2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
64 #include <linux/atomic.h>
66 static DEFINE_MUTEX(cgroup_mutex
);
69 * Generate an array of cgroup subsystem pointers. At boot time, this is
70 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
71 * registered after that. The mutable section of this array is protected by
74 #define SUBSYS(_x) &_x ## _subsys,
75 static struct cgroup_subsys
*subsys
[CGROUP_SUBSYS_COUNT
] = {
76 #include <linux/cgroup_subsys.h>
79 #define MAX_CGROUP_ROOT_NAMELEN 64
82 * A cgroupfs_root represents the root of a cgroup hierarchy,
83 * and may be associated with a superblock to form an active
86 struct cgroupfs_root
{
87 struct super_block
*sb
;
90 * The bitmask of subsystems intended to be attached to this
93 unsigned long subsys_bits
;
95 /* Unique id for this hierarchy. */
98 /* The bitmask of subsystems currently attached to this hierarchy */
99 unsigned long actual_subsys_bits
;
101 /* A list running through the attached subsystems */
102 struct list_head subsys_list
;
104 /* The root cgroup for this hierarchy */
105 struct cgroup top_cgroup
;
107 /* Tracks how many cgroups are currently defined in hierarchy.*/
108 int number_of_cgroups
;
110 /* A list running through the active hierarchies */
111 struct list_head root_list
;
113 /* Hierarchy-specific flags */
116 /* The path to use for release notifications. */
117 char release_agent_path
[PATH_MAX
];
119 /* The name for this hierarchy - may be empty */
120 char name
[MAX_CGROUP_ROOT_NAMELEN
];
124 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
125 * subsystems that are otherwise unattached - it never has more than a
126 * single cgroup, and all tasks are part of that cgroup.
128 static struct cgroupfs_root rootnode
;
131 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
132 * cgroup_subsys->use_id != 0.
134 #define CSS_ID_MAX (65535)
137 * The css to which this ID points. This pointer is set to valid value
138 * after cgroup is populated. If cgroup is removed, this will be NULL.
139 * This pointer is expected to be RCU-safe because destroy()
140 * is called after synchronize_rcu(). But for safe use, css_is_removed()
141 * css_tryget() should be used for avoiding race.
143 struct cgroup_subsys_state __rcu
*css
;
149 * Depth in hierarchy which this ID belongs to.
151 unsigned short depth
;
153 * ID is freed by RCU. (and lookup routine is RCU safe.)
155 struct rcu_head rcu_head
;
157 * Hierarchy of CSS ID belongs to.
159 unsigned short stack
[0]; /* Array of Length (depth+1) */
163 * cgroup_event represents events which userspace want to receive.
165 struct cgroup_event
{
167 * Cgroup which the event belongs to.
171 * Control file which the event associated.
175 * eventfd to signal userspace about the event.
177 struct eventfd_ctx
*eventfd
;
179 * Each of these stored in a list by the cgroup.
181 struct list_head list
;
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
187 wait_queue_head_t
*wqh
;
189 struct work_struct remove
;
192 /* The list of hierarchy roots */
194 static LIST_HEAD(roots
);
195 static int root_count
;
197 static DEFINE_IDA(hierarchy_ida
);
198 static int next_hierarchy_id
;
199 static DEFINE_SPINLOCK(hierarchy_id_lock
);
201 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
202 #define dummytop (&rootnode.top_cgroup)
204 /* This flag indicates whether tasks in the fork and exit paths should
205 * check for fork/exit handlers to call. This avoids us having to do
206 * extra work in the fork/exit path if none of the subsystems need to
209 static int need_forkexit_callback __read_mostly
;
211 #ifdef CONFIG_PROVE_LOCKING
212 int cgroup_lock_is_held(void)
214 return lockdep_is_held(&cgroup_mutex
);
216 #else /* #ifdef CONFIG_PROVE_LOCKING */
217 int cgroup_lock_is_held(void)
219 return mutex_is_locked(&cgroup_mutex
);
221 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
223 EXPORT_SYMBOL_GPL(cgroup_lock_is_held
);
225 /* convenient tests for these bits */
226 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
228 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
231 /* bits in struct cgroupfs_root flags field */
233 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
236 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
239 (1 << CGRP_RELEASABLE
) |
240 (1 << CGRP_NOTIFY_ON_RELEASE
);
241 return (cgrp
->flags
& bits
) == bits
;
244 static int notify_on_release(const struct cgroup
*cgrp
)
246 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
249 static int clone_children(const struct cgroup
*cgrp
)
251 return test_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
255 * for_each_subsys() allows you to iterate on each subsystem attached to
256 * an active hierarchy
258 #define for_each_subsys(_root, _ss) \
259 list_for_each_entry(_ss, &_root->subsys_list, sibling)
261 /* for_each_active_root() allows you to iterate across the active hierarchies */
262 #define for_each_active_root(_root) \
263 list_for_each_entry(_root, &roots, root_list)
265 /* the list of cgroups eligible for automatic release. Protected by
266 * release_list_lock */
267 static LIST_HEAD(release_list
);
268 static DEFINE_RAW_SPINLOCK(release_list_lock
);
269 static void cgroup_release_agent(struct work_struct
*work
);
270 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
271 static void check_for_release(struct cgroup
*cgrp
);
273 /* Link structure for associating css_set objects with cgroups */
274 struct cg_cgroup_link
{
276 * List running through cg_cgroup_links associated with a
277 * cgroup, anchored on cgroup->css_sets
279 struct list_head cgrp_link_list
;
282 * List running through cg_cgroup_links pointing at a
283 * single css_set object, anchored on css_set->cg_links
285 struct list_head cg_link_list
;
289 /* The default css_set - used by init and its children prior to any
290 * hierarchies being mounted. It contains a pointer to the root state
291 * for each subsystem. Also used to anchor the list of css_sets. Not
292 * reference-counted, to improve performance when child cgroups
293 * haven't been created.
296 static struct css_set init_css_set
;
297 static struct cg_cgroup_link init_css_set_link
;
299 static int cgroup_init_idr(struct cgroup_subsys
*ss
,
300 struct cgroup_subsys_state
*css
);
302 /* css_set_lock protects the list of css_set objects, and the
303 * chain of tasks off each css_set. Nests outside task->alloc_lock
304 * due to cgroup_iter_start() */
305 static DEFINE_RWLOCK(css_set_lock
);
306 static int css_set_count
;
309 * hash table for cgroup groups. This improves the performance to find
310 * an existing css_set. This hash doesn't (currently) take into
311 * account cgroups in empty hierarchies.
313 #define CSS_SET_HASH_BITS 7
314 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
315 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
317 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
321 unsigned long tmp
= 0UL;
323 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
324 tmp
+= (unsigned long)css
[i
];
325 tmp
= (tmp
>> 16) ^ tmp
;
327 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
329 return &css_set_table
[index
];
332 /* We don't maintain the lists running through each css_set to its
333 * task until after the first call to cgroup_iter_start(). This
334 * reduces the fork()/exit() overhead for people who have cgroups
335 * compiled into their kernel but not actually in use */
336 static int use_task_css_set_links __read_mostly
;
338 static void __put_css_set(struct css_set
*cg
, int taskexit
)
340 struct cg_cgroup_link
*link
;
341 struct cg_cgroup_link
*saved_link
;
343 * Ensure that the refcount doesn't hit zero while any readers
344 * can see it. Similar to atomic_dec_and_lock(), but for an
347 if (atomic_add_unless(&cg
->refcount
, -1, 1))
349 write_lock(&css_set_lock
);
350 if (!atomic_dec_and_test(&cg
->refcount
)) {
351 write_unlock(&css_set_lock
);
355 /* This css_set is dead. unlink it and release cgroup refcounts */
356 hlist_del(&cg
->hlist
);
359 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
361 struct cgroup
*cgrp
= link
->cgrp
;
362 list_del(&link
->cg_link_list
);
363 list_del(&link
->cgrp_link_list
);
366 * We may not be holding cgroup_mutex, and if cgrp->count is
367 * dropped to 0 the cgroup can be destroyed at any time, hence
368 * rcu_read_lock is used to keep it alive.
371 if (atomic_dec_and_test(&cgrp
->count
) &&
372 notify_on_release(cgrp
)) {
374 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
375 check_for_release(cgrp
);
382 write_unlock(&css_set_lock
);
383 kfree_rcu(cg
, rcu_head
);
387 * refcounted get/put for css_set objects
389 static inline void get_css_set(struct css_set
*cg
)
391 atomic_inc(&cg
->refcount
);
394 static inline void put_css_set(struct css_set
*cg
)
396 __put_css_set(cg
, 0);
399 static inline void put_css_set_taskexit(struct css_set
*cg
)
401 __put_css_set(cg
, 1);
405 * compare_css_sets - helper function for find_existing_css_set().
406 * @cg: candidate css_set being tested
407 * @old_cg: existing css_set for a task
408 * @new_cgrp: cgroup that's being entered by the task
409 * @template: desired set of css pointers in css_set (pre-calculated)
411 * Returns true if "cg" matches "old_cg" except for the hierarchy
412 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
414 static bool compare_css_sets(struct css_set
*cg
,
415 struct css_set
*old_cg
,
416 struct cgroup
*new_cgrp
,
417 struct cgroup_subsys_state
*template[])
419 struct list_head
*l1
, *l2
;
421 if (memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
422 /* Not all subsystems matched */
427 * Compare cgroup pointers in order to distinguish between
428 * different cgroups in heirarchies with no subsystems. We
429 * could get by with just this check alone (and skip the
430 * memcmp above) but on most setups the memcmp check will
431 * avoid the need for this more expensive check on almost all
436 l2
= &old_cg
->cg_links
;
438 struct cg_cgroup_link
*cgl1
, *cgl2
;
439 struct cgroup
*cg1
, *cg2
;
443 /* See if we reached the end - both lists are equal length. */
444 if (l1
== &cg
->cg_links
) {
445 BUG_ON(l2
!= &old_cg
->cg_links
);
448 BUG_ON(l2
== &old_cg
->cg_links
);
450 /* Locate the cgroups associated with these links. */
451 cgl1
= list_entry(l1
, struct cg_cgroup_link
, cg_link_list
);
452 cgl2
= list_entry(l2
, struct cg_cgroup_link
, cg_link_list
);
455 /* Hierarchies should be linked in the same order. */
456 BUG_ON(cg1
->root
!= cg2
->root
);
459 * If this hierarchy is the hierarchy of the cgroup
460 * that's changing, then we need to check that this
461 * css_set points to the new cgroup; if it's any other
462 * hierarchy, then this css_set should point to the
463 * same cgroup as the old css_set.
465 if (cg1
->root
== new_cgrp
->root
) {
477 * find_existing_css_set() is a helper for
478 * find_css_set(), and checks to see whether an existing
479 * css_set is suitable.
481 * oldcg: the cgroup group that we're using before the cgroup
484 * cgrp: the cgroup that we're moving into
486 * template: location in which to build the desired set of subsystem
487 * state objects for the new cgroup group
489 static struct css_set
*find_existing_css_set(
490 struct css_set
*oldcg
,
492 struct cgroup_subsys_state
*template[])
495 struct cgroupfs_root
*root
= cgrp
->root
;
496 struct hlist_head
*hhead
;
497 struct hlist_node
*node
;
501 * Build the set of subsystem state objects that we want to see in the
502 * new css_set. while subsystems can change globally, the entries here
503 * won't change, so no need for locking.
505 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
506 if (root
->subsys_bits
& (1UL << i
)) {
507 /* Subsystem is in this hierarchy. So we want
508 * the subsystem state from the new
510 template[i
] = cgrp
->subsys
[i
];
512 /* Subsystem is not in this hierarchy, so we
513 * don't want to change the subsystem state */
514 template[i
] = oldcg
->subsys
[i
];
518 hhead
= css_set_hash(template);
519 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
520 if (!compare_css_sets(cg
, oldcg
, cgrp
, template))
523 /* This css_set matches what we need */
527 /* No existing cgroup group matched */
531 static void free_cg_links(struct list_head
*tmp
)
533 struct cg_cgroup_link
*link
;
534 struct cg_cgroup_link
*saved_link
;
536 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
537 list_del(&link
->cgrp_link_list
);
543 * allocate_cg_links() allocates "count" cg_cgroup_link structures
544 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
545 * success or a negative error
547 static int allocate_cg_links(int count
, struct list_head
*tmp
)
549 struct cg_cgroup_link
*link
;
552 for (i
= 0; i
< count
; i
++) {
553 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
558 list_add(&link
->cgrp_link_list
, tmp
);
564 * link_css_set - a helper function to link a css_set to a cgroup
565 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
566 * @cg: the css_set to be linked
567 * @cgrp: the destination cgroup
569 static void link_css_set(struct list_head
*tmp_cg_links
,
570 struct css_set
*cg
, struct cgroup
*cgrp
)
572 struct cg_cgroup_link
*link
;
574 BUG_ON(list_empty(tmp_cg_links
));
575 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
579 atomic_inc(&cgrp
->count
);
580 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
582 * Always add links to the tail of the list so that the list
583 * is sorted by order of hierarchy creation
585 list_add_tail(&link
->cg_link_list
, &cg
->cg_links
);
589 * find_css_set() takes an existing cgroup group and a
590 * cgroup object, and returns a css_set object that's
591 * equivalent to the old group, but with the given cgroup
592 * substituted into the appropriate hierarchy. Must be called with
595 static struct css_set
*find_css_set(
596 struct css_set
*oldcg
, struct cgroup
*cgrp
)
599 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
601 struct list_head tmp_cg_links
;
603 struct hlist_head
*hhead
;
604 struct cg_cgroup_link
*link
;
606 /* First see if we already have a cgroup group that matches
608 read_lock(&css_set_lock
);
609 res
= find_existing_css_set(oldcg
, cgrp
, template);
612 read_unlock(&css_set_lock
);
617 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
621 /* Allocate all the cg_cgroup_link objects that we'll need */
622 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
627 atomic_set(&res
->refcount
, 1);
628 INIT_LIST_HEAD(&res
->cg_links
);
629 INIT_LIST_HEAD(&res
->tasks
);
630 INIT_HLIST_NODE(&res
->hlist
);
632 /* Copy the set of subsystem state objects generated in
633 * find_existing_css_set() */
634 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
636 write_lock(&css_set_lock
);
637 /* Add reference counts and links from the new css_set. */
638 list_for_each_entry(link
, &oldcg
->cg_links
, cg_link_list
) {
639 struct cgroup
*c
= link
->cgrp
;
640 if (c
->root
== cgrp
->root
)
642 link_css_set(&tmp_cg_links
, res
, c
);
645 BUG_ON(!list_empty(&tmp_cg_links
));
649 /* Add this cgroup group to the hash table */
650 hhead
= css_set_hash(res
->subsys
);
651 hlist_add_head(&res
->hlist
, hhead
);
653 write_unlock(&css_set_lock
);
659 * Return the cgroup for "task" from the given hierarchy. Must be
660 * called with cgroup_mutex held.
662 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
663 struct cgroupfs_root
*root
)
666 struct cgroup
*res
= NULL
;
668 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
669 read_lock(&css_set_lock
);
671 * No need to lock the task - since we hold cgroup_mutex the
672 * task can't change groups, so the only thing that can happen
673 * is that it exits and its css is set back to init_css_set.
676 if (css
== &init_css_set
) {
677 res
= &root
->top_cgroup
;
679 struct cg_cgroup_link
*link
;
680 list_for_each_entry(link
, &css
->cg_links
, cg_link_list
) {
681 struct cgroup
*c
= link
->cgrp
;
682 if (c
->root
== root
) {
688 read_unlock(&css_set_lock
);
694 * There is one global cgroup mutex. We also require taking
695 * task_lock() when dereferencing a task's cgroup subsys pointers.
696 * See "The task_lock() exception", at the end of this comment.
698 * A task must hold cgroup_mutex to modify cgroups.
700 * Any task can increment and decrement the count field without lock.
701 * So in general, code holding cgroup_mutex can't rely on the count
702 * field not changing. However, if the count goes to zero, then only
703 * cgroup_attach_task() can increment it again. Because a count of zero
704 * means that no tasks are currently attached, therefore there is no
705 * way a task attached to that cgroup can fork (the other way to
706 * increment the count). So code holding cgroup_mutex can safely
707 * assume that if the count is zero, it will stay zero. Similarly, if
708 * a task holds cgroup_mutex on a cgroup with zero count, it
709 * knows that the cgroup won't be removed, as cgroup_rmdir()
712 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
713 * (usually) take cgroup_mutex. These are the two most performance
714 * critical pieces of code here. The exception occurs on cgroup_exit(),
715 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
716 * is taken, and if the cgroup count is zero, a usermode call made
717 * to the release agent with the name of the cgroup (path relative to
718 * the root of cgroup file system) as the argument.
