ahci: Add JMicron 362 device IDs
[linux/fpc-iii.git] / kernel / sched_rt.c
blobbd4afa408686e0b67a54bc8ebd8667d3224d4fe7
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 #ifdef CONFIG_RT_GROUP_SCHED
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14 #endif
15 return container_of(rt_se, struct task_struct, rt);
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
20 return rt_rq->rq;
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
25 return rt_se->rt_rq;
28 #else /* CONFIG_RT_GROUP_SCHED */
30 #define rt_entity_is_task(rt_se) (1)
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
34 return container_of(rt_se, struct task_struct, rt);
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
39 return container_of(rt_rq, struct rq, rt);
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
47 return &rq->rt;
50 #endif /* CONFIG_RT_GROUP_SCHED */
52 #ifdef CONFIG_SMP
54 static inline int rt_overloaded(struct rq *rq)
56 return atomic_read(&rq->rd->rto_count);
59 static inline void rt_set_overload(struct rq *rq)
61 if (!rq->online)
62 return;
64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
72 wmb();
73 atomic_inc(&rq->rd->rto_count);
76 static inline void rt_clear_overload(struct rq *rq)
78 if (!rq->online)
79 return;
81 /* the order here really doesn't matter */
82 atomic_dec(&rq->rd->rto_count);
83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
86 static void update_rt_migration(struct rt_rq *rt_rq)
88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
101 if (!rt_entity_is_task(rt_se))
102 return;
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
106 rt_rq->rt_nr_total++;
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
110 update_rt_migration(rt_rq);
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
115 if (!rt_entity_is_task(rt_se))
116 return;
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
120 rt_rq->rt_nr_total--;
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
124 update_rt_migration(rt_rq);
127 static inline int has_pushable_tasks(struct rq *rq)
129 return !plist_head_empty(&rq->rt.pushable_tasks);
132 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
134 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
135 plist_node_init(&p->pushable_tasks, p->prio);
136 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
138 /* Update the highest prio pushable task */
139 if (p->prio < rq->rt.highest_prio.next)
140 rq->rt.highest_prio.next = p->prio;
143 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
145 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
147 /* Update the new highest prio pushable task */
148 if (has_pushable_tasks(rq)) {
149 p = plist_first_entry(&rq->rt.pushable_tasks,
150 struct task_struct, pushable_tasks);
151 rq->rt.highest_prio.next = p->prio;
152 } else
153 rq->rt.highest_prio.next = MAX_RT_PRIO;
156 #else
158 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
162 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
166 static inline
167 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
171 static inline
172 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
176 #endif /* CONFIG_SMP */
178 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
180 return !list_empty(&rt_se->run_list);
183 #ifdef CONFIG_RT_GROUP_SCHED
185 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
187 if (!rt_rq->tg)
188 return RUNTIME_INF;
190 return rt_rq->rt_runtime;
193 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
195 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
198 typedef struct task_group *rt_rq_iter_t;
200 static inline struct task_group *next_task_group(struct task_group *tg)
202 do {
203 tg = list_entry_rcu(tg->list.next,
204 typeof(struct task_group), list);
205 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
207 if (&tg->list == &task_groups)
208 tg = NULL;
210 return tg;
213 #define for_each_rt_rq(rt_rq, iter, rq) \
214 for (iter = container_of(&task_groups, typeof(*iter), list); \
215 (iter = next_task_group(iter)) && \
216 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
218 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
220 list_add_rcu(&rt_rq->leaf_rt_rq_list,
221 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
224 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
226 list_del_rcu(&rt_rq->leaf_rt_rq_list);
229 #define for_each_leaf_rt_rq(rt_rq, rq) \
230 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
232 #define for_each_sched_rt_entity(rt_se) \
233 for (; rt_se; rt_se = rt_se->parent)
235 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
237 return rt_se->my_q;
240 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
241 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
243 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
245 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
246 struct sched_rt_entity *rt_se;
248 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
250 rt_se = rt_rq->tg->rt_se[cpu];
252 if (rt_rq->rt_nr_running) {
253 if (rt_se && !on_rt_rq(rt_se))
254 enqueue_rt_entity(rt_se, false);
255 if (rt_rq->highest_prio.curr < curr->prio)
256 resched_task(curr);
260 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
262 struct sched_rt_entity *rt_se;
263 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
265 rt_se = rt_rq->tg->rt_se[cpu];
267 if (rt_se && on_rt_rq(rt_se))
268 dequeue_rt_entity(rt_se);
271 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
273 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
276 static int rt_se_boosted(struct sched_rt_entity *rt_se)
278 struct rt_rq *rt_rq = group_rt_rq(rt_se);
279 struct task_struct *p;
281 if (rt_rq)
282 return !!rt_rq->rt_nr_boosted;
284 p = rt_task_of(rt_se);
285 return p->prio != p->normal_prio;
288 #ifdef CONFIG_SMP
289 static inline const struct cpumask *sched_rt_period_mask(void)
291 return cpu_rq(smp_processor_id())->rd->span;
293 #else
294 static inline const struct cpumask *sched_rt_period_mask(void)
296 return cpu_online_mask;
298 #endif
300 static inline
301 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
303 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
306 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
308 return &rt_rq->tg->rt_bandwidth;
311 #else /* !CONFIG_RT_GROUP_SCHED */
313 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
315 return rt_rq->rt_runtime;
318 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
320 return ktime_to_ns(def_rt_bandwidth.rt_period);
323 typedef struct rt_rq *rt_rq_iter_t;
325 #define for_each_rt_rq(rt_rq, iter, rq) \
326 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
328 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
332 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
336 #define for_each_leaf_rt_rq(rt_rq, rq) \
337 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
339 #define for_each_sched_rt_entity(rt_se) \
340 for (; rt_se; rt_se = NULL)
342 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
344 return NULL;
347 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
349 if (rt_rq->rt_nr_running)
350 resched_task(rq_of_rt_rq(rt_rq)->curr);
353 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
357 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
359 return rt_rq->rt_throttled;
362 static inline const struct cpumask *sched_rt_period_mask(void)
364 return cpu_online_mask;
367 static inline
368 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
370 return &cpu_rq(cpu)->rt;
373 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
375 return &def_rt_bandwidth;
378 #endif /* CONFIG_RT_GROUP_SCHED */
380 #ifdef CONFIG_SMP
382 * We ran out of runtime, see if we can borrow some from our neighbours.
