);
2608 int nobh_write_end(struct file *file, struct address_space *mapping,
2609 loff_t pos, unsigned len, unsigned copied,
2610 struct page *page, void *fsdata)
2612 struct inode *inode = page->mapping->host;
2613 struct buffer_head *head = fsdata;
2614 struct buffer_head *bh;
2615 BUG_ON(fsdata != NULL && page_has_buffers(page));
2617 if (unlikely(copied < len) && head)
2618 attach_nobh_buffers(page, head);
2619 if (page_has_buffers(page))
2620 return generic_write_end(file, mapping, pos, len,
2621 copied, page, fsdata);
2623 SetPageUptodate(page);
2624 set_page_dirty(page);
2625 if (pos+copied > inode->i_size) {
2626 i_size_write(inode, pos+copied);
2627 mark_inode_dirty(inode);
2630 unlock_page(page);
2631 page_cache_release(page);
2633 while (head) {
2634 bh = head;
2635 head = head->b_this_page;
2636 free_buffer_head(bh);
2639 return copied;
2641 EXPORT_SYMBOL(nobh_write_end);
2644 * nobh_writepage() - based on block_full_write_page() except
2645 * that it tries to operate without attaching bufferheads to
2646 * the page.
2648 int nobh_writepage(struct page *page, get_block_t *get_block,
2649 struct writeback_control *wbc)
2651 struct inode * const inode = page->mapping->host;
2652 loff_t i_size = i_size_read(inode);
2653 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2654 unsigned offset;
2655 int ret;
2657 /* Is the page fully inside i_size? */
2658 if (page->index < end_index)
2659 goto out;
2661 /* Is the page fully outside i_size? (truncate in progress) */
2662 offset = i_size & (PAGE_CACHE_SIZE-1);
2663 if (page->index >= end_index+1 || !offset) {
2665 * The page may have dirty, unmapped buffers. For example,
2666 * they may have been added in ext3_writepage(). Make them
2667 * freeable here, so the page does not leak.
2669 #if 0
2670 /* Not really sure about this - do we need this ? */
2671 if (page->mapping->a_ops->invalidatepage)
2672 page->mapping->a_ops->invalidatepage(page, offset);
2673 #endif
2674 unlock_page(page);
2675 return 0; /* don't care */
2679 * The page straddles i_size. It must be zeroed out on each and every
2680 * writepage invocation because it may be mmapped. "A file is mapped
2681 * in multiples of the page size. For a file that is not a multiple of
2682 * the page size, the remaining memory is zeroed when mapped, and
2683 * writes to that region are not written out to the file."
2685 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2686 out:
2687 ret = mpage_writepage(page, get_block, wbc);
2688 if (ret == -EAGAIN)
2689 ret = __block_write_full_page(inode, page, get_block, wbc,
2690 end_buffer_async_write);
2691 return ret;
2693 EXPORT_SYMBOL(nobh_writepage);
2695 int nobh_truncate_page(struct address_space *mapping,
2696 loff_t from, get_block_t *get_block)
2698 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2699 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2700 unsigned blocksize;
2701 sector_t iblock;
2702 unsigned length, pos;
2703 struct inode *inode = mapping->host;
2704 struct page *page;
2705 struct buffer_head map_bh;
2706 int err;
2708 blocksize = 1 << inode->i_blkbits;
2709 length = offset & (blocksize - 1);
2711 /* Block boundary? Nothing to do */
2712 if (!length)
2713 return 0;
2715 length = blocksize - length;
2716 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2718 page = grab_cache_page(mapping, index);
2719 err = -ENOMEM;
2720 if (!page)
2721 goto out;
2723 if (page_has_buffers(page)) {
2724 has_buffers:
2725 unlock_page(page);
2726 page_cache_release(page);
2727 return block_truncate_page(mapping, from, get_block);
2730 /* Find the buffer that contains "offset" */
2731 pos = blocksize;
2732 while (offset >= pos) {
2733 iblock++;
2734 pos += blocksize;
2737 map_bh.b_size = blocksize;
2738 map_bh.b_state = 0;
2739 err = get_block(inode, iblock, &map_bh, 0);
2740 if (err)
2741 goto unlock;
