ahci: Add JMicron 362 device IDs
[linux/fpc-iii.git] / kernel / cgroup.c
blobec64a1823a50f3224d2edd57f97fa551b34bb630
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
64 #include <linux/atomic.h>
66 static DEFINE_MUTEX(cgroup_mutex);
69 * Generate an array of cgroup subsystem pointers. At boot time, this is
70 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
71 * registered after that. The mutable section of this array is protected by
72 * cgroup_mutex.
74 #define SUBSYS(_x) &_x ## _subsys,
75 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
76 #include <linux/cgroup_subsys.h>
79 #define MAX_CGROUP_ROOT_NAMELEN 64
82 * A cgroupfs_root represents the root of a cgroup hierarchy,
83 * and may be associated with a superblock to form an active
84 * hierarchy
86 struct cgroupfs_root {
87 struct super_block *sb;
90 * The bitmask of subsystems intended to be attached to this
91 * hierarchy
93 unsigned long subsys_bits;
95 /* Unique id for this hierarchy. */
96 int hierarchy_id;
98 /* The bitmask of subsystems currently attached to this hierarchy */
99 unsigned long actual_subsys_bits;
101 /* A list running through the attached subsystems */
102 struct list_head subsys_list;
104 /* The root cgroup for this hierarchy */
105 struct cgroup top_cgroup;
107 /* Tracks how many cgroups are currently defined in hierarchy.*/
108 int number_of_cgroups;
110 /* A list running through the active hierarchies */
111 struct list_head root_list;
113 /* Hierarchy-specific flags */
114 unsigned long flags;
116 /* The path to use for release notifications. */
117 char release_agent_path[PATH_MAX];
119 /* The name for this hierarchy - may be empty */
120 char name[MAX_CGROUP_ROOT_NAMELEN];
124 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
125 * subsystems that are otherwise unattached - it never has more than a
126 * single cgroup, and all tasks are part of that cgroup.
128 static struct cgroupfs_root rootnode;
131 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
132 * cgroup_subsys->use_id != 0.
134 #define CSS_ID_MAX (65535)
135 struct css_id {
137 * The css to which this ID points. This pointer is set to valid value
138 * after cgroup is populated. If cgroup is removed, this will be NULL.
139 * This pointer is expected to be RCU-safe because destroy()
140 * is called after synchronize_rcu(). But for safe use, css_is_removed()
141 * css_tryget() should be used for avoiding race.
143 struct cgroup_subsys_state __rcu *css;
145 * ID of this css.
147 unsigned short id;
149 * Depth in hierarchy which this ID belongs to.
151 unsigned short depth;
153 * ID is freed by RCU. (and lookup routine is RCU safe.)
155 struct rcu_head rcu_head;
157 * Hierarchy of CSS ID belongs to.
159 unsigned short stack[0]; /* Array of Length (depth+1) */
163 * cgroup_event represents events which userspace want to receive.
165 struct cgroup_event {
167 * Cgroup which the event belongs to.
169 struct cgroup *cgrp;
171 * Control file which the event associated.
173 struct cftype *cft;
175 * eventfd to signal userspace about the event.
177 struct eventfd_ctx *eventfd;
179 * Each of these stored in a list by the cgroup.
181 struct list_head list;
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
192 /* The list of hierarchy roots */
194 static LIST_HEAD(roots);
195 static int root_count;
197 static DEFINE_IDA(hierarchy_ida);
198 static int next_hierarchy_id;
199 static DEFINE_SPINLOCK(hierarchy_id_lock);
201 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
202 #define dummytop (&rootnode.top_cgroup)
204 /* This flag indicates whether tasks in the fork and exit paths should
205 * check for fork/exit handlers to call. This avoids us having to do
206 * extra work in the fork/exit path if none of the subsystems need to
207 * be called.
209 static int need_forkexit_callback __read_mostly;
211 #ifdef CONFIG_PROVE_LOCKING
212 int cgroup_lock_is_held(void)
214 return lockdep_is_held(&cgroup_mutex);
216 #else /* #ifdef CONFIG_PROVE_LOCKING */
217 int cgroup_lock_is_held(void)
219 return mutex_is_locked(&cgroup_mutex);
221 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
223 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
225 /* convenient tests for these bits */
226 inline int cgroup_is_removed(const struct cgroup *cgrp)
228 return test_bit(CGRP_REMOVED, &cgrp->flags);
231 /* bits in struct cgroupfs_root flags field */
232 enum {
233 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
236 static int cgroup_is_releasable(const struct cgroup *cgrp)
238 const int bits =
239 (1 << CGRP_RELEASABLE) |
240 (1 << CGRP_NOTIFY_ON_RELEASE);
241 return (cgrp->flags & bits) == bits;
244 static int notify_on_release(const struct cgroup *cgrp)
246 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
249 static int clone_children(const struct cgroup *cgrp)
251 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
255 * for_each_subsys() allows you to iterate on each subsystem attached to
256 * an active hierarchy
258 #define for_each_subsys(_root, _ss) \
259 list_for_each_entry(_ss, &_root->subsys_list, sibling)
261 /* for_each_active_root() allows you to iterate across the active hierarchies */
262 #define for_each_active_root(_root) \
263 list_for_each_entry(_root, &roots, root_list)
265 /* the list of cgroups eligible for automatic release. Protected by
266 * release_list_lock */
267 static LIST_HEAD(release_list);
268 static DEFINE_RAW_SPINLOCK(release_list_lock);
269 static void cgroup_release_agent(struct work_struct *work);
270 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
271 static void check_for_release(struct cgroup *cgrp);
273 /* Link structure for associating css_set objects with cgroups */
274 struct cg_cgroup_link {
276 * List running through cg_cgroup_links associated with a
277 * cgroup, anchored on cgroup->css_sets
279 struct list_head cgrp_link_list;
280 struct cgroup *cgrp;
282 * List running through cg_cgroup_links pointing at a
283 * single css_set object, anchored on css_set->cg_links
285 struct list_head cg_link_list;
286 struct css_set *cg;
289 /* The default css_set - used by init and its children prior to any
290 * hierarchies being mounted. It contains a pointer to the root state
291 * for each subsystem. Also used to anchor the list of css_sets. Not
292 * reference-counted, to improve performance when child cgroups
293 * haven't been created.
296 static struct css_set init_css_set;
297 static struct cg_cgroup_link init_css_set_link;
299 static int cgroup_init_idr(struct cgroup_subsys *ss,
300 struct cgroup_subsys_state *css);
302 /* css_set_lock protects the list of css_set objects, and the
303 * chain of tasks off each css_set. Nests outside task->alloc_lock
304 * due to cgroup_iter_start() */
305 static DEFINE_RWLOCK(css_set_lock);
306 static int css_set_count;
309 * hash table for cgroup groups. This improves the performance to find
310 * an existing css_set. This hash doesn't (currently) take into
311 * account cgroups in empty hierarchies.
313 #define CSS_SET_HASH_BITS 7
314 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
315 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
317 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
319 int i;
320 int index;
321 unsigned long tmp = 0UL;
323 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
324 tmp += (unsigned long)css[i];
325 tmp = (tmp >> 16) ^ tmp;
327 index = hash_long(tmp, CSS_SET_HASH_BITS);
329 return &css_set_table[index];
332 /* We don't maintain the lists running through each css_set to its
333 * task until after the first call to cgroup_iter_start(). This
334 * reduces the fork()/exit() overhead for people who have cgroups
335 * compiled into their kernel but not actually in use */
336 static int use_task_css_set_links __read_mostly;
338 static void __put_css_set(struct css_set *cg, int taskexit)
340 struct cg_cgroup_link *link;
341 struct cg_cgroup_link *saved_link;
343 * Ensure that the refcount doesn't hit zero while any readers
344 * can see it. Similar to atomic_dec_and_lock(), but for an
345 * rwlock
347 if (atomic_add_unless(&cg->refcount, -1, 1))
348 return;
349 write_lock(&css_set_lock);
350 if (!atomic_dec_and_test(&cg->refcount)) {
351 write_unlock(&css_set_lock);
352 return;
355 /* This css_set is dead. unlink it and release cgroup refcounts */
356 hlist_del(&cg->hlist);
357 css_set_count--;
359 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
360 cg_link_list) {
361 struct cgroup *cgrp = link->cgrp;
362 list_del(&link->cg_link_list);
363 list_del(&link->cgrp_link_list);
366 * We may not be holding cgroup_mutex, and if cgrp->count is
367 * dropped to 0 the cgroup can be destroyed at any time, hence
368 * rcu_read_lock is used to keep it alive.
370 rcu_read_lock();
371 if (atomic_dec_and_test(&cgrp->count) &&
372 notify_on_release(cgrp)) {
373 if (taskexit)
374 set_bit(CGRP_RELEASABLE, &cgrp->flags);
375 check_for_release(cgrp);
377 rcu_read_unlock();
379 kfree(link);
382 write_unlock(&css_set_lock);
383 kfree_rcu(cg, rcu_head);
387 * refcounted get/put for css_set objects
389 static inline void get_css_set(struct css_set *cg)
391 atomic_inc(&cg->refcount);
394 static inline void put_css_set(struct css_set *cg)
396 __put_css_set(cg, 0);
399 static inline void put_css_set_taskexit(struct css_set *cg)
401 __put_css_set(cg, 1);
405 * compare_css_sets - helper function for find_existing_css_set().
406 * @cg: candidate css_set being tested
407 * @old_cg: existing css_set for a task
408 * @new_cgrp: cgroup that's being entered by the task
409 * @template: desired set of css pointers in css_set (pre-calculated)
411 * Returns true if "cg" matches "old_cg" except for the hierarchy
412 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
414 static bool compare_css_sets(struct css_set *cg,
415 struct css_set *old_cg,
416 struct cgroup *new_cgrp,
417 struct cgroup_subsys_state *template[])
419 struct list_head *l1, *l2;
421 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
422 /* Not all subsystems matched */
423 return false;
427 * Compare cgroup pointers in order to distinguish between
428 * different cgroups in heirarchies with no subsystems. We
429 * could get by with just this check alone (and skip the
430 * memcmp above) but on most setups the memcmp check will
431 * avoid the need for this more expensive check on almost all
432 * candidates.
435 l1 = &cg->cg_links;
436 l2 = &old_cg->cg_links;
437 while (1) {
438 struct cg_cgroup_link *cgl1, *cgl2;
439 struct cgroup *cg1, *cg2;
441 l1 = l1->next;
442 l2 = l2->next;
443 /* See if we reached the end - both lists are equal length. */
444 if (l1 == &cg->cg_links) {
445 BUG_ON(l2 != &old_cg->cg_links);
446 break;
447 } else {
448 BUG_ON(l2 == &old_cg->cg_links);
450 /* Locate the cgroups associated with these links. */
451 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
452 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
453 cg1 = cgl1->cgrp;
454 cg2 = cgl2->cgrp;
455 /* Hierarchies should be linked in the same order. */
456 BUG_ON(cg1->root != cg2->root);
459 * If this hierarchy is the hierarchy of the cgroup
460 * that's changing, then we need to check that this
461 * css_set points to the new cgroup; if it's any other
462 * hierarchy, then this css_set should point to the
463 * same cgroup as the old css_set.
465 if (cg1->root == new_cgrp->root) {
466 if (cg1 != new_cgrp)
467 return false;
468 } else {
469 if (cg1 != cg2)
470 return false;
473 return true;
477 * find_existing_css_set() is a helper for
478 * find_css_set(), and checks to see whether an existing
479 * css_set is suitable.
481 * oldcg: the cgroup group that we're using before the cgroup
482 * transition
484 * cgrp: the cgroup that we're moving into
486 * template: location in which to build the desired set of subsystem
487 * state objects for the new cgroup group
489 static struct css_set *find_existing_css_set(
490 struct css_set *oldcg,
491 struct cgroup *cgrp,
492 struct cgroup_subsys_state *template[])
494 int i;
495 struct cgroupfs_root *root = cgrp->root;
496 struct hlist_head *hhead;
497 struct hlist_node *node;
498 struct css_set *cg;
501 * Build the set of subsystem state objects that we want to see in the
502 * new css_set. while subsystems can change globally, the entries here
503 * won't change, so no need for locking.
505 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
506 if (root->subsys_bits & (1UL << i)) {
507 /* Subsystem is in this hierarchy. So we want
508 * the subsystem state from the new
509 * cgroup */
510 template[i] = cgrp->subsys[i];
511 } else {
512 /* Subsystem is not in this hierarchy, so we
513 * don't want to change the subsystem state */
514 template[i] = oldcg->subsys[i];
518 hhead = css_set_hash(template);
519 hlist_for_each_entry(cg, node, hhead, hlist) {
520 if (!compare_css_sets(cg, oldcg, cgrp, template))
521 continue;
523 /* This css_set matches what we need */
524 return cg;
527 /* No existing cgroup group matched */
528 return NULL;
531 static void free_cg_links(struct list_head *tmp)
533 struct cg_cgroup_link *link;
534 struct cg_cgroup_link *saved_link;
536 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
537 list_del(&link->cgrp_link_list);
538 kfree(link);
543 * allocate_cg_links() allocates "count" cg_cgroup_link structures
544 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
545 * success or a negative error
547 static int allocate_cg_links(int count, struct list_head *tmp)
549 struct cg_cgroup_link *link;
550 int i;
551 INIT_LIST_HEAD(tmp);
552 for (i = 0; i < count; i++) {
553 link = kmalloc(sizeof(*link), GFP_KERNEL);
554 if (!link) {
555 free_cg_links(tmp);
556 return -ENOMEM;
558 list_add(&link->cgrp_link_list, tmp);
560 return 0;
564 * link_css_set - a helper function to link a css_set to a cgroup
565 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
566 * @cg: the css_set to be linked
567 * @cgrp: the destination cgroup
569 static void link_css_set(struct list_head *tmp_cg_links,
570 struct css_set *cg, struct cgroup *cgrp)
572 struct cg_cgroup_link *link;
574 BUG_ON(list_empty(tmp_cg_links));
575 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
576 cgrp_link_list);
577 link->cg = cg;
578 link->cgrp = cgrp;
579 atomic_inc(&cgrp->count);
580 list_move(&link->cgrp_link_list, &cgrp->css_sets);
582 * Always add links to the tail of the list so that the list
583 * is sorted by order of hierarchy creation
585 list_add_tail(&link->cg_link_list, &cg->cg_links);
589 * find_css_set() takes an existing cgroup group and a
590 * cgroup object, and returns a css_set object that's
591 * equivalent to the old group, but with the given cgroup
592 * substituted into the appropriate hierarchy. Must be called with
593 * cgroup_mutex held
595 static struct css_set *find_css_set(
596 struct css_set *oldcg, struct cgroup *cgrp)
598 struct css_set *res;
599 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
601 struct list_head tmp_cg_links;
603 struct hlist_head *hhead;
604 struct cg_cgroup_link *link;
606 /* First see if we already have a cgroup group that matches
607 * the desired set */
608 read_lock(&css_set_lock);
609 res = find_existing_css_set(oldcg, cgrp, template);
610 if (res)
611 get_css_set(res);
612 read_unlock(&css_set_lock);
614 if (res)
615 return res;
617 res = kmalloc(sizeof(*res), GFP_KERNEL);
618 if (!res)
619 return NULL;
621 /* Allocate all the cg_cgroup_link objects that we'll need */
622 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
623 kfree(res);
624 return NULL;
627 atomic_set(&res->refcount, 1);
628 INIT_LIST_HEAD(&res->cg_links);
629 INIT_LIST_HEAD(&res->tasks);
630 INIT_HLIST_NODE(&res->hlist);
632 /* Copy the set of subsystem state objects generated in
633 * find_existing_css_set() */
634 memcpy(res->subsys, template, sizeof(res->subsys));
636 write_lock(&css_set_lock);
637 /* Add reference counts and links from the new css_set. */
638 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
639 struct cgroup *c = link->cgrp;
640 if (c->root == cgrp->root)
641 c = cgrp;
642 link_css_set(&tmp_cg_links, res, c);
645 BUG_ON(!list_empty(&tmp_cg_links));
647 css_set_count++;
649 /* Add this cgroup group to the hash table */
650 hhead = css_set_hash(res->subsys);
651 hlist_add_head(&res->hlist, hhead);
653 write_unlock(&css_set_lock);
655 return res;
659 * Return the cgroup for "task" from the given hierarchy. Must be
660 * called with cgroup_mutex held.
662 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
663 struct cgroupfs_root *root)
665 struct css_set *css;
666 struct cgroup *res = NULL;
668 BUG_ON(!mutex_is_locked(&cgroup_mutex));
669 read_lock(&css_set_lock);
671 * No need to lock the task - since we hold cgroup_mutex the
672 * task can't change groups, so the only thing that can happen
673 * is that it exits and its css is set back to init_css_set.
675 css = task->cgroups;
676 if (css == &init_css_set) {
677 res = &root->top_cgroup;
678 } else {
679 struct cg_cgroup_link *link;
680 list_for_each_entry(link, &css->cg_links, cg_link_list) {
681 struct cgroup *c = link->cgrp;
682 if (c->root == root) {
683 res = c;
684 break;
688 read_unlock(&css_set_lock);
689 BUG_ON(!res);
690 return res;
694 * There is one global cgroup mutex. We also require taking
695 * task_lock() when dereferencing a task's cgroup subsys pointers.
696 * See "The task_lock() exception", at the end of this comment.
698 * A task must hold cgroup_mutex to modify cgroups.
700 * Any task can increment and decrement the count field without lock.
701 * So in general, code holding cgroup_mutex can't rely on the count
702 * field not changing. However, if the count goes to zero, then only
703 * cgroup_attach_task() can increment it again. Because a count of zero
704 * means that no tasks are currently attached, therefore there is no
705 * way a task attached to that cgroup can fork (the other way to
706 * increment the count). So code holding cgroup_mutex can safely
707 * assume that if the count is zero, it will stay zero. Similarly, if
708 * a task holds cgroup_mutex on a cgroup with zero count, it
709 * knows that the cgroup won't be removed, as cgroup_rmdir()
710 * needs that mutex.
712 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
713 * (usually) take cgroup_mutex. These are the two most performance
714 * critical pieces of code here. The exception occurs on cgroup_exit(),
715 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
716 * is taken, and if the cgroup count is zero, a usermode call made
717 * to the release agent with the name of the cgroup (path relative to
718 * the root of cgroup file system) as the argument.