384 static int do_balance_runtime(struct rt_rq *rt_rq)
386 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
387 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
388 int i, weight, more = 0;
389 u64 rt_period;
391 weight = cpumask_weight(rd->span);
393 raw_spin_lock(&rt_b->rt_runtime_lock);
394 rt_period = ktime_to_ns(rt_b->rt_period);
395 for_each_cpu(i, rd->span) {
396 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
397 s64 diff;
399 if (iter == rt_rq)
400 continue;
402 raw_spin_lock(&iter->rt_runtime_lock);
404 * Either all rqs have inf runtime and there's nothing to steal
405 * or __disable_runtime() below sets a specific rq to inf to
406 * indicate its been disabled and disalow stealing.
408 if (iter->rt_runtime == RUNTIME_INF)
409 goto next;
412 * From runqueues with spare time, take 1/n part of their
413 * spare time, but no more than our period.
415 diff = iter->rt_runtime - iter->rt_time;
416 if (diff > 0) {
417 diff = div_u64((u64)diff, weight);
418 if (rt_rq->rt_runtime + diff > rt_period)
419 diff = rt_period - rt_rq->rt_runtime;
420 iter->rt_runtime -= diff;
421 rt_rq->rt_runtime += diff;
422 more = 1;
423 if (rt_rq->rt_runtime == rt_period) {
424 raw_spin_unlock(&iter->rt_runtime_lock);
425 break;
428 next:
429 raw_spin_unlock(&iter->rt_runtime_lock);
431 raw_spin_unlock(&rt_b->rt_runtime_lock);
433 return more;
437 * Ensure this RQ takes back all the runtime it lend to its neighbours.
439 static void __disable_runtime(struct rq *rq)
441 struct root_domain *rd = rq->rd;
442 rt_rq_iter_t iter;
443 struct rt_rq *rt_rq;
445 if (unlikely(!scheduler_running))
446 return;
448 for_each_rt_rq(rt_rq, iter, rq) {
449 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
450 s64 want;
451 int i;
453 raw_spin_lock(&rt_b->rt_runtime_lock);
454 raw_spin_lock(&rt_rq->rt_runtime_lock);
456 * Either we're all inf and nobody needs to borrow, or we're
457 * already disabled and thus have nothing to do, or we have
458 * exactly the right amount of runtime to take out.
460 if (rt_rq->rt_runtime == RUNTIME_INF ||
461 rt_rq->rt_runtime == rt_b->rt_runtime)
462 goto balanced;
463 raw_spin_unlock(&rt_rq->rt_runtime_lock);
466 * Calculate the difference between what we started out with
467 * and what we current have, that's the amount of runtime
468 * we lend and now have to reclaim.
470 want = rt_b->rt_runtime - rt_rq->rt_runtime;
473 * Greedy reclaim, take back as much as we can.
475 for_each_cpu(i, rd->span) {
476 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
477 s64 diff;
480 * Can't reclaim from ourselves or disabled runqueues.
482 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
483 continue;
485 raw_spin_lock(&iter->rt_runtime_lock);
486 if (want > 0) {
487 diff = min_t(s64, iter->rt_runtime, want);
488 iter->rt_runtime -= diff;
489 want -= diff;
490 } else {
491 iter->rt_runtime -= want;
492 want -= want;
494 raw_spin_unlock(&iter->rt_runtime_lock);
496 if (!want)
497 break;
500 raw_spin_lock(&rt_rq->rt_runtime_lock);
502 * We cannot be left wanting - that would mean some runtime
503 * leaked out of the system.
505 BUG_ON(want);
506 balanced:
508 * Disable all the borrow logic by pretending we have inf
509 * runtime - in which case borrowing doesn't make sense.