2742 /* unmapped? It's a hole - nothing to do */
2743 if (!buffer_mapped(&map_bh))
2744 goto unlock;
2746 /* Ok, it's mapped. Make sure it's up-to-date */
2747 if (!PageUptodate(page)) {
2748 err = mapping->a_ops->readpage(NULL, page);
2749 if (err) {
2750 page_cache_release(page);
2751 goto out;
2753 lock_page(page);
2754 if (!PageUptodate(page)) {
2755 err = -EIO;
2756 goto unlock;
2758 if (page_has_buffers(page))
2759 goto has_buffers;
2761 zero_user(page, offset, length);
2762 set_page_dirty(page);
2763 err = 0;
2765 unlock:
2766 unlock_page(page);
2767 page_cache_release(page);
2768 out:
2769 return err;
2771 EXPORT_SYMBOL(nobh_truncate_page);
2773 int block_truncate_page(struct address_space *mapping,
2774 loff_t from, get_block_t *get_block)
2776 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2777 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2778 unsigned blocksize;
2779 sector_t iblock;
2780 unsigned length, pos;
2781 struct inode *inode = mapping->host;
2782 struct page *page;
2783 struct buffer_head *bh;
2784 int err;
2786 blocksize = 1 << inode->i_blkbits;
2787 length = offset & (blocksize - 1);
2789 /* Block boundary? Nothing to do */
2790 if (!length)
2791 return 0;
2793 length = blocksize - length;
2794 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2796 page = grab_cache_page(mapping, index);
2797 err = -ENOMEM;
2798 if (!page)
2799 goto out;
2801 if (!page_has_buffers(page))
2802 create_empty_buffers(page, blocksize, 0);
2804 /* Find the buffer that contains "offset" */
2805 bh = page_buffers(page);
2806 pos = blocksize;
2807 while (offset >= pos) {
2808 bh = bh->b_this_page;
2809 iblock++;
2810 pos += blocksize;
2813 err = 0;
2814 if (!buffer_mapped(bh)) {
2815 WARN_ON(bh->b_size != blocksize);
2816 err = get_block(inode, iblock, bh, 0);
2817 if (err)
2818 goto unlock;
2819 /* unmapped? It's a hole - nothing to do */
2820 if (!buffer_mapped(bh))
2821 goto unlock;
2824 /* Ok, it's mapped. Make sure it's up-to-date */
2825 if (PageUptodate(page))
2826 set_buffer_uptodate(bh);
2828 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2829 err = -EIO;
2830 ll_rw_block(READ, 1, &bh);
2831 wait_on_buffer(bh);
2832 /* Uhhuh. Read error. Complain and punt. */
2833 if (!buffer_uptodate(bh))
2834 goto unlock;
2837 zero_user(page, offset, length);
2838 mark_buffer_dirty(bh);
2839 err = 0;
2841 unlock:
2842 unlock_page(page);
2843 page_cache_release(page);
2844 out:
2845 return err;
2847 EXPORT_SYMBOL(block_truncate_page);
2850 * The generic ->writepage function for buffer-backed address_spaces
2851 * this form passes in the end_io handler used to finish the IO.
2853 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2854 struct writeback_control *wbc, bh_end_io_t *handler)
2856 struct inode * const inode = page->mapping->host;
2857 loff_t i_size = i_size_read(inode);
2858 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2859 unsigned offset;
2861 /* Is the page fully inside i_size? */
2862 if (page->index < end_index)
2863 return __block_write_full_page(inode, page, get_block, wbc,
2864 handler);
2866 /* Is the page fully outside i_size? (truncate in progress) */
2867 offset = i_size & (PAGE_CACHE_SIZE-1);
2868 if (page->index >= end_index+1 || !offset) {
2870 * The page may have dirty, unmapped buffers. For example,
2871 * they may have been added in ext3_writepage(). Make them
2872 * freeable here, so the page does not leak.
2874 do_invalidatepage(page, 0);
2875 unlock_page(page);
2876 return 0; /* don't care */
2880 * The page straddles i_size. It must be zeroed out on each and every
2881 * writepage invocation because it may be mmapped. "A file is mapped
2882 * in multiples of the page size. For a file that is not a multiple of
2883 * the page size, the remaining memory is zeroed when mapped, and
2884 * writes to that region are not written out to the file."
