2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
6 #ifdef CONFIG_RT_GROUP_SCHED
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
10 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
15 return container_of(rt_se
, struct task_struct
, rt
);
18 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
23 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
28 #else /* CONFIG_RT_GROUP_SCHED */
30 #define rt_entity_is_task(rt_se) (1)
32 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
34 return container_of(rt_se
, struct task_struct
, rt
);
37 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
39 return container_of(rt_rq
, struct rq
, rt
);
42 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
44 struct task_struct
*p
= rt_task_of(rt_se
);
45 struct rq
*rq
= task_rq(p
);
50 #endif /* CONFIG_RT_GROUP_SCHED */
54 static inline int rt_overloaded(struct rq
*rq
)
56 return atomic_read(&rq
->rd
->rto_count
);
59 static inline void rt_set_overload(struct rq
*rq
)
64 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
73 atomic_inc(&rq
->rd
->rto_count
);
76 static inline void rt_clear_overload(struct rq
*rq
)
81 /* the order here really doesn't matter */
82 atomic_dec(&rq
->rd
->rto_count
);
83 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
86 static void update_rt_migration(struct rt_rq
*rt_rq
)
88 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
89 if (!rt_rq
->overloaded
) {
90 rt_set_overload(rq_of_rt_rq(rt_rq
));
91 rt_rq
->overloaded
= 1;
93 } else if (rt_rq
->overloaded
) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq
));
95 rt_rq
->overloaded
= 0;
99 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
101 if (!rt_entity_is_task(rt_se
))
104 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
106 rt_rq
->rt_nr_total
++;
107 if (rt_se
->nr_cpus_allowed
> 1)
108 rt_rq
->rt_nr_migratory
++;
110 update_rt_migration(rt_rq
);
113 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
115 if (!rt_entity_is_task(rt_se
))
118 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
120 rt_rq
->rt_nr_total
--;
121 if (rt_se
->nr_cpus_allowed
> 1)
122 rt_rq
->rt_nr_migratory
--;
124 update_rt_migration(rt_rq
);
127 static inline int has_pushable_tasks(struct rq
*rq
)
129 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
132 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
134 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
135 plist_node_init(&p
->pushable_tasks
, p
->prio
);
136 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
138 /* Update the highest prio pushable task */
139 if (p
->prio
< rq
->rt
.highest_prio
.next
)
140 rq
->rt
.highest_prio
.next
= p
->prio
;
143 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
145 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
147 /* Update the new highest prio pushable task */
148 if (has_pushable_tasks(rq
)) {
149 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
150 struct task_struct
, pushable_tasks
);
151 rq
->rt
.highest_prio
.next
= p
->prio
;
153 rq
->rt
.highest_prio
.next
= MAX_RT_PRIO
;
158 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
162 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
167 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
172 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
176 #endif /* CONFIG_SMP */
178 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
180 return !list_empty(&rt_se
->run_list
);
183 #ifdef CONFIG_RT_GROUP_SCHED
185 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
190 return rt_rq
->rt_runtime
;
193 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
195 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
198 typedef struct task_group
*rt_rq_iter_t
;
200 static inline struct task_group
*next_task_group(struct task_group
*tg
)
203 tg
= list_entry_rcu(tg
->list
.next
,
204 typeof(struct task_group
), list
);
205 } while (&tg
->list
!= &task_groups
&& task_group_is_autogroup(tg
));
207 if (&tg
->list
== &task_groups
)
213 #define for_each_rt_rq(rt_rq, iter, rq) \
214 for (iter = container_of(&task_groups, typeof(*iter), list); \
215 (iter = next_task_group(iter)) && \
216 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
218 static inline void list_add_leaf_rt_rq(struct rt_rq
*rt_rq
)
220 list_add_rcu(&rt_rq
->leaf_rt_rq_list
,
221 &rq_of_rt_rq(rt_rq
)->leaf_rt_rq_list
);
224 static inline void list_del_leaf_rt_rq(struct rt_rq
*rt_rq
)
226 list_del_rcu(&rt_rq
->leaf_rt_rq_list
);
229 #define for_each_leaf_rt_rq(rt_rq, rq) \
230 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
232 #define for_each_sched_rt_entity(rt_se) \
233 for (; rt_se; rt_se = rt_se->parent)
235 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
240 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
);
241 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