720 * A cgroup can only be deleted if both its 'count' of using tasks
721 * is zero, and its list of 'children' cgroups is empty. Since all
722 * tasks in the system use _some_ cgroup, and since there is always at
723 * least one task in the system (init, pid == 1), therefore, top_cgroup
724 * always has either children cgroups and/or using tasks. So we don't
725 * need a special hack to ensure that top_cgroup cannot be deleted.
727 * The task_lock() exception
729 * The need for this exception arises from the action of
730 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
731 * another. It does so using cgroup_mutex, however there are
732 * several performance critical places that need to reference
733 * task->cgroup without the expense of grabbing a system global
734 * mutex. Therefore except as noted below, when dereferencing or, as
735 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
736 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
737 * the task_struct routinely used for such matters.
739 * P.S. One more locking exception. RCU is used to guard the
740 * update of a tasks cgroup pointer by cgroup_attach_task()
744 * cgroup_lock - lock out any changes to cgroup structures
747 void cgroup_lock(void)
749 mutex_lock(&cgroup_mutex);
751 EXPORT_SYMBOL_GPL(cgroup_lock);
754 * cgroup_unlock - release lock on cgroup changes
756 * Undo the lock taken in a previous cgroup_lock() call.
758 void cgroup_unlock(void)
760 mutex_unlock(&cgroup_mutex);
762 EXPORT_SYMBOL_GPL(cgroup_unlock);
765 * A couple of forward declarations required, due to cyclic reference loop:
766 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
767 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
768 * -> cgroup_mkdir.
771 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
772 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
773 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
774 static int cgroup_populate_dir(struct cgroup *cgrp);
775 static const struct inode_operations cgroup_dir_inode_operations;
776 static const struct file_operations proc_cgroupstats_operations;
778 static struct backing_dev_info cgroup_backing_dev_info = {
779 .name = "cgroup",
780 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
783 static int alloc_css_id(struct cgroup_subsys *ss,
784 struct cgroup *parent, struct cgroup *child);
786 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
788 struct inode *inode = new_inode(sb);
790 if (inode) {
791 inode->i_ino = get_next_ino();
792 inode->i_mode = mode;
793 inode->i_uid = current_fsuid();
794 inode->i_gid = current_fsgid();
795 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
796 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
798 return inode;
802 * Call subsys's pre_destroy handler.
803 * This is called before css refcnt check.
805 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
807 struct cgroup_subsys *ss;
808 int ret = 0;
810 for_each_subsys(cgrp->root, ss)
811 if (ss->pre_destroy) {
812 ret = ss->pre_destroy(ss, cgrp);
813 if (ret)
814 break;
817 return ret;
820 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
822 /* is dentry a directory ? if so, kfree() associated cgroup */
823 if (S_ISDIR(inode->i_mode)) {
824 struct cgroup *cgrp = dentry->d_fsdata;
825 struct cgroup_subsys *ss;
826 BUG_ON(!(cgroup_is_removed(cgrp)));
827 /* It's possible for external users to be holding css
828 * reference counts on a cgroup; css_put() needs to
829 * be able to access the cgroup after decrementing
830 * the reference count in order to know if it needs to
831 * queue the cgroup to be handled by the release
832 * agent */
833 synchronize_rcu();
835 mutex_lock(&cgroup_mutex);
837 * Release the subsystem state objects.
839 for_each_subsys(cgrp->root, ss)
840 ss->destroy(ss, cgrp);
842 cgrp->root->number_of_cgroups--;
843 mutex_unlock(&cgroup_mutex);
846 * Drop the active superblock reference that we took when we
847 * created the cgroup
849 deactivate_super(cgrp->root->sb);
852 * if we're getting rid of the cgroup, refcount should ensure
853 * that there are no pidlists left.
855 BUG_ON(!list_empty(&cgrp->pidlists));
857 kfree_rcu(cgrp, rcu_head);
859 iput(inode);
862 static int cgroup_delete(const struct dentry *d)
864 return 1;
867 static void remove_dir(struct dentry *d)
869 struct dentry *parent = dget(d->d_parent);
871 d_delete(d);
872 simple_rmdir(parent->d_inode, d);
873 dput(parent);
876 static void cgroup_clear_directory(struct dentry *dentry)
878 struct list_head *node;
880 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
881 spin_lock(&dentry->d_lock);
882 node = dentry->d_subdirs.next;
883 while (node != &dentry->d_subdirs) {
884 struct dentry *d = list_entry(node, struct dentry, d_child);
886 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
887 list_del_init(node);
888 if (d->d_inode) {
889 /* This should never be called on a cgroup
890 * directory with child cgroups */
891 BUG_ON(d->d_inode->i_mode & S_IFDIR);
892 dget_dlock(d);
893 spin_unlock(&d->d_lock);
894 spin_unlock(&dentry->d_lock);
895 d_delete(d);
896 simple_unlink(dentry->d_inode, d);
897 dput(d);
898 spin_lock(&dentry->d_lock);
899 } else
900 spin_unlock(&d->d_lock);
901 node = dentry->d_subdirs.next;
903 spin_unlock(&dentry->d_lock);
907 * NOTE : the dentry must have been dget()'ed
909 static void cgroup_d_remove_dir(struct dentry *dentry)
911 struct dentry *parent;
913 cgroup_clear_directory(dentry);
915 parent = dentry->d_parent;
916 spin_lock(&parent->d_lock);
917 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
918 list_del_init(&dentry->d_child);
919 spin_unlock(&dentry->d_lock);
920 spin_unlock(&parent->d_lock);
921 remove_dir(dentry);
925 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
926 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
927 * reference to css->refcnt. In general, this refcnt is expected to goes down
928 * to zero, soon.
930 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
932 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
934 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
936 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
937 wake_up_all(&cgroup_rmdir_waitq);
940 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
942 css_get(css);
945 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
947 cgroup_wakeup_rmdir_waiter(css->cgroup);
948 css_put(css);
952 * Call with cgroup_mutex held. Drops reference counts on modules, including
953 * any duplicate ones that parse_cgroupfs_options took. If this function
954 * returns an error, no reference counts are touched.
956 static int rebind_subsystems(struct cgroupfs_root *root,
957 unsigned long final_bits)
959 unsigned long added_bits, removed_bits;
960 struct cgroup *cgrp = &root->top_cgroup;
961 int i;
963 BUG_ON(!mutex_is_locked(&cgroup_mutex));
965 removed_bits = root->actual_subsys_bits & ~final_bits;
966 added_bits = final_bits & ~root->actual_subsys_bits;
967 /* Check that any added subsystems are currently free */
968 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
969 unsigned long bit = 1UL << i;
970 struct cgroup_subsys *ss = subsys[i];
971 if (!(bit & added_bits))
972 continue;
974 * Nobody should tell us to do a subsys that doesn't exist:
975 * parse_cgroupfs_options should catch that case and refcounts
976 * ensure that subsystems won't disappear once selected.
978 BUG_ON(ss == NULL);
979 if (ss->root != &rootnode) {
980 /* Subsystem isn't free */
981 return -EBUSY;
985 /* Currently we don't handle adding/removing subsystems when
986 * any child cgroups exist. This is theoretically supportable
987 * but involves complex error handling, so it's being left until
988 * later */
989 if (root->number_of_cgroups > 1)
990 return -EBUSY;
992 /* Process each subsystem */
993 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
994 struct cgroup_subsys *ss = subsys[i];
995 unsigned long bit = 1UL << i;
996 if (bit & added_bits) {
997 /* We're binding this subsystem to this hierarchy */
998 BUG_ON(ss == NULL);
999 BUG_ON(cgrp->subsys[i]);
1000 BUG_ON(!dummytop->subsys[i]);
1001 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1002 mutex_lock(&ss->hierarchy_mutex);
1003 cgrp->subsys[i] = dummytop->subsys[i];
1004 cgrp->subsys[i]->cgroup = cgrp;
1005 list_move(&ss->sibling, &root->subsys_list);
1006 ss->root = root;
1007 if (ss->bind)
1008 ss->bind(ss, cgrp);
1009 mutex_unlock(&ss->hierarchy_mutex);
1010 /* refcount was already taken, and we're keeping it */
1011 } else if (bit & removed_bits) {
1012 /* We're removing this subsystem */
1013 BUG_ON(ss == NULL);
1014 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1015 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1016 mutex_lock(&ss->hierarchy_mutex);
1017 if (ss->bind)
1018 ss->bind(ss, dummytop);
1019 dummytop->subsys[i]->cgroup = dummytop;
1020 cgrp->subsys[i] = NULL;
1021 subsys[i]->root = &rootnode;
1022 list_move(&ss->sibling, &rootnode.subsys_list);
1023 mutex_unlock(&ss->hierarchy_mutex);
1024 /* subsystem is now free - drop reference on module */
1025 module_put(ss->module);
1026 } else if (bit & final_bits) {
1027 /* Subsystem state should already exist */
1028 BUG_ON(ss == NULL);
1029 BUG_ON(!cgrp->subsys[i]);
1031 * a refcount was taken, but we already had one, so
1032 * drop the extra reference.
1034 module_put(ss->module);
1035 #ifdef CONFIG_MODULE_UNLOAD
1036 BUG_ON(ss->module && !module_refcount(ss->module));
1037 #endif
1038 } else {
1039 /* Subsystem state shouldn't exist */
1040 BUG_ON(cgrp->subsys[i]);
1043 root->subsys_bits = root->actual_subsys_bits = final_bits;
1044 synchronize_rcu();
1046 return 0;
1049 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1051 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1052 struct cgroup_subsys *ss;
1054 mutex_lock(&cgroup_mutex);
1055 for_each_subsys(root, ss)
1056 seq_show_option(seq, ss->name, NULL);
1057 if (test_bit(ROOT_NOPREFIX, &root->flags))
1058 seq_puts(seq, ",noprefix");
1059 if (strlen(root->release_agent_path))
1060 seq_show_option(seq, "release_agent",
1061 root->release_agent_path);
1062 if (clone_children(&root->top_cgroup))
1063 seq_puts(seq, ",clone_children");
1064 if (strlen(root->name))
1065 seq_show_option(seq, "name", root->name);
1066 mutex_unlock(&cgroup_mutex);
1067 return 0;
1070 struct cgroup_sb_opts {
1071 unsigned long subsys_bits;
1072 unsigned long flags;
1073 char *release_agent;
1074 bool clone_children;
1075 char *name;
1076 /* User explicitly requested empty subsystem */
1077 bool none;
1079 struct cgroupfs_root *new_root;
1084 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1085 * with cgroup_mutex held to protect the subsys[] array. This function takes
1086 * refcounts on subsystems to be used, unless it returns error, in which case
1087 * no refcounts are taken.
1089 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1091 char *token, *o = data;
1092 bool all_ss = false, one_ss = false;
1093 unsigned long mask = (unsigned long)-1;
1094 int i;
1095 bool module_pin_failed = false;
1097 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1099 #ifdef CONFIG_CPUSETS
1100 mask = ~(1UL << cpuset_subsys_id);
1101 #endif
1103 memset(opts, 0, sizeof(*opts));
1105 while ((token = strsep(&o, ",")) != NULL) {
1106 if (!*token)
1107 return -EINVAL;
1108 if (!strcmp(token, "none")) {
1109 /* Explicitly have no subsystems */
1110 opts->none = true;
1111 continue;
1113 if (!strcmp(token, "all")) {
1114 /* Mutually exclusive option 'all' + subsystem name */
1115 if (one_ss)
1116 return -EINVAL;
1117 all_ss = true;
1118 continue;
1120 if (!strcmp(token, "noprefix")) {
1121 set_bit(ROOT_NOPREFIX, &opts->flags);
1122 continue;
1124 if (!strcmp(token, "clone_children")) {
1125 opts->clone_children = true;
1126 continue;
1128 if (!strncmp(token, "release_agent=", 14)) {
1129 /* Specifying two release agents is forbidden */
1130 if (opts->release_agent)
1131 return -EINVAL;
1132 opts->release_agent =
1133 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1134 if (!opts->release_agent)
1135 return -ENOMEM;
1136 continue;
1138 if (!strncmp(token, "name=", 5)) {
1139 const char *name = token + 5;
1140 /* Can't specify an empty name */
1141 if (!strlen(name))
1142 return -EINVAL;
1143 /* Must match [\w.-]+ */
1144 for (i = 0; i < strlen(name); i++) {
1145 char c = name[i];
1146 if (isalnum(c))
1147 continue;
1148 if ((c == '.') || (c == '-') || (c == '_'))
1149 continue;
1150 return -EINVAL;
1152 /* Specifying two names is forbidden */
1153 if (opts->name)
1154 return -EINVAL;
1155 opts->name = kstrndup(name,
1156 MAX_CGROUP_ROOT_NAMELEN - 1,
1157 GFP_KERNEL);
1158 if (!opts->name)
1159 return -ENOMEM;
1161 continue;
1164 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1165 struct cgroup_subsys *ss = subsys[i];
1166 if (ss == NULL)
1167 continue;
1168 if (strcmp(token, ss->name))
1169 continue;
1170 if (ss->disabled)
1171 continue;
1173 /* Mutually exclusive option 'all' + subsystem name */
1174 if (all_ss)
1175 return -EINVAL;
1176 set_bit(i, &opts->subsys_bits);
1177 one_ss = true;
1179 break;
1181 if (i == CGROUP_SUBSYS_COUNT)
1182 return -ENOENT;
1186 * If the 'all' option was specified select all the subsystems,
1187 * otherwise if 'none', 'name=' and a subsystem name options
1188 * were not specified, let's default to 'all'
1190 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1191 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1192 struct cgroup_subsys *ss = subsys[i];
1193 if (ss == NULL)
1194 continue;
1195 if (ss->disabled)
1196 continue;
1197 set_bit(i, &opts->subsys_bits);
1201 /* Consistency checks */
1204 * Option noprefix was introduced just for backward compatibility
1205 * with the old cpuset, so we allow noprefix only if mounting just
1206 * the cpuset subsystem.
1208 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1209 (opts->subsys_bits & mask))
1210 return -EINVAL;
1213 /* Can't specify "none" and some subsystems */
1214 if (opts->subsys_bits && opts->none)
1215 return -EINVAL;
1218 * We either have to specify by name or by subsystems. (So all
1219 * empty hierarchies must have a name).
1221 if (!opts->subsys_bits && !opts->name)
1222 return -EINVAL;
1225 * Grab references on all the modules we'll need, so the subsystems
1226 * don't dance around before rebind_subsystems attaches them. This may
1227 * take duplicate reference counts on a subsystem that's already used,
1228 * but rebind_subsystems handles this case.
1230 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1231 unsigned long bit = 1UL << i;
1233 if (!(bit & opts->subsys_bits))
1234 continue;
1235 if (!try_module_get(subsys[i]->module)) {
1236 module_pin_failed = true;
1237 break;
1240 if (module_pin_failed) {
1242 * oops, one of the modules was going away. this means that we
1243 * raced with a module_delete call, and to the user this is
1244 * essentially a "subsystem doesn't exist" case.