2886 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2887 return __block_write_full_page(inode, page, get_block, wbc, handler);
2889 EXPORT_SYMBOL(block_write_full_page_endio);
2892 * The generic ->writepage function for buffer-backed address_spaces
2894 int block_write_full_page(struct page *page, get_block_t *get_block,
2895 struct writeback_control *wbc)
2897 return block_write_full_page_endio(page, get_block, wbc,
2898 end_buffer_async_write);
2900 EXPORT_SYMBOL(block_write_full_page);
2902 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2903 get_block_t *get_block)
2905 struct buffer_head tmp;
2906 struct inode *inode = mapping->host;
2907 tmp.b_state = 0;
2908 tmp.b_blocknr = 0;
2909 tmp.b_size = 1 << inode->i_blkbits;
2910 get_block(inode, block, &tmp, 0);
2911 return tmp.b_blocknr;
2913 EXPORT_SYMBOL(generic_block_bmap);
2915 static void end_bio_bh_io_sync(struct bio *bio, int err)
2917 struct buffer_head *bh = bio->bi_private;
2919 if (err == -EOPNOTSUPP) {
2920 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2923 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2924 set_bit(BH_Quiet, &bh->b_state);
2926 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2927 bio_put(bio);
2930 int submit_bh(int rw, struct buffer_head * bh)
2932 struct bio *bio;
2933 int ret = 0;
2935 BUG_ON(!buffer_locked(bh));
2936 BUG_ON(!buffer_mapped(bh));
2937 BUG_ON(!bh->b_end_io);
2938 BUG_ON(buffer_delay(bh));
2939 BUG_ON(buffer_unwritten(bh));
2942 * Only clear out a write error when rewriting
2944 if (test_set_buffer_req(bh) && (rw & WRITE))
2945 clear_buffer_write_io_error(bh);
2948 * from here on down, it's all bio -- do the initial mapping,
2949 * submit_bio -> generic_make_request may further map this bio around
2951 bio = bio_alloc(GFP_NOIO, 1);
2953 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2954 bio->bi_bdev = bh->b_bdev;
2955 bio->bi_io_vec[0].bv_page = bh->b_page;
2956 bio->bi_io_vec[0].bv_len = bh->b_size;
2957 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2959 bio->bi_vcnt = 1;
2960 bio->bi_idx = 0;
2961 bio->bi_size = bh->b_size;
2963 bio->bi_end_io = end_bio_bh_io_sync;
2964 bio->bi_private = bh;
2966 bio_get(bio);
2967 submit_bio(rw, bio);
2969 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2970 ret = -EOPNOTSUPP;
2972 bio_put(bio);
2973 return ret;
2975 EXPORT_SYMBOL(submit_bh);
2978 * ll_rw_block: low-level access to block devices (DEPRECATED)
2979 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2980 * @nr: number of &struct buffer_heads in the array
2981 * @bhs: array of pointers to &struct buffer_head
2983 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2984 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2985 * %READA option is described in the documentation for generic_make_request()
2986 * which ll_rw_block() calls.
2988 * This function drops any buffer that it cannot get a lock on (with the
2989 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2990 * request, and any buffer that appears to be up-to-date when doing read
2991 * request. Further it marks as clean buffers that are processed for
2992 * writing (the buffer cache won't assume that they are actually clean
2993 * until the buffer gets unlocked).
2995 * ll_rw_block sets b_end_io to simple completion handler that marks
2996 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2997 * any waiters.
2999 * All of the buffers must be for the same device, and must also be a
3000 * multiple of the current approved size for the device.
3002 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3004 int i;
3006 for (i = 0; i < nr; i++) {
3007 struct buffer_head *bh = bhs[i];
3009 if (!trylock_buffer(bh))
3010 continue;
3011 if (rw == WRITE) {
3012 if (test_clear_buffer_dirty(bh)) {
3013 bh->b_end_io = end_buffer_write_sync;
3014 get_bh(bh);
3015 submit_bh(WRITE, bh);
3016 continue;
3018 } else {
3019 if (!buffer_uptodate(bh)) {
3020 bh->b_end_io = end_buffer_read_sync;
3021 get_bh(bh);
3022 submit_bh(rw, bh);
3023 continue;
3026 unlock_buffer(bh);
3029 EXPORT_SYMBOL(ll_rw_block);
3031 void write_dirty_buffer(struct buffer_head *bh, int rw)
3033 lock_buffer(bh);
3034 if (!test_clear_buffer_dirty(bh)) {
3035 unlock_buffer(bh);
3036 return;
3038 bh->b_end_io = end_buffer_write_sync;
3039 get_bh(bh);
3040 submit_bh(rw, bh);
3042 EXPORT_SYMBOL(write_dirty_buffer);
3045 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3046 * and then start new I/O and then wait upon it. The caller must have a ref on
3047 * the buffer_head.