511 rt_rq->rt_runtime = RUNTIME_INF;
512 rt_rq->rt_throttled = 0;
513 raw_spin_unlock(&rt_rq->rt_runtime_lock);
514 raw_spin_unlock(&rt_b->rt_runtime_lock);
518 static void disable_runtime(struct rq *rq)
520 unsigned long flags;
522 raw_spin_lock_irqsave(&rq->lock, flags);
523 __disable_runtime(rq);
524 raw_spin_unlock_irqrestore(&rq->lock, flags);
527 static void __enable_runtime(struct rq *rq)
529 rt_rq_iter_t iter;
530 struct rt_rq *rt_rq;
532 if (unlikely(!scheduler_running))
533 return;
536 * Reset each runqueue's bandwidth settings
538 for_each_rt_rq(rt_rq, iter, rq) {
539 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
541 raw_spin_lock(&rt_b->rt_runtime_lock);
542 raw_spin_lock(&rt_rq->rt_runtime_lock);
543 rt_rq->rt_runtime = rt_b->rt_runtime;
544 rt_rq->rt_time = 0;
545 rt_rq->rt_throttled = 0;
546 raw_spin_unlock(&rt_rq->rt_runtime_lock);
547 raw_spin_unlock(&rt_b->rt_runtime_lock);
551 static void enable_runtime(struct rq *rq)
553 unsigned long flags;
555 raw_spin_lock_irqsave(&rq->lock, flags);
556 __enable_runtime(rq);
557 raw_spin_unlock_irqrestore(&rq->lock, flags);
560 static int balance_runtime(struct rt_rq *rt_rq)
562 int more = 0;
564 if (!sched_feat(RT_RUNTIME_SHARE))
565 return more;
567 if (rt_rq->rt_time > rt_rq->rt_runtime) {
568 raw_spin_unlock(&rt_rq->rt_runtime_lock);
569 more = do_balance_runtime(rt_rq);
570 raw_spin_lock(&rt_rq->rt_runtime_lock);
573 return more;
575 #else /* !CONFIG_SMP */
576 static inline int balance_runtime(struct rt_rq *rt_rq)
578 return 0;
580 #endif /* CONFIG_SMP */
582 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
584 int i, idle = 1;
585 const struct cpumask *span;
587 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
588 return 1;
590 span = sched_rt_period_mask();
591 #ifdef CONFIG_RT_GROUP_SCHED
593 * FIXME: isolated CPUs should really leave the root task group,
594 * whether they are isolcpus or were isolated via cpusets, lest
595 * the timer run on a CPU which does not service all runqueues,
596 * potentially leaving other CPUs indefinitely throttled. If
597 * isolation is really required, the user will turn the throttle
598 * off to kill the perturbations it causes anyway. Meanwhile,
599 * this maintains functionality for boot and/or troubleshooting.
601 if (rt_b == &root_task_group.rt_bandwidth)
602 span = cpu_online_mask;
603 #endif
604 for_each_cpu(i, span) {
605 int enqueue = 0;
606 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
607 struct rq *rq = rq_of_rt_rq(rt_rq);
609 raw_spin_lock(&rq->lock);
610 if (rt_rq->rt_time) {
611 u64 runtime;
613 raw_spin_lock(&rt_rq->rt_runtime_lock);
614 if (rt_rq->rt_throttled)
615 balance_runtime(rt_rq);
616 runtime = rt_rq->rt_runtime;
617 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
618 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
619 rt_rq->rt_throttled = 0;
620 enqueue = 1;
623 * Force a clock update if the CPU was idle,
624 * lest wakeup -> unthrottle time accumulate.
626 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
627 rq->skip_clock_update = -1;
629 if (rt_rq->rt_time || rt_rq->rt_nr_running)
630 idle = 0;
631 raw_spin_unlock(&rt_rq->rt_runtime_lock);
632 } else if (rt_rq->rt_nr_running) {
633 idle = 0;
634 if (!rt_rq_throttled(rt_rq))
635 enqueue = 1;
638 if (enqueue)
639 sched_rt_rq_enqueue(rt_rq);
640 raw_spin_unlock(&rq->lock);
643 return idle;
646 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
648 #ifdef CONFIG_RT_GROUP_SCHED
649 struct rt_rq *rt_rq = group_rt_rq(rt_se);
651 if (rt_rq)
652 return rt_rq->highest_prio.curr;
653 #endif
655 return rt_task_of(rt_se)->prio;
658 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
660 u64 runtime = sched_rt_runtime(rt_rq);
662 if (rt_rq->rt_throttled)
663 return rt_rq_throttled(rt_rq);
665 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
666 return 0;
668 balance_runtime(rt_rq);
669 runtime = sched_rt_runtime(rt_rq);
670 if (runtime == RUNTIME_INF)
671 return 0;
673 if (rt_rq->rt_time > runtime) {
674 rt_rq->rt_throttled = 1;
675 printk_once(KERN_WARNING "sched: RT throttling activated\n");
676 if (rt_rq_throttled(rt_rq)) {
677 sched_rt_rq_dequeue(rt_rq);
678 return 1;
682 return 0;
686 * Update the current task's runtime statistics. Skip current tasks that
687 * are not in our scheduling class.
689 static void update_curr_rt(struct rq *rq)
691 struct task_struct *curr = rq->curr;
692 struct sched_rt_entity *rt_se = &curr->rt;
693 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
694 u64 delta_exec;
696 if (curr->sched_class != &rt_sched_class)
697 return;
699 delta_exec = rq->clock_task - curr->se.exec_start;
700 if (unlikely((s64)delta_exec < 0))
701 delta_exec = 0;
703 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
705 curr->se.sum_exec_runtime += delta_exec;
706 account_group_exec_runtime(curr, delta_exec);
708 curr->se.exec_start = rq->clock_task;
709 cpuacct_charge(curr, delta_exec);
711 sched_rt_avg_update(rq, delta_exec);
713 if (!rt_bandwidth_enabled())
714 return;
716 for_each_sched_rt_entity(rt_se) {
717 rt_rq = rt_rq_of_se(rt_se);
719 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
720 raw_spin_lock(&rt_rq->rt_runtime_lock);
721 rt_rq->rt_time += delta_exec;
722 if (sched_rt_runtime_exceeded(rt_rq))
723 resched_task(curr);
724 raw_spin_unlock(&rt_rq->rt_runtime_lock);
729 #if defined CONFIG_SMP
731 static void
732 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
734 struct rq *rq = rq_of_rt_rq(rt_rq);
736 #ifdef CONFIG_RT_GROUP_SCHED
738 * Change rq's cpupri only if rt_rq is the top queue.
740 if (&rq->rt != rt_rq)
741 return;
742 #endif
743 if (rq->online && prio < prev_prio)
744 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
747 static void
748 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
750 struct rq *rq = rq_of_rt_rq(rt_rq);
752 #ifdef CONFIG_RT_GROUP_SCHED
754 * Change rq's cpupri only if rt_rq is the top queue.