1246 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1247 /* drop refcounts only on the ones we took */
1248 unsigned long bit = 1UL << i;
1250 if (!(bit & opts->subsys_bits))
1251 continue;
1252 module_put(subsys[i]->module);
1254 return -ENOENT;
1257 return 0;
1260 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1262 int i;
1263 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1264 unsigned long bit = 1UL << i;
1266 if (!(bit & subsys_bits))
1267 continue;
1268 module_put(subsys[i]->module);
1272 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1274 int ret = 0;
1275 struct cgroupfs_root *root = sb->s_fs_info;
1276 struct cgroup *cgrp = &root->top_cgroup;
1277 struct cgroup_sb_opts opts;
1279 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1280 mutex_lock(&cgroup_mutex);
1282 /* See what subsystems are wanted */
1283 ret = parse_cgroupfs_options(data, &opts);
1284 if (ret)
1285 goto out_unlock;
1287 /* Don't allow flags or name to change at remount */
1288 if (opts.flags != root->flags ||
1289 (opts.name && strcmp(opts.name, root->name))) {
1290 ret = -EINVAL;
1291 drop_parsed_module_refcounts(opts.subsys_bits);
1292 goto out_unlock;
1295 ret = rebind_subsystems(root, opts.subsys_bits);
1296 if (ret) {
1297 drop_parsed_module_refcounts(opts.subsys_bits);
1298 goto out_unlock;
1301 /* (re)populate subsystem files */
1302 cgroup_populate_dir(cgrp);
1304 if (opts.release_agent)
1305 strcpy(root->release_agent_path, opts.release_agent);
1306 out_unlock:
1307 kfree(opts.release_agent);
1308 kfree(opts.name);
1309 mutex_unlock(&cgroup_mutex);
1310 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1311 return ret;
1314 static const struct super_operations cgroup_ops = {
1315 .statfs = simple_statfs,
1316 .drop_inode = generic_delete_inode,
1317 .show_options = cgroup_show_options,
1318 .remount_fs = cgroup_remount,
1321 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1323 INIT_LIST_HEAD(&cgrp->sibling);
1324 INIT_LIST_HEAD(&cgrp->children);
1325 INIT_LIST_HEAD(&cgrp->css_sets);
1326 INIT_LIST_HEAD(&cgrp->release_list);
1327 INIT_LIST_HEAD(&cgrp->pidlists);
1328 mutex_init(&cgrp->pidlist_mutex);
1329 INIT_LIST_HEAD(&cgrp->event_list);
1330 spin_lock_init(&cgrp->event_list_lock);
1333 static void init_cgroup_root(struct cgroupfs_root *root)
1335 struct cgroup *cgrp = &root->top_cgroup;
1336 INIT_LIST_HEAD(&root->subsys_list);
1337 INIT_LIST_HEAD(&root->root_list);
1338 root->number_of_cgroups = 1;
1339 cgrp->root = root;
1340 cgrp->top_cgroup = cgrp;
1341 init_cgroup_housekeeping(cgrp);
1344 static bool init_root_id(struct cgroupfs_root *root)
1346 int ret = 0;
1348 do {
1349 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1350 return false;
1351 spin_lock(&hierarchy_id_lock);
1352 /* Try to allocate the next unused ID */
1353 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1354 &root->hierarchy_id);
1355 if (ret == -ENOSPC)
1356 /* Try again starting from 0 */
1357 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1358 if (!ret) {
1359 next_hierarchy_id = root->hierarchy_id + 1;
1360 } else if (ret != -EAGAIN) {
1361 /* Can only get here if the 31-bit IDR is full ... */
1362 BUG_ON(ret);
1364 spin_unlock(&hierarchy_id_lock);
1365 } while (ret);
1366 return true;
1369 static int cgroup_test_super(struct super_block *sb, void *data)
1371 struct cgroup_sb_opts *opts = data;
1372 struct cgroupfs_root *root = sb->s_fs_info;
1374 /* If we asked for a name then it must match */
1375 if (opts->name && strcmp(opts->name, root->name))
1376 return 0;
1379 * If we asked for subsystems (or explicitly for no
1380 * subsystems) then they must match
1382 if ((opts->subsys_bits || opts->none)
1383 && (opts->subsys_bits != root->subsys_bits))
1384 return 0;
1386 return 1;
1389 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1391 struct cgroupfs_root *root;
1393 if (!opts->subsys_bits && !opts->none)
1394 return NULL;
1396 root = kzalloc(sizeof(*root), GFP_KERNEL);
1397 if (!root)
1398 return ERR_PTR(-ENOMEM);
1400 if (!init_root_id(root)) {
1401 kfree(root);
1402 return ERR_PTR(-ENOMEM);
1404 init_cgroup_root(root);
1406 root->subsys_bits = opts->subsys_bits;
1407 root->flags = opts->flags;
1408 if (opts->release_agent)
1409 strcpy(root->release_agent_path, opts->release_agent);
1410 if (opts->name)
1411 strcpy(root->name, opts->name);
1412 if (opts->clone_children)
1413 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1414 return root;
1417 static void cgroup_drop_root(struct cgroupfs_root *root)
1419 if (!root)
1420 return;
1422 BUG_ON(!root->hierarchy_id);
1423 spin_lock(&hierarchy_id_lock);
1424 ida_remove(&hierarchy_ida, root->hierarchy_id);
1425 spin_unlock(&hierarchy_id_lock);
1426 kfree(root);
1429 static int cgroup_set_super(struct super_block *sb, void *data)
1431 int ret;
1432 struct cgroup_sb_opts *opts = data;
1434 /* If we don't have a new root, we can't set up a new sb */
1435 if (!opts->new_root)
1436 return -EINVAL;
1438 BUG_ON(!opts->subsys_bits && !opts->none);
1440 ret = set_anon_super(sb, NULL);
1441 if (ret)
1442 return ret;
1444 sb->s_fs_info = opts->new_root;
1445 opts->new_root->sb = sb;
1447 sb->s_blocksize = PAGE_CACHE_SIZE;
1448 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1449 sb->s_magic = CGROUP_SUPER_MAGIC;
1450 sb->s_op = &cgroup_ops;
1452 return 0;
1455 static int cgroup_get_rootdir(struct super_block *sb)
1457 static const struct dentry_operations cgroup_dops = {
1458 .d_iput = cgroup_diput,
1459 .d_delete = cgroup_delete,
1462 struct inode *inode =
1463 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1464 struct dentry *dentry;
1466 if (!inode)
1467 return -ENOMEM;
1469 inode->i_fop = &simple_dir_operations;
1470 inode->i_op = &cgroup_dir_inode_operations;
1471 /* directories start off with i_nlink == 2 (for "." entry) */
1472 inc_nlink(inode);
1473 dentry = d_alloc_root(inode);
1474 if (!dentry) {
1475 iput(inode);
1476 return -ENOMEM;
1478 sb->s_root = dentry;
1479 /* for everything else we want ->d_op set */
1480 sb->s_d_op = &cgroup_dops;
1481 return 0;
1484 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1485 int flags, const char *unused_dev_name,
1486 void *data)
1488 struct cgroup_sb_opts opts;
1489 struct cgroupfs_root *root;
1490 int ret = 0;
1491 struct super_block *sb;
1492 struct cgroupfs_root *new_root;
1494 /* First find the desired set of subsystems */
1495 mutex_lock(&cgroup_mutex);
1496 ret = parse_cgroupfs_options(data, &opts);
1497 mutex_unlock(&cgroup_mutex);
1498 if (ret)
1499 goto out_err;
1502 * Allocate a new cgroup root. We may not need it if we're
1503 * reusing an existing hierarchy.
1505 new_root = cgroup_root_from_opts(&opts);
1506 if (IS_ERR(new_root)) {
1507 ret = PTR_ERR(new_root);
1508 goto drop_modules;
1510 opts.new_root = new_root;
1512 /* Locate an existing or new sb for this hierarchy */
1513 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1514 if (IS_ERR(sb)) {
1515 ret = PTR_ERR(sb);
1516 cgroup_drop_root(opts.new_root);
1517 goto drop_modules;
1520 root = sb->s_fs_info;
1521 BUG_ON(!root);
1522 if (root == opts.new_root) {
1523 /* We used the new root structure, so this is a new hierarchy */
1524 struct list_head tmp_cg_links;
1525 struct cgroup *root_cgrp = &root->top_cgroup;
1526 struct inode *inode;
1527 struct cgroupfs_root *existing_root;
1528 const struct cred *cred;
1529 int i;
1531 BUG_ON(sb->s_root != NULL);
1533 ret = cgroup_get_rootdir(sb);
1534 if (ret)
1535 goto drop_new_super;
1536 inode = sb->s_root->d_inode;
1538 mutex_lock(&inode->i_mutex);
1539 mutex_lock(&cgroup_mutex);
1541 if (strlen(root->name)) {
1542 /* Check for name clashes with existing mounts */
1543 for_each_active_root(existing_root) {
1544 if (!strcmp(existing_root->name, root->name)) {
1545 ret = -EBUSY;
1546 mutex_unlock(&cgroup_mutex);
1547 mutex_unlock(&inode->i_mutex);
1548 goto drop_new_super;
1554 * We're accessing css_set_count without locking
1555 * css_set_lock here, but that's OK - it can only be
1556 * increased by someone holding cgroup_lock, and
1557 * that's us. The worst that can happen is that we
1558 * have some link structures left over
1560 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1561 if (ret) {
1562 mutex_unlock(&cgroup_mutex);
1563 mutex_unlock(&inode->i_mutex);
1564 goto drop_new_super;
1567 ret = rebind_subsystems(root, root->subsys_bits);
1568 if (ret == -EBUSY) {
1569 mutex_unlock(&cgroup_mutex);
1570 mutex_unlock(&inode->i_mutex);
1571 free_cg_links(&tmp_cg_links);
1572 goto drop_new_super;
1575 * There must be no failure case after here, since rebinding
1576 * takes care of subsystems' refcounts, which are explicitly
1577 * dropped in the failure exit path.
1580 /* EBUSY should be the only error here */
1581 BUG_ON(ret);
1583 list_add(&root->root_list, &roots);
1584 root_count++;
1586 sb->s_root->d_fsdata = root_cgrp;
1587 root->top_cgroup.dentry = sb->s_root;
1589 /* Link the top cgroup in this hierarchy into all
1590 * the css_set objects */
1591 write_lock(&css_set_lock);
1592 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1593 struct hlist_head *hhead = &css_set_table[i];
1594 struct hlist_node *node;
1595 struct css_set *cg;
1597 hlist_for_each_entry(cg, node, hhead, hlist)
1598 link_css_set(&tmp_cg_links, cg, root_cgrp);
1600 write_unlock(&css_set_lock);
1602 free_cg_links(&tmp_cg_links);
1604 BUG_ON(!list_empty(&root_cgrp->sibling));
1605 BUG_ON(!list_empty(&root_cgrp->children));
1606 BUG_ON(root->number_of_cgroups != 1);
1608 cred = override_creds(&init_cred);
1609 cgroup_populate_dir(root_cgrp);
1610 revert_creds(cred);
1611 mutex_unlock(&cgroup_mutex);
1612 mutex_unlock(&inode->i_mutex);
1613 } else {
1615 * We re-used an existing hierarchy - the new root (if
1616 * any) is not needed
1618 cgroup_drop_root(opts.new_root);
1619 /* no subsys rebinding, so refcounts don't change */
1620 drop_parsed_module_refcounts(opts.subsys_bits);
1623 kfree(opts.release_agent);
1624 kfree(opts.name);
1625 return dget(sb->s_root);
1627 drop_new_super:
1628 deactivate_locked_super(sb);
1629 drop_modules:
1630 drop_parsed_module_refcounts(opts.subsys_bits);
1631 out_err:
1632 kfree(opts.release_agent);
1633 kfree(opts.name);
1634 return ERR_PTR(ret);
1637 static void cgroup_kill_sb(struct super_block *sb) {
1638 struct cgroupfs_root *root = sb->s_fs_info;
1639 struct cgroup *cgrp = &root->top_cgroup;
1640 int ret;
1641 struct cg_cgroup_link *link;
1642 struct cg_cgroup_link *saved_link;
1644 BUG_ON(!root);
1646 BUG_ON(root->number_of_cgroups != 1);
1647 BUG_ON(!list_empty(&cgrp->children));
1648 BUG_ON(!list_empty(&cgrp->sibling));
1650 mutex_lock(&cgroup_mutex);
1652 /* Rebind all subsystems back to the default hierarchy */
1653 ret = rebind_subsystems(root, 0);
1654 /* Shouldn't be able to fail ... */
1655 BUG_ON(ret);
1658 * Release all the links from css_sets to this hierarchy's
1659 * root cgroup
1661 write_lock(&css_set_lock);
1663 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1664 cgrp_link_list) {
1665 list_del(&link->cg_link_list);
1666 list_del(&link->cgrp_link_list);
1667 kfree(link);
1669 write_unlock(&css_set_lock);
1671 if (!list_empty(&root->root_list)) {
1672 list_del(&root->root_list);
1673 root_count--;
1676 mutex_unlock(&cgroup_mutex);
1678 kill_litter_super(sb);
1679 cgroup_drop_root(root);
1682 static struct file_system_type cgroup_fs_type = {
1683 .name = "cgroup",
1684 .mount = cgroup_mount,
1685 .kill_sb = cgroup_kill_sb,
1688 static struct kobject *cgroup_kobj;
1690 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1692 return dentry->d_fsdata;
1695 static inline struct cftype *__d_cft(struct dentry *dentry)
1697 return dentry->d_fsdata;
1701 * cgroup_path - generate the path of a cgroup
1702 * @cgrp: the cgroup in question
1703 * @buf: the buffer to write the path into
1704 * @buflen: the length of the buffer
1706 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1707 * reference. Writes path of cgroup into buf. Returns 0 on success,
1708 * -errno on error.
1710 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1712 char *start;
1713 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1714 cgroup_lock_is_held());
1716 if (!dentry || cgrp == dummytop) {
1718 * Inactive subsystems have no dentry for their root
1719 * cgroup
1721 strcpy(buf, "/");
1722 return 0;
1725 start = buf + buflen;
1727 *--start = '\0';
1728 for (;;) {
1729 int len = dentry->d_name.len;
1731 if ((start -= len) < buf)
1732 return -ENAMETOOLONG;
1733 memcpy(start, dentry->d_name.name, len);
1734 cgrp = cgrp->parent;
1735 if (!cgrp)
1736 break;
1738 dentry = rcu_dereference_check(cgrp->dentry,
1739 cgroup_lock_is_held());
1740 if (!cgrp->parent)
1741 continue;
1742 if (--start < buf)
1743 return -ENAMETOOLONG;
1744 *start = '/';
1746 memmove(buf, start, buf + buflen - start);
1747 return 0;
1749 EXPORT_SYMBOL_GPL(cgroup_path);
1752 * cgroup_task_migrate - move a task from one cgroup to another.
1754 * 'guarantee' is set if the caller promises that a new css_set for the task
1755 * will already exist. If not set, this function might sleep, and can fail with
1756 * -ENOMEM. Otherwise, it can only fail with -ESRCH.
1758 static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1759 struct task_struct *tsk, bool guarantee)
1761 struct css_set *oldcg;
1762 struct css_set *newcg;
1765 * get old css_set. we need to take task_lock and refcount it, because
1766 * an exiting task can change its css_set to init_css_set and drop its
1767 * old one without taking cgroup_mutex.
1769 task_lock(tsk);
1770 oldcg = tsk->cgroups;
1771 get_css_set(oldcg);
1772 task_unlock(tsk);
1774 /* locate or allocate a new css_set for this task. */
1775 if (guarantee) {
1776 /* we know the css_set we want already exists. */
1777 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1778 read_lock(&css_set_lock);
1779 newcg = find_existing_css_set(oldcg, cgrp, template);
1780 BUG_ON(!newcg);
1781 get_css_set(newcg);
1782 read_unlock(&css_set_lock);
1783 } else {
1784 might_sleep();
1785 /* find_css_set will give us newcg already referenced. */
1786 newcg = find_css_set(oldcg, cgrp);
1787 if (!newcg) {
1788 put_css_set(oldcg);
1789 return -ENOMEM;
1792 put_css_set(oldcg);
1794 /* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */
1795 task_lock(tsk);
1796 if (tsk->flags & PF_EXITING) {
1797 task_unlock(tsk);
1798 put_css_set(newcg);
1799 return -ESRCH;
1801 rcu_assign_pointer(tsk->cgroups, newcg);
1802 task_unlock(tsk);
1804 /* Update the css_set linked lists if we're using them */
1805 write_lock(&css_set_lock);
1806 if (!list_empty(&tsk->cg_list))
1807 list_move(&tsk->cg_list, &newcg->tasks);
1808 write_unlock(&css_set_lock);
1811 * We just gained a reference on oldcg by taking it from the task. As
1812 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1813 * it here; it will be freed under RCU.
1815 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1816 put_css_set(oldcg);
1817 return 0;
1821 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1822 * @cgrp: the cgroup the task is attaching to
1823 * @tsk: the task to be attached
1825 * Call holding cgroup_mutex. May take task_lock of
1826 * the task 'tsk' during call.
1828 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1830 int retval;
1831 struct cgroup_subsys *ss, *failed_ss = NULL;
1832 struct cgroup *oldcgrp;
1833 struct cgroupfs_root *root = cgrp->root;
1835 /* Nothing to do if the task is already in that cgroup */
1836 oldcgrp = task_cgroup_from_root(tsk, root);
1837 if (cgrp == oldcgrp)
1838 return 0;
1840 for_each_subsys(root, ss) {
1841 if (ss->can_attach) {
1842 retval = ss->can_attach(ss, cgrp, tsk);
1843 if (retval) {
1845 * Remember on which subsystem the can_attach()
1846 * failed, so that we only call cancel_attach()
1847 * against the subsystems whose can_attach()
1848 * succeeded. (See below)
1850 failed_ss = ss;
1851 goto out;
1854 if (ss->can_attach_task) {
1855 retval = ss->can_attach_task(cgrp, tsk);
1856 if (retval) {
1857 failed_ss = ss;
1858 goto out;
1863 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1864 if (retval)
1865 goto out;
1867 for_each_subsys(root, ss) {
1868 if (ss->pre_attach)
1869 ss->pre_attach(cgrp);
1870 if (ss->attach_task)
1871 ss->attach_task(cgrp, tsk);
1872 if (ss->attach)
1873 ss->attach(ss, cgrp, oldcgrp, tsk);
1876 synchronize_rcu();
1879 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1880 * is no longer empty.
1882 cgroup_wakeup_rmdir_waiter(cgrp);
1883 out:
1884 if (retval) {
1885 for_each_subsys(root, ss) {
1886 if (ss == failed_ss)
1888 * This subsystem was the one that failed the
1889 * can_attach() check earlier, so we don't need
1890 * to call cancel_attach() against it or any
1891 * remaining subsystems.
1893 break;
1894 if (ss->cancel_attach)
1895 ss->cancel_attach(ss, cgrp, tsk);
1898 return retval;
1902 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1903 * @from: attach to all cgroups of a given task
1904 * @tsk: the task to be attached
1906 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1908 struct cgroupfs_root *root;
1909 int retval = 0;
1911 cgroup_lock();
1912 for_each_active_root(root) {
1913 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1915 retval = cgroup_attach_task(from_cg, tsk);
1916 if (retval)
1917 break;
1919 cgroup_unlock();
1921 return retval;
1923 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1926 * cgroup_attach_proc works in two stages, the first of which prefetches all
1927 * new css_sets needed (to make sure we have enough memory before committing
1928 * to the move) and stores them in a list of entries of the following type.
1929 * TODO: possible optimization: use css_set->rcu_head for chaining instead
1931 struct cg_list_entry {
1932 struct css_set *cg;
1933 struct list_head links;
1936 static bool css_set_check_fetched(struct cgroup *cgrp,
1937 struct task_struct *tsk, struct css_set *cg,
1938 struct list_head *newcg_list)
1940 struct css_set *newcg;
1941 struct cg_list_entry *cg_entry;
1942 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1944 read_lock(&css_set_lock);
1945 newcg = find_existing_css_set(cg, cgrp, template);
1946 if (newcg)
1947 get_css_set(newcg);
1948 read_unlock(&css_set_lock);
1950 /* doesn't exist at all? */
1951 if (!newcg)
1952 return false;
1953 /* see if it's already in the list */
1954 list_for_each_entry(cg_entry, newcg_list, links) {
1955 if (cg_entry->cg == newcg) {
1956 put_css_set(newcg);
1957 return true;
1961 /* not found */
1962 put_css_set(newcg);
1963 return false;
1967 * Find the new css_set and store it in the list in preparation for moving the
1968 * given task to the given cgroup. Returns 0 or -ENOMEM.
1970 static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
1971 struct list_head *newcg_list)
1973 struct css_set *newcg;
1974 struct cg_list_entry *cg_entry;
1976 /* ensure a new css_set will exist for this thread */
1977 newcg = find_css_set(cg, cgrp);
1978 if (!newcg)
1979 return -ENOMEM;
1980 /* add it to the list */
1981 cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
1982 if (!cg_entry) {
1983 put_css_set(newcg);
1984 return -ENOMEM;
1986 cg_entry->cg = newcg;
1987 list_add(&cg_entry->links, newcg_list);
1988 return 0;
1992 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1993 * @cgrp: the cgroup to attach to
1994 * @leader: the threadgroup leader task_struct of the group to be attached
1996 * Call holding cgroup_mutex and the threadgroup_fork_lock of the leader. Will
1997 * take task_lock of each thread in leader's threadgroup individually in turn.