243 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
245 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
246 struct sched_rt_entity
*rt_se
;
248 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
250 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
252 if (rt_rq
->rt_nr_running
) {
253 if (rt_se
&& !on_rt_rq(rt_se
))
254 enqueue_rt_entity(rt_se
, false);
255 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
260 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
262 struct sched_rt_entity
*rt_se
;
263 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
265 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
267 if (rt_se
&& on_rt_rq(rt_se
))
268 dequeue_rt_entity(rt_se
);
271 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
273 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
276 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
278 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
279 struct task_struct
*p
;
282 return !!rt_rq
->rt_nr_boosted
;
284 p
= rt_task_of(rt_se
);
285 return p
->prio
!= p
->normal_prio
;
289 static inline const struct cpumask
*sched_rt_period_mask(void)
291 return cpu_rq(smp_processor_id())->rd
->span
;
294 static inline const struct cpumask
*sched_rt_period_mask(void)
296 return cpu_online_mask
;
301 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
303 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
306 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
308 return &rt_rq
->tg
->rt_bandwidth
;
311 #else /* !CONFIG_RT_GROUP_SCHED */
313 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
315 return rt_rq
->rt_runtime
;
318 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
320 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
323 typedef struct rt_rq
*rt_rq_iter_t
;
325 #define for_each_rt_rq(rt_rq, iter, rq) \
326 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
328 static inline void list_add_leaf_rt_rq(struct rt_rq
*rt_rq
)
332 static inline void list_del_leaf_rt_rq(struct rt_rq
*rt_rq
)
336 #define for_each_leaf_rt_rq(rt_rq, rq) \
337 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
339 #define for_each_sched_rt_entity(rt_se) \
340 for (; rt_se; rt_se = NULL)
342 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
347 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
349 if (rt_rq
->rt_nr_running
)
350 resched_task(rq_of_rt_rq(rt_rq
)->curr
);
353 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
357 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
359 return rt_rq
->rt_throttled
;
362 static inline const struct cpumask
*sched_rt_period_mask(void)
364 return cpu_online_mask
;
368 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
370 return &cpu_rq(cpu
)->rt
;
373 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
375 return &def_rt_bandwidth
;
378 #endif /* CONFIG_RT_GROUP_SCHED */
382 * We ran out of runtime, see if we can borrow some from our neighbours.
384 static int do_balance_runtime(struct rt_rq
*rt_rq
)
386 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
387 struct root_domain
*rd
= rq_of_rt_rq(rt_rq
)->rd
;
388 int i
, weight
, more
= 0;
391 weight
= cpumask_weight(rd
->span
);
393 raw_spin_lock(&rt_b
->rt_runtime_lock
);
394 rt_period
= ktime_to_ns(rt_b
->rt_period
);
395 for_each_cpu(i
, rd
->span
) {
396 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
402 raw_spin_lock(&iter
->rt_runtime_lock
);
404 * Either all rqs have inf runtime and there's nothing to steal
405 * or __disable_runtime() below sets a specific rq to inf to
406 * indicate its been disabled and disalow stealing.
408 if (iter
->rt_runtime
== RUNTIME_INF
)
412 * From runqueues with spare time, take 1/n part of their
413 * spare time, but no more than our period.
415 diff
= iter
->rt_runtime
- iter
->rt_time
;
417 diff
= div_u64((u64
)diff
, weight
);
418 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
419 diff
= rt_period
- rt_rq
->rt_runtime
;
420 iter
->rt_runtime
-= diff
;
421 rt_rq
->rt_runtime
+= diff
;
423 if (rt_rq
->rt_runtime
== rt_period
) {
424 raw_spin_unlock(&iter
->rt_runtime_lock
);
429 raw_spin_unlock(&iter
->rt_runtime_lock
);
431 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
437 * Ensure this RQ takes back all the runtime it lend to its neighbours.
439 static void __disable_runtime(struct rq
*rq
)
441 struct root_domain
*rd
= rq
->rd
;
445 if (unlikely(!scheduler_running
))
448 for_each_rt_rq(rt_rq
, iter
, rq
) {
449 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
453 raw_spin_lock(&rt_b
->rt_runtime_lock
);
454 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
456 * Either we're all inf and nobody needs to borrow, or we're
457 * already disabled and thus have nothing to do, or we have
458 * exactly the right amount of runtime to take out.