756 if (&rq->rt != rt_rq)
757 return;
758 #endif
759 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
760 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
763 #else /* CONFIG_SMP */
765 static inline
766 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
767 static inline
768 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
770 #endif /* CONFIG_SMP */
772 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
773 static void
774 inc_rt_prio(struct rt_rq *rt_rq, int prio)
776 int prev_prio = rt_rq->highest_prio.curr;
778 if (prio < prev_prio)
779 rt_rq->highest_prio.curr = prio;
781 inc_rt_prio_smp(rt_rq, prio, prev_prio);
784 static void
785 dec_rt_prio(struct rt_rq *rt_rq, int prio)
787 int prev_prio = rt_rq->highest_prio.curr;
789 if (rt_rq->rt_nr_running) {
791 WARN_ON(prio < prev_prio);
794 * This may have been our highest task, and therefore
795 * we may have some recomputation to do
797 if (prio == prev_prio) {
798 struct rt_prio_array *array = &rt_rq->active;
800 rt_rq->highest_prio.curr =
801 sched_find_first_bit(array->bitmap);
804 } else
805 rt_rq->highest_prio.curr = MAX_RT_PRIO;
807 dec_rt_prio_smp(rt_rq, prio, prev_prio);
810 #else
812 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
813 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
815 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
817 #ifdef CONFIG_RT_GROUP_SCHED
819 static void
820 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
822 if (rt_se_boosted(rt_se))
823 rt_rq->rt_nr_boosted++;
825 if (rt_rq->tg)
826 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
829 static void
830 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
832 if (rt_se_boosted(rt_se))
833 rt_rq->rt_nr_boosted--;
835 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
838 #else /* CONFIG_RT_GROUP_SCHED */
840 static void
841 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
843 start_rt_bandwidth(&def_rt_bandwidth);
846 static inline
847 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
849 #endif /* CONFIG_RT_GROUP_SCHED */
851 static inline
852 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
854 int prio = rt_se_prio(rt_se);
856 WARN_ON(!rt_prio(prio));
857 rt_rq->rt_nr_running++;
859 inc_rt_prio(rt_rq, prio);
860 inc_rt_migration(rt_se, rt_rq);
861 inc_rt_group(rt_se, rt_rq);
864 static inline
865 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
867 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
868 WARN_ON(!rt_rq->rt_nr_running);
869 rt_rq->rt_nr_running--;
871 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
872 dec_rt_migration(rt_se, rt_rq);
873 dec_rt_group(rt_se, rt_rq);
876 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
878 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
879 struct rt_prio_array *array = &rt_rq->active;
880 struct rt_rq *group_rq = group_rt_rq(rt_se);
881 struct list_head *queue = array->queue + rt_se_prio(rt_se);
884 * Don't enqueue the group if its throttled, or when empty.
885 * The latter is a consequence of the former when a child group
886 * get throttled and the current group doesn't have any other
887 * active members.
889 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
890 return;
892 if (!rt_rq->rt_nr_running)
893 list_add_leaf_rt_rq(rt_rq);
895 if (head)
896 list_add(&rt_se->run_list, queue);
897 else
898 list_add_tail(&rt_se->run_list, queue);
899 __set_bit(rt_se_prio(rt_se), array->bitmap);
901 inc_rt_tasks(rt_se, rt_rq);
904 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
906 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
907 struct rt_prio_array *array = &rt_rq->active;
909 list_del_init(&rt_se->run_list);
910 if (list_empty(array->queue + rt_se_prio(rt_se)))
911 __clear_bit(rt_se_prio(rt_se), array->bitmap);
913 dec_rt_tasks(rt_se, rt_rq);
914 if (!rt_rq->rt_nr_running)
915 list_del_leaf_rt_rq(rt_rq);
919 * Because the prio of an upper entry depends on the lower
920 * entries, we must remove entries top - down.
922 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
924 struct sched_rt_entity *back = NULL;
926 for_each_sched_rt_entity(rt_se) {
927 rt_se->back = back;
928 back = rt_se;
931 for (rt_se = back; rt_se; rt_se = rt_se->back) {
932 if (on_rt_rq(rt_se))
933 __dequeue_rt_entity(rt_se);
937 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
939 dequeue_rt_stack(rt_se);
940 for_each_sched_rt_entity(rt_se)
941 __enqueue_rt_entity(rt_se, head);
944 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
946 dequeue_rt_stack(rt_se);
948 for_each_sched_rt_entity(rt_se) {
949 struct rt_rq *rt_rq = group_rt_rq(rt_se);
951 if (rt_rq && rt_rq->rt_nr_running)
952 __enqueue_rt_entity(rt_se, false);
957 * Adding/removing a task to/from a priority array:
959 static void
960 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
962 struct sched_rt_entity *rt_se = &p->rt;
964 if (flags & ENQUEUE_WAKEUP)
965 rt_se->timeout = 0;
967 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
969 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
970 enqueue_pushable_task(rq, p);
972 inc_nr_running(rq);
975 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
977 struct sched_rt_entity *rt_se = &p->rt;
979 update_curr_rt(rq);
980 dequeue_rt_entity(rt_se);
982 dequeue_pushable_task(rq, p);
984 dec_nr_running(rq);
988 * Put task to the end of the run list without the overhead of dequeue
989 * followed by enqueue.