3049 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3051 int ret = 0;
3053 WARN_ON(atomic_read(&bh->b_count) < 1);
3054 lock_buffer(bh);
3055 if (test_clear_buffer_dirty(bh)) {
3056 get_bh(bh);
3057 bh->b_end_io = end_buffer_write_sync;
3058 ret = submit_bh(rw, bh);
3059 wait_on_buffer(bh);
3060 if (!ret && !buffer_uptodate(bh))
3061 ret = -EIO;
3062 } else {
3063 unlock_buffer(bh);
3065 return ret;
3067 EXPORT_SYMBOL(__sync_dirty_buffer);
3069 int sync_dirty_buffer(struct buffer_head *bh)
3071 return __sync_dirty_buffer(bh, WRITE_SYNC);
3073 EXPORT_SYMBOL(sync_dirty_buffer);
3076 * try_to_free_buffers() checks if all the buffers on this particular page
3077 * are unused, and releases them if so.
3079 * Exclusion against try_to_free_buffers may be obtained by either
3080 * locking the page or by holding its mapping's private_lock.
3082 * If the page is dirty but all the buffers are clean then we need to
3083 * be sure to mark the page clean as well. This is because the page
3084 * may be against a block device, and a later reattachment of buffers
3085 * to a dirty page will set *all* buffers dirty. Which would corrupt
3086 * filesystem data on the same device.
3088 * The same applies to regular filesystem pages: if all the buffers are
3089 * clean then we set the page clean and proceed. To do that, we require
3090 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3091 * private_lock.
3093 * try_to_free_buffers() is non-blocking.
3095 static inline int buffer_busy(struct buffer_head *bh)
3097 return atomic_read(&bh->b_count) |
3098 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3101 static int
3102 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3104 struct buffer_head *head = page_buffers(page);
3105 struct buffer_head *bh;
3107 bh = head;
3108 do {
3109 if (buffer_write_io_error(bh) && page->mapping)
3110 set_bit(AS_EIO, &page->mapping->flags);
3111 if (buffer_busy(bh))
3112 goto failed;
3113 bh = bh->b_this_page;
3114 } while (bh != head);
3116 do {
3117 struct buffer_head *next = bh->b_this_page;
3119 if (bh->b_assoc_map)
3120 __remove_assoc_queue(bh);
3121 bh = next;
3122 } while (bh != head);
3123 *buffers_to_free = head;
3124 __clear_page_buffers(page);
3125 return 1;
3126 failed:
3127 return 0;
3130 int try_to_free_buffers(struct page *page)
3132 struct address_space * const mapping = page->mapping;
3133 struct buffer_head *buffers_to_free = NULL;
3134 int ret = 0;
3136 BUG_ON(!PageLocked(page));
3137 if (PageWriteback(page))
3138 return 0;
3140 if (mapping == NULL) { /* can this still happen? */
3141 ret = drop_buffers(page, &buffers_to_free);
3142 goto out;
3145 spin_lock(&mapping->private_lock);
3146 ret = drop_buffers(page, &buffers_to_free);
3149 * If the filesystem writes its buffers by hand (eg ext3)
3150 * then we can have clean buffers against a dirty page. We
3151 * clean the page here; otherwise the VM will never notice
3152 * that the filesystem did any IO at all.
3154 * Also, during truncate, discard_buffer will have marked all
3155 * the page's buffers clean. We discover that here and clean
3156 * the page also.
3158 * private_lock must be held over this entire operation in order
3159 * to synchronise against __set_page_dirty_buffers and prevent the
3160 * dirty bit from being lost.
3162 if (ret)
3163 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3164 spin_unlock(&mapping->private_lock);
3165 out:
3166 if (buffers_to_free) {
3167 struct buffer_head *bh = buffers_to_free;
3169 do {
3170 struct buffer_head *next = bh->b_this_page;
3171 free_buffer_head(bh);
3172 bh = next;
3173 } while (bh != buffers_to_free);
3175 return ret;
3177 EXPORT_SYMBOL(try_to_free_buffers);
3180 * There are no bdflush tunables left. But distributions are
3181 * still running obsolete flush daemons, so we terminate them here.