720 * A cgroup can only be deleted if both its 'count' of using tasks
721 * is zero, and its list of 'children' cgroups is empty. Since all
722 * tasks in the system use _some_ cgroup, and since there is always at
723 * least one task in the system (init, pid == 1), therefore, top_cgroup
724 * always has either children cgroups and/or using tasks. So we don't
725 * need a special hack to ensure that top_cgroup cannot be deleted.
727 * The task_lock() exception
729 * The need for this exception arises from the action of
730 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
731 * another. It does so using cgroup_mutex, however there are
732 * several performance critical places that need to reference
733 * task->cgroup without the expense of grabbing a system global
734 * mutex. Therefore except as noted below, when dereferencing or, as
735 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
736 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
737 * the task_struct routinely used for such matters.
739 * P.S. One more locking exception. RCU is used to guard the
740 * update of a tasks cgroup pointer by cgroup_attach_task()
744 * cgroup_lock - lock out any changes to cgroup structures
747 void cgroup_lock(void)
749 mutex_lock(&cgroup_mutex
);
751 EXPORT_SYMBOL_GPL(cgroup_lock
);
754 * cgroup_unlock - release lock on cgroup changes
756 * Undo the lock taken in a previous cgroup_lock() call.
758 void cgroup_unlock(void)
760 mutex_unlock(&cgroup_mutex
);
762 EXPORT_SYMBOL_GPL(cgroup_unlock
);
765 * A couple of forward declarations required, due to cyclic reference loop:
766 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
767 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
771 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
772 static struct dentry
*cgroup_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
773 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
774 static int cgroup_populate_dir(struct cgroup
*cgrp
);
775 static const struct inode_operations cgroup_dir_inode_operations
;
776 static const struct file_operations proc_cgroupstats_operations
;
778 static struct backing_dev_info cgroup_backing_dev_info
= {
780 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
783 static int alloc_css_id(struct cgroup_subsys
*ss
,
784 struct cgroup
*parent
, struct cgroup
*child
);
786 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
788 struct inode
*inode
= new_inode(sb
);
791 inode
->i_ino
= get_next_ino();
792 inode
->i_mode
= mode
;
793 inode
->i_uid
= current_fsuid();
794 inode
->i_gid
= current_fsgid();
795 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
796 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
802 * Call subsys's pre_destroy handler.
803 * This is called before css refcnt check.
805 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
807 struct cgroup_subsys
*ss
;
810 for_each_subsys(cgrp
->root
, ss
)
811 if (ss
->pre_destroy
) {
812 ret
= ss
->pre_destroy(ss
, cgrp
);
820 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
822 /* is dentry a directory ? if so, kfree() associated cgroup */
823 if (S_ISDIR(inode
->i_mode
)) {
824 struct cgroup
*cgrp
= dentry
->d_fsdata
;
825 struct cgroup_subsys
*ss
;
826 BUG_ON(!(cgroup_is_removed(cgrp
)));
827 /* It's possible for external users to be holding css
828 * reference counts on a cgroup; css_put() needs to
829 * be able to access the cgroup after decrementing
830 * the reference count in order to know if it needs to
831 * queue the cgroup to be handled by the release
835 mutex_lock(&cgroup_mutex
);
837 * Release the subsystem state objects.
839 for_each_subsys(cgrp
->root
, ss
)
840 ss
->destroy(ss
, cgrp
);
842 cgrp
->root
->number_of_cgroups
--;
843 mutex_unlock(&cgroup_mutex
);
846 * Drop the active superblock reference that we took when we
849 deactivate_super(cgrp
->root
->sb
);
852 * if we're getting rid of the cgroup, refcount should ensure
853 * that there are no pidlists left.
855 BUG_ON(!list_empty(&cgrp
->pidlists
));
857 kfree_rcu(cgrp
, rcu_head
);
862 static int cgroup_delete(const struct dentry
*d
)
867 static void remove_dir(struct dentry
*d
)
869 struct dentry
*parent
= dget(d
->d_parent
);
872 simple_rmdir(parent
->d_inode
, d
);
876 static void cgroup_clear_directory(struct dentry
*dentry
)
878 struct list_head
*node
;
880 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
881 spin_lock(&dentry
->d_lock
);
882 node
= dentry
->d_subdirs
.next
;
883 while (node
!= &dentry
->d_subdirs
) {
884 struct dentry
*d
= list_entry(node
, struct dentry
, d_child
);
886 spin_lock_nested(&d
->d_lock
, DENTRY_D_LOCK_NESTED
);
889 /* This should never be called on a cgroup
890 * directory with child cgroups */
891 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
893 spin_unlock(&d
->d_lock
);
894 spin_unlock(&dentry
->d_lock
);
896 simple_unlink(dentry
->d_inode
, d
);
898 spin_lock(&dentry
->d_lock
);
900 spin_unlock(&d
->d_lock
);
901 node
= dentry
->d_subdirs
.next
;
903 spin_unlock(&dentry
->d_lock
);
907 * NOTE : the dentry must have been dget()'ed
909 static void cgroup_d_remove_dir(struct dentry
*dentry
)
911 struct dentry
*parent
;
913 cgroup_clear_directory(dentry
);
915 parent
= dentry
->d_parent
;
916 spin_lock(&parent
->d_lock
);
917 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
918 list_del_init(&dentry
->d_child
);
919 spin_unlock(&dentry
->d_lock
);
920 spin_unlock(&parent
->d_lock
);
925 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
926 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
927 * reference to css->refcnt. In general, this refcnt is expected to goes down
930 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
932 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
934 static void cgroup_wakeup_rmdir_waiter(struct cgroup
*cgrp
)
936 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
937 wake_up_all(&cgroup_rmdir_waitq
);
940 void cgroup_exclude_rmdir(struct cgroup_subsys_state
*css
)
945 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state
*css
)
947 cgroup_wakeup_rmdir_waiter(css
->cgroup
);
952 * Call with cgroup_mutex held. Drops reference counts on modules, including
953 * any duplicate ones that parse_cgroupfs_options took. If this function
954 * returns an error, no reference counts are touched.
956 static int rebind_subsystems(struct cgroupfs_root
*root
,
957 unsigned long final_bits
)
959 unsigned long added_bits
, removed_bits
;
960 struct cgroup
*cgrp
= &root
->top_cgroup
;
963 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
965 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
966 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
967 /* Check that any added subsystems are currently free */
968 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
969 unsigned long bit
= 1UL << i
;
970 struct cgroup_subsys
*ss
= subsys
[i
];
971 if (!(bit
& added_bits
))
974 * Nobody should tell us to do a subsys that doesn't exist:
975 * parse_cgroupfs_options should catch that case and refcounts
976 * ensure that subsystems won't disappear once selected.
979 if (ss
->root
!= &rootnode
) {
980 /* Subsystem isn't free */
985 /* Currently we don't handle adding/removing subsystems when
986 * any child cgroups exist. This is theoretically supportable
987 * but involves complex error handling, so it's being left until
989 if (root
->number_of_cgroups
> 1)
992 /* Process each subsystem */
993 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
994 struct cgroup_subsys
*ss
= subsys
[i
];
995 unsigned long bit
= 1UL << i
;
996 if (bit
& added_bits
) {
997 /* We're binding this subsystem to this hierarchy */
999 BUG_ON(cgrp
->subsys
[i
]);
1000 BUG_ON(!dummytop
->subsys
[i
]);
1001 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
1002 mutex_lock(&ss
->hierarchy_mutex
);
1003 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
1004 cgrp
->subsys
[i
]->cgroup
= cgrp
;
1005 list_move(&ss
->sibling
, &root
->subsys_list
);
1009 mutex_unlock(&ss
->hierarchy_mutex
);
1010 /* refcount was already taken, and we're keeping it */
1011 } else if (bit
& removed_bits
) {
1012 /* We're removing this subsystem */
1014 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
1015 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
1016 mutex_lock(&ss
->hierarchy_mutex
);
1018 ss
->bind(ss
, dummytop
);
1019 dummytop
->subsys
[i
]->cgroup
= dummytop
;
1020 cgrp
->subsys
[i
] = NULL
;
1021 subsys
[i
]->root
= &rootnode
;
1022 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
1023 mutex_unlock(&ss
->hierarchy_mutex
);
1024 /* subsystem is now free - drop reference on module */
1025 module_put(ss
->module
);
1026 } else if (bit
& final_bits
) {
1027 /* Subsystem state should already exist */
1029 BUG_ON(!cgrp
->subsys
[i
]);
1031 * a refcount was taken, but we already had one, so
1032 * drop the extra reference.
1034 module_put(ss
->module
);
1035 #ifdef CONFIG_MODULE_UNLOAD
1036 BUG_ON(ss
->module
&& !module_refcount(ss
->module
));
1039 /* Subsystem state shouldn't exist */
1040 BUG_ON(cgrp
->subsys
[i
]);
1043 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
1049 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
1051 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
1052 struct cgroup_subsys
*ss
;
1054 mutex_lock(&cgroup_mutex
);
1055 for_each_subsys(root
, ss
)
1056 seq_show_option(seq
, ss
->name
, NULL
);
1057 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
1058 seq_puts(seq
, ",noprefix");
1059 if (strlen(root
->release_agent_path
))
1060 seq_show_option(seq
, "release_agent",
1061 root
->release_agent_path
);
1062 if (clone_children(&root
->top_cgroup
))
1063 seq_puts(seq
, ",clone_children");
1064 if (strlen(root
->name
))
1065 seq_show_option(seq
, "name", root
->name
);
1066 mutex_unlock(&cgroup_mutex
);
1070 struct cgroup_sb_opts
{
1071 unsigned long subsys_bits
;
1072 unsigned long flags
;
1073 char *release_agent
;
1074 bool clone_children
;
1076 /* User explicitly requested empty subsystem */
1079 struct cgroupfs_root
*new_root
;
1084 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1085 * with cgroup_mutex held to protect the subsys[] array. This function takes
1086 * refcounts on subsystems to be used, unless it returns error, in which case
1087 * no refcounts are taken.
1089 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1091 char *token
, *o
= data
;
1092 bool all_ss
= false, one_ss
= false;
1093 unsigned long mask
= (unsigned long)-1;
1095 bool module_pin_failed
= false;
1097 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1099 #ifdef CONFIG_CPUSETS
1100 mask
= ~(1UL << cpuset_subsys_id
);
1103 memset(opts
, 0, sizeof(*opts
));
1105 while ((token
= strsep(&o
, ",")) != NULL
) {
1108 if (!strcmp(token
, "none")) {
1109 /* Explicitly have no subsystems */
1113 if (!strcmp(token
, "all")) {
1114 /* Mutually exclusive option 'all' + subsystem name */
1120 if (!strcmp(token
, "noprefix")) {
1121 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
1124 if (!strcmp(token
, "clone_children")) {
1125 opts
->clone_children
= true;
1128 if (!strncmp(token
, "release_agent=", 14)) {
1129 /* Specifying two release agents is forbidden */
1130 if (opts
->release_agent
)
1132 opts
->release_agent
=
1133 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1134 if (!opts
->release_agent
)
1138 if (!strncmp(token
, "name=", 5)) {
1139 const char *name
= token
+ 5;
1140 /* Can't specify an empty name */
1143 /* Must match [\w.-]+ */
1144 for (i
= 0; i
< strlen(name
); i
++) {
1148 if ((c
== '.') || (c
== '-') || (c
== '_'))
1152 /* Specifying two names is forbidden */
1155 opts
->name
= kstrndup(name
,
1156 MAX_CGROUP_ROOT_NAMELEN
- 1,
1164 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1165 struct cgroup_subsys
*ss
= subsys
[i
];
1168 if (strcmp(token
, ss
->name
))
1173 /* Mutually exclusive option 'all' + subsystem name */
1176 set_bit(i
, &opts
->subsys_bits
);
1181 if (i
== CGROUP_SUBSYS_COUNT
)
1186 * If the 'all' option was specified select all the subsystems,
1187 * otherwise if 'none', 'name=' and a subsystem name options
1188 * were not specified, let's default to 'all'
1190 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
)) {
1191 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1192 struct cgroup_subsys
*ss
= subsys
[i
];
1197 set_bit(i
, &opts
->subsys_bits
);
1201 /* Consistency checks */
1204 * Option noprefix was introduced just for backward compatibility
1205 * with the old cpuset, so we allow noprefix only if mounting just
1206 * the cpuset subsystem.
1208 if (test_bit(ROOT_NOPREFIX
, &opts
->flags
) &&
1209 (opts
->subsys_bits
& mask
))
1213 /* Can't specify "none" and some subsystems */
1214 if (opts
->subsys_bits
&& opts
->none
)
1218 * We either have to specify by name or by subsystems. (So all
1219 * empty hierarchies must have a name).
1221 if (!opts
->subsys_bits
&& !opts
->name
)
1225 * Grab references on all the modules we'll need, so the subsystems
1226 * don't dance around before rebind_subsystems attaches them. This may
1227 * take duplicate reference counts on a subsystem that's already used,
1228 * but rebind_subsystems handles this case.
1230 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1231 unsigned long bit
= 1UL << i
;
1233 if (!(bit
& opts
->subsys_bits
))
1235 if (!try_module_get(subsys
[i
]->module
)) {
1236 module_pin_failed
= true;
1240 if (module_pin_failed
) {
1242 * oops, one of the modules was going away. this means that we
1243 * raced with a module_delete call, and to the user this is
1244 * essentially a "subsystem doesn't exist" case.