1999 int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2001 int retval, i, group_size;
2002 struct cgroup_subsys *ss, *failed_ss = NULL;
2003 bool cancel_failed_ss = false;
2004 /* guaranteed to be initialized later, but the compiler needs this */
2005 struct cgroup *oldcgrp = NULL;
2006 struct css_set *oldcg;
2007 struct cgroupfs_root *root = cgrp->root;
2008 /* threadgroup list cursor and array */
2009 struct task_struct *tsk;
2010 struct flex_array *group;
2012 * we need to make sure we have css_sets for all the tasks we're
2013 * going to move -before- we actually start moving them, so that in
2014 * case we get an ENOMEM we can bail out before making any changes.
2016 struct list_head newcg_list;
2017 struct cg_list_entry *cg_entry, *temp_nobe;
2020 * step 0: in order to do expensive, possibly blocking operations for
2021 * every thread, we cannot iterate the thread group list, since it needs
2022 * rcu or tasklist locked. instead, build an array of all threads in the
2023 * group - threadgroup_fork_lock prevents new threads from appearing,
2024 * and if threads exit, this will just be an over-estimate.
2026 group_size = get_nr_threads(leader);
2027 /* flex_array supports very large thread-groups better than kmalloc. */
2028 group = flex_array_alloc(sizeof(struct task_struct *), group_size,
2029 GFP_KERNEL);
2030 if (!group)
2031 return -ENOMEM;
2032 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2033 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
2034 if (retval)
2035 goto out_free_group_list;
2037 /* prevent changes to the threadgroup list while we take a snapshot. */
2038 read_lock(&tasklist_lock);
2039 if (!thread_group_leader(leader)) {
2041 * a race with de_thread from another thread's exec() may strip
2042 * us of our leadership, making while_each_thread unsafe to use
2043 * on this task. if this happens, there is no choice but to
2044 * throw this task away and try again (from cgroup_procs_write);
2045 * this is "double-double-toil-and-trouble-check locking".
2047 read_unlock(&tasklist_lock);
2048 retval = -EAGAIN;
2049 goto out_free_group_list;
2051 /* take a reference on each task in the group to go in the array. */
2052 tsk = leader;
2053 i = 0;
2054 do {
2055 /* as per above, nr_threads may decrease, but not increase. */
2056 BUG_ON(i >= group_size);
2057 get_task_struct(tsk);
2059 * saying GFP_ATOMIC has no effect here because we did prealloc
2060 * earlier, but it's good form to communicate our expectations.
2062 retval = flex_array_put_ptr(group, i, tsk, GFP_ATOMIC);
2063 BUG_ON(retval != 0);
2064 i++;
2065 } while_each_thread(leader, tsk);
2066 /* remember the number of threads in the array for later. */
2067 group_size = i;
2068 read_unlock(&tasklist_lock);
2071 * step 1: check that we can legitimately attach to the cgroup.
2073 for_each_subsys(root, ss) {
2074 if (ss->can_attach) {
2075 retval = ss->can_attach(ss, cgrp, leader);
2076 if (retval) {
2077 failed_ss = ss;
2078 goto out_cancel_attach;
2081 /* a callback to be run on every thread in the threadgroup. */
2082 if (ss->can_attach_task) {
2083 /* run on each task in the threadgroup. */
2084 for (i = 0; i < group_size; i++) {
2085 tsk = flex_array_get_ptr(group, i);
2086 retval = ss->can_attach_task(cgrp, tsk);
2087 if (retval) {
2088 failed_ss = ss;
2089 cancel_failed_ss = true;
2090 goto out_cancel_attach;
2097 * step 2: make sure css_sets exist for all threads to be migrated.
2098 * we use find_css_set, which allocates a new one if necessary.
2100 INIT_LIST_HEAD(&newcg_list);
2101 for (i = 0; i < group_size; i++) {
2102 tsk = flex_array_get_ptr(group, i);
2103 /* nothing to do if this task is already in the cgroup */
2104 oldcgrp = task_cgroup_from_root(tsk, root);
2105 if (cgrp == oldcgrp)
2106 continue;
2107 /* get old css_set pointer */
2108 task_lock(tsk);
2109 oldcg = tsk->cgroups;
2110 get_css_set(oldcg);
2111 task_unlock(tsk);
2112 /* see if the new one for us is already in the list? */
2113 if (css_set_check_fetched(cgrp, tsk, oldcg, &newcg_list)) {
2114 /* was already there, nothing to do. */
2115 put_css_set(oldcg);
2116 } else {
2117 /* we don't already have it. get new one. */
2118 retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
2119 put_css_set(oldcg);
2120 if (retval)
2121 goto out_list_teardown;
2126 * step 3: now that we're guaranteed success wrt the css_sets, proceed
2127 * to move all tasks to the new cgroup, calling ss->attach_task for each
2128 * one along the way. there are no failure cases after here, so this is
2129 * the commit point.
2131 for_each_subsys(root, ss) {
2132 if (ss->pre_attach)
2133 ss->pre_attach(cgrp);
2135 for (i = 0; i < group_size; i++) {
2136 tsk = flex_array_get_ptr(group, i);
2137 /* leave current thread as it is if it's already there */
2138 oldcgrp = task_cgroup_from_root(tsk, root);
2139 if (cgrp == oldcgrp)
2140 continue;
2141 /* if the thread is PF_EXITING, it can just get skipped. */
2142 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, true);
2143 if (retval == 0) {
2144 /* attach each task to each subsystem */
2145 for_each_subsys(root, ss) {
2146 if (ss->attach_task)
2147 ss->attach_task(cgrp, tsk);
2149 } else {
2150 BUG_ON(retval != -ESRCH);
2153 /* nothing is sensitive to fork() after this point. */
2156 * step 4: do expensive, non-thread-specific subsystem callbacks.
2157 * TODO: if ever a subsystem needs to know the oldcgrp for each task
2158 * being moved, this call will need to be reworked to communicate that.
2160 for_each_subsys(root, ss) {
2161 if (ss->attach)
2162 ss->attach(ss, cgrp, oldcgrp, leader);
2166 * step 5: success! and cleanup
2168 synchronize_rcu();
2169 cgroup_wakeup_rmdir_waiter(cgrp);
2170 retval = 0;
2171 out_list_teardown:
2172 /* clean up the list of prefetched css_sets. */
2173 list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2174 list_del(&cg_entry->links);
2175 put_css_set(cg_entry->cg);
2176 kfree(cg_entry);
2178 out_cancel_attach:
2179 /* same deal as in cgroup_attach_task */
2180 if (retval) {
2181 for_each_subsys(root, ss) {
2182 if (ss == failed_ss) {
2183 if (cancel_failed_ss && ss->cancel_attach)
2184 ss->cancel_attach(ss, cgrp, leader);
2185 break;
2187 if (ss->cancel_attach)
2188 ss->cancel_attach(ss, cgrp, leader);
2191 /* clean up the array of referenced threads in the group. */
2192 for (i = 0; i < group_size; i++) {
2193 tsk = flex_array_get_ptr(group, i);
2194 put_task_struct(tsk);
2196 out_free_group_list:
2197 flex_array_free(group);
2198 return retval;
2202 * Find the task_struct of the task to attach by vpid and pass it along to the
2203 * function to attach either it or all tasks in its threadgroup. Will take
2204 * cgroup_mutex; may take task_lock of task.
2206 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2208 struct task_struct *tsk;
2209 const struct cred *cred = current_cred(), *tcred;
2210 int ret;
2212 if (!cgroup_lock_live_group(cgrp))
2213 return -ENODEV;
2215 if (pid) {
2216 rcu_read_lock();
2217 tsk = find_task_by_vpid(pid);
2218 if (!tsk) {
2219 rcu_read_unlock();
2220 cgroup_unlock();
2221 return -ESRCH;
2223 if (threadgroup) {
2225 * RCU protects this access, since tsk was found in the
2226 * tid map. a race with de_thread may cause group_leader
2227 * to stop being the leader, but cgroup_attach_proc will
2228 * detect it later.
2230 tsk = tsk->group_leader;
2231 } else if (tsk->flags & PF_EXITING) {
2232 /* optimization for the single-task-only case */
2233 rcu_read_unlock();
2234 cgroup_unlock();
2235 return -ESRCH;
2239 * even if we're attaching all tasks in the thread group, we
2240 * only need to check permissions on one of them.
2242 tcred = __task_cred(tsk);
2243 if (cred->euid &&
2244 cred->euid != tcred->uid &&
2245 cred->euid != tcred->suid) {
2246 rcu_read_unlock();
2247 cgroup_unlock();
2248 return -EACCES;
2250 get_task_struct(tsk);
2251 rcu_read_unlock();
2252 } else {
2253 if (threadgroup)
2254 tsk = current->group_leader;
2255 else
2256 tsk = current;
2257 get_task_struct(tsk);
2260 if (threadgroup) {
2261 threadgroup_fork_write_lock(tsk);
2262 ret = cgroup_attach_proc(cgrp, tsk);
2263 threadgroup_fork_write_unlock(tsk);
2264 } else {
2265 ret = cgroup_attach_task(cgrp, tsk);
2267 put_task_struct(tsk);
2268 cgroup_unlock();
2269 return ret;
2272 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2274 return attach_task_by_pid(cgrp, pid, false);
2277 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2279 int ret;
2280 do {
2282 * attach_proc fails with -EAGAIN if threadgroup leadership
2283 * changes in the middle of the operation, in which case we need
2284 * to find the task_struct for the new leader and start over.
2286 ret = attach_task_by_pid(cgrp, tgid, true);
2287 } while (ret == -EAGAIN);
2288 return ret;
2292 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2293 * @cgrp: the cgroup to be checked for liveness
2295 * On success, returns true; the lock should be later released with
2296 * cgroup_unlock(). On failure returns false with no lock held.
2298 bool cgroup_lock_live_group(struct cgroup *cgrp)
2300 mutex_lock(&cgroup_mutex);
2301 if (cgroup_is_removed(cgrp)) {
2302 mutex_unlock(&cgroup_mutex);
2303 return false;
2305 return true;
2307 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2309 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2310 const char *buffer)
2312 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2313 if (strlen(buffer) >= PATH_MAX)
2314 return -EINVAL;
2315 if (!cgroup_lock_live_group(cgrp))
2316 return -ENODEV;
2317 strcpy(cgrp->root->release_agent_path, buffer);
2318 cgroup_unlock();
2319 return 0;
2322 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2323 struct seq_file *seq)
2325 if (!cgroup_lock_live_group(cgrp))
2326 return -ENODEV;
2327 seq_puts(seq, cgrp->root->release_agent_path);
2328 seq_putc(seq, '\n');
2329 cgroup_unlock();
2330 return 0;
2333 /* A buffer size big enough for numbers or short strings */
2334 #define CGROUP_LOCAL_BUFFER_SIZE 64
2336 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2337 struct file *file,
2338 const char __user *userbuf,
2339 size_t nbytes, loff_t *unused_ppos)
2341 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2342 int retval = 0;
2343 char *end;
2345 if (!nbytes)
2346 return -EINVAL;
2347 if (nbytes >= sizeof(buffer))
2348 return -E2BIG;
2349 if (copy_from_user(buffer, userbuf, nbytes))
2350 return -EFAULT;
2352 buffer[nbytes] = 0; /* nul-terminate */
2353 if (cft->write_u64) {
2354 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2355 if (*end)
2356 return -EINVAL;
2357 retval = cft->write_u64(cgrp, cft, val);
2358 } else {
2359 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2360 if (*end)
2361 return -EINVAL;
2362 retval = cft->write_s64(cgrp, cft, val);
2364 if (!retval)
2365 retval = nbytes;
2366 return retval;
2369 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2370 struct file *file,
2371 const char __user *userbuf,
2372 size_t nbytes, loff_t *unused_ppos)
2374 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2375 int retval = 0;
2376 size_t max_bytes = cft->max_write_len;
2377 char *buffer = local_buffer;
2379 if (!max_bytes)
2380 max_bytes = sizeof(local_buffer) - 1;
2381 if (nbytes >= max_bytes)
2382 return -E2BIG;
2383 /* Allocate a dynamic buffer if we need one */
2384 if (nbytes >= sizeof(local_buffer)) {
2385 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2386 if (buffer == NULL)
2387 return -ENOMEM;
2389 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2390 retval = -EFAULT;
2391 goto out;
2394 buffer[nbytes] = 0; /* nul-terminate */
2395 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2396 if (!retval)
2397 retval = nbytes;
2398 out:
2399 if (buffer != local_buffer)
2400 kfree(buffer);
2401 return retval;
2404 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2405 size_t nbytes, loff_t *ppos)
2407 struct cftype *cft = __d_cft(file->f_dentry);
2408 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2410 if (cgroup_is_removed(cgrp))
2411 return -ENODEV;
2412 if (cft->write)
2413 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2414 if (cft->write_u64 || cft->write_s64)
2415 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2416 if (cft->write_string)
2417 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2418 if (cft->trigger) {
2419 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2420 return ret ? ret : nbytes;
2422 return -EINVAL;
2425 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2426 struct file *file,
2427 char __user *buf, size_t nbytes,
2428 loff_t *ppos)
2430 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2431 u64 val = cft->read_u64(cgrp, cft);
2432 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2434 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2437 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2438 struct file *file,
2439 char __user *buf, size_t nbytes,
2440 loff_t *ppos)
2442 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2443 s64 val = cft->read_s64(cgrp, cft);
2444 int len = sprintf(tmp, "%lld\n", (long long) val);
2446 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2449 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2450 size_t nbytes, loff_t *ppos)
2452 struct cftype *cft = __d_cft(file->f_dentry);
2453 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2455 if (cgroup_is_removed(cgrp))
2456 return -ENODEV;
2458 if (cft->read)
2459 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2460 if (cft->read_u64)
2461 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2462 if (cft->read_s64)
2463 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2464 return -EINVAL;
2468 * seqfile ops/methods for returning structured data. Currently just
2469 * supports string->u64 maps, but can be extended in future.
2472 struct cgroup_seqfile_state {
2473 struct cftype *cft;
2474 struct cgroup *cgroup;
2477 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2479 struct seq_file *sf = cb->state;
2480 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2483 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2485 struct cgroup_seqfile_state *state = m->private;
2486 struct cftype *cft = state->cft;
2487 if (cft->read_map) {
2488 struct cgroup_map_cb cb = {
2489 .fill = cgroup_map_add,
2490 .state = m,
2492 return cft->read_map(state->cgroup, cft, &cb);
2494 return cft->read_seq_string(state->cgroup, cft, m);
2497 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2499 struct seq_file *seq = file->private_data;
2500 kfree(seq->private);
2501 return single_release(inode, file);
2504 static const struct file_operations cgroup_seqfile_operations = {
2505 .read = seq_read,
2506 .write = cgroup_file_write,
2507 .llseek = seq_lseek,
2508 .release = cgroup_seqfile_release,
2511 static int cgroup_file_open(struct inode *inode, struct file *file)
2513 int err;
2514 struct cftype *cft;
2516 err = generic_file_open(inode, file);
2517 if (err)
2518 return err;
2519 cft = __d_cft(file->f_dentry);
2521 if (cft->read_map || cft->read_seq_string) {
2522 struct cgroup_seqfile_state *state =
2523 kzalloc(sizeof(*state), GFP_USER);
2524 if (!state)
2525 return -ENOMEM;
2526 state->cft = cft;
2527 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2528 file->f_op = &cgroup_seqfile_operations;
2529 err = single_open(file, cgroup_seqfile_show, state);
2530 if (err < 0)
2531 kfree(state);
2532 } else if (cft->open)
2533 err = cft->open(inode, file);
2534 else
2535 err = 0;
2537 return err;
2540 static int cgroup_file_release(struct inode *inode, struct file *file)
2542 struct cftype *cft = __d_cft(file->f_dentry);
2543 if (cft->release)
2544 return cft->release(inode, file);
2545 return 0;
2549 * cgroup_rename - Only allow simple rename of directories in place.
2551 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2552 struct inode *new_dir, struct dentry *new_dentry)
2554 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2555 return -ENOTDIR;
2556 if (new_dentry->d_inode)
2557 return -EEXIST;
2558 if (old_dir != new_dir)
2559 return -EIO;
2560 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2563 static const struct file_operations cgroup_file_operations = {
2564 .read = cgroup_file_read,
2565 .write = cgroup_file_write,
2566 .llseek = generic_file_llseek,
2567 .open = cgroup_file_open,
2568 .release = cgroup_file_release,
2571 static const struct inode_operations cgroup_dir_inode_operations = {
2572 .lookup = cgroup_lookup,
2573 .mkdir = cgroup_mkdir,
2574 .rmdir = cgroup_rmdir,
2575 .rename = cgroup_rename,
2578 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2580 if (dentry->d_name.len > NAME_MAX)
2581 return ERR_PTR(-ENAMETOOLONG);
2582 d_add(dentry, NULL);
2583 return NULL;
2587 * Check if a file is a control file
2589 static inline struct cftype *__file_cft(struct file *file)
2591 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2592 return ERR_PTR(-EINVAL);
2593 return __d_cft(file->f_dentry);
2596 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2597 struct super_block *sb)
2599 struct inode *inode;
2601 if (!dentry)
2602 return -ENOENT;
2603 if (dentry->d_inode)
2604 return -EEXIST;
2606 inode = cgroup_new_inode(mode, sb);
2607 if (!inode)
2608 return -ENOMEM;
2610 if (S_ISDIR(mode)) {
2611 inode->i_op = &cgroup_dir_inode_operations;
2612 inode->i_fop = &simple_dir_operations;
2614 /* start off with i_nlink == 2 (for "." entry) */
2615 inc_nlink(inode);
2617 /* start with the directory inode held, so that we can
2618 * populate it without racing with another mkdir */
2619 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2620 } else if (S_ISREG(mode)) {
2621 inode->i_size = 0;
2622 inode->i_fop = &cgroup_file_operations;
2624 d_instantiate(dentry, inode);
2625 dget(dentry); /* Extra count - pin the dentry in core */
2626 return 0;
2630 * cgroup_create_dir - create a directory for an object.