460 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
461 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
463 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
466 * Calculate the difference between what we started out with
467 * and what we current have, that's the amount of runtime
468 * we lend and now have to reclaim.
470 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
473 * Greedy reclaim, take back as much as we can.
475 for_each_cpu(i
, rd
->span
) {
476 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
480 * Can't reclaim from ourselves or disabled runqueues.
482 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
485 raw_spin_lock(&iter
->rt_runtime_lock
);
487 diff
= min_t(s64
, iter
->rt_runtime
, want
);
488 iter
->rt_runtime
-= diff
;
491 iter
->rt_runtime
-= want
;
494 raw_spin_unlock(&iter
->rt_runtime_lock
);
500 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
502 * We cannot be left wanting - that would mean some runtime
503 * leaked out of the system.
508 * Disable all the borrow logic by pretending we have inf
509 * runtime - in which case borrowing doesn't make sense.
511 rt_rq
->rt_runtime
= RUNTIME_INF
;
512 rt_rq
->rt_throttled
= 0;
513 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
514 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
518 static void disable_runtime(struct rq
*rq
)
522 raw_spin_lock_irqsave(&rq
->lock
, flags
);
523 __disable_runtime(rq
);
524 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
527 static void __enable_runtime(struct rq
*rq
)
532 if (unlikely(!scheduler_running
))
536 * Reset each runqueue's bandwidth settings
538 for_each_rt_rq(rt_rq
, iter
, rq
) {
539 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
541 raw_spin_lock(&rt_b
->rt_runtime_lock
);
542 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
543 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
545 rt_rq
->rt_throttled
= 0;
546 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
547 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
551 static void enable_runtime(struct rq
*rq
)
555 raw_spin_lock_irqsave(&rq
->lock
, flags
);
556 __enable_runtime(rq
);
557 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
560 static int balance_runtime(struct rt_rq
*rt_rq
)
564 if (!sched_feat(RT_RUNTIME_SHARE
))
567 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
568 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
569 more
= do_balance_runtime(rt_rq
);
570 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
575 #else /* !CONFIG_SMP */
576 static inline int balance_runtime(struct rt_rq
*rt_rq
)
580 #endif /* CONFIG_SMP */
582 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
585 const struct cpumask
*span
;
587 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
590 span
= sched_rt_period_mask();
591 #ifdef CONFIG_RT_GROUP_SCHED
593 * FIXME: isolated CPUs should really leave the root task group,
594 * whether they are isolcpus or were isolated via cpusets, lest
595 * the timer run on a CPU which does not service all runqueues,
596 * potentially leaving other CPUs indefinitely throttled. If
597 * isolation is really required, the user will turn the throttle
598 * off to kill the perturbations it causes anyway. Meanwhile,
599 * this maintains functionality for boot and/or troubleshooting.
601 if (rt_b
== &root_task_group
.rt_bandwidth
)
602 span
= cpu_online_mask
;
604 for_each_cpu(i
, span
) {
606 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
607 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
609 raw_spin_lock(&rq
->lock
);
610 if (rt_rq
->rt_time
) {
613 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
614 if (rt_rq
->rt_throttled
)
615 balance_runtime(rt_rq
);
616 runtime
= rt_rq
->rt_runtime
;
617 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
618 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
619 rt_rq
->rt_throttled
= 0;
623 * Force a clock update if the CPU was idle,
624 * lest wakeup -> unthrottle time accumulate.