1246 for (i
--; i
>= CGROUP_BUILTIN_SUBSYS_COUNT
; i
--) {
1247 /* drop refcounts only on the ones we took */
1248 unsigned long bit
= 1UL << i
;
1250 if (!(bit
& opts
->subsys_bits
))
1252 module_put(subsys
[i
]->module
);
1260 static void drop_parsed_module_refcounts(unsigned long subsys_bits
)
1263 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1264 unsigned long bit
= 1UL << i
;
1266 if (!(bit
& subsys_bits
))
1268 module_put(subsys
[i
]->module
);
1272 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
1275 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1276 struct cgroup
*cgrp
= &root
->top_cgroup
;
1277 struct cgroup_sb_opts opts
;
1279 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1280 mutex_lock(&cgroup_mutex
);
1282 /* See what subsystems are wanted */
1283 ret
= parse_cgroupfs_options(data
, &opts
);
1287 /* Don't allow flags or name to change at remount */
1288 if (opts
.flags
!= root
->flags
||
1289 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1291 drop_parsed_module_refcounts(opts
.subsys_bits
);
1295 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
1297 drop_parsed_module_refcounts(opts
.subsys_bits
);
1301 /* (re)populate subsystem files */
1302 cgroup_populate_dir(cgrp
);
1304 if (opts
.release_agent
)
1305 strcpy(root
->release_agent_path
, opts
.release_agent
);
1307 kfree(opts
.release_agent
);
1309 mutex_unlock(&cgroup_mutex
);
1310 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1314 static const struct super_operations cgroup_ops
= {
1315 .statfs
= simple_statfs
,
1316 .drop_inode
= generic_delete_inode
,
1317 .show_options
= cgroup_show_options
,
1318 .remount_fs
= cgroup_remount
,
1321 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1323 INIT_LIST_HEAD(&cgrp
->sibling
);
1324 INIT_LIST_HEAD(&cgrp
->children
);
1325 INIT_LIST_HEAD(&cgrp
->css_sets
);
1326 INIT_LIST_HEAD(&cgrp
->release_list
);
1327 INIT_LIST_HEAD(&cgrp
->pidlists
);
1328 mutex_init(&cgrp
->pidlist_mutex
);
1329 INIT_LIST_HEAD(&cgrp
->event_list
);
1330 spin_lock_init(&cgrp
->event_list_lock
);
1333 static void init_cgroup_root(struct cgroupfs_root
*root
)
1335 struct cgroup
*cgrp
= &root
->top_cgroup
;
1336 INIT_LIST_HEAD(&root
->subsys_list
);
1337 INIT_LIST_HEAD(&root
->root_list
);
1338 root
->number_of_cgroups
= 1;
1340 cgrp
->top_cgroup
= cgrp
;
1341 init_cgroup_housekeeping(cgrp
);
1344 static bool init_root_id(struct cgroupfs_root
*root
)
1349 if (!ida_pre_get(&hierarchy_ida
, GFP_KERNEL
))
1351 spin_lock(&hierarchy_id_lock
);
1352 /* Try to allocate the next unused ID */
1353 ret
= ida_get_new_above(&hierarchy_ida
, next_hierarchy_id
,
1354 &root
->hierarchy_id
);
1356 /* Try again starting from 0 */
1357 ret
= ida_get_new(&hierarchy_ida
, &root
->hierarchy_id
);
1359 next_hierarchy_id
= root
->hierarchy_id
+ 1;
1360 } else if (ret
!= -EAGAIN
) {
1361 /* Can only get here if the 31-bit IDR is full ... */
1364 spin_unlock(&hierarchy_id_lock
);
1369 static int cgroup_test_super(struct super_block
*sb
, void *data
)
1371 struct cgroup_sb_opts
*opts
= data
;
1372 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1374 /* If we asked for a name then it must match */
1375 if (opts
->name
&& strcmp(opts
->name
, root
->name
))
1379 * If we asked for subsystems (or explicitly for no
1380 * subsystems) then they must match
1382 if ((opts
->subsys_bits
|| opts
->none
)
1383 && (opts
->subsys_bits
!= root
->subsys_bits
))
1389 static struct cgroupfs_root
*cgroup_root_from_opts(struct cgroup_sb_opts
*opts
)
1391 struct cgroupfs_root
*root
;
1393 if (!opts
->subsys_bits
&& !opts
->none
)
1396 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1398 return ERR_PTR(-ENOMEM
);
1400 if (!init_root_id(root
)) {
1402 return ERR_PTR(-ENOMEM
);
1404 init_cgroup_root(root
);
1406 root
->subsys_bits
= opts
->subsys_bits
;
1407 root
->flags
= opts
->flags
;
1408 if (opts
->release_agent
)
1409 strcpy(root
->release_agent_path
, opts
->release_agent
);
1411 strcpy(root
->name
, opts
->name
);
1412 if (opts
->clone_children
)
1413 set_bit(CGRP_CLONE_CHILDREN
, &root
->top_cgroup
.flags
);
1417 static void cgroup_drop_root(struct cgroupfs_root
*root
)
1422 BUG_ON(!root
->hierarchy_id
);
1423 spin_lock(&hierarchy_id_lock
);
1424 ida_remove(&hierarchy_ida
, root
->hierarchy_id
);
1425 spin_unlock(&hierarchy_id_lock
);
1429 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1432 struct cgroup_sb_opts
*opts
= data
;
1434 /* If we don't have a new root, we can't set up a new sb */
1435 if (!opts
->new_root
)
1438 BUG_ON(!opts
->subsys_bits
&& !opts
->none
);
1440 ret
= set_anon_super(sb
, NULL
);
1444 sb
->s_fs_info
= opts
->new_root
;
1445 opts
->new_root
->sb
= sb
;
1447 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1448 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1449 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1450 sb
->s_op
= &cgroup_ops
;
1455 static int cgroup_get_rootdir(struct super_block
*sb
)
1457 static const struct dentry_operations cgroup_dops
= {
1458 .d_iput
= cgroup_diput
,
1459 .d_delete
= cgroup_delete
,
1462 struct inode
*inode
=
1463 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1464 struct dentry
*dentry
;
1469 inode
->i_fop
= &simple_dir_operations
;
1470 inode
->i_op
= &cgroup_dir_inode_operations
;
1471 /* directories start off with i_nlink == 2 (for "." entry) */
1473 dentry
= d_alloc_root(inode
);
1478 sb
->s_root
= dentry
;
1479 /* for everything else we want ->d_op set */
1480 sb
->s_d_op
= &cgroup_dops
;
1484 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
1485 int flags
, const char *unused_dev_name
,
1488 struct cgroup_sb_opts opts
;
1489 struct cgroupfs_root
*root
;
1491 struct super_block
*sb
;
1492 struct cgroupfs_root
*new_root
;
1494 /* First find the desired set of subsystems */
1495 mutex_lock(&cgroup_mutex
);
1496 ret
= parse_cgroupfs_options(data
, &opts
);
1497 mutex_unlock(&cgroup_mutex
);
1502 * Allocate a new cgroup root. We may not need it if we're
1503 * reusing an existing hierarchy.
1505 new_root
= cgroup_root_from_opts(&opts
);
1506 if (IS_ERR(new_root
)) {
1507 ret
= PTR_ERR(new_root
);
1510 opts
.new_root
= new_root
;
1512 /* Locate an existing or new sb for this hierarchy */
1513 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, &opts
);
1516 cgroup_drop_root(opts
.new_root
);
1520 root
= sb
->s_fs_info
;
1522 if (root
== opts
.new_root
) {
1523 /* We used the new root structure, so this is a new hierarchy */
1524 struct list_head tmp_cg_links
;
1525 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1526 struct inode
*inode
;
1527 struct cgroupfs_root
*existing_root
;
1528 const struct cred
*cred
;
1531 BUG_ON(sb
->s_root
!= NULL
);
1533 ret
= cgroup_get_rootdir(sb
);
1535 goto drop_new_super
;
1536 inode
= sb
->s_root
->d_inode
;
1538 mutex_lock(&inode
->i_mutex
);
1539 mutex_lock(&cgroup_mutex
);
1541 if (strlen(root
->name
)) {
1542 /* Check for name clashes with existing mounts */
1543 for_each_active_root(existing_root
) {
1544 if (!strcmp(existing_root
->name
, root
->name
)) {
1546 mutex_unlock(&cgroup_mutex
);
1547 mutex_unlock(&inode
->i_mutex
);
1548 goto drop_new_super
;
1554 * We're accessing css_set_count without locking
1555 * css_set_lock here, but that's OK - it can only be
1556 * increased by someone holding cgroup_lock, and
1557 * that's us. The worst that can happen is that we
1558 * have some link structures left over
1560 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1562 mutex_unlock(&cgroup_mutex
);
1563 mutex_unlock(&inode
->i_mutex
);
1564 goto drop_new_super
;
1567 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1568 if (ret
== -EBUSY
) {
1569 mutex_unlock(&cgroup_mutex
);
1570 mutex_unlock(&inode
->i_mutex
);
1571 free_cg_links(&tmp_cg_links
);
1572 goto drop_new_super
;
1575 * There must be no failure case after here, since rebinding
1576 * takes care of subsystems' refcounts, which are explicitly
1577 * dropped in the failure exit path.
1580 /* EBUSY should be the only error here */
1583 list_add(&root
->root_list
, &roots
);
1586 sb
->s_root
->d_fsdata
= root_cgrp
;
1587 root
->top_cgroup
.dentry
= sb
->s_root
;
1589 /* Link the top cgroup in this hierarchy into all
1590 * the css_set objects */
1591 write_lock(&css_set_lock
);
1592 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1593 struct hlist_head
*hhead
= &css_set_table
[i
];
1594 struct hlist_node
*node
;
1597 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1598 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1600 write_unlock(&css_set_lock
);
1602 free_cg_links(&tmp_cg_links
);
1604 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1605 BUG_ON(!list_empty(&root_cgrp
->children
));
1606 BUG_ON(root
->number_of_cgroups
!= 1);
1608 cred
= override_creds(&init_cred
);
1609 cgroup_populate_dir(root_cgrp
);
1611 mutex_unlock(&cgroup_mutex
);
1612 mutex_unlock(&inode
->i_mutex
);
1615 * We re-used an existing hierarchy - the new root (if
1616 * any) is not needed
1618 cgroup_drop_root(opts
.new_root
);
1619 /* no subsys rebinding, so refcounts don't change */
1620 drop_parsed_module_refcounts(opts
.subsys_bits
);
1623 kfree(opts
.release_agent
);
1625 return dget(sb
->s_root
);
1628 deactivate_locked_super(sb
);
1630 drop_parsed_module_refcounts(opts
.subsys_bits
);
1632 kfree(opts
.release_agent
);
1634 return ERR_PTR(ret
);
1637 static void cgroup_kill_sb(struct super_block
*sb
) {
1638 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1639 struct cgroup
*cgrp
= &root
->top_cgroup
;
1641 struct cg_cgroup_link
*link
;
1642 struct cg_cgroup_link
*saved_link
;
1646 BUG_ON(root
->number_of_cgroups
!= 1);
1647 BUG_ON(!list_empty(&cgrp
->children
));
1648 BUG_ON(!list_empty(&cgrp
->sibling
));
1650 mutex_lock(&cgroup_mutex
);
1652 /* Rebind all subsystems back to the default hierarchy */
1653 ret
= rebind_subsystems(root
, 0);
1654 /* Shouldn't be able to fail ... */
1658 * Release all the links from css_sets to this hierarchy's
1661 write_lock(&css_set_lock
);
1663 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1665 list_del(&link
->cg_link_list
);
1666 list_del(&link
->cgrp_link_list
);
1669 write_unlock(&css_set_lock
);
1671 if (!list_empty(&root
->root_list
)) {
1672 list_del(&root
->root_list
);
1676 mutex_unlock(&cgroup_mutex
);
1678 kill_litter_super(sb
);
1679 cgroup_drop_root(root
);
1682 static struct file_system_type cgroup_fs_type
= {
1684 .mount
= cgroup_mount
,
1685 .kill_sb
= cgroup_kill_sb
,
1688 static struct kobject
*cgroup_kobj
;
1690 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1692 return dentry
->d_fsdata
;
1695 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1697 return dentry
->d_fsdata
;
1701 * cgroup_path - generate the path of a cgroup
1702 * @cgrp: the cgroup in question
1703 * @buf: the buffer to write the path into
1704 * @buflen: the length of the buffer
1706 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1707 * reference. Writes path of cgroup into buf. Returns 0 on success,
1710 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1713 struct dentry
*dentry
= rcu_dereference_check(cgrp
->dentry
,
1714 cgroup_lock_is_held());
1716 if (!dentry
|| cgrp
== dummytop
) {
1718 * Inactive subsystems have no dentry for their root
1725 start
= buf
+ buflen
;
1729 int len
= dentry
->d_name
.len
;
1731 if ((start
-= len
) < buf
)
1732 return -ENAMETOOLONG
;
1733 memcpy(start
, dentry
->d_name
.name
, len
);
1734 cgrp
= cgrp
->parent
;
1738 dentry
= rcu_dereference_check(cgrp
->dentry
,
1739 cgroup_lock_is_held());
1743 return -ENAMETOOLONG
;
1746 memmove(buf
, start
, buf
+ buflen
- start
);
1749 EXPORT_SYMBOL_GPL(cgroup_path
);
1752 * cgroup_task_migrate - move a task from one cgroup to another.
1754 * 'guarantee' is set if the caller promises that a new css_set for the task
1755 * will already exist. If not set, this function might sleep, and can fail with
1756 * -ENOMEM. Otherwise, it can only fail with -ESRCH.
1758 static int cgroup_task_migrate(struct cgroup
*cgrp
, struct cgroup
*oldcgrp
,
1759 struct task_struct
*tsk
, bool guarantee
)
1761 struct css_set
*oldcg
;
1762 struct css_set
*newcg
;
1765 * get old css_set. we need to take task_lock and refcount it, because
1766 * an exiting task can change its css_set to init_css_set and drop its
1767 * old one without taking cgroup_mutex.
1770 oldcg
= tsk
->cgroups
;
1774 /* locate or allocate a new css_set for this task. */
1776 /* we know the css_set we want already exists. */
1777 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
1778 read_lock(&css_set_lock
);
1779 newcg
= find_existing_css_set(oldcg
, cgrp
, template);
1782 read_unlock(&css_set_lock
);
1785 /* find_css_set will give us newcg already referenced. */
1786 newcg
= find_css_set(oldcg
, cgrp
);
1794 /* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */
1796 if (tsk
->flags
& PF_EXITING
) {
1801 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1804 /* Update the css_set linked lists if we're using them */
1805 write_lock(&css_set_lock
);
1806 if (!list_empty(&tsk
->cg_list
))
1807 list_move(&tsk
->cg_list
, &newcg
->tasks
);
1808 write_unlock(&css_set_lock
);
1811 * We just gained a reference on oldcg by taking it from the task. As
1812 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1813 * it here; it will be freed under RCU.
1815 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1821 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1822 * @cgrp: the cgroup the task is attaching to
1823 * @tsk: the task to be attached
1825 * Call holding cgroup_mutex. May take task_lock of
1826 * the task 'tsk' during call.
1828 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1831 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
1832 struct cgroup
*oldcgrp
;
1833 struct cgroupfs_root
*root
= cgrp
->root
;
1835 /* Nothing to do if the task is already in that cgroup */
1836 oldcgrp
= task_cgroup_from_root(tsk
, root
);
1837 if (cgrp
== oldcgrp
)
1840 for_each_subsys(root
, ss
) {
1841 if (ss
->can_attach
) {
1842 retval
= ss
->can_attach(ss
, cgrp
, tsk
);
1845 * Remember on which subsystem the can_attach()
1846 * failed, so that we only call cancel_attach()
1847 * against the subsystems whose can_attach()
1848 * succeeded. (See below)
1854 if (ss
->can_attach_task
) {
1855 retval
= ss
->can_attach_task(cgrp
, tsk
);
1863 retval
= cgroup_task_migrate(cgrp
, oldcgrp
, tsk
, false);
1867 for_each_subsys(root
, ss
) {
1869 ss
->pre_attach(cgrp
);
1870 if (ss
->attach_task
)
1871 ss
->attach_task(cgrp
, tsk
);
1873 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
);
1879 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1880 * is no longer empty.
1882 cgroup_wakeup_rmdir_waiter(cgrp
);
1885 for_each_subsys(root
, ss
) {
1886 if (ss
== failed_ss
)
1888 * This subsystem was the one that failed the
1889 * can_attach() check earlier, so we don't need
1890 * to call cancel_attach() against it or any
1891 * remaining subsystems.
1894 if (ss
->cancel_attach
)
1895 ss
->cancel_attach(ss
, cgrp
, tsk
);
1902 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1903 * @from: attach to all cgroups of a given task
1904 * @tsk: the task to be attached
1906 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
1908 struct cgroupfs_root
*root
;
1912 for_each_active_root(root
) {
1913 struct cgroup
*from_cg
= task_cgroup_from_root(from
, root
);
1915 retval
= cgroup_attach_task(from_cg
, tsk
);
1923 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
1926 * cgroup_attach_proc works in two stages, the first of which prefetches all
1927 * new css_sets needed (to make sure we have enough memory before committing
1928 * to the move) and stores them in a list of entries of the following type.
1929 * TODO: possible optimization: use css_set->rcu_head for chaining instead
1931 struct cg_list_entry
{
1933 struct list_head links
;
1936 static bool css_set_check_fetched(struct cgroup
*cgrp
,
1937 struct task_struct
*tsk
, struct css_set
*cg
,
1938 struct list_head
*newcg_list
)
1940 struct css_set
*newcg
;
1941 struct cg_list_entry
*cg_entry
;
1942 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
1944 read_lock(&css_set_lock
);
1945 newcg
= find_existing_css_set(cg
, cgrp
, template);
1948 read_unlock(&css_set_lock
);
1950 /* doesn't exist at all? */
1953 /* see if it's already in the list */
1954 list_for_each_entry(cg_entry
, newcg_list
, links
) {
1955 if (cg_entry
->cg
== newcg
) {
1967 * Find the new css_set and store it in the list in preparation for moving the
1968 * given task to the given cgroup. Returns 0 or -ENOMEM.
1970 static int css_set_prefetch(struct cgroup
*cgrp
, struct css_set
*cg
,
1971 struct list_head
*newcg_list
)
1973 struct css_set
*newcg
;
1974 struct cg_list_entry
*cg_entry
;
1976 /* ensure a new css_set will exist for this thread */
1977 newcg
= find_css_set(cg
, cgrp
);
1980 /* add it to the list */
1981 cg_entry
= kmalloc(sizeof(struct cg_list_entry
), GFP_KERNEL
);
1986 cg_entry
->cg
= newcg
;
1987 list_add(&cg_entry
->links
, newcg_list
);
1992 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1993 * @cgrp: the cgroup to attach to
1994 * @leader: the threadgroup leader task_struct of the group to be attached
1996 * Call holding cgroup_mutex and the threadgroup_fork_lock of the leader. Will
1997 * take task_lock of each thread in leader's threadgroup individually in turn.
1999 int cgroup_attach_proc(struct cgroup
*cgrp
, struct task_struct
*leader
)
2001 int retval
, i
, group_size
;
2002 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
2003 bool cancel_failed_ss
= false;
2004 /* guaranteed to be initialized later, but the compiler needs this */
2005 struct cgroup
*oldcgrp
= NULL
;
2006 struct css_set
*oldcg
;
2007 struct cgroupfs_root
*root
= cgrp
->root
;
2008 /* threadgroup list cursor and array */
2009 struct task_struct
*tsk
;
2010 struct flex_array
*group
;
2012 * we need to make sure we have css_sets for all the tasks we're
2013 * going to move -before- we actually start moving them, so that in
2014 * case we get an ENOMEM we can bail out before making any changes.