2631 * @cgrp: the cgroup we create the directory for. It must have a valid
2632 * ->parent field. And we are going to fill its ->dentry field.
2633 * @dentry: dentry of the new cgroup
2634 * @mode: mode to set on new directory.
2636 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2637 mode_t mode)
2639 struct dentry *parent;
2640 int error = 0;
2642 parent = cgrp->parent->dentry;
2643 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2644 if (!error) {
2645 dentry->d_fsdata = cgrp;
2646 inc_nlink(parent->d_inode);
2647 rcu_assign_pointer(cgrp->dentry, dentry);
2650 return error;
2654 * cgroup_file_mode - deduce file mode of a control file
2655 * @cft: the control file in question
2657 * returns cft->mode if ->mode is not 0
2658 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2659 * returns S_IRUGO if it has only a read handler
2660 * returns S_IWUSR if it has only a write hander
2662 static mode_t cgroup_file_mode(const struct cftype *cft)
2664 mode_t mode = 0;
2666 if (cft->mode)
2667 return cft->mode;
2669 if (cft->read || cft->read_u64 || cft->read_s64 ||
2670 cft->read_map || cft->read_seq_string)
2671 mode |= S_IRUGO;
2673 if (cft->write || cft->write_u64 || cft->write_s64 ||
2674 cft->write_string || cft->trigger)
2675 mode |= S_IWUSR;
2677 return mode;
2680 int cgroup_add_file(struct cgroup *cgrp,
2681 struct cgroup_subsys *subsys,
2682 const struct cftype *cft)
2684 struct dentry *dir = cgrp->dentry;
2685 struct dentry *dentry;
2686 int error;
2687 mode_t mode;
2689 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2690 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2691 strcpy(name, subsys->name);
2692 strcat(name, ".");
2694 strcat(name, cft->name);
2695 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2696 dentry = lookup_one_len(name, dir, strlen(name));
2697 if (!IS_ERR(dentry)) {
2698 mode = cgroup_file_mode(cft);
2699 error = cgroup_create_file(dentry, mode | S_IFREG,
2700 cgrp->root->sb);
2701 if (!error)
2702 dentry->d_fsdata = (void *)cft;
2703 dput(dentry);
2704 } else
2705 error = PTR_ERR(dentry);
2706 return error;
2708 EXPORT_SYMBOL_GPL(cgroup_add_file);
2710 int cgroup_add_files(struct cgroup *cgrp,
2711 struct cgroup_subsys *subsys,
2712 const struct cftype cft[],
2713 int count)
2715 int i, err;
2716 for (i = 0; i < count; i++) {
2717 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2718 if (err)
2719 return err;
2721 return 0;
2723 EXPORT_SYMBOL_GPL(cgroup_add_files);
2726 * cgroup_task_count - count the number of tasks in a cgroup.
2727 * @cgrp: the cgroup in question
2729 * Return the number of tasks in the cgroup.
2731 int cgroup_task_count(const struct cgroup *cgrp)
2733 int count = 0;
2734 struct cg_cgroup_link *link;
2736 read_lock(&css_set_lock);
2737 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2738 count += atomic_read(&link->cg->refcount);
2740 read_unlock(&css_set_lock);
2741 return count;
2745 * Advance a list_head iterator. The iterator should be positioned at
2746 * the start of a css_set
2748 static void cgroup_advance_iter(struct cgroup *cgrp,
2749 struct cgroup_iter *it)
2751 struct list_head *l = it->cg_link;
2752 struct cg_cgroup_link *link;
2753 struct css_set *cg;
2755 /* Advance to the next non-empty css_set */
2756 do {
2757 l = l->next;
2758 if (l == &cgrp->css_sets) {
2759 it->cg_link = NULL;
2760 return;
2762 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2763 cg = link->cg;
2764 } while (list_empty(&cg->tasks));
2765 it->cg_link = l;
2766 it->task = cg->tasks.next;
2770 * To reduce the fork() overhead for systems that are not actually
2771 * using their cgroups capability, we don't maintain the lists running
2772 * through each css_set to its tasks until we see the list actually
2773 * used - in other words after the first call to cgroup_iter_start().
2775 * The tasklist_lock is not held here, as do_each_thread() and
2776 * while_each_thread() are protected by RCU.
2778 static void cgroup_enable_task_cg_lists(void)
2780 struct task_struct *p, *g;
2781 write_lock(&css_set_lock);
2782 use_task_css_set_links = 1;
2783 do_each_thread(g, p) {
2784 task_lock(p);
2786 * We should check if the process is exiting, otherwise
2787 * it will race with cgroup_exit() in that the list
2788 * entry won't be deleted though the process has exited.
2789 * Do it while holding siglock so that we don't end up
2790 * racing against cgroup_exit().
2792 spin_lock_irq(&p->sighand->siglock);
2793 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2794 list_add(&p->cg_list, &p->cgroups->tasks);
2795 spin_unlock_irq(&p->sighand->siglock);
2797 task_unlock(p);
2798 } while_each_thread(g, p);
2799 write_unlock(&css_set_lock);
2802 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2805 * The first time anyone tries to iterate across a cgroup,
2806 * we need to enable the list linking each css_set to its
2807 * tasks, and fix up all existing tasks.
2809 if (!use_task_css_set_links)
2810 cgroup_enable_task_cg_lists();
2812 read_lock(&css_set_lock);
2813 it->cg_link = &cgrp->css_sets;
2814 cgroup_advance_iter(cgrp, it);
2817 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2818 struct cgroup_iter *it)
2820 struct task_struct *res;
2821 struct list_head *l = it->task;
2822 struct cg_cgroup_link *link;
2824 /* If the iterator cg is NULL, we have no tasks */
2825 if (!it->cg_link)
2826 return NULL;
2827 res = list_entry(l, struct task_struct, cg_list);
2828 /* Advance iterator to find next entry */
2829 l = l->next;
2830 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2831 if (l == &link->cg->tasks) {
2832 /* We reached the end of this task list - move on to
2833 * the next cg_cgroup_link */
2834 cgroup_advance_iter(cgrp, it);
2835 } else {
2836 it->task = l;
2838 return res;
2841 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2843 read_unlock(&css_set_lock);
2846 static inline int started_after_time(struct task_struct *t1,
2847 struct timespec *time,
2848 struct task_struct *t2)
2850 int start_diff = timespec_compare(&t1->start_time, time);
2851 if (start_diff > 0) {
2852 return 1;
2853 } else if (start_diff < 0) {
2854 return 0;
2855 } else {
2857 * Arbitrarily, if two processes started at the same
2858 * time, we'll say that the lower pointer value
2859 * started first. Note that t2 may have exited by now
2860 * so this may not be a valid pointer any longer, but
2861 * that's fine - it still serves to distinguish
2862 * between two tasks started (effectively) simultaneously.
2864 return t1 > t2;
2869 * This function is a callback from heap_insert() and is used to order
2870 * the heap.
2871 * In this case we order the heap in descending task start time.
2873 static inline int started_after(void *p1, void *p2)
2875 struct task_struct *t1 = p1;
2876 struct task_struct *t2 = p2;
2877 return started_after_time(t1, &t2->start_time, t2);
2881 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2882 * @scan: struct cgroup_scanner containing arguments for the scan
2884 * Arguments include pointers to callback functions test_task() and
2885 * process_task().
2886 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2887 * and if it returns true, call process_task() for it also.
2888 * The test_task pointer may be NULL, meaning always true (select all tasks).
2889 * Effectively duplicates cgroup_iter_{start,next,end}()
2890 * but does not lock css_set_lock for the call to process_task().
2891 * The struct cgroup_scanner may be embedded in any structure of the caller's
2892 * creation.
2893 * It is guaranteed that process_task() will act on every task that
2894 * is a member of the cgroup for the duration of this call. This
2895 * function may or may not call process_task() for tasks that exit
2896 * or move to a different cgroup during the call, or are forked or
2897 * move into the cgroup during the call.
2899 * Note that test_task() may be called with locks held, and may in some
2900 * situations be called multiple times for the same task, so it should
2901 * be cheap.
2902 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2903 * pre-allocated and will be used for heap operations (and its "gt" member will
2904 * be overwritten), else a temporary heap will be used (allocation of which
2905 * may cause this function to fail).
2907 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2909 int retval, i;
2910 struct cgroup_iter it;
2911 struct task_struct *p, *dropped;
2912 /* Never dereference latest_task, since it's not refcounted */
2913 struct task_struct *latest_task = NULL;
2914 struct ptr_heap tmp_heap;
2915 struct ptr_heap *heap;
2916 struct timespec latest_time = { 0, 0 };
2918 if (scan->heap) {
2919 /* The caller supplied our heap and pre-allocated its memory */
2920 heap = scan->heap;
2921 heap->gt = &started_after;
2922 } else {
2923 /* We need to allocate our own heap memory */
2924 heap = &tmp_heap;
2925 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2926 if (retval)
2927 /* cannot allocate the heap */
2928 return retval;
2931 again:
2933 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2934 * to determine which are of interest, and using the scanner's
2935 * "process_task" callback to process any of them that need an update.
2936 * Since we don't want to hold any locks during the task updates,
2937 * gather tasks to be processed in a heap structure.
2938 * The heap is sorted by descending task start time.
2939 * If the statically-sized heap fills up, we overflow tasks that
2940 * started later, and in future iterations only consider tasks that
2941 * started after the latest task in the previous pass. This
2942 * guarantees forward progress and that we don't miss any tasks.
2944 heap->size = 0;
2945 cgroup_iter_start(scan->cg, &it);
2946 while ((p = cgroup_iter_next(scan->cg, &it))) {
2948 * Only affect tasks that qualify per the caller's callback,
2949 * if he provided one
2951 if (scan->test_task && !scan->test_task(p, scan))
2952 continue;
2954 * Only process tasks that started after the last task
2955 * we processed
2957 if (!started_after_time(p, &latest_time, latest_task))
2958 continue;
2959 dropped = heap_insert(heap, p);
2960 if (dropped == NULL) {
2962 * The new task was inserted; the heap wasn't
2963 * previously full
2965 get_task_struct(p);
2966 } else if (dropped != p) {
2968 * The new task was inserted, and pushed out a
2969 * different task
2971 get_task_struct(p);
2972 put_task_struct(dropped);
2975 * Else the new task was newer than anything already in
2976 * the heap and wasn't inserted
2979 cgroup_iter_end(scan->cg, &it);
2981 if (heap->size) {
2982 for (i = 0; i < heap->size; i++) {
2983 struct task_struct *q = heap->ptrs[i];
2984 if (i == 0) {
2985 latest_time = q->start_time;
2986 latest_task = q;
2988 /* Process the task per the caller's callback */
2989 scan->process_task(q, scan);
2990 put_task_struct(q);
2993 * If we had to process any tasks at all, scan again
2994 * in case some of them were in the middle of forking
2995 * children that didn't get processed.
2996 * Not the most efficient way to do it, but it avoids
2997 * having to take callback_mutex in the fork path
2999 goto again;
3001 if (heap == &tmp_heap)
3002 heap_free(&tmp_heap);
3003 return 0;
3007 * Stuff for reading the 'tasks'/'procs' files.
3009 * Reading this file can return large amounts of data if a cgroup has
3010 * *lots* of attached tasks. So it may need several calls to read(),
3011 * but we cannot guarantee that the information we produce is correct
3012 * unless we produce it entirely atomically.
3017 * The following two functions "fix" the issue where there are more pids
3018 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3019 * TODO: replace with a kernel-wide solution to this problem
3021 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3022 static void *pidlist_allocate(int count)
3024 if (PIDLIST_TOO_LARGE(count))
3025 return vmalloc(count * sizeof(pid_t));
3026 else
3027 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3029 static void pidlist_free(void *p)
3031 if (is_vmalloc_addr(p))
3032 vfree(p);
3033 else
3034 kfree(p);
3036 static void *pidlist_resize(void *p, int newcount)
3038 void *newlist;
3039 /* note: if new alloc fails, old p will still be valid either way */
3040 if (is_vmalloc_addr(p)) {
3041 newlist = vmalloc(newcount * sizeof(pid_t));
3042 if (!newlist)
3043 return NULL;
3044 memcpy(newlist, p, newcount * sizeof(pid_t));
3045 vfree(p);
3046 } else {
3047 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3049 return newlist;
3053 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3054 * If the new stripped list is sufficiently smaller and there's enough memory
3055 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3056 * number of unique elements.
3058 /* is the size difference enough that we should re-allocate the array? */
3059 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3060 static int pidlist_uniq(pid_t **p, int length)
3062 int src, dest = 1;
3063 pid_t *list = *p;
3064 pid_t *newlist;
3067 * we presume the 0th element is unique, so i starts at 1. trivial
3068 * edge cases first; no work needs to be done for either
3070 if (length == 0 || length == 1)
3071 return length;
3072 /* src and dest walk down the list; dest counts unique elements */
3073 for (src = 1; src < length; src++) {
3074 /* find next unique element */
3075 while (list[src] == list[src-1]) {
3076 src++;
3077 if (src == length)
3078 goto after;
3080 /* dest always points to where the next unique element goes */
3081 list[dest] = list[src];
3082 dest++;
3084 after:
3086 * if the length difference is large enough, we want to allocate a
3087 * smaller buffer to save memory. if this fails due to out of memory,
3088 * we'll just stay with what we've got.
3090 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3091 newlist = pidlist_resize(list, dest);
3092 if (newlist)
3093 *p = newlist;
3095 return dest;
3098 static int cmppid(const void *a, const void *b)
3100 return *(pid_t *)a - *(pid_t *)b;
3104 * find the appropriate pidlist for our purpose (given procs vs tasks)
3105 * returns with the lock on that pidlist already held, and takes care
3106 * of the use count, or returns NULL with no locks held if we're out of
3107 * memory.
3109 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3110 enum cgroup_filetype type)
3112 struct cgroup_pidlist *l;
3113 /* don't need task_nsproxy() if we're looking at ourself */
3114 struct pid_namespace *ns = current->nsproxy->pid_ns;
3117 * We can't drop the pidlist_mutex before taking the l->mutex in case
3118 * the last ref-holder is trying to remove l from the list at the same
3119 * time. Holding the pidlist_mutex precludes somebody taking whichever
3120 * list we find out from under us - compare release_pid_array().
3122 mutex_lock(&cgrp->pidlist_mutex);
3123 list_for_each_entry(l, &cgrp->pidlists, links) {
3124 if (l->key.type == type && l->key.ns == ns) {
3125 /* make sure l doesn't vanish out from under us */
3126 down_write(&l->mutex);
3127 mutex_unlock(&cgrp->pidlist_mutex);
3128 return l;
3131 /* entry not found; create a new one */
3132 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3133 if (!l) {
3134 mutex_unlock(&cgrp->pidlist_mutex);
3135 return l;
3137 init_rwsem(&l->mutex);
3138 down_write(&l->mutex);
3139 l->key.type = type;
3140 l->key.ns = get_pid_ns(ns);
3141 l->use_count = 0; /* don't increment here */
3142 l->list = NULL;
3143 l->owner = cgrp;
3144 list_add(&l->links, &cgrp->pidlists);
3145 mutex_unlock(&cgrp->pidlist_mutex);
3146 return l;
3150 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3152 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3153 struct cgroup_pidlist **lp)
3155 pid_t *array;
3156 int length;
3157 int pid, n = 0; /* used for populating the array */
3158 struct cgroup_iter it;
3159 struct task_struct *tsk;
3160 struct cgroup_pidlist *l;
3163 * If cgroup gets more users after we read count, we won't have
3164 * enough space - tough. This race is indistinguishable to the
3165 * caller from the case that the additional cgroup users didn't
3166 * show up until sometime later on.
3168 length = cgroup_task_count(cgrp);
3169 array = pidlist_allocate(length);
3170 if (!array)
3171 return -ENOMEM;
3172 /* now, populate the array */
3173 cgroup_iter_start(cgrp, &it);
3174 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3175 if (unlikely(n == length))
3176 break;
3177 /* get tgid or pid for procs or tasks file respectively */
3178 if (type == CGROUP_FILE_PROCS)
3179 pid = task_tgid_vnr(tsk);
3180 else
3181 pid = task_pid_vnr(tsk);
3182 if (pid > 0) /* make sure to only use valid results */
3183 array[n++] = pid;
3185 cgroup_iter_end(cgrp, &it);
3186 length = n;
3187 /* now sort & (if procs) strip out duplicates */
3188 sort(array, length, sizeof(pid_t), cmppid, NULL);
3189 if (type == CGROUP_FILE_PROCS)
3190 length = pidlist_uniq(&array, length);
3191 l = cgroup_pidlist_find(cgrp, type);
3192 if (!l) {
3193 pidlist_free(array);
3194 return -ENOMEM;
3196 /* store array, freeing old if necessary - lock already held */
3197 pidlist_free(l->list);
3198 l->list = array;
3199 l->length = length;
3200 l->use_count++;
3201 up_write(&l->mutex);
3202 *lp = l;
3203 return 0;
3207 * cgroupstats_build - build and fill cgroupstats
3208 * @stats: cgroupstats to fill information into
3209 * @dentry: A dentry entry belonging to the cgroup for which stats have
3210 * been requested.
3212 * Build and fill cgroupstats so that taskstats can export it to user
3213 * space.
3215 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3217 int ret = -EINVAL;
3218 struct cgroup *cgrp;
3219 struct cgroup_iter it;
3220 struct task_struct *tsk;
3223 * Validate dentry by checking the superblock operations,
3224 * and make sure it's a directory.
3226 if (dentry->d_sb->s_op != &cgroup_ops ||
3227 !S_ISDIR(dentry->d_inode->i_mode))
3228 goto err;
3230 ret = 0;
3231 cgrp = dentry->d_fsdata;
3233 cgroup_iter_start(cgrp, &it);
3234 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3235 switch (tsk->state) {
3236 case TASK_RUNNING:
3237 stats->nr_running++;
3238 break;
3239 case TASK_INTERRUPTIBLE:
3240 stats->nr_sleeping++;
3241 break;
3242 case TASK_UNINTERRUPTIBLE:
3243 stats->nr_uninterruptible++;
3244 break;
3245 case TASK_STOPPED:
3246 stats->nr_stopped++;
3247 break;
3248 default:
3249 if (delayacct_is_task_waiting_on_io(tsk))
3250 stats->nr_io_wait++;
3251 break;
3254 cgroup_iter_end(cgrp, &it);
3256 err:
3257 return ret;
3262 * seq_file methods for the tasks/procs files. The seq_file position is the
3263 * next pid to display; the seq_file iterator is a pointer to the pid
3264 * in the cgroup->l->list array.