991 static void
992 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
994 if (on_rt_rq(rt_se)) {
995 struct rt_prio_array *array = &rt_rq->active;
996 struct list_head *queue = array->queue + rt_se_prio(rt_se);
998 if (head)
999 list_move(&rt_se->run_list, queue);
1000 else
1001 list_move_tail(&rt_se->run_list, queue);
1005 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1007 struct sched_rt_entity *rt_se = &p->rt;
1008 struct rt_rq *rt_rq;
1010 for_each_sched_rt_entity(rt_se) {
1011 rt_rq = rt_rq_of_se(rt_se);
1012 requeue_rt_entity(rt_rq, rt_se, head);
1016 static void yield_task_rt(struct rq *rq)
1018 requeue_task_rt(rq, rq->curr, 0);
1021 #ifdef CONFIG_SMP
1022 static int find_lowest_rq(struct task_struct *task);
1024 static int
1025 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1027 struct task_struct *curr;
1028 struct rq *rq;
1029 int cpu;
1031 cpu = task_cpu(p);
1033 /* For anything but wake ups, just return the task_cpu */
1034 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1035 goto out;
1037 rq = cpu_rq(cpu);
1039 rcu_read_lock();
1040 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1043 * If the current task on @p's runqueue is an RT task, then
1044 * try to see if we can wake this RT task up on another
1045 * runqueue. Otherwise simply start this RT task
1046 * on its current runqueue.
1048 * We want to avoid overloading runqueues. If the woken
1049 * task is a higher priority, then it will stay on this CPU
1050 * and the lower prio task should be moved to another CPU.
1051 * Even though this will probably make the lower prio task
1052 * lose its cache, we do not want to bounce a higher task
1053 * around just because it gave up its CPU, perhaps for a
1054 * lock?
1056 * For equal prio tasks, we just let the scheduler sort it out.
1058 * Otherwise, just let it ride on the affined RQ and the
1059 * post-schedule router will push the preempted task away
1061 * This test is optimistic, if we get it wrong the load-balancer
1062 * will have to sort it out.
1064 if (curr && unlikely(rt_task(curr)) &&
1065 (curr->rt.nr_cpus_allowed < 2 ||
1066 curr->prio <= p->prio) &&
1067 (p->rt.nr_cpus_allowed > 1)) {
1068 int target = find_lowest_rq(p);
1071 * Don't bother moving it if the destination CPU is
1072 * not running a lower priority task.
1074 if (target != -1 &&
1075 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1076 cpu = target;
1078 rcu_read_unlock();
1080 out:
1081 return cpu;
1084 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1086 if (rq->curr->rt.nr_cpus_allowed == 1)
1087 return;
1089 if (p->rt.nr_cpus_allowed != 1
1090 && cpupri_find(&rq->rd->cpupri, p, NULL))
1091 return;
1093 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1094 return;
1097 * There appears to be other cpus that can accept
1098 * current and none to run 'p', so lets reschedule
1099 * to try and push current away:
1101 requeue_task_rt(rq, p, 1);
1102 resched_task(rq->curr);
1105 #endif /* CONFIG_SMP */
1108 * Preempt the current task with a newly woken task if needed:
1110 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1112 if (p->prio < rq->curr->prio) {
1113 resched_task(rq->curr);
1114 return;
1117 #ifdef CONFIG_SMP
1119 * If:
1121 * - the newly woken task is of equal priority to the current task
1122 * - the newly woken task is non-migratable while current is migratable
1123 * - current will be preempted on the next reschedule
1125 * we should check to see if current can readily move to a different
1126 * cpu. If so, we will reschedule to allow the push logic to try
1127 * to move current somewhere else, making room for our non-migratable
1128 * task.
1130 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1131 check_preempt_equal_prio(rq, p);
1132 #endif
1135 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1136 struct rt_rq *rt_rq)
1138 struct rt_prio_array *array = &rt_rq->active;
1139 struct sched_rt_entity *next = NULL;
1140 struct list_head *queue;
1141 int idx;
1143 idx = sched_find_first_bit(array->bitmap);
1144 BUG_ON(idx >= MAX_RT_PRIO);
1146 queue = array->queue + idx;
1147 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1149 return next;
1152 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1154 struct sched_rt_entity *rt_se;
1155 struct task_struct *p;
1156 struct rt_rq *rt_rq;
1158 rt_rq = &rq->rt;
1160 if (!rt_rq->rt_nr_running)
1161 return NULL;
1163 if (rt_rq_throttled(rt_rq))
1164 return NULL;
1166 do {
1167 rt_se = pick_next_rt_entity(rq, rt_rq);
1168 BUG_ON(!rt_se);
1169 rt_rq = group_rt_rq(rt_se);
1170 } while (rt_rq);
1172 p = rt_task_of(rt_se);
1173 p->se.exec_start = rq->clock_task;
1175 return p;
1178 static struct task_struct *pick_next_task_rt(struct rq *rq)
1180 struct task_struct *p = _pick_next_task_rt(rq);
1182 /* The running task is never eligible for pushing */
1183 if (p)
1184 dequeue_pushable_task(rq, p);
1186 #ifdef CONFIG_SMP
1188 * We detect this state here so that we can avoid taking the RQ
1189 * lock again later if there is no need to push
1191 rq->post_schedule = has_pushable_tasks(rq);
1192 #endif
1194 return p;
1197 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1199 update_curr_rt(rq);
1202 * The previous task needs to be made eligible for pushing
1203 * if it is still active
1205 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1206 enqueue_pushable_task(rq, p);
1209 #ifdef CONFIG_SMP
1211 /* Only try algorithms three times */
1212 #define RT_MAX_TRIES 3
1214 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1216 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1218 if (!task_running(rq, p) &&
1219 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1220 (p->rt.nr_cpus_allowed > 1))
1221 return 1;
1222 return 0;
1225 /* Return the second highest RT task, NULL otherwise */
1226 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1228 struct task_struct *next = NULL;
1229 struct sched_rt_entity *rt_se;
1230 struct rt_prio_array *array;
1231 struct rt_rq *rt_rq;
1232 int idx;
1234 for_each_leaf_rt_rq(rt_rq, rq) {
1235 array = &rt_rq->active;
1236 idx = sched_find_first_bit(array->bitmap);
1237 next_idx:
1238 if (idx >= MAX_RT_PRIO)
1239 continue;
1240 if (next && next->prio < idx)
1241 continue;
1242 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1243 struct task_struct *p;
1245 if (!rt_entity_is_task(rt_se))
1246 continue;
1248 p = rt_task_of(rt_se);
1249 if (pick_rt_task(rq, p, cpu)) {
1250 next = p;
1251 break;
1254 if (!next) {
1255 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1256 goto next_idx;
1260 return next;
1263 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1265 static int find_lowest_rq(struct task_struct *task)
1267 struct sched_domain *sd;
1268 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1269 int this_cpu = smp_processor_id();
1270 int cpu = task_cpu(task);
1272 /* Make sure the mask is initialized first */
1273 if (unlikely(!lowest_mask))
1274 return -1;
1276 if (task->rt.nr_cpus_allowed == 1)
1277 return -1; /* No other targets possible */
1279 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1280 return -1; /* No targets found */
1283 * At this point we have built a mask of cpus representing the
1284 * lowest priority tasks in the system. Now we want to elect
1285 * the best one based on our affinity and topology.