2016 struct list_head newcg_list
;
2017 struct cg_list_entry
*cg_entry
, *temp_nobe
;
2020 * step 0: in order to do expensive, possibly blocking operations for
2021 * every thread, we cannot iterate the thread group list, since it needs
2022 * rcu or tasklist locked. instead, build an array of all threads in the
2023 * group - threadgroup_fork_lock prevents new threads from appearing,
2024 * and if threads exit, this will just be an over-estimate.
2026 group_size
= get_nr_threads(leader
);
2027 /* flex_array supports very large thread-groups better than kmalloc. */
2028 group
= flex_array_alloc(sizeof(struct task_struct
*), group_size
,
2032 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2033 retval
= flex_array_prealloc(group
, 0, group_size
, GFP_KERNEL
);
2035 goto out_free_group_list
;
2037 /* prevent changes to the threadgroup list while we take a snapshot. */
2038 read_lock(&tasklist_lock
);
2039 if (!thread_group_leader(leader
)) {
2041 * a race with de_thread from another thread's exec() may strip
2042 * us of our leadership, making while_each_thread unsafe to use
2043 * on this task. if this happens, there is no choice but to
2044 * throw this task away and try again (from cgroup_procs_write);
2045 * this is "double-double-toil-and-trouble-check locking".
2047 read_unlock(&tasklist_lock
);
2049 goto out_free_group_list
;
2051 /* take a reference on each task in the group to go in the array. */
2055 /* as per above, nr_threads may decrease, but not increase. */
2056 BUG_ON(i
>= group_size
);
2057 get_task_struct(tsk
);
2059 * saying GFP_ATOMIC has no effect here because we did prealloc
2060 * earlier, but it's good form to communicate our expectations.
2062 retval
= flex_array_put_ptr(group
, i
, tsk
, GFP_ATOMIC
);
2063 BUG_ON(retval
!= 0);
2065 } while_each_thread(leader
, tsk
);
2066 /* remember the number of threads in the array for later. */
2068 read_unlock(&tasklist_lock
);
2071 * step 1: check that we can legitimately attach to the cgroup.
2073 for_each_subsys(root
, ss
) {
2074 if (ss
->can_attach
) {
2075 retval
= ss
->can_attach(ss
, cgrp
, leader
);
2078 goto out_cancel_attach
;
2081 /* a callback to be run on every thread in the threadgroup. */
2082 if (ss
->can_attach_task
) {
2083 /* run on each task in the threadgroup. */
2084 for (i
= 0; i
< group_size
; i
++) {
2085 tsk
= flex_array_get_ptr(group
, i
);
2086 retval
= ss
->can_attach_task(cgrp
, tsk
);
2089 cancel_failed_ss
= true;
2090 goto out_cancel_attach
;
2097 * step 2: make sure css_sets exist for all threads to be migrated.
2098 * we use find_css_set, which allocates a new one if necessary.
2100 INIT_LIST_HEAD(&newcg_list
);
2101 for (i
= 0; i
< group_size
; i
++) {
2102 tsk
= flex_array_get_ptr(group
, i
);
2103 /* nothing to do if this task is already in the cgroup */
2104 oldcgrp
= task_cgroup_from_root(tsk
, root
);
2105 if (cgrp
== oldcgrp
)
2107 /* get old css_set pointer */
2109 oldcg
= tsk
->cgroups
;
2112 /* see if the new one for us is already in the list? */
2113 if (css_set_check_fetched(cgrp
, tsk
, oldcg
, &newcg_list
)) {
2114 /* was already there, nothing to do. */
2117 /* we don't already have it. get new one. */
2118 retval
= css_set_prefetch(cgrp
, oldcg
, &newcg_list
);
2121 goto out_list_teardown
;
2126 * step 3: now that we're guaranteed success wrt the css_sets, proceed
2127 * to move all tasks to the new cgroup, calling ss->attach_task for each
2128 * one along the way. there are no failure cases after here, so this is
2131 for_each_subsys(root
, ss
) {
2133 ss
->pre_attach(cgrp
);
2135 for (i
= 0; i
< group_size
; i
++) {
2136 tsk
= flex_array_get_ptr(group
, i
);
2137 /* leave current thread as it is if it's already there */
2138 oldcgrp
= task_cgroup_from_root(tsk
, root
);
2139 if (cgrp
== oldcgrp
)
2141 /* if the thread is PF_EXITING, it can just get skipped. */
2142 retval
= cgroup_task_migrate(cgrp
, oldcgrp
, tsk
, true);
2144 /* attach each task to each subsystem */
2145 for_each_subsys(root
, ss
) {
2146 if (ss
->attach_task
)
2147 ss
->attach_task(cgrp
, tsk
);
2150 BUG_ON(retval
!= -ESRCH
);
2153 /* nothing is sensitive to fork() after this point. */
2156 * step 4: do expensive, non-thread-specific subsystem callbacks.
2157 * TODO: if ever a subsystem needs to know the oldcgrp for each task
2158 * being moved, this call will need to be reworked to communicate that.
2160 for_each_subsys(root
, ss
) {
2162 ss
->attach(ss
, cgrp
, oldcgrp
, leader
);
2166 * step 5: success! and cleanup
2169 cgroup_wakeup_rmdir_waiter(cgrp
);
2172 /* clean up the list of prefetched css_sets. */
2173 list_for_each_entry_safe(cg_entry
, temp_nobe
, &newcg_list
, links
) {
2174 list_del(&cg_entry
->links
);
2175 put_css_set(cg_entry
->cg
);
2179 /* same deal as in cgroup_attach_task */
2181 for_each_subsys(root
, ss
) {
2182 if (ss
== failed_ss
) {
2183 if (cancel_failed_ss
&& ss
->cancel_attach
)
2184 ss
->cancel_attach(ss
, cgrp
, leader
);
2187 if (ss
->cancel_attach
)
2188 ss
->cancel_attach(ss
, cgrp
, leader
);
2191 /* clean up the array of referenced threads in the group. */
2192 for (i
= 0; i
< group_size
; i
++) {
2193 tsk
= flex_array_get_ptr(group
, i
);
2194 put_task_struct(tsk
);
2196 out_free_group_list
:
2197 flex_array_free(group
);
2202 * Find the task_struct of the task to attach by vpid and pass it along to the
2203 * function to attach either it or all tasks in its threadgroup. Will take
2204 * cgroup_mutex; may take task_lock of task.
2206 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
, bool threadgroup
)
2208 struct task_struct
*tsk
;
2209 const struct cred
*cred
= current_cred(), *tcred
;
2212 if (!cgroup_lock_live_group(cgrp
))
2217 tsk
= find_task_by_vpid(pid
);
2225 * RCU protects this access, since tsk was found in the
2226 * tid map. a race with de_thread may cause group_leader
2227 * to stop being the leader, but cgroup_attach_proc will
2230 tsk
= tsk
->group_leader
;
2231 } else if (tsk
->flags
& PF_EXITING
) {
2232 /* optimization for the single-task-only case */
2239 * even if we're attaching all tasks in the thread group, we
2240 * only need to check permissions on one of them.
2242 tcred
= __task_cred(tsk
);
2244 cred
->euid
!= tcred
->uid
&&
2245 cred
->euid
!= tcred
->suid
) {
2250 get_task_struct(tsk
);
2254 tsk
= current
->group_leader
;
2257 get_task_struct(tsk
);
2261 threadgroup_fork_write_lock(tsk
);
2262 ret
= cgroup_attach_proc(cgrp
, tsk
);
2263 threadgroup_fork_write_unlock(tsk
);
2265 ret
= cgroup_attach_task(cgrp
, tsk
);
2267 put_task_struct(tsk
);
2272 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
2274 return attach_task_by_pid(cgrp
, pid
, false);
2277 static int cgroup_procs_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 tgid
)
2282 * attach_proc fails with -EAGAIN if threadgroup leadership
2283 * changes in the middle of the operation, in which case we need
2284 * to find the task_struct for the new leader and start over.
2286 ret
= attach_task_by_pid(cgrp
, tgid
, true);
2287 } while (ret
== -EAGAIN
);
2292 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2293 * @cgrp: the cgroup to be checked for liveness
2295 * On success, returns true; the lock should be later released with
2296 * cgroup_unlock(). On failure returns false with no lock held.
2298 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
2300 mutex_lock(&cgroup_mutex
);
2301 if (cgroup_is_removed(cgrp
)) {
2302 mutex_unlock(&cgroup_mutex
);
2307 EXPORT_SYMBOL_GPL(cgroup_lock_live_group
);
2309 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
2312 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
2313 if (strlen(buffer
) >= PATH_MAX
)
2315 if (!cgroup_lock_live_group(cgrp
))
2317 strcpy(cgrp
->root
->release_agent_path
, buffer
);
2322 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
2323 struct seq_file
*seq
)
2325 if (!cgroup_lock_live_group(cgrp
))
2327 seq_puts(seq
, cgrp
->root
->release_agent_path
);
2328 seq_putc(seq
, '\n');
2333 /* A buffer size big enough for numbers or short strings */
2334 #define CGROUP_LOCAL_BUFFER_SIZE 64
2336 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
2338 const char __user
*userbuf
,
2339 size_t nbytes
, loff_t
*unused_ppos
)
2341 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
2347 if (nbytes
>= sizeof(buffer
))
2349 if (copy_from_user(buffer
, userbuf
, nbytes
))
2352 buffer
[nbytes
] = 0; /* nul-terminate */
2353 if (cft
->write_u64
) {
2354 u64 val
= simple_strtoull(strstrip(buffer
), &end
, 0);
2357 retval
= cft
->write_u64(cgrp
, cft
, val
);
2359 s64 val
= simple_strtoll(strstrip(buffer
), &end
, 0);
2362 retval
= cft
->write_s64(cgrp
, cft
, val
);
2369 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
2371 const char __user
*userbuf
,
2372 size_t nbytes
, loff_t
*unused_ppos
)
2374 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
2376 size_t max_bytes
= cft
->max_write_len
;
2377 char *buffer
= local_buffer
;
2380 max_bytes
= sizeof(local_buffer
) - 1;
2381 if (nbytes
>= max_bytes
)
2383 /* Allocate a dynamic buffer if we need one */
2384 if (nbytes
>= sizeof(local_buffer
)) {
2385 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
2389 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
2394 buffer
[nbytes
] = 0; /* nul-terminate */
2395 retval
= cft
->write_string(cgrp
, cft
, strstrip(buffer
));
2399 if (buffer
!= local_buffer
)
2404 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
2405 size_t nbytes
, loff_t
*ppos
)
2407 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2408 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2410 if (cgroup_is_removed(cgrp
))
2413 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2414 if (cft
->write_u64
|| cft
->write_s64
)
2415 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2416 if (cft
->write_string
)
2417 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2419 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
2420 return ret
? ret
: nbytes
;
2425 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
2427 char __user
*buf
, size_t nbytes
,
2430 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2431 u64 val
= cft
->read_u64(cgrp
, cft
);
2432 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
2434 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2437 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
2439 char __user
*buf
, size_t nbytes
,
2442 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2443 s64 val
= cft
->read_s64(cgrp
, cft
);
2444 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
2446 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2449 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
2450 size_t nbytes
, loff_t
*ppos
)
2452 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2453 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2455 if (cgroup_is_removed(cgrp
))
2459 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2461 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2463 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2468 * seqfile ops/methods for returning structured data. Currently just
2469 * supports string->u64 maps, but can be extended in future.
2472 struct cgroup_seqfile_state
{
2474 struct cgroup
*cgroup
;
2477 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
2479 struct seq_file
*sf
= cb
->state
;
2480 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
2483 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2485 struct cgroup_seqfile_state
*state
= m
->private;
2486 struct cftype
*cft
= state
->cft
;
2487 if (cft
->read_map
) {
2488 struct cgroup_map_cb cb
= {
2489 .fill
= cgroup_map_add
,
2492 return cft
->read_map(state
->cgroup
, cft
, &cb
);
2494 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
2497 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
2499 struct seq_file
*seq
= file
->private_data
;
2500 kfree(seq
->private);
2501 return single_release(inode
, file
);
2504 static const struct file_operations cgroup_seqfile_operations
= {
2506 .write
= cgroup_file_write
,
2507 .llseek
= seq_lseek
,
2508 .release
= cgroup_seqfile_release
,
2511 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
2516 err
= generic_file_open(inode
, file
);
2519 cft
= __d_cft(file
->f_dentry
);
2521 if (cft
->read_map
|| cft
->read_seq_string
) {
2522 struct cgroup_seqfile_state
*state
=
2523 kzalloc(sizeof(*state
), GFP_USER
);
2527 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
2528 file
->f_op
= &cgroup_seqfile_operations
;
2529 err
= single_open(file
, cgroup_seqfile_show
, state
);
2532 } else if (cft
->open
)
2533 err
= cft
->open(inode
, file
);
2540 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
2542 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2544 return cft
->release(inode
, file
);
2549 * cgroup_rename - Only allow simple rename of directories in place.
2551 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2552 struct inode
*new_dir
, struct dentry
*new_dentry
)
2554 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
2556 if (new_dentry
->d_inode
)
2558 if (old_dir
!= new_dir
)
2560 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
2563 static const struct file_operations cgroup_file_operations
= {
2564 .read
= cgroup_file_read
,
2565 .write
= cgroup_file_write
,
2566 .llseek
= generic_file_llseek
,
2567 .open
= cgroup_file_open
,
2568 .release
= cgroup_file_release
,
2571 static const struct inode_operations cgroup_dir_inode_operations
= {
2572 .lookup
= cgroup_lookup
,
2573 .mkdir
= cgroup_mkdir
,
2574 .rmdir
= cgroup_rmdir
,
2575 .rename
= cgroup_rename
,
2578 static struct dentry
*cgroup_lookup(struct inode
*dir
, struct dentry
*dentry
, struct nameidata
*nd
)
2580 if (dentry
->d_name
.len
> NAME_MAX
)
2581 return ERR_PTR(-ENAMETOOLONG
);
2582 d_add(dentry
, NULL
);
2587 * Check if a file is a control file
2589 static inline struct cftype
*__file_cft(struct file
*file
)
2591 if (file
->f_dentry
->d_inode
->i_fop
!= &cgroup_file_operations
)
2592 return ERR_PTR(-EINVAL
);
2593 return __d_cft(file
->f_dentry
);
2596 static int cgroup_create_file(struct dentry
*dentry
, mode_t mode
,
2597 struct super_block
*sb
)
2599 struct inode
*inode
;
2603 if (dentry
->d_inode
)
2606 inode
= cgroup_new_inode(mode
, sb
);
2610 if (S_ISDIR(mode
)) {
2611 inode
->i_op
= &cgroup_dir_inode_operations
;
2612 inode
->i_fop
= &simple_dir_operations
;
2614 /* start off with i_nlink == 2 (for "." entry) */
2617 /* start with the directory inode held, so that we can
2618 * populate it without racing with another mkdir */
2619 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2620 } else if (S_ISREG(mode
)) {
2622 inode
->i_fop
= &cgroup_file_operations
;
2624 d_instantiate(dentry
, inode
);
2625 dget(dentry
); /* Extra count - pin the dentry in core */
2630 * cgroup_create_dir - create a directory for an object.
2631 * @cgrp: the cgroup we create the directory for. It must have a valid
2632 * ->parent field. And we are going to fill its ->dentry field.
2633 * @dentry: dentry of the new cgroup
2634 * @mode: mode to set on new directory.
2636 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
2639 struct dentry
*parent
;
2642 parent
= cgrp
->parent
->dentry
;
2643 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
2645 dentry
->d_fsdata
= cgrp
;
2646 inc_nlink(parent
->d_inode
);
2647 rcu_assign_pointer(cgrp
->dentry
, dentry
);
2654 * cgroup_file_mode - deduce file mode of a control file
2655 * @cft: the control file in question
2657 * returns cft->mode if ->mode is not 0
2658 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2659 * returns S_IRUGO if it has only a read handler
2660 * returns S_IWUSR if it has only a write hander
2662 static mode_t
cgroup_file_mode(const struct cftype
*cft
)
2669 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
2670 cft
->read_map
|| cft
->read_seq_string
)
2673 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
2674 cft
->write_string
|| cft
->trigger
)
2680 int cgroup_add_file(struct cgroup
*cgrp
,
2681 struct cgroup_subsys
*subsys
,
2682 const struct cftype
*cft
)
2684 struct dentry
*dir
= cgrp
->dentry
;
2685 struct dentry
*dentry
;
2689 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
2690 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
2691 strcpy(name
, subsys
->name
);
2694 strcat(name
, cft
->name
);
2695 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
2696 dentry
= lookup_one_len(name
, dir
, strlen(name
));
2697 if (!IS_ERR(dentry
)) {
2698 mode
= cgroup_file_mode(cft
);
2699 error
= cgroup_create_file(dentry
, mode
| S_IFREG
,
2702 dentry
->d_fsdata
= (void *)cft
;
2705 error
= PTR_ERR(dentry
);
2708 EXPORT_SYMBOL_GPL(cgroup_add_file
);
2710 int cgroup_add_files(struct cgroup
*cgrp
,
2711 struct cgroup_subsys
*subsys
,
2712 const struct cftype cft
[],
2716 for (i
= 0; i
< count
; i
++) {
2717 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
2723 EXPORT_SYMBOL_GPL(cgroup_add_files
);
2726 * cgroup_task_count - count the number of tasks in a cgroup.