626 if (rt_rq
->rt_nr_running
&& rq
->curr
== rq
->idle
)
627 rq
->skip_clock_update
= -1;
629 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
631 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
632 } else if (rt_rq
->rt_nr_running
) {
634 if (!rt_rq_throttled(rt_rq
))
639 sched_rt_rq_enqueue(rt_rq
);
640 raw_spin_unlock(&rq
->lock
);
646 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
648 #ifdef CONFIG_RT_GROUP_SCHED
649 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
652 return rt_rq
->highest_prio
.curr
;
655 return rt_task_of(rt_se
)->prio
;
658 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
660 u64 runtime
= sched_rt_runtime(rt_rq
);
662 if (rt_rq
->rt_throttled
)
663 return rt_rq_throttled(rt_rq
);
665 if (sched_rt_runtime(rt_rq
) >= sched_rt_period(rt_rq
))
668 balance_runtime(rt_rq
);
669 runtime
= sched_rt_runtime(rt_rq
);
670 if (runtime
== RUNTIME_INF
)
673 if (rt_rq
->rt_time
> runtime
) {
674 rt_rq
->rt_throttled
= 1;
675 printk_once(KERN_WARNING
"sched: RT throttling activated\n");
676 if (rt_rq_throttled(rt_rq
)) {
677 sched_rt_rq_dequeue(rt_rq
);
686 * Update the current task's runtime statistics. Skip current tasks that
687 * are not in our scheduling class.
689 static void update_curr_rt(struct rq
*rq
)
691 struct task_struct
*curr
= rq
->curr
;
692 struct sched_rt_entity
*rt_se
= &curr
->rt
;
693 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
696 if (curr
->sched_class
!= &rt_sched_class
)
699 delta_exec
= rq
->clock_task
- curr
->se
.exec_start
;
700 if (unlikely((s64
)delta_exec
< 0))
703 schedstat_set(curr
->se
.statistics
.exec_max
, max(curr
->se
.statistics
.exec_max
, delta_exec
));
705 curr
->se
.sum_exec_runtime
+= delta_exec
;
706 account_group_exec_runtime(curr
, delta_exec
);
708 curr
->se
.exec_start
= rq
->clock_task
;
709 cpuacct_charge(curr
, delta_exec
);
711 sched_rt_avg_update(rq
, delta_exec
);
713 if (!rt_bandwidth_enabled())
716 for_each_sched_rt_entity(rt_se
) {
717 rt_rq
= rt_rq_of_se(rt_se
);
719 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
720 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
721 rt_rq
->rt_time
+= delta_exec
;
722 if (sched_rt_runtime_exceeded(rt_rq
))
724 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
729 #if defined CONFIG_SMP
732 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
734 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
736 #ifdef CONFIG_RT_GROUP_SCHED
738 * Change rq's cpupri only if rt_rq is the top queue.
740 if (&rq
->rt
!= rt_rq
)
743 if (rq
->online
&& prio
< prev_prio
)
744 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
748 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
750 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
752 #ifdef CONFIG_RT_GROUP_SCHED
754 * Change rq's cpupri only if rt_rq is the top queue.
756 if (&rq
->rt
!= rt_rq
)
759 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
760 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
763 #else /* CONFIG_SMP */
766 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
768 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
770 #endif /* CONFIG_SMP */
772 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
774 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
776 int prev_prio
= rt_rq
->highest_prio
.curr
;
778 if (prio
< prev_prio
)
779 rt_rq
->highest_prio
.curr
= prio
;
781 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
785 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
787 int prev_prio
= rt_rq
->highest_prio
.curr
;
789 if (rt_rq
->rt_nr_running
) {
791 WARN_ON(prio
< prev_prio
);
794 * This may have been our highest task, and therefore
795 * we may have some recomputation to do
797 if (prio
== prev_prio
) {
798 struct rt_prio_array
*array
= &rt_rq
->active
;
800 rt_rq
->highest_prio
.curr
=
801 sched_find_first_bit(array
->bitmap
);
805 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
807 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
812 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
813 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
815 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
817 #ifdef CONFIG_RT_GROUP_SCHED
820 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
822 if (rt_se_boosted(rt_se
))
823 rt_rq
->rt_nr_boosted
++;
826 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
830 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
832 if (rt_se_boosted(rt_se
))
833 rt_rq
->rt_nr_boosted
--;
835 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
838 #else /* CONFIG_RT_GROUP_SCHED */
841 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
843 start_rt_bandwidth(&def_rt_bandwidth
);
847 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
849 #endif /* CONFIG_RT_GROUP_SCHED */
852 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
854 int prio
= rt_se_prio(rt_se
);
856 WARN_ON(!rt_prio(prio
));
857 rt_rq
->rt_nr_running
++;
859 inc_rt_prio(rt_rq
, prio
);
860 inc_rt_migration(rt_se
, rt_rq
);
861 inc_rt_group(rt_se
, rt_rq
);
865 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
867 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
868 WARN_ON(!rt_rq
->rt_nr_running
);
869 rt_rq
->rt_nr_running
--;
871 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
872 dec_rt_migration(rt_se
, rt_rq
);
873 dec_rt_group(rt_se
, rt_rq
);
876 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
878 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
879 struct rt_prio_array
*array
= &rt_rq
->active
;
880 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
881 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
884 * Don't enqueue the group if its throttled, or when empty.