3183 * Use of bdflush() is deprecated and will be removed in a future kernel.
3184 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3186 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3188 static int msg_count;
3190 if (!capable(CAP_SYS_ADMIN))
3191 return -EPERM;
3193 if (msg_count < 5) {
3194 msg_count++;
3195 printk(KERN_INFO
3196 "warning: process `%s' used the obsolete bdflush"
3197 " system call\n", current->comm);
3198 printk(KERN_INFO "Fix your initscripts?\n");
3201 if (func == 1)
3202 do_exit(0);
3203 return 0;
3207 * Buffer-head allocation
3209 static struct kmem_cache *bh_cachep;
3212 * Once the number of bh's in the machine exceeds this level, we start
3213 * stripping them in writeback.
3215 static int max_buffer_heads;
3217 int buffer_heads_over_limit;
3219 struct bh_accounting {
3220 int nr; /* Number of live bh's */
3221 int ratelimit; /* Limit cacheline bouncing */
3224 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3226 static void recalc_bh_state(void)
3228 int i;
3229 int tot = 0;
3231 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3232 return;
3233 __this_cpu_write(bh_accounting.ratelimit, 0);
3234 for_each_online_cpu(i)
3235 tot += per_cpu(bh_accounting, i).nr;
3236 buffer_heads_over_limit = (tot > max_buffer_heads);
3239 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3241 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3242 if (ret) {
3243 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3244 preempt_disable();
3245 __this_cpu_inc(bh_accounting.nr);
3246 recalc_bh_state();
3247 preempt_enable();
3249 return ret;
3251 EXPORT_SYMBOL(alloc_buffer_head);
3253 void free_buffer_head(struct buffer_head *bh)
3255 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3256 kmem_cache_free(bh_cachep, bh);
3257 preempt_disable();
3258 __this_cpu_dec(bh_accounting.nr);
3259 recalc_bh_state();
3260 preempt_enable();
3262 EXPORT_SYMBOL(free_buffer_head);
3264 static void buffer_exit_cpu(int cpu)
3266 int i;
3267 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3269 for (i = 0; i < BH_LRU_SIZE; i++) {
3270 brelse(b->bhs[i]);
3271 b->bhs[i] = NULL;
3273 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3274 per_cpu(bh_accounting, cpu).nr = 0;
3277 static int buffer_cpu_notify(struct notifier_block *self,
3278 unsigned long action, void *hcpu)
3280 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3281 buffer_exit_cpu((unsigned long)hcpu);
3282 return NOTIFY_OK;
3286 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3287 * @bh: struct buffer_head
3289 * Return true if the buffer is up-to-date and false,
3290 * with the buffer locked, if not.
3292 int bh_uptodate_or_lock(struct buffer_head *bh)
3294 if (!buffer_uptodate(bh)) {
3295 lock_buffer(bh);
3296 if (!buffer_uptodate(bh))
3297 return 0;
3298 unlock_buffer(bh);
3300 return 1;
3302 EXPORT_SYMBOL(bh_uptodate_or_lock);
3305 * bh_submit_read - Submit a locked buffer for reading
3306 * @bh: struct buffer_head
3308 * Returns zero on success and -EIO on error.
3310 int bh_submit_read(struct buffer_head *bh)
3312 BUG_ON(!buffer_locked(bh));
3314 if (buffer_uptodate(bh)) {
3315 unlock_buffer(bh);
3316 return 0;
3319 get_bh(bh);
3320 bh->b_end_io = end_buffer_read_sync;
3321 submit_bh(READ, bh);
3322 wait_on_buffer(bh);
3323 if (buffer_uptodate(bh))
3324 return 0;
3325 return -EIO;
3327 EXPORT_SYMBOL(bh_submit_read);
3329 void __init buffer_init(void)
3331 int nrpages;
3333 bh_cachep = kmem_cache_create("buffer_head",
3334 sizeof(struct buffer_head), 0,
3335 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3336 SLAB_MEM_SPREAD),
3337 NULL);
3340 * Limit the bh occupancy to 10% of ZONE_NORMAL
3342 nrpages = (nr_free_buffer_pages() * 10) / 100;
3343 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3344 hotcpu_notifier(buffer_cpu_notify, 0);