2727 * @cgrp: the cgroup in question
2729 * Return the number of tasks in the cgroup.
2731 int cgroup_task_count(const struct cgroup
*cgrp
)
2734 struct cg_cgroup_link
*link
;
2736 read_lock(&css_set_lock
);
2737 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
2738 count
+= atomic_read(&link
->cg
->refcount
);
2740 read_unlock(&css_set_lock
);
2745 * Advance a list_head iterator. The iterator should be positioned at
2746 * the start of a css_set
2748 static void cgroup_advance_iter(struct cgroup
*cgrp
,
2749 struct cgroup_iter
*it
)
2751 struct list_head
*l
= it
->cg_link
;
2752 struct cg_cgroup_link
*link
;
2755 /* Advance to the next non-empty css_set */
2758 if (l
== &cgrp
->css_sets
) {
2762 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
2764 } while (list_empty(&cg
->tasks
));
2766 it
->task
= cg
->tasks
.next
;
2770 * To reduce the fork() overhead for systems that are not actually
2771 * using their cgroups capability, we don't maintain the lists running
2772 * through each css_set to its tasks until we see the list actually
2773 * used - in other words after the first call to cgroup_iter_start().
2775 * The tasklist_lock is not held here, as do_each_thread() and
2776 * while_each_thread() are protected by RCU.
2778 static void cgroup_enable_task_cg_lists(void)
2780 struct task_struct
*p
, *g
;
2781 write_lock(&css_set_lock
);
2782 use_task_css_set_links
= 1;
2783 do_each_thread(g
, p
) {
2786 * We should check if the process is exiting, otherwise
2787 * it will race with cgroup_exit() in that the list
2788 * entry won't be deleted though the process has exited.
2789 * Do it while holding siglock so that we don't end up
2790 * racing against cgroup_exit().
2792 spin_lock_irq(&p
->sighand
->siglock
);
2793 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
2794 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
2795 spin_unlock_irq(&p
->sighand
->siglock
);
2798 } while_each_thread(g
, p
);
2799 write_unlock(&css_set_lock
);
2802 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2805 * The first time anyone tries to iterate across a cgroup,
2806 * we need to enable the list linking each css_set to its
2807 * tasks, and fix up all existing tasks.
2809 if (!use_task_css_set_links
)
2810 cgroup_enable_task_cg_lists();
2812 read_lock(&css_set_lock
);
2813 it
->cg_link
= &cgrp
->css_sets
;
2814 cgroup_advance_iter(cgrp
, it
);
2817 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
2818 struct cgroup_iter
*it
)
2820 struct task_struct
*res
;
2821 struct list_head
*l
= it
->task
;
2822 struct cg_cgroup_link
*link
;
2824 /* If the iterator cg is NULL, we have no tasks */
2827 res
= list_entry(l
, struct task_struct
, cg_list
);
2828 /* Advance iterator to find next entry */
2830 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
2831 if (l
== &link
->cg
->tasks
) {
2832 /* We reached the end of this task list - move on to
2833 * the next cg_cgroup_link */
2834 cgroup_advance_iter(cgrp
, it
);
2841 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2843 read_unlock(&css_set_lock
);
2846 static inline int started_after_time(struct task_struct
*t1
,
2847 struct timespec
*time
,
2848 struct task_struct
*t2
)
2850 int start_diff
= timespec_compare(&t1
->start_time
, time
);
2851 if (start_diff
> 0) {
2853 } else if (start_diff
< 0) {
2857 * Arbitrarily, if two processes started at the same
2858 * time, we'll say that the lower pointer value
2859 * started first. Note that t2 may have exited by now
2860 * so this may not be a valid pointer any longer, but
2861 * that's fine - it still serves to distinguish
2862 * between two tasks started (effectively) simultaneously.
2869 * This function is a callback from heap_insert() and is used to order
2871 * In this case we order the heap in descending task start time.
2873 static inline int started_after(void *p1
, void *p2
)
2875 struct task_struct
*t1
= p1
;
2876 struct task_struct
*t2
= p2
;
2877 return started_after_time(t1
, &t2
->start_time
, t2
);
2881 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2882 * @scan: struct cgroup_scanner containing arguments for the scan
2884 * Arguments include pointers to callback functions test_task() and
2886 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2887 * and if it returns true, call process_task() for it also.
2888 * The test_task pointer may be NULL, meaning always true (select all tasks).
2889 * Effectively duplicates cgroup_iter_{start,next,end}()
2890 * but does not lock css_set_lock for the call to process_task().
2891 * The struct cgroup_scanner may be embedded in any structure of the caller's
2893 * It is guaranteed that process_task() will act on every task that
2894 * is a member of the cgroup for the duration of this call. This
2895 * function may or may not call process_task() for tasks that exit
2896 * or move to a different cgroup during the call, or are forked or
2897 * move into the cgroup during the call.
2899 * Note that test_task() may be called with locks held, and may in some
2900 * situations be called multiple times for the same task, so it should
2902 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2903 * pre-allocated and will be used for heap operations (and its "gt" member will
2904 * be overwritten), else a temporary heap will be used (allocation of which
2905 * may cause this function to fail).
2907 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
2910 struct cgroup_iter it
;
2911 struct task_struct
*p
, *dropped
;
2912 /* Never dereference latest_task, since it's not refcounted */
2913 struct task_struct
*latest_task
= NULL
;
2914 struct ptr_heap tmp_heap
;
2915 struct ptr_heap
*heap
;
2916 struct timespec latest_time
= { 0, 0 };
2919 /* The caller supplied our heap and pre-allocated its memory */
2921 heap
->gt
= &started_after
;
2923 /* We need to allocate our own heap memory */
2925 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
2927 /* cannot allocate the heap */
2933 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2934 * to determine which are of interest, and using the scanner's
2935 * "process_task" callback to process any of them that need an update.
2936 * Since we don't want to hold any locks during the task updates,
2937 * gather tasks to be processed in a heap structure.
2938 * The heap is sorted by descending task start time.
2939 * If the statically-sized heap fills up, we overflow tasks that
2940 * started later, and in future iterations only consider tasks that
2941 * started after the latest task in the previous pass. This
2942 * guarantees forward progress and that we don't miss any tasks.
2945 cgroup_iter_start(scan
->cg
, &it
);
2946 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
2948 * Only affect tasks that qualify per the caller's callback,
2949 * if he provided one
2951 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
2954 * Only process tasks that started after the last task
2957 if (!started_after_time(p
, &latest_time
, latest_task
))
2959 dropped
= heap_insert(heap
, p
);
2960 if (dropped
== NULL
) {
2962 * The new task was inserted; the heap wasn't
2966 } else if (dropped
!= p
) {
2968 * The new task was inserted, and pushed out a
2972 put_task_struct(dropped
);
2975 * Else the new task was newer than anything already in
2976 * the heap and wasn't inserted
2979 cgroup_iter_end(scan
->cg
, &it
);
2982 for (i
= 0; i
< heap
->size
; i
++) {
2983 struct task_struct
*q
= heap
->ptrs
[i
];
2985 latest_time
= q
->start_time
;
2988 /* Process the task per the caller's callback */
2989 scan
->process_task(q
, scan
);
2993 * If we had to process any tasks at all, scan again
2994 * in case some of them were in the middle of forking
2995 * children that didn't get processed.
2996 * Not the most efficient way to do it, but it avoids
2997 * having to take callback_mutex in the fork path
3001 if (heap
== &tmp_heap
)
3002 heap_free(&tmp_heap
);
3007 * Stuff for reading the 'tasks'/'procs' files.
3009 * Reading this file can return large amounts of data if a cgroup has
3010 * *lots* of attached tasks. So it may need several calls to read(),
3011 * but we cannot guarantee that the information we produce is correct
3012 * unless we produce it entirely atomically.
3017 * The following two functions "fix" the issue where there are more pids
3018 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3019 * TODO: replace with a kernel-wide solution to this problem
3021 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3022 static void *pidlist_allocate(int count
)
3024 if (PIDLIST_TOO_LARGE(count
))
3025 return vmalloc(count
* sizeof(pid_t
));
3027 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
3029 static void pidlist_free(void *p
)
3031 if (is_vmalloc_addr(p
))
3036 static void *pidlist_resize(void *p
, int newcount
)
3039 /* note: if new alloc fails, old p will still be valid either way */
3040 if (is_vmalloc_addr(p
)) {
3041 newlist
= vmalloc(newcount
* sizeof(pid_t
));
3044 memcpy(newlist
, p
, newcount
* sizeof(pid_t
));
3047 newlist
= krealloc(p
, newcount
* sizeof(pid_t
), GFP_KERNEL
);
3053 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3054 * If the new stripped list is sufficiently smaller and there's enough memory
3055 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3056 * number of unique elements.
3058 /* is the size difference enough that we should re-allocate the array? */
3059 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3060 static int pidlist_uniq(pid_t
**p
, int length
)
3067 * we presume the 0th element is unique, so i starts at 1. trivial
3068 * edge cases first; no work needs to be done for either
3070 if (length
== 0 || length
== 1)
3072 /* src and dest walk down the list; dest counts unique elements */
3073 for (src
= 1; src
< length
; src
++) {
3074 /* find next unique element */
3075 while (list
[src
] == list
[src
-1]) {
3080 /* dest always points to where the next unique element goes */
3081 list
[dest
] = list
[src
];
3086 * if the length difference is large enough, we want to allocate a
3087 * smaller buffer to save memory. if this fails due to out of memory,
3088 * we'll just stay with what we've got.
3090 if (PIDLIST_REALLOC_DIFFERENCE(length
, dest
)) {
3091 newlist
= pidlist_resize(list
, dest
);
3098 static int cmppid(const void *a
, const void *b
)
3100 return *(pid_t
*)a
- *(pid_t
*)b
;
3104 * find the appropriate pidlist for our purpose (given procs vs tasks)
3105 * returns with the lock on that pidlist already held, and takes care
3106 * of the use count, or returns NULL with no locks held if we're out of
3109 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
3110 enum cgroup_filetype type
)
3112 struct cgroup_pidlist
*l
;
3113 /* don't need task_nsproxy() if we're looking at ourself */
3114 struct pid_namespace
*ns
= current
->nsproxy
->pid_ns
;
3117 * We can't drop the pidlist_mutex before taking the l->mutex in case
3118 * the last ref-holder is trying to remove l from the list at the same
3119 * time. Holding the pidlist_mutex precludes somebody taking whichever
3120 * list we find out from under us - compare release_pid_array().
3122 mutex_lock(&cgrp
->pidlist_mutex
);
3123 list_for_each_entry(l
, &cgrp
->pidlists
, links
) {
3124 if (l
->key
.type
== type
&& l
->key
.ns
== ns
) {
3125 /* make sure l doesn't vanish out from under us */
3126 down_write(&l
->mutex
);
3127 mutex_unlock(&cgrp
->pidlist_mutex
);
3131 /* entry not found; create a new one */
3132 l
= kmalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
3134 mutex_unlock(&cgrp
->pidlist_mutex
);
3137 init_rwsem(&l
->mutex
);
3138 down_write(&l
->mutex
);
3140 l
->key
.ns
= get_pid_ns(ns
);
3141 l
->use_count
= 0; /* don't increment here */
3144 list_add(&l
->links
, &cgrp
->pidlists
);
3145 mutex_unlock(&cgrp
->pidlist_mutex
);
3150 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3152 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
3153 struct cgroup_pidlist
**lp
)
3157 int pid
, n
= 0; /* used for populating the array */
3158 struct cgroup_iter it
;
3159 struct task_struct
*tsk
;
3160 struct cgroup_pidlist
*l
;
3163 * If cgroup gets more users after we read count, we won't have
3164 * enough space - tough. This race is indistinguishable to the
3165 * caller from the case that the additional cgroup users didn't
3166 * show up until sometime later on.
3168 length
= cgroup_task_count(cgrp
);
3169 array
= pidlist_allocate(length
);
3172 /* now, populate the array */
3173 cgroup_iter_start(cgrp
, &it
);
3174 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
3175 if (unlikely(n
== length
))
3177 /* get tgid or pid for procs or tasks file respectively */
3178 if (type
== CGROUP_FILE_PROCS
)
3179 pid
= task_tgid_vnr(tsk
);
3181 pid
= task_pid_vnr(tsk
);
3182 if (pid
> 0) /* make sure to only use valid results */
3185 cgroup_iter_end(cgrp
, &it
);
3187 /* now sort & (if procs) strip out duplicates */
3188 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
3189 if (type
== CGROUP_FILE_PROCS
)
3190 length
= pidlist_uniq(&array
, length
);
3191 l
= cgroup_pidlist_find(cgrp
, type
);
3193 pidlist_free(array
);
3196 /* store array, freeing old if necessary - lock already held */
3197 pidlist_free(l
->list
);
3201 up_write(&l
->mutex
);
3207 * cgroupstats_build - build and fill cgroupstats
3208 * @stats: cgroupstats to fill information into
3209 * @dentry: A dentry entry belonging to the cgroup for which stats have
3212 * Build and fill cgroupstats so that taskstats can export it to user
3215 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
3218 struct cgroup
*cgrp
;
3219 struct cgroup_iter it
;
3220 struct task_struct
*tsk
;
3223 * Validate dentry by checking the superblock operations,
3224 * and make sure it's a directory.
3226 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
3227 !S_ISDIR(dentry
->d_inode
->i_mode
))
3231 cgrp
= dentry
->d_fsdata
;
3233 cgroup_iter_start(cgrp
, &it
);
3234 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
3235 switch (tsk
->state
) {
3237 stats
->nr_running
++;
3239 case TASK_INTERRUPTIBLE
:
3240 stats
->nr_sleeping
++;
3242 case TASK_UNINTERRUPTIBLE
:
3243 stats
->nr_uninterruptible
++;
3246 stats
->nr_stopped
++;
3249 if (delayacct_is_task_waiting_on_io(tsk
))
3250 stats
->nr_io_wait
++;
3254 cgroup_iter_end(cgrp
, &it
);
3262 * seq_file methods for the tasks/procs files. The seq_file position is the
3263 * next pid to display; the seq_file iterator is a pointer to the pid
3264 * in the cgroup->l->list array.
3267 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
3270 * Initially we receive a position value that corresponds to
3271 * one more than the last pid shown (or 0 on the first call or
3272 * after a seek to the start). Use a binary-search to find the
3273 * next pid to display, if any
3275 struct cgroup_pidlist
*l
= s
->private;
3276 int index
= 0, pid
= *pos
;
3279 down_read(&l
->mutex
);
3281 int end
= l
->length
;
3283 while (index
< end
) {
3284 int mid
= (index
+ end
) / 2;
3285 if (l
->list
[mid
] == pid
) {
3288 } else if (l
->list
[mid
] <= pid
)
3294 /* If we're off the end of the array, we're done */
3295 if (index
>= l
->length
)
3297 /* Update the abstract position to be the actual pid that we found */
3298 iter
= l
->list
+ index
;
3303 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
3305 struct cgroup_pidlist
*l
= s
->private;
3309 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
3311 struct cgroup_pidlist
*l
= s
->private;
3313 pid_t
*end
= l
->list
+ l
->length
;
3315 * Advance to the next pid in the array. If this goes off the
3327 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
3329 return seq_printf(s
, "%d\n", *(int *)v
);
3333 * seq_operations functions for iterating on pidlists through seq_file -
3334 * independent of whether it's tasks or procs
3336 static const struct seq_operations cgroup_pidlist_seq_operations
= {
3337 .start
= cgroup_pidlist_start
,
3338 .stop
= cgroup_pidlist_stop
,
3339 .next
= cgroup_pidlist_next
,
3340 .show
= cgroup_pidlist_show
,
3343 static void cgroup_release_pid_array(struct cgroup_pidlist
*l
)
3346 * the case where we're the last user of this particular pidlist will
3347 * have us remove it from the cgroup's list, which entails taking the
3348 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3349 * pidlist_mutex, we have to take pidlist_mutex first.