3267 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3270 * Initially we receive a position value that corresponds to
3271 * one more than the last pid shown (or 0 on the first call or
3272 * after a seek to the start). Use a binary-search to find the
3273 * next pid to display, if any
3275 struct cgroup_pidlist *l = s->private;
3276 int index = 0, pid = *pos;
3277 int *iter;
3279 down_read(&l->mutex);
3280 if (pid) {
3281 int end = l->length;
3283 while (index < end) {
3284 int mid = (index + end) / 2;
3285 if (l->list[mid] == pid) {
3286 index = mid;
3287 break;
3288 } else if (l->list[mid] <= pid)
3289 index = mid + 1;
3290 else
3291 end = mid;
3294 /* If we're off the end of the array, we're done */
3295 if (index >= l->length)
3296 return NULL;
3297 /* Update the abstract position to be the actual pid that we found */
3298 iter = l->list + index;
3299 *pos = *iter;
3300 return iter;
3303 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3305 struct cgroup_pidlist *l = s->private;
3306 up_read(&l->mutex);
3309 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3311 struct cgroup_pidlist *l = s->private;
3312 pid_t *p = v;
3313 pid_t *end = l->list + l->length;
3315 * Advance to the next pid in the array. If this goes off the
3316 * end, we're done
3318 p++;
3319 if (p >= end) {
3320 return NULL;
3321 } else {
3322 *pos = *p;
3323 return p;
3327 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3329 return seq_printf(s, "%d\n", *(int *)v);
3333 * seq_operations functions for iterating on pidlists through seq_file -
3334 * independent of whether it's tasks or procs
3336 static const struct seq_operations cgroup_pidlist_seq_operations = {
3337 .start = cgroup_pidlist_start,
3338 .stop = cgroup_pidlist_stop,
3339 .next = cgroup_pidlist_next,
3340 .show = cgroup_pidlist_show,
3343 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3346 * the case where we're the last user of this particular pidlist will
3347 * have us remove it from the cgroup's list, which entails taking the
3348 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3349 * pidlist_mutex, we have to take pidlist_mutex first.
3351 mutex_lock(&l->owner->pidlist_mutex);
3352 down_write(&l->mutex);
3353 BUG_ON(!l->use_count);
3354 if (!--l->use_count) {
3355 /* we're the last user if refcount is 0; remove and free */
3356 list_del(&l->links);
3357 mutex_unlock(&l->owner->pidlist_mutex);
3358 pidlist_free(l->list);
3359 put_pid_ns(l->key.ns);
3360 up_write(&l->mutex);
3361 kfree(l);
3362 return;
3364 mutex_unlock(&l->owner->pidlist_mutex);
3365 up_write(&l->mutex);
3368 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3370 struct cgroup_pidlist *l;
3371 if (!(file->f_mode & FMODE_READ))
3372 return 0;
3374 * the seq_file will only be initialized if the file was opened for
3375 * reading; hence we check if it's not null only in that case.
3377 l = ((struct seq_file *)file->private_data)->private;
3378 cgroup_release_pid_array(l);
3379 return seq_release(inode, file);
3382 static const struct file_operations cgroup_pidlist_operations = {
3383 .read = seq_read,
3384 .llseek = seq_lseek,
3385 .write = cgroup_file_write,
3386 .release = cgroup_pidlist_release,
3390 * The following functions handle opens on a file that displays a pidlist
3391 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3392 * in the cgroup.
3394 /* helper function for the two below it */
3395 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3397 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3398 struct cgroup_pidlist *l;
3399 int retval;
3401 /* Nothing to do for write-only files */
3402 if (!(file->f_mode & FMODE_READ))
3403 return 0;
3405 /* have the array populated */
3406 retval = pidlist_array_load(cgrp, type, &l);
3407 if (retval)
3408 return retval;
3409 /* configure file information */
3410 file->f_op = &cgroup_pidlist_operations;
3412 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3413 if (retval) {
3414 cgroup_release_pid_array(l);
3415 return retval;
3417 ((struct seq_file *)file->private_data)->private = l;
3418 return 0;
3420 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3422 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3424 static int cgroup_procs_open(struct inode *unused, struct file *file)
3426 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3429 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3430 struct cftype *cft)
3432 return notify_on_release(cgrp);
3435 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3436 struct cftype *cft,
3437 u64 val)
3439 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3440 if (val)
3441 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3442 else
3443 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3444 return 0;
3448 * Unregister event and free resources.
3450 * Gets called from workqueue.
3452 static void cgroup_event_remove(struct work_struct *work)
3454 struct cgroup_event *event = container_of(work, struct cgroup_event,
3455 remove);
3456 struct cgroup *cgrp = event->cgrp;
3458 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3460 eventfd_ctx_put(event->eventfd);
3461 kfree(event);
3462 dput(cgrp->dentry);
3466 * Gets called on POLLHUP on eventfd when user closes it.
3468 * Called with wqh->lock held and interrupts disabled.
3470 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3471 int sync, void *key)
3473 struct cgroup_event *event = container_of(wait,
3474 struct cgroup_event, wait);
3475 struct cgroup *cgrp = event->cgrp;
3476 unsigned long flags = (unsigned long)key;
3478 if (flags & POLLHUP) {
3479 __remove_wait_queue(event->wqh, &event->wait);
3480 spin_lock(&cgrp->event_list_lock);
3481 list_del(&event->list);
3482 spin_unlock(&cgrp->event_list_lock);
3484 * We are in atomic context, but cgroup_event_remove() may
3485 * sleep, so we have to call it in workqueue.
3487 schedule_work(&event->remove);
3490 return 0;
3493 static void cgroup_event_ptable_queue_proc(struct file *file,
3494 wait_queue_head_t *wqh, poll_table *pt)
3496 struct cgroup_event *event = container_of(pt,
3497 struct cgroup_event, pt);
3499 event->wqh = wqh;
3500 add_wait_queue(wqh, &event->wait);
3504 * Parse input and register new cgroup event handler.
3506 * Input must be in format '<event_fd> <control_fd> <args>'.
3507 * Interpretation of args is defined by control file implementation.
3509 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3510 const char *buffer)
3512 struct cgroup_event *event = NULL;
3513 struct cgroup *cgrp_cfile;
3514 unsigned int efd, cfd;
3515 struct file *efile = NULL;
3516 struct file *cfile = NULL;
3517 char *endp;
3518 int ret;
3520 efd = simple_strtoul(buffer, &endp, 10);
3521 if (*endp != ' ')
3522 return -EINVAL;
3523 buffer = endp + 1;
3525 cfd = simple_strtoul(buffer, &endp, 10);
3526 if ((*endp != ' ') && (*endp != '\0'))
3527 return -EINVAL;
3528 buffer = endp + 1;
3530 event = kzalloc(sizeof(*event), GFP_KERNEL);
3531 if (!event)
3532 return -ENOMEM;
3533 event->cgrp = cgrp;
3534 INIT_LIST_HEAD(&event->list);
3535 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3536 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3537 INIT_WORK(&event->remove, cgroup_event_remove);
3539 efile = eventfd_fget(efd);
3540 if (IS_ERR(efile)) {
3541 ret = PTR_ERR(efile);
3542 goto fail;
3545 event->eventfd = eventfd_ctx_fileget(efile);
3546 if (IS_ERR(event->eventfd)) {
3547 ret = PTR_ERR(event->eventfd);
3548 goto fail;
3551 cfile = fget(cfd);
3552 if (!cfile) {
3553 ret = -EBADF;
3554 goto fail;
3557 /* the process need read permission on control file */
3558 /* AV: shouldn't we check that it's been opened for read instead? */
3559 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3560 if (ret < 0)
3561 goto fail;
3563 event->cft = __file_cft(cfile);
3564 if (IS_ERR(event->cft)) {
3565 ret = PTR_ERR(event->cft);
3566 goto fail;
3570 * The file to be monitored must be in the same cgroup as
3571 * cgroup.event_control is.
3573 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3574 if (cgrp_cfile != cgrp) {
3575 ret = -EINVAL;
3576 goto fail;
3579 if (!event->cft->register_event || !event->cft->unregister_event) {
3580 ret = -EINVAL;
3581 goto fail;
3584 ret = event->cft->register_event(cgrp, event->cft,
3585 event->eventfd, buffer);
3586 if (ret)
3587 goto fail;
3589 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3590 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3591 ret = 0;
3592 goto fail;
3596 * Events should be removed after rmdir of cgroup directory, but before
3597 * destroying subsystem state objects. Let's take reference to cgroup
3598 * directory dentry to do that.
3600 dget(cgrp->dentry);
3602 spin_lock(&cgrp->event_list_lock);
3603 list_add(&event->list, &cgrp->event_list);
3604 spin_unlock(&cgrp->event_list_lock);
3606 fput(cfile);
3607 fput(efile);
3609 return 0;
3611 fail:
3612 if (cfile)
3613 fput(cfile);
3615 if (event && event->eventfd && !IS_ERR(event->eventfd))
3616 eventfd_ctx_put(event->eventfd);
3618 if (!IS_ERR_OR_NULL(efile))
3619 fput(efile);
3621 kfree(event);
3623 return ret;
3626 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3627 struct cftype *cft)
3629 return clone_children(cgrp);
3632 static int cgroup_clone_children_write(struct cgroup *cgrp,
3633 struct cftype *cft,
3634 u64 val)
3636 if (val)
3637 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3638 else
3639 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3640 return 0;
3644 * for the common functions, 'private' gives the type of file
3646 /* for hysterical raisins, we can't put this on the older files */
3647 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3648 static struct cftype files[] = {
3650 .name = "tasks",
3651 .open = cgroup_tasks_open,
3652 .write_u64 = cgroup_tasks_write,
3653 .release = cgroup_pidlist_release,
3654 .mode = S_IRUGO | S_IWUSR,
3657 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3658 .open = cgroup_procs_open,
3659 .write_u64 = cgroup_procs_write,
3660 .release = cgroup_pidlist_release,
3661 .mode = S_IRUGO | S_IWUSR,
3664 .name = "notify_on_release",
3665 .read_u64 = cgroup_read_notify_on_release,
3666 .write_u64 = cgroup_write_notify_on_release,
3669 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3670 .write_string = cgroup_write_event_control,
3671 .mode = S_IWUGO,
3674 .name = "cgroup.clone_children",
3675 .read_u64 = cgroup_clone_children_read,
3676 .write_u64 = cgroup_clone_children_write,
3680 static struct cftype cft_release_agent = {
3681 .name = "release_agent",
3682 .read_seq_string = cgroup_release_agent_show,
3683 .write_string = cgroup_release_agent_write,
3684 .max_write_len = PATH_MAX,
3687 static int cgroup_populate_dir(struct cgroup *cgrp)
3689 int err;
3690 struct cgroup_subsys *ss;
3692 /* First clear out any existing files */
3693 cgroup_clear_directory(cgrp->dentry);
3695 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3696 if (err < 0)
3697 return err;
3699 if (cgrp == cgrp->top_cgroup) {
3700 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3701 return err;
3704 for_each_subsys(cgrp->root, ss) {
3705 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3706 return err;
3708 /* This cgroup is ready now */
3709 for_each_subsys(cgrp->root, ss) {
3710 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3712 * Update id->css pointer and make this css visible from
3713 * CSS ID functions. This pointer will be dereferened
3714 * from RCU-read-side without locks.
3716 if (css->id)
3717 rcu_assign_pointer(css->id->css, css);
3720 return 0;
3723 static void init_cgroup_css(struct cgroup_subsys_state *css,
3724 struct cgroup_subsys *ss,
3725 struct cgroup *cgrp)
3727 css->cgroup = cgrp;
3728 atomic_set(&css->refcnt, 1);
3729 css->flags = 0;
3730 css->id = NULL;
3731 if (cgrp == dummytop)
3732 set_bit(CSS_ROOT, &css->flags);
3733 BUG_ON(cgrp->subsys[ss->subsys_id]);
3734 cgrp->subsys[ss->subsys_id] = css;
3737 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3739 /* We need to take each hierarchy_mutex in a consistent order */
3740 int i;
3743 * No worry about a race with rebind_subsystems that might mess up the
3744 * locking order, since both parties are under cgroup_mutex.
3746 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3747 struct cgroup_subsys *ss = subsys[i];
3748 if (ss == NULL)
3749 continue;
3750 if (ss->root == root)
3751 mutex_lock(&ss->hierarchy_mutex);
3755 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3757 int i;
3759 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3760 struct cgroup_subsys *ss = subsys[i];
3761 if (ss == NULL)
3762 continue;
3763 if (ss->root == root)
3764 mutex_unlock(&ss->hierarchy_mutex);
3769 * cgroup_create - create a cgroup
3770 * @parent: cgroup that will be parent of the new cgroup
3771 * @dentry: dentry of the new cgroup
3772 * @mode: mode to set on new inode
3774 * Must be called with the mutex on the parent inode held
3776 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3777 mode_t mode)
3779 struct cgroup *cgrp;
3780 struct cgroupfs_root *root = parent->root;
3781 int err = 0;
3782 struct cgroup_subsys *ss;
3783 struct super_block *sb = root->sb;
3785 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3786 if (!cgrp)
3787 return -ENOMEM;
3789 /* Grab a reference on the superblock so the hierarchy doesn't
3790 * get deleted on unmount if there are child cgroups. This
3791 * can be done outside cgroup_mutex, since the sb can't
3792 * disappear while someone has an open control file on the
3793 * fs */
3794 atomic_inc(&sb->s_active);
3796 mutex_lock(&cgroup_mutex);
3798 init_cgroup_housekeeping(cgrp);
3800 cgrp->parent = parent;
3801 cgrp->root = parent->root;
3802 cgrp->top_cgroup = parent->top_cgroup;
3804 if (notify_on_release(parent))
3805 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3807 if (clone_children(parent))
3808 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3810 for_each_subsys(root, ss) {
3811 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3813 if (IS_ERR(css)) {
3814 err = PTR_ERR(css);
3815 goto err_destroy;
3817 init_cgroup_css(css, ss, cgrp);
3818 if (ss->use_id) {
3819 err = alloc_css_id(ss, parent, cgrp);
3820 if (err)
3821 goto err_destroy;
3823 /* At error, ->destroy() callback has to free assigned ID. */
3824 if (clone_children(parent) && ss->post_clone)
3825 ss->post_clone(ss, cgrp);
3828 cgroup_lock_hierarchy(root);
3829 list_add(&cgrp->sibling, &cgrp->parent->children);
3830 cgroup_unlock_hierarchy(root);
3831 root->number_of_cgroups++;
3833 err = cgroup_create_dir(cgrp, dentry, mode);
3834 if (err < 0)
3835 goto err_remove;
3837 /* The cgroup directory was pre-locked for us */
3838 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3840 err = cgroup_populate_dir(cgrp);
3841 /* If err < 0, we have a half-filled directory - oh well ;) */
3843 mutex_unlock(&cgroup_mutex);
3844 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3846 return 0;
3848 err_remove:
3850 cgroup_lock_hierarchy(root);
3851 list_del(&cgrp->sibling);
3852 cgroup_unlock_hierarchy(root);
3853 root->number_of_cgroups--;
3855 err_destroy:
3857 for_each_subsys(root, ss) {
3858 if (cgrp->subsys[ss->subsys_id])
3859 ss->destroy(ss, cgrp);
3862 mutex_unlock(&cgroup_mutex);
3864 /* Release the reference count that we took on the superblock */
3865 deactivate_super(sb);
3867 kfree(cgrp);
3868 return err;
3871 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3873 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3875 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
3877 if (strchr(dentry->d_name.name, '\n'))
3878 return -EINVAL;
3880 /* the vfs holds inode->i_mutex already */
3881 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3884 static int cgroup_has_css_refs(struct cgroup *cgrp)
3886 /* Check the reference count on each subsystem. Since we
3887 * already established that there are no tasks in the
3888 * cgroup, if the css refcount is also 1, then there should
3889 * be no outstanding references, so the subsystem is safe to
3890 * destroy. We scan across all subsystems rather than using
3891 * the per-hierarchy linked list of mounted subsystems since
3892 * we can be called via check_for_release() with no
3893 * synchronization other than RCU, and the subsystem linked
3894 * list isn't RCU-safe */
3895 int i;
3897 * We won't need to lock the subsys array, because the subsystems
3898 * we're concerned about aren't going anywhere since our cgroup root
3899 * has a reference on them.
3901 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3902 struct cgroup_subsys *ss = subsys[i];
3903 struct cgroup_subsys_state *css;
3904 /* Skip subsystems not present or not in this hierarchy */
3905 if (ss == NULL || ss->root != cgrp->root)
3906 continue;
3907 css = cgrp->subsys[ss->subsys_id];
3908 /* When called from check_for_release() it's possible
3909 * that by this point the cgroup has been removed
3910 * and the css deleted. But a false-positive doesn't
3911 * matter, since it can only happen if the cgroup
3912 * has been deleted and hence no longer needs the
3913 * release agent to be called anyway. */
3914 if (css && (atomic_read(&css->refcnt) > 1))
3915 return 1;
3917 return 0;
3921 * Atomically mark all (or else none) of the cgroup's CSS objects as
3922 * CSS_REMOVED. Return true on success, or false if the cgroup has
3923 * busy subsystems. Call with cgroup_mutex held
3926 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3928 struct cgroup_subsys *ss;
3929 unsigned long flags;
3930 bool failed = false;
3931 local_irq_save(flags);
3932 for_each_subsys(cgrp->root, ss) {
3933 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3934 int refcnt;
3935 while (1) {
3936 /* We can only remove a CSS with a refcnt==1 */
3937 refcnt = atomic_read(&css->refcnt);
3938 if (refcnt > 1) {
3939 failed = true;
3940 goto done;
3942 BUG_ON(!refcnt);
3944 * Drop the refcnt to 0 while we check other
3945 * subsystems. This will cause any racing
3946 * css_tryget() to spin until we set the
3947 * CSS_REMOVED bits or abort
3949 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3950 break;
3951 cpu_relax();
3954 done:
3955 for_each_subsys(cgrp->root, ss) {
3956 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3957 if (failed) {
3959 * Restore old refcnt if we previously managed
3960 * to clear it from 1 to 0
3962 if (!atomic_read(&css->refcnt))
3963 atomic_set(&css->refcnt, 1);
3964 } else {
3965 /* Commit the fact that the CSS is removed */
3966 set_bit(CSS_REMOVED, &css->flags);
3969 local_irq_restore(flags);
3970 return !failed;
3973 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3975 struct cgroup *cgrp = dentry->d_fsdata;
3976 struct dentry *d;
3977 struct cgroup *parent;
3978 DEFINE_WAIT(wait);
3979 struct cgroup_event *event, *tmp;
3980 int ret;
3982 /* the vfs holds both inode->i_mutex already */
3983 again:
3984 mutex_lock(&cgroup_mutex);
3985 if (atomic_read(&cgrp->count) != 0) {
3986 mutex_unlock(&cgroup_mutex);
3987 return -EBUSY;
3989 if (!list_empty(&cgrp->children)) {
3990 mutex_unlock(&cgroup_mutex);
3991 return -EBUSY;
3993 mutex_unlock(&cgroup_mutex);
3996 * In general, subsystem has no css->refcnt after pre_destroy(). But
3997 * in racy cases, subsystem may have to get css->refcnt after
3998 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3999 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4000 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4001 * and subsystem's reference count handling. Please see css_get/put
4002 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4004 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4007 * Call pre_destroy handlers of subsys. Notify subsystems
4008 * that rmdir() request comes.