885 * The latter is a consequence of the former when a child group
886 * get throttled and the current group doesn't have any other
889 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
892 if (!rt_rq
->rt_nr_running
)
893 list_add_leaf_rt_rq(rt_rq
);
896 list_add(&rt_se
->run_list
, queue
);
898 list_add_tail(&rt_se
->run_list
, queue
);
899 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
901 inc_rt_tasks(rt_se
, rt_rq
);
904 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
906 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
907 struct rt_prio_array
*array
= &rt_rq
->active
;
909 list_del_init(&rt_se
->run_list
);
910 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
911 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
913 dec_rt_tasks(rt_se
, rt_rq
);
914 if (!rt_rq
->rt_nr_running
)
915 list_del_leaf_rt_rq(rt_rq
);
919 * Because the prio of an upper entry depends on the lower
920 * entries, we must remove entries top - down.
922 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
924 struct sched_rt_entity
*back
= NULL
;
926 for_each_sched_rt_entity(rt_se
) {
931 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
933 __dequeue_rt_entity(rt_se
);
937 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
939 dequeue_rt_stack(rt_se
);
940 for_each_sched_rt_entity(rt_se
)
941 __enqueue_rt_entity(rt_se
, head
);
944 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
946 dequeue_rt_stack(rt_se
);
948 for_each_sched_rt_entity(rt_se
) {
949 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
951 if (rt_rq
&& rt_rq
->rt_nr_running
)
952 __enqueue_rt_entity(rt_se
, false);
957 * Adding/removing a task to/from a priority array:
960 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
962 struct sched_rt_entity
*rt_se
= &p
->rt
;
964 if (flags
& ENQUEUE_WAKEUP
)
967 enqueue_rt_entity(rt_se
, flags
& ENQUEUE_HEAD
);
969 if (!task_current(rq
, p
) && p
->rt
.nr_cpus_allowed
> 1)
970 enqueue_pushable_task(rq
, p
);
975 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
977 struct sched_rt_entity
*rt_se
= &p
->rt
;
980 dequeue_rt_entity(rt_se
);
982 dequeue_pushable_task(rq
, p
);
988 * Put task to the end of the run list without the overhead of dequeue
989 * followed by enqueue.
992 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
994 if (on_rt_rq(rt_se
)) {
995 struct rt_prio_array
*array
= &rt_rq
->active
;
996 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
999 list_move(&rt_se
->run_list
, queue
);
1001 list_move_tail(&rt_se
->run_list
, queue
);
1005 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
1007 struct sched_rt_entity
*rt_se
= &p
->rt
;
1008 struct rt_rq
*rt_rq
;
1010 for_each_sched_rt_entity(rt_se
) {
1011 rt_rq
= rt_rq_of_se(rt_se
);
1012 requeue_rt_entity(rt_rq
, rt_se
, head
);
1016 static void yield_task_rt(struct rq
*rq
)
1018 requeue_task_rt(rq
, rq
->curr
, 0);
1022 static int find_lowest_rq(struct task_struct
*task
);
1025 select_task_rq_rt(struct task_struct
*p
, int sd_flag
, int flags
)
1027 struct task_struct
*curr
;
1033 /* For anything but wake ups, just return the task_cpu */
1034 if (sd_flag
!= SD_BALANCE_WAKE
&& sd_flag
!= SD_BALANCE_FORK
)
1040 curr
= ACCESS_ONCE(rq
->curr
); /* unlocked access */
1043 * If the current task on @p's runqueue is an RT task, then
1044 * try to see if we can wake this RT task up on another
1045 * runqueue. Otherwise simply start this RT task
1046 * on its current runqueue.