3351 mutex_lock(&l
->owner
->pidlist_mutex
);
3352 down_write(&l
->mutex
);
3353 BUG_ON(!l
->use_count
);
3354 if (!--l
->use_count
) {
3355 /* we're the last user if refcount is 0; remove and free */
3356 list_del(&l
->links
);
3357 mutex_unlock(&l
->owner
->pidlist_mutex
);
3358 pidlist_free(l
->list
);
3359 put_pid_ns(l
->key
.ns
);
3360 up_write(&l
->mutex
);
3364 mutex_unlock(&l
->owner
->pidlist_mutex
);
3365 up_write(&l
->mutex
);
3368 static int cgroup_pidlist_release(struct inode
*inode
, struct file
*file
)
3370 struct cgroup_pidlist
*l
;
3371 if (!(file
->f_mode
& FMODE_READ
))
3374 * the seq_file will only be initialized if the file was opened for
3375 * reading; hence we check if it's not null only in that case.
3377 l
= ((struct seq_file
*)file
->private_data
)->private;
3378 cgroup_release_pid_array(l
);
3379 return seq_release(inode
, file
);
3382 static const struct file_operations cgroup_pidlist_operations
= {
3384 .llseek
= seq_lseek
,
3385 .write
= cgroup_file_write
,
3386 .release
= cgroup_pidlist_release
,
3390 * The following functions handle opens on a file that displays a pidlist
3391 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3394 /* helper function for the two below it */
3395 static int cgroup_pidlist_open(struct file
*file
, enum cgroup_filetype type
)
3397 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
3398 struct cgroup_pidlist
*l
;
3401 /* Nothing to do for write-only files */
3402 if (!(file
->f_mode
& FMODE_READ
))
3405 /* have the array populated */
3406 retval
= pidlist_array_load(cgrp
, type
, &l
);
3409 /* configure file information */
3410 file
->f_op
= &cgroup_pidlist_operations
;
3412 retval
= seq_open(file
, &cgroup_pidlist_seq_operations
);
3414 cgroup_release_pid_array(l
);
3417 ((struct seq_file
*)file
->private_data
)->private = l
;
3420 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
3422 return cgroup_pidlist_open(file
, CGROUP_FILE_TASKS
);
3424 static int cgroup_procs_open(struct inode
*unused
, struct file
*file
)
3426 return cgroup_pidlist_open(file
, CGROUP_FILE_PROCS
);
3429 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
3432 return notify_on_release(cgrp
);
3435 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
3439 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3441 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3443 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3448 * Unregister event and free resources.
3450 * Gets called from workqueue.
3452 static void cgroup_event_remove(struct work_struct
*work
)
3454 struct cgroup_event
*event
= container_of(work
, struct cgroup_event
,
3456 struct cgroup
*cgrp
= event
->cgrp
;
3458 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3460 eventfd_ctx_put(event
->eventfd
);
3466 * Gets called on POLLHUP on eventfd when user closes it.
3468 * Called with wqh->lock held and interrupts disabled.
3470 static int cgroup_event_wake(wait_queue_t
*wait
, unsigned mode
,
3471 int sync
, void *key
)
3473 struct cgroup_event
*event
= container_of(wait
,
3474 struct cgroup_event
, wait
);
3475 struct cgroup
*cgrp
= event
->cgrp
;
3476 unsigned long flags
= (unsigned long)key
;
3478 if (flags
& POLLHUP
) {
3479 __remove_wait_queue(event
->wqh
, &event
->wait
);
3480 spin_lock(&cgrp
->event_list_lock
);
3481 list_del(&event
->list
);
3482 spin_unlock(&cgrp
->event_list_lock
);
3484 * We are in atomic context, but cgroup_event_remove() may
3485 * sleep, so we have to call it in workqueue.
3487 schedule_work(&event
->remove
);
3493 static void cgroup_event_ptable_queue_proc(struct file
*file
,
3494 wait_queue_head_t
*wqh
, poll_table
*pt
)
3496 struct cgroup_event
*event
= container_of(pt
,
3497 struct cgroup_event
, pt
);
3500 add_wait_queue(wqh
, &event
->wait
);
3504 * Parse input and register new cgroup event handler.
3506 * Input must be in format '<event_fd> <control_fd> <args>'.
3507 * Interpretation of args is defined by control file implementation.
3509 static int cgroup_write_event_control(struct cgroup
*cgrp
, struct cftype
*cft
,
3512 struct cgroup_event
*event
= NULL
;
3513 struct cgroup
*cgrp_cfile
;
3514 unsigned int efd
, cfd
;
3515 struct file
*efile
= NULL
;
3516 struct file
*cfile
= NULL
;
3520 efd
= simple_strtoul(buffer
, &endp
, 10);
3525 cfd
= simple_strtoul(buffer
, &endp
, 10);
3526 if ((*endp
!= ' ') && (*endp
!= '\0'))
3530 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3534 INIT_LIST_HEAD(&event
->list
);
3535 init_poll_funcptr(&event
->pt
, cgroup_event_ptable_queue_proc
);
3536 init_waitqueue_func_entry(&event
->wait
, cgroup_event_wake
);
3537 INIT_WORK(&event
->remove
, cgroup_event_remove
);
3539 efile
= eventfd_fget(efd
);
3540 if (IS_ERR(efile
)) {
3541 ret
= PTR_ERR(efile
);
3545 event
->eventfd
= eventfd_ctx_fileget(efile
);
3546 if (IS_ERR(event
->eventfd
)) {
3547 ret
= PTR_ERR(event
->eventfd
);
3557 /* the process need read permission on control file */
3558 /* AV: shouldn't we check that it's been opened for read instead? */
3559 ret
= inode_permission(cfile
->f_path
.dentry
->d_inode
, MAY_READ
);
3563 event
->cft
= __file_cft(cfile
);
3564 if (IS_ERR(event
->cft
)) {
3565 ret
= PTR_ERR(event
->cft
);
3570 * The file to be monitored must be in the same cgroup as
3571 * cgroup.event_control is.
3573 cgrp_cfile
= __d_cgrp(cfile
->f_dentry
->d_parent
);
3574 if (cgrp_cfile
!= cgrp
) {
3579 if (!event
->cft
->register_event
|| !event
->cft
->unregister_event
) {
3584 ret
= event
->cft
->register_event(cgrp
, event
->cft
,
3585 event
->eventfd
, buffer
);
3589 if (efile
->f_op
->poll(efile
, &event
->pt
) & POLLHUP
) {
3590 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3596 * Events should be removed after rmdir of cgroup directory, but before
3597 * destroying subsystem state objects. Let's take reference to cgroup
3598 * directory dentry to do that.
3602 spin_lock(&cgrp
->event_list_lock
);
3603 list_add(&event
->list
, &cgrp
->event_list
);
3604 spin_unlock(&cgrp
->event_list_lock
);
3615 if (event
&& event
->eventfd
&& !IS_ERR(event
->eventfd
))
3616 eventfd_ctx_put(event
->eventfd
);
3618 if (!IS_ERR_OR_NULL(efile
))
3626 static u64
cgroup_clone_children_read(struct cgroup
*cgrp
,
3629 return clone_children(cgrp
);
3632 static int cgroup_clone_children_write(struct cgroup
*cgrp
,
3637 set_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
3639 clear_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
3644 * for the common functions, 'private' gives the type of file
3646 /* for hysterical raisins, we can't put this on the older files */
3647 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3648 static struct cftype files
[] = {
3651 .open
= cgroup_tasks_open
,
3652 .write_u64
= cgroup_tasks_write
,
3653 .release
= cgroup_pidlist_release
,
3654 .mode
= S_IRUGO
| S_IWUSR
,
3657 .name
= CGROUP_FILE_GENERIC_PREFIX
"procs",
3658 .open
= cgroup_procs_open
,
3659 .write_u64
= cgroup_procs_write
,
3660 .release
= cgroup_pidlist_release
,
3661 .mode
= S_IRUGO
| S_IWUSR
,
3664 .name
= "notify_on_release",
3665 .read_u64
= cgroup_read_notify_on_release
,
3666 .write_u64
= cgroup_write_notify_on_release
,
3669 .name
= CGROUP_FILE_GENERIC_PREFIX
"event_control",
3670 .write_string
= cgroup_write_event_control
,
3674 .name
= "cgroup.clone_children",
3675 .read_u64
= cgroup_clone_children_read
,
3676 .write_u64
= cgroup_clone_children_write
,
3680 static struct cftype cft_release_agent
= {
3681 .name
= "release_agent",
3682 .read_seq_string
= cgroup_release_agent_show
,
3683 .write_string
= cgroup_release_agent_write
,
3684 .max_write_len
= PATH_MAX
,
3687 static int cgroup_populate_dir(struct cgroup
*cgrp
)
3690 struct cgroup_subsys
*ss
;
3692 /* First clear out any existing files */
3693 cgroup_clear_directory(cgrp
->dentry
);
3695 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
3699 if (cgrp
== cgrp
->top_cgroup
) {
3700 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
3704 for_each_subsys(cgrp
->root
, ss
) {
3705 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
3708 /* This cgroup is ready now */
3709 for_each_subsys(cgrp
->root
, ss
) {
3710 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3712 * Update id->css pointer and make this css visible from
3713 * CSS ID functions. This pointer will be dereferened
3714 * from RCU-read-side without locks.
3717 rcu_assign_pointer(css
->id
->css
, css
);
3723 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
3724 struct cgroup_subsys
*ss
,
3725 struct cgroup
*cgrp
)
3728 atomic_set(&css
->refcnt
, 1);
3731 if (cgrp
== dummytop
)
3732 set_bit(CSS_ROOT
, &css
->flags
);
3733 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
3734 cgrp
->subsys
[ss
->subsys_id
] = css
;
3737 static void cgroup_lock_hierarchy(struct cgroupfs_root
*root
)
3739 /* We need to take each hierarchy_mutex in a consistent order */
3743 * No worry about a race with rebind_subsystems that might mess up the
3744 * locking order, since both parties are under cgroup_mutex.
3746 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3747 struct cgroup_subsys
*ss
= subsys
[i
];
3750 if (ss
->root
== root
)
3751 mutex_lock(&ss
->hierarchy_mutex
);
3755 static void cgroup_unlock_hierarchy(struct cgroupfs_root
*root
)
3759 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3760 struct cgroup_subsys
*ss
= subsys
[i
];
3763 if (ss
->root
== root
)
3764 mutex_unlock(&ss
->hierarchy_mutex
);
3769 * cgroup_create - create a cgroup
3770 * @parent: cgroup that will be parent of the new cgroup
3771 * @dentry: dentry of the new cgroup
3772 * @mode: mode to set on new inode
3774 * Must be called with the mutex on the parent inode held
3776 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
3779 struct cgroup
*cgrp
;
3780 struct cgroupfs_root
*root
= parent
->root
;
3782 struct cgroup_subsys
*ss
;
3783 struct super_block
*sb
= root
->sb
;
3785 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
3789 /* Grab a reference on the superblock so the hierarchy doesn't
3790 * get deleted on unmount if there are child cgroups. This
3791 * can be done outside cgroup_mutex, since the sb can't
3792 * disappear while someone has an open control file on the
3794 atomic_inc(&sb
->s_active
);
3796 mutex_lock(&cgroup_mutex
);
3798 init_cgroup_housekeeping(cgrp
);
3800 cgrp
->parent
= parent
;
3801 cgrp
->root
= parent
->root
;
3802 cgrp
->top_cgroup
= parent
->top_cgroup
;
3804 if (notify_on_release(parent
))
3805 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3807 if (clone_children(parent
))
3808 set_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
3810 for_each_subsys(root
, ss
) {
3811 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
3817 init_cgroup_css(css
, ss
, cgrp
);
3819 err
= alloc_css_id(ss
, parent
, cgrp
);
3823 /* At error, ->destroy() callback has to free assigned ID. */
3824 if (clone_children(parent
) && ss
->post_clone
)
3825 ss
->post_clone(ss
, cgrp
);
3828 cgroup_lock_hierarchy(root
);
3829 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
3830 cgroup_unlock_hierarchy(root
);
3831 root
->number_of_cgroups
++;
3833 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
3837 /* The cgroup directory was pre-locked for us */
3838 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
3840 err
= cgroup_populate_dir(cgrp
);
3841 /* If err < 0, we have a half-filled directory - oh well ;) */
3843 mutex_unlock(&cgroup_mutex
);
3844 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
3850 cgroup_lock_hierarchy(root
);
3851 list_del(&cgrp
->sibling
);
3852 cgroup_unlock_hierarchy(root
);
3853 root
->number_of_cgroups
--;
3857 for_each_subsys(root
, ss
) {
3858 if (cgrp
->subsys
[ss
->subsys_id
])
3859 ss
->destroy(ss
, cgrp
);
3862 mutex_unlock(&cgroup_mutex
);
3864 /* Release the reference count that we took on the superblock */
3865 deactivate_super(sb
);
3871 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
3873 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
3875 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
3877 if (strchr(dentry
->d_name
.name
, '\n'))
3880 /* the vfs holds inode->i_mutex already */
3881 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
3884 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
3886 /* Check the reference count on each subsystem. Since we
3887 * already established that there are no tasks in the
3888 * cgroup, if the css refcount is also 1, then there should
3889 * be no outstanding references, so the subsystem is safe to
3890 * destroy. We scan across all subsystems rather than using
3891 * the per-hierarchy linked list of mounted subsystems since
3892 * we can be called via check_for_release() with no
3893 * synchronization other than RCU, and the subsystem linked
3894 * list isn't RCU-safe */
3897 * We won't need to lock the subsys array, because the subsystems
3898 * we're concerned about aren't going anywhere since our cgroup root
3899 * has a reference on them.
3901 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3902 struct cgroup_subsys
*ss
= subsys
[i
];
3903 struct cgroup_subsys_state
*css
;
3904 /* Skip subsystems not present or not in this hierarchy */
3905 if (ss
== NULL
|| ss
->root
!= cgrp
->root
)
3907 css
= cgrp
->subsys
[ss
->subsys_id
];
3908 /* When called from check_for_release() it's possible
3909 * that by this point the cgroup has been removed
3910 * and the css deleted. But a false-positive doesn't
3911 * matter, since it can only happen if the cgroup
3912 * has been deleted and hence no longer needs the
3913 * release agent to be called anyway. */
3914 if (css
&& (atomic_read(&css
->refcnt
) > 1))
3921 * Atomically mark all (or else none) of the cgroup's CSS objects as
3922 * CSS_REMOVED. Return true on success, or false if the cgroup has
3923 * busy subsystems. Call with cgroup_mutex held
3926 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
3928 struct cgroup_subsys
*ss
;
3929 unsigned long flags
;
3930 bool failed
= false;
3931 local_irq_save(flags
);
3932 for_each_subsys(cgrp
->root
, ss
) {
3933 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3936 /* We can only remove a CSS with a refcnt==1 */
3937 refcnt
= atomic_read(&css
->refcnt
);
3944 * Drop the refcnt to 0 while we check other
3945 * subsystems. This will cause any racing
3946 * css_tryget() to spin until we set the
3947 * CSS_REMOVED bits or abort
3949 if (atomic_cmpxchg(&css
->refcnt
, refcnt
, 0) == refcnt
)
3955 for_each_subsys(cgrp
->root
, ss
) {
3956 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3959 * Restore old refcnt if we previously managed
3960 * to clear it from 1 to 0
3962 if (!atomic_read(&css
->refcnt
))
3963 atomic_set(&css
->refcnt
, 1);
3965 /* Commit the fact that the CSS is removed */
3966 set_bit(CSS_REMOVED
, &css
->flags
);
3969 local_irq_restore(flags
);
3973 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
3975 struct cgroup
*cgrp
= dentry
->d_fsdata
;
3977 struct cgroup
*parent
;
3979 struct cgroup_event
*event
, *tmp
;
3982 /* the vfs holds both inode->i_mutex already */
3984 mutex_lock(&cgroup_mutex
);
3985 if (atomic_read(&cgrp
->count
) != 0) {
3986 mutex_unlock(&cgroup_mutex
);
3989 if (!list_empty(&cgrp
->children
)) {
3990 mutex_unlock(&cgroup_mutex
);
3993 mutex_unlock(&cgroup_mutex
);
3996 * In general, subsystem has no css->refcnt after pre_destroy(). But
3997 * in racy cases, subsystem may have to get css->refcnt after
3998 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3999 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4000 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4001 * and subsystem's reference count handling. Please see css_get/put
4002 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4004 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4007 * Call pre_destroy handlers of subsys. Notify subsystems
4008 * that rmdir() request comes.