4010 ret = cgroup_call_pre_destroy(cgrp);
4011 if (ret) {
4012 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4013 return ret;
4016 mutex_lock(&cgroup_mutex);
4017 parent = cgrp->parent;
4018 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4019 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4020 mutex_unlock(&cgroup_mutex);
4021 return -EBUSY;
4023 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
4024 if (!cgroup_clear_css_refs(cgrp)) {
4025 mutex_unlock(&cgroup_mutex);
4027 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4028 * prepare_to_wait(), we need to check this flag.
4030 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4031 schedule();
4032 finish_wait(&cgroup_rmdir_waitq, &wait);
4033 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4034 if (signal_pending(current))
4035 return -EINTR;
4036 goto again;
4038 /* NO css_tryget() can success after here. */
4039 finish_wait(&cgroup_rmdir_waitq, &wait);
4040 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4042 raw_spin_lock(&release_list_lock);
4043 set_bit(CGRP_REMOVED, &cgrp->flags);
4044 if (!list_empty(&cgrp->release_list))
4045 list_del_init(&cgrp->release_list);
4046 raw_spin_unlock(&release_list_lock);
4048 cgroup_lock_hierarchy(cgrp->root);
4049 /* delete this cgroup from parent->children */
4050 list_del_init(&cgrp->sibling);
4051 cgroup_unlock_hierarchy(cgrp->root);
4053 d = dget(cgrp->dentry);
4055 cgroup_d_remove_dir(d);
4056 dput(d);
4058 set_bit(CGRP_RELEASABLE, &parent->flags);
4059 check_for_release(parent);
4062 * Unregister events and notify userspace.
4063 * Notify userspace about cgroup removing only after rmdir of cgroup
4064 * directory to avoid race between userspace and kernelspace
4066 spin_lock(&cgrp->event_list_lock);
4067 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4068 list_del(&event->list);
4069 remove_wait_queue(event->wqh, &event->wait);
4070 eventfd_signal(event->eventfd, 1);
4071 schedule_work(&event->remove);
4073 spin_unlock(&cgrp->event_list_lock);
4075 mutex_unlock(&cgroup_mutex);
4076 return 0;
4079 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4081 struct cgroup_subsys_state *css;
4083 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4085 /* Create the top cgroup state for this subsystem */
4086 list_add(&ss->sibling, &rootnode.subsys_list);
4087 ss->root = &rootnode;
4088 css = ss->create(ss, dummytop);
4089 /* We don't handle early failures gracefully */
4090 BUG_ON(IS_ERR(css));
4091 init_cgroup_css(css, ss, dummytop);
4093 /* Update the init_css_set to contain a subsys
4094 * pointer to this state - since the subsystem is
4095 * newly registered, all tasks and hence the
4096 * init_css_set is in the subsystem's top cgroup. */
4097 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4099 need_forkexit_callback |= ss->fork || ss->exit;
4101 /* At system boot, before all subsystems have been
4102 * registered, no tasks have been forked, so we don't
4103 * need to invoke fork callbacks here. */
4104 BUG_ON(!list_empty(&init_task.tasks));
4106 mutex_init(&ss->hierarchy_mutex);
4107 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4108 ss->active = 1;
4110 /* this function shouldn't be used with modular subsystems, since they
4111 * need to register a subsys_id, among other things */
4112 BUG_ON(ss->module);
4116 * cgroup_load_subsys: load and register a modular subsystem at runtime
4117 * @ss: the subsystem to load
4119 * This function should be called in a modular subsystem's initcall. If the
4120 * subsystem is built as a module, it will be assigned a new subsys_id and set
4121 * up for use. If the subsystem is built-in anyway, work is delegated to the
4122 * simpler cgroup_init_subsys.
4124 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4126 int i;
4127 struct cgroup_subsys_state *css;
4129 /* check name and function validity */
4130 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4131 ss->create == NULL || ss->destroy == NULL)
4132 return -EINVAL;
4135 * we don't support callbacks in modular subsystems. this check is
4136 * before the ss->module check for consistency; a subsystem that could
4137 * be a module should still have no callbacks even if the user isn't
4138 * compiling it as one.
4140 if (ss->fork || ss->exit)
4141 return -EINVAL;
4144 * an optionally modular subsystem is built-in: we want to do nothing,
4145 * since cgroup_init_subsys will have already taken care of it.
4147 if (ss->module == NULL) {
4148 /* a few sanity checks */
4149 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4150 BUG_ON(subsys[ss->subsys_id] != ss);
4151 return 0;
4155 * need to register a subsys id before anything else - for example,
4156 * init_cgroup_css needs it.
4158 mutex_lock(&cgroup_mutex);
4159 /* find the first empty slot in the array */
4160 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4161 if (subsys[i] == NULL)
4162 break;
4164 if (i == CGROUP_SUBSYS_COUNT) {
4165 /* maximum number of subsystems already registered! */
4166 mutex_unlock(&cgroup_mutex);
4167 return -EBUSY;
4169 /* assign ourselves the subsys_id */
4170 ss->subsys_id = i;
4171 subsys[i] = ss;
4174 * no ss->create seems to need anything important in the ss struct, so
4175 * this can happen first (i.e. before the rootnode attachment).
4177 css = ss->create(ss, dummytop);
4178 if (IS_ERR(css)) {
4179 /* failure case - need to deassign the subsys[] slot. */
4180 subsys[i] = NULL;
4181 mutex_unlock(&cgroup_mutex);
4182 return PTR_ERR(css);
4185 list_add(&ss->sibling, &rootnode.subsys_list);
4186 ss->root = &rootnode;
4188 /* our new subsystem will be attached to the dummy hierarchy. */
4189 init_cgroup_css(css, ss, dummytop);
4190 /* init_idr must be after init_cgroup_css because it sets css->id. */
4191 if (ss->use_id) {
4192 int ret = cgroup_init_idr(ss, css);
4193 if (ret) {
4194 dummytop->subsys[ss->subsys_id] = NULL;
4195 ss->destroy(ss, dummytop);
4196 subsys[i] = NULL;
4197 mutex_unlock(&cgroup_mutex);
4198 return ret;
4203 * Now we need to entangle the css into the existing css_sets. unlike
4204 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4205 * will need a new pointer to it; done by iterating the css_set_table.
4206 * furthermore, modifying the existing css_sets will corrupt the hash
4207 * table state, so each changed css_set will need its hash recomputed.
4208 * this is all done under the css_set_lock.
4210 write_lock(&css_set_lock);
4211 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4212 struct css_set *cg;
4213 struct hlist_node *node, *tmp;
4214 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4216 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4217 /* skip entries that we already rehashed */
4218 if (cg->subsys[ss->subsys_id])
4219 continue;
4220 /* remove existing entry */
4221 hlist_del(&cg->hlist);
4222 /* set new value */
4223 cg->subsys[ss->subsys_id] = css;
4224 /* recompute hash and restore entry */
4225 new_bucket = css_set_hash(cg->subsys);
4226 hlist_add_head(&cg->hlist, new_bucket);
4229 write_unlock(&css_set_lock);
4231 mutex_init(&ss->hierarchy_mutex);
4232 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4233 ss->active = 1;
4235 /* success! */
4236 mutex_unlock(&cgroup_mutex);
4237 return 0;
4239 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4242 * cgroup_unload_subsys: unload a modular subsystem
4243 * @ss: the subsystem to unload
4245 * This function should be called in a modular subsystem's exitcall. When this
4246 * function is invoked, the refcount on the subsystem's module will be 0, so
4247 * the subsystem will not be attached to any hierarchy.
4249 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4251 struct cg_cgroup_link *link;
4252 struct hlist_head *hhead;
4254 BUG_ON(ss->module == NULL);
4257 * we shouldn't be called if the subsystem is in use, and the use of
4258 * try_module_get in parse_cgroupfs_options should ensure that it
4259 * doesn't start being used while we're killing it off.
4261 BUG_ON(ss->root != &rootnode);
4263 mutex_lock(&cgroup_mutex);
4264 /* deassign the subsys_id */
4265 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4266 subsys[ss->subsys_id] = NULL;
4268 /* remove subsystem from rootnode's list of subsystems */
4269 list_del_init(&ss->sibling);
4272 * disentangle the css from all css_sets attached to the dummytop. as
4273 * in loading, we need to pay our respects to the hashtable gods.
4275 write_lock(&css_set_lock);
4276 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4277 struct css_set *cg = link->cg;
4279 hlist_del(&cg->hlist);
4280 BUG_ON(!cg->subsys[ss->subsys_id]);
4281 cg->subsys[ss->subsys_id] = NULL;
4282 hhead = css_set_hash(cg->subsys);
4283 hlist_add_head(&cg->hlist, hhead);
4285 write_unlock(&css_set_lock);
4288 * remove subsystem's css from the dummytop and free it - need to free
4289 * before marking as null because ss->destroy needs the cgrp->subsys
4290 * pointer to find their state. note that this also takes care of
4291 * freeing the css_id.
4293 ss->destroy(ss, dummytop);
4294 dummytop->subsys[ss->subsys_id] = NULL;
4296 mutex_unlock(&cgroup_mutex);
4298 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4301 * cgroup_init_early - cgroup initialization at system boot
4303 * Initialize cgroups at system boot, and initialize any
4304 * subsystems that request early init.
4306 int __init cgroup_init_early(void)
4308 int i;
4309 atomic_set(&init_css_set.refcount, 1);
4310 INIT_LIST_HEAD(&init_css_set.cg_links);
4311 INIT_LIST_HEAD(&init_css_set.tasks);
4312 INIT_HLIST_NODE(&init_css_set.hlist);
4313 css_set_count = 1;
4314 init_cgroup_root(&rootnode);
4315 root_count = 1;
4316 init_task.cgroups = &init_css_set;
4318 init_css_set_link.cg = &init_css_set;
4319 init_css_set_link.cgrp = dummytop;
4320 list_add(&init_css_set_link.cgrp_link_list,
4321 &rootnode.top_cgroup.css_sets);
4322 list_add(&init_css_set_link.cg_link_list,
4323 &init_css_set.cg_links);
4325 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4326 INIT_HLIST_HEAD(&css_set_table[i]);
4328 /* at bootup time, we don't worry about modular subsystems */
4329 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4330 struct cgroup_subsys *ss = subsys[i];
4332 BUG_ON(!ss->name);
4333 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4334 BUG_ON(!ss->create);
4335 BUG_ON(!ss->destroy);
4336 if (ss->subsys_id != i) {
4337 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4338 ss->name, ss->subsys_id);
4339 BUG();
4342 if (ss->early_init)
4343 cgroup_init_subsys(ss);
4345 return 0;
4349 * cgroup_init - cgroup initialization
4351 * Register cgroup filesystem and /proc file, and initialize
4352 * any subsystems that didn't request early init.
4354 int __init cgroup_init(void)
4356 int err;
4357 int i;
4358 struct hlist_head *hhead;
4360 err = bdi_init(&cgroup_backing_dev_info);
4361 if (err)
4362 return err;
4364 /* at bootup time, we don't worry about modular subsystems */
4365 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4366 struct cgroup_subsys *ss = subsys[i];
4367 if (!ss->early_init)
4368 cgroup_init_subsys(ss);
4369 if (ss->use_id)
4370 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4373 /* Add init_css_set to the hash table */
4374 hhead = css_set_hash(init_css_set.subsys);
4375 hlist_add_head(&init_css_set.hlist, hhead);
4376 BUG_ON(!init_root_id(&rootnode));
4378 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4379 if (!cgroup_kobj) {
4380 err = -ENOMEM;
4381 goto out;
4384 err = register_filesystem(&cgroup_fs_type);
4385 if (err < 0) {
4386 kobject_put(cgroup_kobj);
4387 goto out;
4390 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4392 out:
4393 if (err)
4394 bdi_destroy(&cgroup_backing_dev_info);
4396 return err;
4400 * proc_cgroup_show()
4401 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4402 * - Used for /proc/<pid>/cgroup.
4403 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4404 * doesn't really matter if tsk->cgroup changes after we read it,
4405 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4406 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4407 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4408 * cgroup to top_cgroup.
4411 /* TODO: Use a proper seq_file iterator */
4412 static int proc_cgroup_show(struct seq_file *m, void *v)
4414 struct pid *pid;
4415 struct task_struct *tsk;
4416 char *buf;
4417 int retval;
4418 struct cgroupfs_root *root;
4420 retval = -ENOMEM;
4421 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4422 if (!buf)
4423 goto out;
4425 retval = -ESRCH;
4426 pid = m->private;
4427 tsk = get_pid_task(pid, PIDTYPE_PID);
4428 if (!tsk)
4429 goto out_free;
4431 retval = 0;
4433 mutex_lock(&cgroup_mutex);
4435 for_each_active_root(root) {
4436 struct cgroup_subsys *ss;
4437 struct cgroup *cgrp;
4438 int count = 0;
4440 seq_printf(m, "%d:", root->hierarchy_id);
4441 for_each_subsys(root, ss)
4442 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4443 if (strlen(root->name))
4444 seq_printf(m, "%sname=%s", count ? "," : "",
4445 root->name);
4446 seq_putc(m, ':');
4447 cgrp = task_cgroup_from_root(tsk, root);
4448 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4449 if (retval < 0)
4450 goto out_unlock;
4451 seq_puts(m, buf);
4452 seq_putc(m, '\n');
4455 out_unlock:
4456 mutex_unlock(&cgroup_mutex);
4457 put_task_struct(tsk);
4458 out_free:
4459 kfree(buf);
4460 out:
4461 return retval;
4464 static int cgroup_open(struct inode *inode, struct file *file)
4466 struct pid *pid = PROC_I(inode)->pid;
4467 return single_open(file, proc_cgroup_show, pid);
4470 const struct file_operations proc_cgroup_operations = {
4471 .open = cgroup_open,
4472 .read = seq_read,
4473 .llseek = seq_lseek,
4474 .release = single_release,
4477 /* Display information about each subsystem and each hierarchy */
4478 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4480 int i;
4482 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4484 * ideally we don't want subsystems moving around while we do this.
4485 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4486 * subsys/hierarchy state.
4488 mutex_lock(&cgroup_mutex);
4489 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4490 struct cgroup_subsys *ss = subsys[i];
4491 if (ss == NULL)
4492 continue;
4493 seq_printf(m, "%s\t%d\t%d\t%d\n",
4494 ss->name, ss->root->hierarchy_id,
4495 ss->root->number_of_cgroups, !ss->disabled);
4497 mutex_unlock(&cgroup_mutex);
4498 return 0;
4501 static int cgroupstats_open(struct inode *inode, struct file *file)
4503 return single_open(file, proc_cgroupstats_show, NULL);
4506 static const struct file_operations proc_cgroupstats_operations = {
4507 .open = cgroupstats_open,
4508 .read = seq_read,
4509 .llseek = seq_lseek,
4510 .release = single_release,
4514 * cgroup_fork - attach newly forked task to its parents cgroup.
4515 * @child: pointer to task_struct of forking parent process.
4517 * Description: A task inherits its parent's cgroup at fork().
4519 * A pointer to the shared css_set was automatically copied in
4520 * fork.c by dup_task_struct(). However, we ignore that copy, since
4521 * it was not made under the protection of RCU or cgroup_mutex, so
4522 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4523 * have already changed current->cgroups, allowing the previously
4524 * referenced cgroup group to be removed and freed.
4526 * At the point that cgroup_fork() is called, 'current' is the parent
4527 * task, and the passed argument 'child' points to the child task.
4529 void cgroup_fork(struct task_struct *child)
4531 task_lock(current);
4532 child->cgroups = current->cgroups;
4533 get_css_set(child->cgroups);
4534 task_unlock(current);
4535 INIT_LIST_HEAD(&child->cg_list);
4539 * cgroup_post_fork - called on a new task after adding it to the task list
4540 * @child: the task in question
4542 * Adds the task to the list running through its css_set if necessary and
4543 * call the subsystem fork() callbacks. Has to be after the task is
4544 * visible on the task list in case we race with the first call to
4545 * cgroup_iter_start() - to guarantee that the new task ends up on its
4546 * list.
4548 void cgroup_post_fork(struct task_struct *child)
4550 int i;
4552 if (use_task_css_set_links) {
4553 write_lock(&css_set_lock);
4554 task_lock(child);
4555 if (list_empty(&child->cg_list))
4556 list_add(&child->cg_list, &child->cgroups->tasks);
4557 task_unlock(child);
4558 write_unlock(&css_set_lock);
4562 * Call ss->fork(). This must happen after @child is linked on
4563 * css_set; otherwise, @child might change state between ->fork()
4564 * and addition to css_set.
4566 if (need_forkexit_callback) {
4567 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4568 struct cgroup_subsys *ss = subsys[i];
4569 if (ss->fork)
4570 ss->fork(ss, child);
4576 * cgroup_exit - detach cgroup from exiting task
4577 * @tsk: pointer to task_struct of exiting process
4578 * @run_callback: run exit callbacks?