1287 * We prioritize the last cpu that the task executed on since
1288 * it is most likely cache-hot in that location.
1290 if (cpumask_test_cpu(cpu, lowest_mask))
1291 return cpu;
1294 * Otherwise, we consult the sched_domains span maps to figure
1295 * out which cpu is logically closest to our hot cache data.
1297 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1298 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1300 rcu_read_lock();
1301 for_each_domain(cpu, sd) {
1302 if (sd->flags & SD_WAKE_AFFINE) {
1303 int best_cpu;
1306 * "this_cpu" is cheaper to preempt than a
1307 * remote processor.
1309 if (this_cpu != -1 &&
1310 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1311 rcu_read_unlock();
1312 return this_cpu;
1315 best_cpu = cpumask_first_and(lowest_mask,
1316 sched_domain_span(sd));
1317 if (best_cpu < nr_cpu_ids) {
1318 rcu_read_unlock();
1319 return best_cpu;
1323 rcu_read_unlock();
1326 * And finally, if there were no matches within the domains
1327 * just give the caller *something* to work with from the compatible
1328 * locations.
1330 if (this_cpu != -1)
1331 return this_cpu;
1333 cpu = cpumask_any(lowest_mask);
1334 if (cpu < nr_cpu_ids)
1335 return cpu;
1336 return -1;
1339 /* Will lock the rq it finds */
1340 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1342 struct rq *lowest_rq = NULL;
1343 int tries;
1344 int cpu;
1346 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1347 cpu = find_lowest_rq(task);
1349 if ((cpu == -1) || (cpu == rq->cpu))
1350 break;
1352 lowest_rq = cpu_rq(cpu);
1354 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1356 * Target rq has tasks of equal or higher priority,
1357 * retrying does not release any lock and is unlikely
1358 * to yield a different result.
1360 lowest_rq = NULL;
1361 break;
1364 /* if the prio of this runqueue changed, try again */
1365 if (double_lock_balance(rq, lowest_rq)) {
1367 * We had to unlock the run queue. In
1368 * the mean time, task could have
1369 * migrated already or had its affinity changed.
1370 * Also make sure that it wasn't scheduled on its rq.
1372 if (unlikely(task_rq(task) != rq ||
1373 !cpumask_test_cpu(lowest_rq->cpu,
1374 tsk_cpus_allowed(task)) ||
1375 task_running(rq, task) ||
1376 !task->on_rq)) {
1378 raw_spin_unlock(&lowest_rq->lock);
1379 lowest_rq = NULL;
1380 break;
1384 /* If this rq is still suitable use it. */
1385 if (lowest_rq->rt.highest_prio.curr > task->prio)
1386 break;
1388 /* try again */
1389 double_unlock_balance(rq, lowest_rq);
1390 lowest_rq = NULL;
1393 return lowest_rq;
1396 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1398 struct task_struct *p;
1400 if (!has_pushable_tasks(rq))
1401 return NULL;
1403 p = plist_first_entry(&rq->rt.pushable_tasks,
1404 struct task_struct, pushable_tasks);
1406 BUG_ON(rq->cpu != task_cpu(p));
1407 BUG_ON(task_current(rq, p));
1408 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1410 BUG_ON(!p->on_rq);
1411 BUG_ON(!rt_task(p));
1413 return p;
1417 * If the current CPU has more than one RT task, see if the non
1418 * running task can migrate over to a CPU that is running a task
1419 * of lesser priority.
1421 static int push_rt_task(struct rq *rq)
1423 struct task_struct *next_task;
1424 struct rq *lowest_rq;
1425 int ret = 0;
1427 if (!rq->rt.overloaded)
1428 return 0;
1430 next_task = pick_next_pushable_task(rq);
1431 if (!next_task)
1432 return 0;
1434 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1435 if (unlikely(task_running(rq, next_task)))
1436 return 0;
1437 #endif
1439 retry:
1440 if (unlikely(next_task == rq->curr)) {
1441 WARN_ON(1);
1442 return 0;
1446 * It's possible that the next_task slipped in of
1447 * higher priority than current. If that's the case
1448 * just reschedule current.
1450 if (unlikely(next_task->prio < rq->curr->prio)) {
1451 resched_task(rq->curr);
1452 return 0;
1455 /* We might release rq lock */
1456 get_task_struct(next_task);
1458 /* find_lock_lowest_rq locks the rq if found */
1459 lowest_rq = find_lock_lowest_rq(next_task, rq);
1460 if (!lowest_rq) {
1461 struct task_struct *task;
1463 * find_lock_lowest_rq releases rq->lock
1464 * so it is possible that next_task has migrated.