4010 ret
= cgroup_call_pre_destroy(cgrp
);
4012 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4016 mutex_lock(&cgroup_mutex
);
4017 parent
= cgrp
->parent
;
4018 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
4019 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4020 mutex_unlock(&cgroup_mutex
);
4023 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
4024 if (!cgroup_clear_css_refs(cgrp
)) {
4025 mutex_unlock(&cgroup_mutex
);
4027 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4028 * prepare_to_wait(), we need to check this flag.
4030 if (test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
))
4032 finish_wait(&cgroup_rmdir_waitq
, &wait
);
4033 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4034 if (signal_pending(current
))
4038 /* NO css_tryget() can success after here. */
4039 finish_wait(&cgroup_rmdir_waitq
, &wait
);
4040 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4042 raw_spin_lock(&release_list_lock
);
4043 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
4044 if (!list_empty(&cgrp
->release_list
))
4045 list_del_init(&cgrp
->release_list
);
4046 raw_spin_unlock(&release_list_lock
);
4048 cgroup_lock_hierarchy(cgrp
->root
);
4049 /* delete this cgroup from parent->children */
4050 list_del_init(&cgrp
->sibling
);
4051 cgroup_unlock_hierarchy(cgrp
->root
);
4053 d
= dget(cgrp
->dentry
);
4055 cgroup_d_remove_dir(d
);
4058 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
4059 check_for_release(parent
);
4062 * Unregister events and notify userspace.
4063 * Notify userspace about cgroup removing only after rmdir of cgroup
4064 * directory to avoid race between userspace and kernelspace
4066 spin_lock(&cgrp
->event_list_lock
);
4067 list_for_each_entry_safe(event
, tmp
, &cgrp
->event_list
, list
) {
4068 list_del(&event
->list
);
4069 remove_wait_queue(event
->wqh
, &event
->wait
);
4070 eventfd_signal(event
->eventfd
, 1);
4071 schedule_work(&event
->remove
);
4073 spin_unlock(&cgrp
->event_list_lock
);
4075 mutex_unlock(&cgroup_mutex
);
4079 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
4081 struct cgroup_subsys_state
*css
;
4083 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
4085 /* Create the top cgroup state for this subsystem */
4086 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
4087 ss
->root
= &rootnode
;
4088 css
= ss
->create(ss
, dummytop
);
4089 /* We don't handle early failures gracefully */
4090 BUG_ON(IS_ERR(css
));
4091 init_cgroup_css(css
, ss
, dummytop
);
4093 /* Update the init_css_set to contain a subsys
4094 * pointer to this state - since the subsystem is
4095 * newly registered, all tasks and hence the
4096 * init_css_set is in the subsystem's top cgroup. */
4097 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
4099 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
4101 /* At system boot, before all subsystems have been
4102 * registered, no tasks have been forked, so we don't
4103 * need to invoke fork callbacks here. */
4104 BUG_ON(!list_empty(&init_task
.tasks
));
4106 mutex_init(&ss
->hierarchy_mutex
);
4107 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
4110 /* this function shouldn't be used with modular subsystems, since they
4111 * need to register a subsys_id, among other things */
4116 * cgroup_load_subsys: load and register a modular subsystem at runtime
4117 * @ss: the subsystem to load
4119 * This function should be called in a modular subsystem's initcall. If the
4120 * subsystem is built as a module, it will be assigned a new subsys_id and set
4121 * up for use. If the subsystem is built-in anyway, work is delegated to the
4122 * simpler cgroup_init_subsys.
4124 int __init_or_module
cgroup_load_subsys(struct cgroup_subsys
*ss
)
4127 struct cgroup_subsys_state
*css
;
4129 /* check name and function validity */
4130 if (ss
->name
== NULL
|| strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
||
4131 ss
->create
== NULL
|| ss
->destroy
== NULL
)
4135 * we don't support callbacks in modular subsystems. this check is
4136 * before the ss->module check for consistency; a subsystem that could
4137 * be a module should still have no callbacks even if the user isn't
4138 * compiling it as one.
4140 if (ss
->fork
|| ss
->exit
)
4144 * an optionally modular subsystem is built-in: we want to do nothing,
4145 * since cgroup_init_subsys will have already taken care of it.
4147 if (ss
->module
== NULL
) {
4148 /* a few sanity checks */
4149 BUG_ON(ss
->subsys_id
>= CGROUP_BUILTIN_SUBSYS_COUNT
);
4150 BUG_ON(subsys
[ss
->subsys_id
] != ss
);
4155 * need to register a subsys id before anything else - for example,
4156 * init_cgroup_css needs it.
4158 mutex_lock(&cgroup_mutex
);
4159 /* find the first empty slot in the array */
4160 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4161 if (subsys
[i
] == NULL
)
4164 if (i
== CGROUP_SUBSYS_COUNT
) {
4165 /* maximum number of subsystems already registered! */
4166 mutex_unlock(&cgroup_mutex
);
4169 /* assign ourselves the subsys_id */
4174 * no ss->create seems to need anything important in the ss struct, so
4175 * this can happen first (i.e. before the rootnode attachment).
4177 css
= ss
->create(ss
, dummytop
);
4179 /* failure case - need to deassign the subsys[] slot. */
4181 mutex_unlock(&cgroup_mutex
);
4182 return PTR_ERR(css
);
4185 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
4186 ss
->root
= &rootnode
;
4188 /* our new subsystem will be attached to the dummy hierarchy. */
4189 init_cgroup_css(css
, ss
, dummytop
);
4190 /* init_idr must be after init_cgroup_css because it sets css->id. */
4192 int ret
= cgroup_init_idr(ss
, css
);
4194 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
4195 ss
->destroy(ss
, dummytop
);
4197 mutex_unlock(&cgroup_mutex
);
4203 * Now we need to entangle the css into the existing css_sets. unlike
4204 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4205 * will need a new pointer to it; done by iterating the css_set_table.
4206 * furthermore, modifying the existing css_sets will corrupt the hash
4207 * table state, so each changed css_set will need its hash recomputed.
4208 * this is all done under the css_set_lock.
4210 write_lock(&css_set_lock
);
4211 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
4213 struct hlist_node
*node
, *tmp
;
4214 struct hlist_head
*bucket
= &css_set_table
[i
], *new_bucket
;
4216 hlist_for_each_entry_safe(cg
, node
, tmp
, bucket
, hlist
) {
4217 /* skip entries that we already rehashed */
4218 if (cg
->subsys
[ss
->subsys_id
])
4220 /* remove existing entry */
4221 hlist_del(&cg
->hlist
);
4223 cg
->subsys
[ss
->subsys_id
] = css
;
4224 /* recompute hash and restore entry */
4225 new_bucket
= css_set_hash(cg
->subsys
);
4226 hlist_add_head(&cg
->hlist
, new_bucket
);
4229 write_unlock(&css_set_lock
);
4231 mutex_init(&ss
->hierarchy_mutex
);
4232 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
4236 mutex_unlock(&cgroup_mutex
);
4239 EXPORT_SYMBOL_GPL(cgroup_load_subsys
);
4242 * cgroup_unload_subsys: unload a modular subsystem
4243 * @ss: the subsystem to unload
4245 * This function should be called in a modular subsystem's exitcall. When this
4246 * function is invoked, the refcount on the subsystem's module will be 0, so
4247 * the subsystem will not be attached to any hierarchy.
4249 void cgroup_unload_subsys(struct cgroup_subsys
*ss
)
4251 struct cg_cgroup_link
*link
;
4252 struct hlist_head
*hhead
;
4254 BUG_ON(ss
->module
== NULL
);
4257 * we shouldn't be called if the subsystem is in use, and the use of
4258 * try_module_get in parse_cgroupfs_options should ensure that it
4259 * doesn't start being used while we're killing it off.
4261 BUG_ON(ss
->root
!= &rootnode
);
4263 mutex_lock(&cgroup_mutex
);
4264 /* deassign the subsys_id */
4265 BUG_ON(ss
->subsys_id
< CGROUP_BUILTIN_SUBSYS_COUNT
);
4266 subsys
[ss
->subsys_id
] = NULL
;
4268 /* remove subsystem from rootnode's list of subsystems */
4269 list_del_init(&ss
->sibling
);
4272 * disentangle the css from all css_sets attached to the dummytop. as
4273 * in loading, we need to pay our respects to the hashtable gods.
4275 write_lock(&css_set_lock
);
4276 list_for_each_entry(link
, &dummytop
->css_sets
, cgrp_link_list
) {
4277 struct css_set
*cg
= link
->cg
;
4279 hlist_del(&cg
->hlist
);
4280 BUG_ON(!cg
->subsys
[ss
->subsys_id
]);
4281 cg
->subsys
[ss
->subsys_id
] = NULL
;
4282 hhead
= css_set_hash(cg
->subsys
);
4283 hlist_add_head(&cg
->hlist
, hhead
);
4285 write_unlock(&css_set_lock
);
4288 * remove subsystem's css from the dummytop and free it - need to free
4289 * before marking as null because ss->destroy needs the cgrp->subsys
4290 * pointer to find their state. note that this also takes care of
4291 * freeing the css_id.
4293 ss
->destroy(ss
, dummytop
);
4294 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
4296 mutex_unlock(&cgroup_mutex
);
4298 EXPORT_SYMBOL_GPL(cgroup_unload_subsys
);
4301 * cgroup_init_early - cgroup initialization at system boot
4303 * Initialize cgroups at system boot, and initialize any
4304 * subsystems that request early init.
4306 int __init
cgroup_init_early(void)
4309 atomic_set(&init_css_set
.refcount
, 1);
4310 INIT_LIST_HEAD(&init_css_set
.cg_links
);
4311 INIT_LIST_HEAD(&init_css_set
.tasks
);
4312 INIT_HLIST_NODE(&init_css_set
.hlist
);
4314 init_cgroup_root(&rootnode
);
4316 init_task
.cgroups
= &init_css_set
;
4318 init_css_set_link
.cg
= &init_css_set
;
4319 init_css_set_link
.cgrp
= dummytop
;
4320 list_add(&init_css_set_link
.cgrp_link_list
,
4321 &rootnode
.top_cgroup
.css_sets
);
4322 list_add(&init_css_set_link
.cg_link_list
,
4323 &init_css_set
.cg_links
);
4325 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
4326 INIT_HLIST_HEAD(&css_set_table
[i
]);
4328 /* at bootup time, we don't worry about modular subsystems */
4329 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4330 struct cgroup_subsys
*ss
= subsys
[i
];
4333 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
4334 BUG_ON(!ss
->create
);
4335 BUG_ON(!ss
->destroy
);
4336 if (ss
->subsys_id
!= i
) {
4337 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
4338 ss
->name
, ss
->subsys_id
);
4343 cgroup_init_subsys(ss
);
4349 * cgroup_init - cgroup initialization
4351 * Register cgroup filesystem and /proc file, and initialize
4352 * any subsystems that didn't request early init.
4354 int __init
cgroup_init(void)
4358 struct hlist_head
*hhead
;
4360 err
= bdi_init(&cgroup_backing_dev_info
);
4364 /* at bootup time, we don't worry about modular subsystems */
4365 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4366 struct cgroup_subsys
*ss
= subsys
[i
];
4367 if (!ss
->early_init
)
4368 cgroup_init_subsys(ss
);
4370 cgroup_init_idr(ss
, init_css_set
.subsys
[ss
->subsys_id
]);
4373 /* Add init_css_set to the hash table */
4374 hhead
= css_set_hash(init_css_set
.subsys
);
4375 hlist_add_head(&init_css_set
.hlist
, hhead
);
4376 BUG_ON(!init_root_id(&rootnode
));
4378 cgroup_kobj
= kobject_create_and_add("cgroup", fs_kobj
);
4384 err
= register_filesystem(&cgroup_fs_type
);
4386 kobject_put(cgroup_kobj
);
4390 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
4394 bdi_destroy(&cgroup_backing_dev_info
);
4400 * proc_cgroup_show()
4401 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4402 * - Used for /proc/<pid>/cgroup.
4403 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4404 * doesn't really matter if tsk->cgroup changes after we read it,
4405 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4406 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4407 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4408 * cgroup to top_cgroup.
4411 /* TODO: Use a proper seq_file iterator */
4412 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
4415 struct task_struct
*tsk
;
4418 struct cgroupfs_root
*root
;
4421 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4427 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
4433 mutex_lock(&cgroup_mutex
);
4435 for_each_active_root(root
) {
4436 struct cgroup_subsys
*ss
;
4437 struct cgroup
*cgrp
;
4440 seq_printf(m
, "%d:", root
->hierarchy_id
);
4441 for_each_subsys(root
, ss
)
4442 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
4443 if (strlen(root
->name
))
4444 seq_printf(m
, "%sname=%s", count
? "," : "",
4447 cgrp
= task_cgroup_from_root(tsk
, root
);
4448 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
4456 mutex_unlock(&cgroup_mutex
);
4457 put_task_struct(tsk
);
4464 static int cgroup_open(struct inode
*inode
, struct file
*file
)
4466 struct pid
*pid
= PROC_I(inode
)->pid
;
4467 return single_open(file
, proc_cgroup_show
, pid
);
4470 const struct file_operations proc_cgroup_operations
= {
4471 .open
= cgroup_open
,
4473 .llseek
= seq_lseek
,
4474 .release
= single_release
,
4477 /* Display information about each subsystem and each hierarchy */
4478 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
4482 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4484 * ideally we don't want subsystems moving around while we do this.
4485 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4486 * subsys/hierarchy state.
4488 mutex_lock(&cgroup_mutex
);
4489 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4490 struct cgroup_subsys
*ss
= subsys
[i
];
4493 seq_printf(m
, "%s\t%d\t%d\t%d\n",
4494 ss
->name
, ss
->root
->hierarchy_id
,
4495 ss
->root
->number_of_cgroups
, !ss
->disabled
);
4497 mutex_unlock(&cgroup_mutex
);
4501 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
4503 return single_open(file
, proc_cgroupstats_show
, NULL
);
4506 static const struct file_operations proc_cgroupstats_operations
= {
4507 .open
= cgroupstats_open
,
4509 .llseek
= seq_lseek
,
4510 .release
= single_release
,
4514 * cgroup_fork - attach newly forked task to its parents cgroup.
4515 * @child: pointer to task_struct of forking parent process.
4517 * Description: A task inherits its parent's cgroup at fork().
4519 * A pointer to the shared css_set was automatically copied in
4520 * fork.c by dup_task_struct(). However, we ignore that copy, since
4521 * it was not made under the protection of RCU or cgroup_mutex, so
4522 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4523 * have already changed current->cgroups, allowing the previously
4524 * referenced cgroup group to be removed and freed.
4526 * At the point that cgroup_fork() is called, 'current' is the parent
4527 * task, and the passed argument 'child' points to the child task.
4529 void cgroup_fork(struct task_struct
*child
)
4532 child
->cgroups
= current
->cgroups
;
4533 get_css_set(child
->cgroups
);
4534 task_unlock(current
);
4535 INIT_LIST_HEAD(&child
->cg_list
);
4539 * cgroup_post_fork - called on a new task after adding it to the task list
4540 * @child: the task in question
4542 * Adds the task to the list running through its css_set if necessary and
4543 * call the subsystem fork() callbacks. Has to be after the task is
4544 * visible on the task list in case we race with the first call to
4545 * cgroup_iter_start() - to guarantee that the new task ends up on its
4548 void cgroup_post_fork(struct task_struct
*child
)
4552 if (use_task_css_set_links
) {
4553 write_lock(&css_set_lock
);
4555 if (list_empty(&child
->cg_list
))
4556 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
4558 write_unlock(&css_set_lock
);
4562 * Call ss->fork(). This must happen after @child is linked on
4563 * css_set; otherwise, @child might change state between ->fork()
4564 * and addition to css_set.
4566 if (need_forkexit_callback
) {
4567 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4568 struct cgroup_subsys
*ss
= subsys
[i
];
4570 ss
->fork(ss
, child
);
4576 * cgroup_exit - detach cgroup from exiting task
4577 * @tsk: pointer to task_struct of exiting process
4578 * @run_callback: run exit callbacks?
4580 * Description: Detach cgroup from @tsk and release it.
4582 * Note that cgroups marked notify_on_release force every task in
4583 * them to take the global cgroup_mutex mutex when exiting.
4584 * This could impact scaling on very large systems. Be reluctant to
4585 * use notify_on_release cgroups where very high task exit scaling
4586 * is required on large systems.
4588 * the_top_cgroup_hack:
4590 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4592 * We call cgroup_exit() while the task is still competent to
4593 * handle notify_on_release(), then leave the task attached to the
4594 * root cgroup in each hierarchy for the remainder of its exit.
4596 * To do this properly, we would increment the reference count on
4597 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4598 * code we would add a second cgroup function call, to drop that
4599 * reference. This would just create an unnecessary hot spot on
4600 * the top_cgroup reference count, to no avail.