4580 * Description: Detach cgroup from @tsk and release it.
4582 * Note that cgroups marked notify_on_release force every task in
4583 * them to take the global cgroup_mutex mutex when exiting.
4584 * This could impact scaling on very large systems. Be reluctant to
4585 * use notify_on_release cgroups where very high task exit scaling
4586 * is required on large systems.
4588 * the_top_cgroup_hack:
4590 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4592 * We call cgroup_exit() while the task is still competent to
4593 * handle notify_on_release(), then leave the task attached to the
4594 * root cgroup in each hierarchy for the remainder of its exit.
4596 * To do this properly, we would increment the reference count on
4597 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4598 * code we would add a second cgroup function call, to drop that
4599 * reference. This would just create an unnecessary hot spot on
4600 * the top_cgroup reference count, to no avail.
4602 * Normally, holding a reference to a cgroup without bumping its
4603 * count is unsafe. The cgroup could go away, or someone could
4604 * attach us to a different cgroup, decrementing the count on
4605 * the first cgroup that we never incremented. But in this case,
4606 * top_cgroup isn't going away, and either task has PF_EXITING set,
4607 * which wards off any cgroup_attach_task() attempts, or task is a failed
4608 * fork, never visible to cgroup_attach_task.
4610 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4612 struct css_set *cg;
4613 int i;
4616 * Unlink from the css_set task list if necessary.
4617 * Optimistically check cg_list before taking
4618 * css_set_lock
4620 if (!list_empty(&tsk->cg_list)) {
4621 write_lock(&css_set_lock);
4622 if (!list_empty(&tsk->cg_list))
4623 list_del_init(&tsk->cg_list);
4624 write_unlock(&css_set_lock);
4627 /* Reassign the task to the init_css_set. */
4628 task_lock(tsk);
4629 cg = tsk->cgroups;
4630 tsk->cgroups = &init_css_set;
4632 if (run_callbacks && need_forkexit_callback) {
4634 * modular subsystems can't use callbacks, so no need to lock
4635 * the subsys array
4637 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4638 struct cgroup_subsys *ss = subsys[i];
4639 if (ss->exit) {
4640 struct cgroup *old_cgrp =
4641 rcu_dereference_raw(cg->subsys[i])->cgroup;
4642 struct cgroup *cgrp = task_cgroup(tsk, i);
4643 ss->exit(ss, cgrp, old_cgrp, tsk);
4647 task_unlock(tsk);
4649 if (cg)
4650 put_css_set_taskexit(cg);
4654 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4655 * @cgrp: the cgroup in question
4656 * @task: the task in question
4658 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4659 * hierarchy.
4661 * If we are sending in dummytop, then presumably we are creating
4662 * the top cgroup in the subsystem.
4664 * Called only by the ns (nsproxy) cgroup.
4666 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4668 int ret;
4669 struct cgroup *target;
4671 if (cgrp == dummytop)
4672 return 1;
4674 target = task_cgroup_from_root(task, cgrp->root);
4675 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4676 cgrp = cgrp->parent;
4677 ret = (cgrp == target);
4678 return ret;
4681 static void check_for_release(struct cgroup *cgrp)
4683 /* All of these checks rely on RCU to keep the cgroup
4684 * structure alive */
4685 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4686 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4687 /* Control Group is currently removeable. If it's not
4688 * already queued for a userspace notification, queue
4689 * it now */
4690 int need_schedule_work = 0;
4691 raw_spin_lock(&release_list_lock);
4692 if (!cgroup_is_removed(cgrp) &&
4693 list_empty(&cgrp->release_list)) {
4694 list_add(&cgrp->release_list, &release_list);
4695 need_schedule_work = 1;
4697 raw_spin_unlock(&release_list_lock);
4698 if (need_schedule_work)
4699 schedule_work(&release_agent_work);
4703 /* Caller must verify that the css is not for root cgroup */
4704 void __css_put(struct cgroup_subsys_state *css, int count)
4706 struct cgroup *cgrp = css->cgroup;
4707 int val;
4708 rcu_read_lock();
4709 val = atomic_sub_return(count, &css->refcnt);
4710 if (val == 1) {
4711 if (notify_on_release(cgrp)) {
4712 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4713 check_for_release(cgrp);
4715 cgroup_wakeup_rmdir_waiter(cgrp);
4717 rcu_read_unlock();
4718 WARN_ON_ONCE(val < 1);
4720 EXPORT_SYMBOL_GPL(__css_put);
4723 * Notify userspace when a cgroup is released, by running the
4724 * configured release agent with the name of the cgroup (path
4725 * relative to the root of cgroup file system) as the argument.
4727 * Most likely, this user command will try to rmdir this cgroup.
4729 * This races with the possibility that some other task will be
4730 * attached to this cgroup before it is removed, or that some other
4731 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4732 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4733 * unused, and this cgroup will be reprieved from its death sentence,
4734 * to continue to serve a useful existence. Next time it's released,
4735 * we will get notified again, if it still has 'notify_on_release' set.
4737 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4738 * means only wait until the task is successfully execve()'d. The
4739 * separate release agent task is forked by call_usermodehelper(),
4740 * then control in this thread returns here, without waiting for the
4741 * release agent task. We don't bother to wait because the caller of
4742 * this routine has no use for the exit status of the release agent
4743 * task, so no sense holding our caller up for that.
4745 static void cgroup_release_agent(struct work_struct *work)
4747 BUG_ON(work != &release_agent_work);
4748 mutex_lock(&cgroup_mutex);
4749 raw_spin_lock(&release_list_lock);
4750 while (!list_empty(&release_list)) {
4751 char *argv[3], *envp[3];
4752 int i;
4753 char *pathbuf = NULL, *agentbuf = NULL;
4754 struct cgroup *cgrp = list_entry(release_list.next,
4755 struct cgroup,
4756 release_list);
4757 list_del_init(&cgrp->release_list);
4758 raw_spin_unlock(&release_list_lock);
4759 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4760 if (!pathbuf)
4761 goto continue_free;
4762 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4763 goto continue_free;
4764 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4765 if (!agentbuf)
4766 goto continue_free;
4768 i = 0;
4769 argv[i++] = agentbuf;
4770 argv[i++] = pathbuf;
4771 argv[i] = NULL;
4773 i = 0;
4774 /* minimal command environment */
4775 envp[i++] = "HOME=/";
4776 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4777 envp[i] = NULL;
4779 /* Drop the lock while we invoke the usermode helper,
4780 * since the exec could involve hitting disk and hence
4781 * be a slow process */
4782 mutex_unlock(&cgroup_mutex);
4783 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4784 mutex_lock(&cgroup_mutex);
4785 continue_free:
4786 kfree(pathbuf);
4787 kfree(agentbuf);
4788 raw_spin_lock(&release_list_lock);
4790 raw_spin_unlock(&release_list_lock);
4791 mutex_unlock(&cgroup_mutex);
4794 static int __init cgroup_disable(char *str)
4796 int i;
4797 char *token;
4799 while ((token = strsep(&str, ",")) != NULL) {
4800 if (!*token)
4801 continue;
4803 * cgroup_disable, being at boot time, can't know about module
4804 * subsystems, so we don't worry about them.
4806 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4807 struct cgroup_subsys *ss = subsys[i];
4809 if (!strcmp(token, ss->name)) {
4810 ss->disabled = 1;
4811 printk(KERN_INFO "Disabling %s control group"
4812 " subsystem\n", ss->name);
4813 break;
4817 return 1;
4819 __setup("cgroup_disable=", cgroup_disable);
4822 * Functons for CSS ID.
4826 *To get ID other than 0, this should be called when !cgroup_is_removed().
4828 unsigned short css_id(struct cgroup_subsys_state *css)
4830 struct css_id *cssid;
4833 * This css_id() can return correct value when somone has refcnt
4834 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4835 * it's unchanged until freed.
4837 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4839 if (cssid)
4840 return cssid->id;
4841 return 0;
4843 EXPORT_SYMBOL_GPL(css_id);
4845 unsigned short css_depth(struct cgroup_subsys_state *css)
4847 struct css_id *cssid;
4849 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4851 if (cssid)
4852 return cssid->depth;
4853 return 0;
4855 EXPORT_SYMBOL_GPL(css_depth);
4858 * css_is_ancestor - test "root" css is an ancestor of "child"
4859 * @child: the css to be tested.
4860 * @root: the css supporsed to be an ancestor of the child.
4862 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4863 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4864 * But, considering usual usage, the csses should be valid objects after test.
4865 * Assuming that the caller will do some action to the child if this returns
4866 * returns true, the caller must take "child";s reference count.
4867 * If "child" is valid object and this returns true, "root" is valid, too.
4870 bool css_is_ancestor(struct cgroup_subsys_state *child,
4871 const struct cgroup_subsys_state *root)
4873 struct css_id *child_id;
4874 struct css_id *root_id;
4875 bool ret = true;
4877 rcu_read_lock();
4878 child_id = rcu_dereference(child->id);
4879 root_id = rcu_dereference(root->id);
4880 if (!child_id
4881 || !root_id
4882 || (child_id->depth < root_id->depth)
4883 || (child_id->stack[root_id->depth] != root_id->id))
4884 ret = false;
4885 rcu_read_unlock();
4886 return ret;
4889 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4891 struct css_id *id = css->id;
4892 /* When this is called before css_id initialization, id can be NULL */
4893 if (!id)
4894 return;
4896 BUG_ON(!ss->use_id);
4898 rcu_assign_pointer(id->css, NULL);
4899 rcu_assign_pointer(css->id, NULL);
4900 write_lock(&ss->id_lock);
4901 idr_remove(&ss->idr, id->id);
4902 write_unlock(&ss->id_lock);
4903 kfree_rcu(id, rcu_head);
4905 EXPORT_SYMBOL_GPL(free_css_id);
4908 * This is called by init or create(). Then, calls to this function are
4909 * always serialized (By cgroup_mutex() at create()).
4912 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4914 struct css_id *newid;
4915 int myid, error, size;
4917 BUG_ON(!ss->use_id);
4919 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4920 newid = kzalloc(size, GFP_KERNEL);
4921 if (!newid)
4922 return ERR_PTR(-ENOMEM);
4923 /* get id */
4924 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4925 error = -ENOMEM;
4926 goto err_out;
4928 write_lock(&ss->id_lock);
4929 /* Don't use 0. allocates an ID of 1-65535 */
4930 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4931 write_unlock(&ss->id_lock);
4933 /* Returns error when there are no free spaces for new ID.*/
4934 if (error) {
4935 error = -ENOSPC;
4936 goto err_out;
4938 if (myid > CSS_ID_MAX)
4939 goto remove_idr;
4941 newid->id = myid;
4942 newid->depth = depth;
4943 return newid;
4944 remove_idr:
4945 error = -ENOSPC;
4946 write_lock(&ss->id_lock);
4947 idr_remove(&ss->idr, myid);
4948 write_unlock(&ss->id_lock);
4949 err_out:
4950 kfree(newid);
4951 return ERR_PTR(error);
4955 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4956 struct cgroup_subsys_state *rootcss)
4958 struct css_id *newid;
4960 rwlock_init(&ss->id_lock);
4961 idr_init(&ss->idr);
4963 newid = get_new_cssid(ss, 0);
4964 if (IS_ERR(newid))
4965 return PTR_ERR(newid);
4967 newid->stack[0] = newid->id;
4968 newid->css = rootcss;
4969 rootcss->id = newid;
4970 return 0;
4973 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4974 struct cgroup *child)
4976 int subsys_id, i, depth = 0;
4977 struct cgroup_subsys_state *parent_css, *child_css;
4978 struct css_id *child_id, *parent_id;
4980 subsys_id = ss->subsys_id;
4981 parent_css = parent->subsys[subsys_id];
4982 child_css = child->subsys[subsys_id];
4983 parent_id = parent_css->id;
4984 depth = parent_id->depth + 1;
4986 child_id = get_new_cssid(ss, depth);
4987 if (IS_ERR(child_id))
4988 return PTR_ERR(child_id);
4990 for (i = 0; i < depth; i++)
4991 child_id->stack[i] = parent_id->stack[i];
4992 child_id->stack[depth] = child_id->id;
4994 * child_id->css pointer will be set after this cgroup is available
4995 * see cgroup_populate_dir()
4997 rcu_assign_pointer(child_css->id, child_id);
4999 return 0;
5003 * css_lookup - lookup css by id
5004 * @ss: cgroup subsys to be looked into.
5005 * @id: the id
5007 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5008 * NULL if not. Should be called under rcu_read_lock()
5010 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5012 struct css_id *cssid = NULL;
5014 BUG_ON(!ss->use_id);
5015 cssid = idr_find(&ss->idr, id);
5017 if (unlikely(!cssid))
5018 return NULL;
5020 return rcu_dereference(cssid->css);
5022 EXPORT_SYMBOL_GPL(css_lookup);
5025 * css_get_next - lookup next cgroup under specified hierarchy.
5026 * @ss: pointer to subsystem
5027 * @id: current position of iteration.
5028 * @root: pointer to css. search tree under this.
5029 * @foundid: position of found object.
5031 * Search next css under the specified hierarchy of rootid. Calling under
5032 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5034 struct cgroup_subsys_state *
5035 css_get_next(struct cgroup_subsys *ss, int id,
5036 struct cgroup_subsys_state *root, int *foundid)
5038 struct cgroup_subsys_state *ret = NULL;
5039 struct css_id *tmp;
5040 int tmpid;
5041 int rootid = css_id(root);
5042 int depth = css_depth(root);
5044 if (!rootid)
5045 return NULL;
5047 BUG_ON(!ss->use_id);
5048 /* fill start point for scan */
5049 tmpid = id;
5050 while (1) {
5052 * scan next entry from bitmap(tree), tmpid is updated after
5053 * idr_get_next().
5055 read_lock(&ss->id_lock);
5056 tmp = idr_get_next(&ss->idr, &tmpid);
5057 read_unlock(&ss->id_lock);
5059 if (!tmp)
5060 break;
5061 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5062 ret = rcu_dereference(tmp->css);
5063 if (ret) {
5064 *foundid = tmpid;
5065 break;
5068 /* continue to scan from next id */
5069 tmpid = tmpid + 1;
5071 return ret;
5075 * get corresponding css from file open on cgroupfs directory
5077 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5079 struct cgroup *cgrp;
5080 struct inode *inode;
5081 struct cgroup_subsys_state *css;
5083 inode = f->f_dentry->d_inode;
5084 /* check in cgroup filesystem dir */
5085 if (inode->i_op != &cgroup_dir_inode_operations)
5086 return ERR_PTR(-EBADF);
5088 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5089 return ERR_PTR(-EINVAL);
5091 /* get cgroup */
5092 cgrp = __d_cgrp(f->f_dentry);
5093 css = cgrp->subsys[id];
5094 return css ? css : ERR_PTR(-ENOENT);
5097 #ifdef CONFIG_CGROUP_DEBUG
5098 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5099 struct cgroup *cont)
5101 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5103 if (!css)
5104 return ERR_PTR(-ENOMEM);
5106 return css;
5109 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5111 kfree(cont->subsys[debug_subsys_id]);
5114 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5116 return atomic_read(&cont->count);
5119 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5121 return cgroup_task_count(cont);
5124 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5126 return (u64)(unsigned long)current->cgroups;
5129 static u64 current_css_set_refcount_read(struct cgroup *cont,
5130 struct cftype *cft)
5132 u64 count;
5134 rcu_read_lock();
5135 count = atomic_read(&current->cgroups->refcount);
5136 rcu_read_unlock();
5137 return count;
5140 static int current_css_set_cg_links_read(struct cgroup *cont,
5141 struct cftype *cft,
5142 struct seq_file *seq)
5144 struct cg_cgroup_link *link;
5145 struct css_set *cg;
5147 read_lock(&css_set_lock);
5148 rcu_read_lock();
5149 cg = rcu_dereference(current->cgroups);
5150 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5151 struct cgroup *c = link->cgrp;
5152 const char *name;
5154 if (c->dentry)
5155 name = c->dentry->d_name.name;
5156 else
5157 name = "?";
5158 seq_printf(seq, "Root %d group %s\n",
5159 c->root->hierarchy_id, name);
5161 rcu_read_unlock();
5162 read_unlock(&css_set_lock);
5163 return 0;
5166 #define MAX_TASKS_SHOWN_PER_CSS 25
5167 static int cgroup_css_links_read(struct cgroup *cont,
5168 struct cftype *cft,
5169 struct seq_file *seq)
5171 struct cg_cgroup_link *link;
5173 read_lock(&css_set_lock);
5174 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5175 struct css_set *cg = link->cg;
5176 struct task_struct *task;
5177 int count = 0;
5178 seq_printf(seq, "css_set %p\n", cg);
5179 list_for_each_entry(task, &cg->tasks, cg_list) {
5180 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5181 seq_puts(seq, " ...\n");
5182 break;
5183 } else {
5184 seq_printf(seq, " task %d\n",
5185 task_pid_vnr(task));
5189 read_unlock(&css_set_lock);
5190 return 0;
5193 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5195 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5198 static struct cftype debug_files[] = {
5200 .name = "cgroup_refcount",
5201 .read_u64 = cgroup_refcount_read,
5204 .name = "taskcount",
5205 .read_u64 = debug_taskcount_read,
5209 .name = "current_css_set",
5210 .read_u64 = current_css_set_read,
5214 .name = "current_css_set_refcount",
5215 .read_u64 = current_css_set_refcount_read,
5219 .name = "current_css_set_cg_links",
5220 .read_seq_string = current_css_set_cg_links_read,
5224 .name = "cgroup_css_links",
5225 .read_seq_string = cgroup_css_links_read,
5229 .name = "releasable",
5230 .read_u64 = releasable_read,
5234 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5236 return cgroup_add_files(cont, ss, debug_files,
5237 ARRAY_SIZE(debug_files));
5240 struct cgroup_subsys debug_subsys = {
5241 .name = "debug",
5242 .create = debug_create,
5243 .destroy = debug_destroy,
5244 .populate = debug_populate,
5245 .subsys_id = debug_subsys_id,
5247 #endif /* CONFIG_CGROUP_DEBUG */