1466 * We need to make sure that the task is still on the same
1467 * run-queue and is also still the next task eligible for
1468 * pushing.
1470 task = pick_next_pushable_task(rq);
1471 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1473 * The task hasn't migrated, and is still the next
1474 * eligible task, but we failed to find a run-queue
1475 * to push it to. Do not retry in this case, since
1476 * other cpus will pull from us when ready.
1478 goto out;
1481 if (!task)
1482 /* No more tasks, just exit */
1483 goto out;
1486 * Something has shifted, try again.
1488 put_task_struct(next_task);
1489 next_task = task;
1490 goto retry;
1493 deactivate_task(rq, next_task, 0);
1494 set_task_cpu(next_task, lowest_rq->cpu);
1495 activate_task(lowest_rq, next_task, 0);
1496 ret = 1;
1498 resched_task(lowest_rq->curr);
1500 double_unlock_balance(rq, lowest_rq);
1502 out:
1503 put_task_struct(next_task);
1505 return ret;
1508 static void push_rt_tasks(struct rq *rq)
1510 /* push_rt_task will return true if it moved an RT */
1511 while (push_rt_task(rq))
1515 static int pull_rt_task(struct rq *this_rq)
1517 int this_cpu = this_rq->cpu, ret = 0, cpu;
1518 struct task_struct *p;
1519 struct rq *src_rq;
1521 if (likely(!rt_overloaded(this_rq)))
1522 return 0;
1524 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1525 if (this_cpu == cpu)
1526 continue;
1528 src_rq = cpu_rq(cpu);
1531 * Don't bother taking the src_rq->lock if the next highest
1532 * task is known to be lower-priority than our current task.
1533 * This may look racy, but if this value is about to go
1534 * logically higher, the src_rq will push this task away.
1535 * And if its going logically lower, we do not care
1537 if (src_rq->rt.highest_prio.next >=
1538 this_rq->rt.highest_prio.curr)
1539 continue;
1542 * We can potentially drop this_rq's lock in
1543 * double_lock_balance, and another CPU could
1544 * alter this_rq
1546 double_lock_balance(this_rq, src_rq);
1549 * Are there still pullable RT tasks?
1551 if (src_rq->rt.rt_nr_running <= 1)
1552 goto skip;
1554 p = pick_next_highest_task_rt(src_rq, this_cpu);
1557 * Do we have an RT task that preempts
1558 * the to-be-scheduled task?
1560 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1561 WARN_ON(p == src_rq->curr);
1562 WARN_ON(!p->on_rq);
1565 * There's a chance that p is higher in priority
1566 * than what's currently running on its cpu.
1567 * This is just that p is wakeing up and hasn't
1568 * had a chance to schedule. We only pull
1569 * p if it is lower in priority than the
1570 * current task on the run queue
1572 if (p->prio < src_rq->curr->prio)
1573 goto skip;
1575 ret = 1;
1577 deactivate_task(src_rq, p, 0);
1578 set_task_cpu(p, this_cpu);
1579 activate_task(this_rq, p, 0);
1581 * We continue with the search, just in
1582 * case there's an even higher prio task
1583 * in another runqueue. (low likelihood
1584 * but possible)
1587 skip:
1588 double_unlock_balance(this_rq, src_rq);
1591 return ret;
1594 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1596 /* Try to pull RT tasks here if we lower this rq's prio */
1597 if (rq->rt.highest_prio.curr > prev->prio)
1598 pull_rt_task(rq);
1601 static void post_schedule_rt(struct rq *rq)
1603 push_rt_tasks(rq);
1607 * If we are not running and we are not going to reschedule soon, we should
1608 * try to push tasks away now
1610 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1612 if (!task_running(rq, p) &&
1613 !test_tsk_need_resched(rq->curr) &&
1614 has_pushable_tasks(rq) &&
1615 p->rt.nr_cpus_allowed > 1 &&
1616 rt_task(rq->curr) &&
1617 (rq->curr->rt.nr_cpus_allowed < 2 ||
1618 rq->curr->prio <= p->prio))
1619 push_rt_tasks(rq);
1622 static void set_cpus_allowed_rt(struct task_struct *p,
1623 const struct cpumask *new_mask)
1625 int weight = cpumask_weight(new_mask);
1627 BUG_ON(!rt_task(p));
1630 * Update the migration status of the RQ if we have an RT task
1631 * which is running AND changing its weight value.
1633 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1634 struct rq *rq = task_rq(p);
1636 if (!task_current(rq, p)) {
1638 * Make sure we dequeue this task from the pushable list
1639 * before going further. It will either remain off of
1640 * the list because we are no longer pushable, or it
1641 * will be requeued.
1643 if (p->rt.nr_cpus_allowed > 1)
1644 dequeue_pushable_task(rq, p);
1647 * Requeue if our weight is changing and still > 1
1649 if (weight > 1)
1650 enqueue_pushable_task(rq, p);
1654 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1655 rq->rt.rt_nr_migratory++;
1656 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1657 BUG_ON(!rq->rt.rt_nr_migratory);
1658 rq->rt.rt_nr_migratory--;
1661 update_rt_migration(&rq->rt);
1665 /* Assumes rq->lock is held */
1666 static void rq_online_rt(struct rq *rq)
1668 if (rq->rt.overloaded)
1669 rt_set_overload(rq);
1671 __enable_runtime(rq);
1673 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1676 /* Assumes rq->lock is held */
1677 static void rq_offline_rt(struct rq *rq)
1679 if (rq->rt.overloaded)
1680 rt_clear_overload(rq);
1682 __disable_runtime(rq);
1684 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1688 * When switch from the rt queue, we bring ourselves to a position
1689 * that we might want to pull RT tasks from other runqueues.