4602 * Normally, holding a reference to a cgroup without bumping its
4603 * count is unsafe. The cgroup could go away, or someone could
4604 * attach us to a different cgroup, decrementing the count on
4605 * the first cgroup that we never incremented. But in this case,
4606 * top_cgroup isn't going away, and either task has PF_EXITING set,
4607 * which wards off any cgroup_attach_task() attempts, or task is a failed
4608 * fork, never visible to cgroup_attach_task.
4610 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
4616 * Unlink from the css_set task list if necessary.
4617 * Optimistically check cg_list before taking
4620 if (!list_empty(&tsk
->cg_list
)) {
4621 write_lock(&css_set_lock
);
4622 if (!list_empty(&tsk
->cg_list
))
4623 list_del_init(&tsk
->cg_list
);
4624 write_unlock(&css_set_lock
);
4627 /* Reassign the task to the init_css_set. */
4630 tsk
->cgroups
= &init_css_set
;
4632 if (run_callbacks
&& need_forkexit_callback
) {
4634 * modular subsystems can't use callbacks, so no need to lock
4637 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4638 struct cgroup_subsys
*ss
= subsys
[i
];
4640 struct cgroup
*old_cgrp
=
4641 rcu_dereference_raw(cg
->subsys
[i
])->cgroup
;
4642 struct cgroup
*cgrp
= task_cgroup(tsk
, i
);
4643 ss
->exit(ss
, cgrp
, old_cgrp
, tsk
);
4650 put_css_set_taskexit(cg
);
4654 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4655 * @cgrp: the cgroup in question
4656 * @task: the task in question
4658 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4661 * If we are sending in dummytop, then presumably we are creating
4662 * the top cgroup in the subsystem.
4664 * Called only by the ns (nsproxy) cgroup.
4666 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
4669 struct cgroup
*target
;
4671 if (cgrp
== dummytop
)
4674 target
= task_cgroup_from_root(task
, cgrp
->root
);
4675 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
4676 cgrp
= cgrp
->parent
;
4677 ret
= (cgrp
== target
);
4681 static void check_for_release(struct cgroup
*cgrp
)
4683 /* All of these checks rely on RCU to keep the cgroup
4684 * structure alive */
4685 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
4686 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
4687 /* Control Group is currently removeable. If it's not
4688 * already queued for a userspace notification, queue
4690 int need_schedule_work
= 0;
4691 raw_spin_lock(&release_list_lock
);
4692 if (!cgroup_is_removed(cgrp
) &&
4693 list_empty(&cgrp
->release_list
)) {
4694 list_add(&cgrp
->release_list
, &release_list
);
4695 need_schedule_work
= 1;
4697 raw_spin_unlock(&release_list_lock
);
4698 if (need_schedule_work
)
4699 schedule_work(&release_agent_work
);
4703 /* Caller must verify that the css is not for root cgroup */
4704 void __css_put(struct cgroup_subsys_state
*css
, int count
)
4706 struct cgroup
*cgrp
= css
->cgroup
;
4709 val
= atomic_sub_return(count
, &css
->refcnt
);
4711 if (notify_on_release(cgrp
)) {
4712 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4713 check_for_release(cgrp
);
4715 cgroup_wakeup_rmdir_waiter(cgrp
);
4718 WARN_ON_ONCE(val
< 1);
4720 EXPORT_SYMBOL_GPL(__css_put
);
4723 * Notify userspace when a cgroup is released, by running the
4724 * configured release agent with the name of the cgroup (path
4725 * relative to the root of cgroup file system) as the argument.
4727 * Most likely, this user command will try to rmdir this cgroup.
4729 * This races with the possibility that some other task will be
4730 * attached to this cgroup before it is removed, or that some other
4731 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4732 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4733 * unused, and this cgroup will be reprieved from its death sentence,
4734 * to continue to serve a useful existence. Next time it's released,
4735 * we will get notified again, if it still has 'notify_on_release' set.
4737 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4738 * means only wait until the task is successfully execve()'d. The
4739 * separate release agent task is forked by call_usermodehelper(),
4740 * then control in this thread returns here, without waiting for the
4741 * release agent task. We don't bother to wait because the caller of
4742 * this routine has no use for the exit status of the release agent
4743 * task, so no sense holding our caller up for that.
4745 static void cgroup_release_agent(struct work_struct
*work
)
4747 BUG_ON(work
!= &release_agent_work
);
4748 mutex_lock(&cgroup_mutex
);
4749 raw_spin_lock(&release_list_lock
);
4750 while (!list_empty(&release_list
)) {
4751 char *argv
[3], *envp
[3];
4753 char *pathbuf
= NULL
, *agentbuf
= NULL
;
4754 struct cgroup
*cgrp
= list_entry(release_list
.next
,
4757 list_del_init(&cgrp
->release_list
);
4758 raw_spin_unlock(&release_list_lock
);
4759 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4762 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
4764 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
4769 argv
[i
++] = agentbuf
;
4770 argv
[i
++] = pathbuf
;
4774 /* minimal command environment */
4775 envp
[i
++] = "HOME=/";
4776 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4779 /* Drop the lock while we invoke the usermode helper,
4780 * since the exec could involve hitting disk and hence
4781 * be a slow process */
4782 mutex_unlock(&cgroup_mutex
);
4783 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
4784 mutex_lock(&cgroup_mutex
);
4788 raw_spin_lock(&release_list_lock
);
4790 raw_spin_unlock(&release_list_lock
);
4791 mutex_unlock(&cgroup_mutex
);
4794 static int __init
cgroup_disable(char *str
)
4799 while ((token
= strsep(&str
, ",")) != NULL
) {
4803 * cgroup_disable, being at boot time, can't know about module
4804 * subsystems, so we don't worry about them.
4806 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4807 struct cgroup_subsys
*ss
= subsys
[i
];
4809 if (!strcmp(token
, ss
->name
)) {
4811 printk(KERN_INFO
"Disabling %s control group"
4812 " subsystem\n", ss
->name
);
4819 __setup("cgroup_disable=", cgroup_disable
);
4822 * Functons for CSS ID.
4826 *To get ID other than 0, this should be called when !cgroup_is_removed().
4828 unsigned short css_id(struct cgroup_subsys_state
*css
)
4830 struct css_id
*cssid
;
4833 * This css_id() can return correct value when somone has refcnt
4834 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4835 * it's unchanged until freed.
4837 cssid
= rcu_dereference_check(css
->id
, atomic_read(&css
->refcnt
));
4843 EXPORT_SYMBOL_GPL(css_id
);
4845 unsigned short css_depth(struct cgroup_subsys_state
*css
)
4847 struct css_id
*cssid
;
4849 cssid
= rcu_dereference_check(css
->id
, atomic_read(&css
->refcnt
));
4852 return cssid
->depth
;
4855 EXPORT_SYMBOL_GPL(css_depth
);
4858 * css_is_ancestor - test "root" css is an ancestor of "child"
4859 * @child: the css to be tested.
4860 * @root: the css supporsed to be an ancestor of the child.
4862 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4863 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4864 * But, considering usual usage, the csses should be valid objects after test.
4865 * Assuming that the caller will do some action to the child if this returns
4866 * returns true, the caller must take "child";s reference count.
4867 * If "child" is valid object and this returns true, "root" is valid, too.
4870 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
4871 const struct cgroup_subsys_state
*root
)
4873 struct css_id
*child_id
;
4874 struct css_id
*root_id
;
4878 child_id
= rcu_dereference(child
->id
);
4879 root_id
= rcu_dereference(root
->id
);
4882 || (child_id
->depth
< root_id
->depth
)
4883 || (child_id
->stack
[root_id
->depth
] != root_id
->id
))
4889 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
4891 struct css_id
*id
= css
->id
;
4892 /* When this is called before css_id initialization, id can be NULL */
4896 BUG_ON(!ss
->use_id
);
4898 rcu_assign_pointer(id
->css
, NULL
);
4899 rcu_assign_pointer(css
->id
, NULL
);
4900 write_lock(&ss
->id_lock
);
4901 idr_remove(&ss
->idr
, id
->id
);
4902 write_unlock(&ss
->id_lock
);
4903 kfree_rcu(id
, rcu_head
);
4905 EXPORT_SYMBOL_GPL(free_css_id
);
4908 * This is called by init or create(). Then, calls to this function are
4909 * always serialized (By cgroup_mutex() at create()).
4912 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
4914 struct css_id
*newid
;
4915 int myid
, error
, size
;
4917 BUG_ON(!ss
->use_id
);
4919 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
4920 newid
= kzalloc(size
, GFP_KERNEL
);
4922 return ERR_PTR(-ENOMEM
);
4924 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
4928 write_lock(&ss
->id_lock
);
4929 /* Don't use 0. allocates an ID of 1-65535 */
4930 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
4931 write_unlock(&ss
->id_lock
);
4933 /* Returns error when there are no free spaces for new ID.*/
4938 if (myid
> CSS_ID_MAX
)
4942 newid
->depth
= depth
;
4946 write_lock(&ss
->id_lock
);
4947 idr_remove(&ss
->idr
, myid
);
4948 write_unlock(&ss
->id_lock
);
4951 return ERR_PTR(error
);
4955 static int __init_or_module
cgroup_init_idr(struct cgroup_subsys
*ss
,
4956 struct cgroup_subsys_state
*rootcss
)
4958 struct css_id
*newid
;
4960 rwlock_init(&ss
->id_lock
);
4963 newid
= get_new_cssid(ss
, 0);
4965 return PTR_ERR(newid
);
4967 newid
->stack
[0] = newid
->id
;
4968 newid
->css
= rootcss
;
4969 rootcss
->id
= newid
;
4973 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
4974 struct cgroup
*child
)
4976 int subsys_id
, i
, depth
= 0;
4977 struct cgroup_subsys_state
*parent_css
, *child_css
;
4978 struct css_id
*child_id
, *parent_id
;
4980 subsys_id
= ss
->subsys_id
;
4981 parent_css
= parent
->subsys
[subsys_id
];
4982 child_css
= child
->subsys
[subsys_id
];
4983 parent_id
= parent_css
->id
;
4984 depth
= parent_id
->depth
+ 1;
4986 child_id
= get_new_cssid(ss
, depth
);
4987 if (IS_ERR(child_id
))
4988 return PTR_ERR(child_id
);
4990 for (i
= 0; i
< depth
; i
++)
4991 child_id
->stack
[i
] = parent_id
->stack
[i
];
4992 child_id
->stack
[depth
] = child_id
->id
;
4994 * child_id->css pointer will be set after this cgroup is available
4995 * see cgroup_populate_dir()
4997 rcu_assign_pointer(child_css
->id
, child_id
);
5003 * css_lookup - lookup css by id
5004 * @ss: cgroup subsys to be looked into.
5007 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5008 * NULL if not. Should be called under rcu_read_lock()
5010 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
5012 struct css_id
*cssid
= NULL
;
5014 BUG_ON(!ss
->use_id
);
5015 cssid
= idr_find(&ss
->idr
, id
);
5017 if (unlikely(!cssid
))
5020 return rcu_dereference(cssid
->css
);
5022 EXPORT_SYMBOL_GPL(css_lookup
);
5025 * css_get_next - lookup next cgroup under specified hierarchy.
5026 * @ss: pointer to subsystem
5027 * @id: current position of iteration.
5028 * @root: pointer to css. search tree under this.
5029 * @foundid: position of found object.
5031 * Search next css under the specified hierarchy of rootid. Calling under
5032 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5034 struct cgroup_subsys_state
*
5035 css_get_next(struct cgroup_subsys
*ss
, int id
,
5036 struct cgroup_subsys_state
*root
, int *foundid
)
5038 struct cgroup_subsys_state
*ret
= NULL
;
5041 int rootid
= css_id(root
);
5042 int depth
= css_depth(root
);
5047 BUG_ON(!ss
->use_id
);
5048 /* fill start point for scan */
5052 * scan next entry from bitmap(tree), tmpid is updated after
5055 read_lock(&ss
->id_lock
);
5056 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
5057 read_unlock(&ss
->id_lock
);
5061 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
5062 ret
= rcu_dereference(tmp
->css
);
5068 /* continue to scan from next id */
5075 * get corresponding css from file open on cgroupfs directory
5077 struct cgroup_subsys_state
*cgroup_css_from_dir(struct file
*f
, int id
)
5079 struct cgroup
*cgrp
;
5080 struct inode
*inode
;
5081 struct cgroup_subsys_state
*css
;
5083 inode
= f
->f_dentry
->d_inode
;
5084 /* check in cgroup filesystem dir */
5085 if (inode
->i_op
!= &cgroup_dir_inode_operations
)
5086 return ERR_PTR(-EBADF
);
5088 if (id
< 0 || id
>= CGROUP_SUBSYS_COUNT
)
5089 return ERR_PTR(-EINVAL
);
5092 cgrp
= __d_cgrp(f
->f_dentry
);
5093 css
= cgrp
->subsys
[id
];
5094 return css
? css
: ERR_PTR(-ENOENT
);
5097 #ifdef CONFIG_CGROUP_DEBUG
5098 static struct cgroup_subsys_state
*debug_create(struct cgroup_subsys
*ss
,
5099 struct cgroup
*cont
)
5101 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
5104 return ERR_PTR(-ENOMEM
);
5109 static void debug_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
5111 kfree(cont
->subsys
[debug_subsys_id
]);
5114 static u64
cgroup_refcount_read(struct cgroup
*cont
, struct cftype
*cft
)
5116 return atomic_read(&cont
->count
);
5119 static u64
debug_taskcount_read(struct cgroup
*cont
, struct cftype
*cft
)
5121 return cgroup_task_count(cont
);
5124 static u64
current_css_set_read(struct cgroup
*cont
, struct cftype
*cft
)
5126 return (u64
)(unsigned long)current
->cgroups
;
5129 static u64
current_css_set_refcount_read(struct cgroup
*cont
,
5135 count
= atomic_read(¤t
->cgroups
->refcount
);
5140 static int current_css_set_cg_links_read(struct cgroup
*cont
,
5142 struct seq_file
*seq
)
5144 struct cg_cgroup_link
*link
;
5147 read_lock(&css_set_lock
);
5149 cg
= rcu_dereference(current
->cgroups
);
5150 list_for_each_entry(link
, &cg
->cg_links
, cg_link_list
) {
5151 struct cgroup
*c
= link
->cgrp
;
5155 name
= c
->dentry
->d_name
.name
;
5158 seq_printf(seq
, "Root %d group %s\n",
5159 c
->root
->hierarchy_id
, name
);
5162 read_unlock(&css_set_lock
);
5166 #define MAX_TASKS_SHOWN_PER_CSS 25
5167 static int cgroup_css_links_read(struct cgroup
*cont
,
5169 struct seq_file
*seq
)
5171 struct cg_cgroup_link
*link
;
5173 read_lock(&css_set_lock
);
5174 list_for_each_entry(link
, &cont
->css_sets
, cgrp_link_list
) {
5175 struct css_set
*cg
= link
->cg
;
5176 struct task_struct
*task
;
5178 seq_printf(seq
, "css_set %p\n", cg
);
5179 list_for_each_entry(task
, &cg
->tasks
, cg_list
) {
5180 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
) {
5181 seq_puts(seq
, " ...\n");
5184 seq_printf(seq
, " task %d\n",
5185 task_pid_vnr(task
));
5189 read_unlock(&css_set_lock
);
5193 static u64
releasable_read(struct cgroup
*cgrp
, struct cftype
*cft
)
5195 return test_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
5198 static struct cftype debug_files
[] = {
5200 .name
= "cgroup_refcount",
5201 .read_u64
= cgroup_refcount_read
,
5204 .name
= "taskcount",
5205 .read_u64
= debug_taskcount_read
,
5209 .name
= "current_css_set",
5210 .read_u64
= current_css_set_read
,
5214 .name
= "current_css_set_refcount",
5215 .read_u64
= current_css_set_refcount_read
,
5219 .name
= "current_css_set_cg_links",
5220 .read_seq_string
= current_css_set_cg_links_read
,
5224 .name
= "cgroup_css_links",
5225 .read_seq_string
= cgroup_css_links_read
,
5229 .name
= "releasable",
5230 .read_u64
= releasable_read
,
5234 static int debug_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
5236 return cgroup_add_files(cont
, ss
, debug_files
,
5237 ARRAY_SIZE(debug_files
));
5240 struct cgroup_subsys debug_subsys
= {
5242 .create
= debug_create
,
5243 .destroy
= debug_destroy
,
5244 .populate
= debug_populate
,
5245 .subsys_id
= debug_subsys_id
,
5247 #endif /* CONFIG_CGROUP_DEBUG */