1048 * We want to avoid overloading runqueues. If the woken
1049 * task is a higher priority, then it will stay on this CPU
1050 * and the lower prio task should be moved to another CPU.
1051 * Even though this will probably make the lower prio task
1052 * lose its cache, we do not want to bounce a higher task
1053 * around just because it gave up its CPU, perhaps for a
1056 * For equal prio tasks, we just let the scheduler sort it out.
1058 * Otherwise, just let it ride on the affined RQ and the
1059 * post-schedule router will push the preempted task away
1061 * This test is optimistic, if we get it wrong the load-balancer
1062 * will have to sort it out.
1064 if (curr
&& unlikely(rt_task(curr
)) &&
1065 (curr
->rt
.nr_cpus_allowed
< 2 ||
1066 curr
->prio
<= p
->prio
) &&
1067 (p
->rt
.nr_cpus_allowed
> 1)) {
1068 int target
= find_lowest_rq(p
);
1071 * Don't bother moving it if the destination CPU is
1072 * not running a lower priority task.
1075 p
->prio
< cpu_rq(target
)->rt
.highest_prio
.curr
)
1084 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1086 if (rq
->curr
->rt
.nr_cpus_allowed
== 1)
1089 if (p
->rt
.nr_cpus_allowed
!= 1
1090 && cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
1093 if (!cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1097 * There appears to be other cpus that can accept
1098 * current and none to run 'p', so lets reschedule
1099 * to try and push current away:
1101 requeue_task_rt(rq
, p
, 1);
1102 resched_task(rq
->curr
);
1105 #endif /* CONFIG_SMP */
1108 * Preempt the current task with a newly woken task if needed:
1110 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1112 if (p
->prio
< rq
->curr
->prio
) {
1113 resched_task(rq
->curr
);
1121 * - the newly woken task is of equal priority to the current task
1122 * - the newly woken task is non-migratable while current is migratable
1123 * - current will be preempted on the next reschedule
1125 * we should check to see if current can readily move to a different
1126 * cpu. If so, we will reschedule to allow the push logic to try
1127 * to move current somewhere else, making room for our non-migratable
1130 if (p
->prio
== rq
->curr
->prio
&& !test_tsk_need_resched(rq
->curr
))
1131 check_preempt_equal_prio(rq
, p
);
1135 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1136 struct rt_rq
*rt_rq
)
1138 struct rt_prio_array
*array
= &rt_rq
->active
;
1139 struct sched_rt_entity
*next
= NULL
;
1140 struct list_head
*queue
;
1143 idx
= sched_find_first_bit(array
->bitmap
);
1144 BUG_ON(idx
>= MAX_RT_PRIO
);
1146 queue
= array
->queue
+ idx
;
1147 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1152 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1154 struct sched_rt_entity
*rt_se
;
1155 struct task_struct
*p
;
1156 struct rt_rq
*rt_rq
;
1160 if (!rt_rq
->rt_nr_running
)
1163 if (rt_rq_throttled(rt_rq
))
1167 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1169 rt_rq
= group_rt_rq(rt_se
);
1172 p
= rt_task_of(rt_se
);
1173 p
->se
.exec_start
= rq
->clock_task
;
1178 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
1180 struct task_struct
*p
= _pick_next_task_rt(rq
);
1182 /* The running task is never eligible for pushing */
1184 dequeue_pushable_task(rq
, p
);
1188 * We detect this state here so that we can avoid taking the RQ
1189 * lock again later if there is no need to push
1191 rq
->post_schedule
= has_pushable_tasks(rq
);
1197 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1202 * The previous task needs to be made eligible for pushing
1203 * if it is still active
1205 if (on_rt_rq(&p
->rt
) && p
->rt
.nr_cpus_allowed
> 1)
1206 enqueue_pushable_task(rq
, p
);
1211 /* Only try algorithms three times */
1212 #define RT_MAX_TRIES 3
1214 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
);
1216 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1218 if (!task_running(rq
, p
) &&
1219 (cpu
< 0 || cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
))) &&