1691 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1694 * If there are other RT tasks then we will reschedule
1695 * and the scheduling of the other RT tasks will handle
1696 * the balancing. But if we are the last RT task
1697 * we may need to handle the pulling of RT tasks
1698 * now.
1700 if (p->on_rq && !rq->rt.rt_nr_running)
1701 pull_rt_task(rq);
1704 static inline void init_sched_rt_class(void)
1706 unsigned int i;
1708 for_each_possible_cpu(i)
1709 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1710 GFP_KERNEL, cpu_to_node(i));
1712 #endif /* CONFIG_SMP */
1715 * When switching a task to RT, we may overload the runqueue
1716 * with RT tasks. In this case we try to push them off to
1717 * other runqueues.
1719 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1721 int check_resched = 1;
1724 * If we are already running, then there's nothing
1725 * that needs to be done. But if we are not running
1726 * we may need to preempt the current running task.
1727 * If that current running task is also an RT task
1728 * then see if we can move to another run queue.
1730 if (p->on_rq && rq->curr != p) {
1731 #ifdef CONFIG_SMP
1732 if (rq->rt.overloaded && push_rt_task(rq) &&
1733 /* Don't resched if we changed runqueues */
1734 rq != task_rq(p))
1735 check_resched = 0;
1736 #endif /* CONFIG_SMP */
1737 if (check_resched && p->prio < rq->curr->prio)
1738 resched_task(rq->curr);
1743 * Priority of the task has changed. This may cause
1744 * us to initiate a push or pull.
1746 static void
1747 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1749 if (!p->on_rq)
1750 return;
1752 if (rq->curr == p) {
1753 #ifdef CONFIG_SMP
1755 * If our priority decreases while running, we
1756 * may need to pull tasks to this runqueue.
1758 if (oldprio < p->prio)
1759 pull_rt_task(rq);
1761 * If there's a higher priority task waiting to run
1762 * then reschedule. Note, the above pull_rt_task
1763 * can release the rq lock and p could migrate.
1764 * Only reschedule if p is still on the same runqueue.
1766 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1767 resched_task(p);
1768 #else
1769 /* For UP simply resched on drop of prio */
1770 if (oldprio < p->prio)
1771 resched_task(p);
1772 #endif /* CONFIG_SMP */
1773 } else {
1775 * This task is not running, but if it is
1776 * greater than the current running task
1777 * then reschedule.
1779 if (p->prio < rq->curr->prio)
1780 resched_task(rq->curr);
1784 static void watchdog(struct rq *rq, struct task_struct *p)
1786 unsigned long soft, hard;
1788 /* max may change after cur was read, this will be fixed next tick */
1789 soft = task_rlimit(p, RLIMIT_RTTIME);
1790 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1792 if (soft != RLIM_INFINITY) {
1793 unsigned long next;
1795 if (p->rt.watchdog_stamp != jiffies) {
1796 p->rt.timeout++;
1797 p->rt.watchdog_stamp = jiffies;
1800 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1801 if (p->rt.timeout > next)
1802 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1806 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1808 struct sched_rt_entity *rt_se = &p->rt;
1810 update_curr_rt(rq);
1812 watchdog(rq, p);
1815 * RR tasks need a special form of timeslice management.
1816 * FIFO tasks have no timeslices.
1818 if (p->policy != SCHED_RR)
1819 return;
1821 if (--p->rt.time_slice)
1822 return;
1824 p->rt.time_slice = DEF_TIMESLICE;
1827 * Requeue to the end of queue if we (and all of our ancestors) are the
1828 * only element on the queue
1830 for_each_sched_rt_entity(rt_se) {
1831 if (rt_se->run_list.prev != rt_se->run_list.next) {
1832 requeue_task_rt(rq, p, 0);
1833 set_tsk_need_resched(p);
1834 return;
1839 static void set_curr_task_rt(struct rq *rq)
1841 struct task_struct *p = rq->curr;
1843 p->se.exec_start = rq->clock_task;
1845 /* The running task is never eligible for pushing */
1846 dequeue_pushable_task(rq, p);
1849 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1852 * Time slice is 0 for SCHED_FIFO tasks
1854 if (task->policy == SCHED_RR)
1855 return DEF_TIMESLICE;
1856 else
1857 return 0;
1860 static const struct sched_class rt_sched_class = {
1861 .next = &fair_sched_class,
1862 .enqueue_task = enqueue_task_rt,
1863 .dequeue_task = dequeue_task_rt,
1864 .yield_task = yield_task_rt,
1866 .check_preempt_curr = check_preempt_curr_rt,
1868 .pick_next_task = pick_next_task_rt,
1869 .put_prev_task = put_prev_task_rt,
1871 #ifdef CONFIG_SMP
1872 .select_task_rq = select_task_rq_rt,
1874 .set_cpus_allowed = set_cpus_allowed_rt,
1875 .rq_online = rq_online_rt,
1876 .rq_offline = rq_offline_rt,
1877 .pre_schedule = pre_schedule_rt,
1878 .post_schedule = post_schedule_rt,
1879 .task_woken = task_woken_rt,
1880 .switched_from = switched_from_rt,
1881 #endif
1883 .set_curr_task = set_curr_task_rt,
1884 .task_tick = task_tick_rt,
1886 .get_rr_interval = get_rr_interval_rt,
1888 .prio_changed = prio_changed_rt,
1889 .switched_to = switched_to_rt,
1892 #ifdef CONFIG_SCHED_DEBUG
1893 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1895 static void print_rt_stats(struct seq_file *m, int cpu)
1897 rt_rq_iter_t iter;
1898 struct rt_rq *rt_rq;
1900 rcu_read_lock();
1901 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
1902 print_rt_rq(m, cpu, rt_rq);
1903 rcu_read_unlock();
1905 #endif /* CONFIG_SCHED_DEBUG */