1220 (p
->rt
.nr_cpus_allowed
> 1))
1225 /* Return the second highest RT task, NULL otherwise */
1226 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
)
1228 struct task_struct
*next
= NULL
;
1229 struct sched_rt_entity
*rt_se
;
1230 struct rt_prio_array
*array
;
1231 struct rt_rq
*rt_rq
;
1234 for_each_leaf_rt_rq(rt_rq
, rq
) {
1235 array
= &rt_rq
->active
;
1236 idx
= sched_find_first_bit(array
->bitmap
);
1238 if (idx
>= MAX_RT_PRIO
)
1240 if (next
&& next
->prio
< idx
)
1242 list_for_each_entry(rt_se
, array
->queue
+ idx
, run_list
) {
1243 struct task_struct
*p
;
1245 if (!rt_entity_is_task(rt_se
))
1248 p
= rt_task_of(rt_se
);
1249 if (pick_rt_task(rq
, p
, cpu
)) {
1255 idx
= find_next_bit(array
->bitmap
, MAX_RT_PRIO
, idx
+1);
1263 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1265 static int find_lowest_rq(struct task_struct
*task
)
1267 struct sched_domain
*sd
;
1268 struct cpumask
*lowest_mask
= __get_cpu_var(local_cpu_mask
);
1269 int this_cpu
= smp_processor_id();
1270 int cpu
= task_cpu(task
);
1272 /* Make sure the mask is initialized first */
1273 if (unlikely(!lowest_mask
))
1276 if (task
->rt
.nr_cpus_allowed
== 1)
1277 return -1; /* No other targets possible */
1279 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1280 return -1; /* No targets found */
1283 * At this point we have built a mask of cpus representing the
1284 * lowest priority tasks in the system. Now we want to elect
1285 * the best one based on our affinity and topology.
1287 * We prioritize the last cpu that the task executed on since
1288 * it is most likely cache-hot in that location.
1290 if (cpumask_test_cpu(cpu
, lowest_mask
))
1294 * Otherwise, we consult the sched_domains span maps to figure
1295 * out which cpu is logically closest to our hot cache data.
1297 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1298 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1301 for_each_domain(cpu
, sd
) {
1302 if (sd
->flags
& SD_WAKE_AFFINE
) {
1306 * "this_cpu" is cheaper to preempt than a
1309 if (this_cpu
!= -1 &&
1310 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1315 best_cpu
= cpumask_first_and(lowest_mask
,
1316 sched_domain_span(sd
));
1317 if (best_cpu
< nr_cpu_ids
) {
1326 * And finally, if there were no matches within the domains
1327 * just give the caller *something* to work with from the compatible
1333 cpu
= cpumask_any(lowest_mask
);
1334 if (cpu
< nr_cpu_ids
)
1339 /* Will lock the rq it finds */
1340 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1342 struct rq
*lowest_rq
= NULL
;
1346 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1347 cpu
= find_lowest_rq(task
);
1349 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1352 lowest_rq
= cpu_rq(cpu
);
1354 if (lowest_rq
->rt
.highest_prio
.curr
<= task
->prio
) {
1356 * Target rq has tasks of equal or higher priority,
1357 * retrying does not release any lock and is unlikely
1358 * to yield a different result.
1364 /* if the prio of this runqueue changed, try again */
1365 if (double_lock_balance(rq
, lowest_rq
)) {
1367 * We had to unlock the run queue. In
1368 * the mean time, task could have
1369 * migrated already or had its affinity changed.
1370 * Also make sure that it wasn't scheduled on its rq.
1372 if (unlikely(task_rq(task
) != rq
||
1373 !cpumask_test_cpu(lowest_rq
->cpu
,
1374 tsk_cpus_allowed(task
)) ||
1375 task_running(rq
, task
) ||
1378 raw_spin_unlock(&lowest_rq
->lock
);
1384 /* If this rq is still suitable use it. */
1385 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1389 double_unlock_balance(rq
, lowest_rq
);
1396 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1398 struct task_struct
*p
;
1400 if (!has_pushable_tasks(rq
))
1403 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1404 struct task_struct
, pushable_tasks
);
1406 BUG_ON(rq
->cpu
!= task_cpu(p
));
1407 BUG_ON(task_current(rq
, p
));
1408 BUG_ON(p
->rt
.nr_cpus_allowed
<= 1);
1411 BUG_ON(!rt_task(p
));
1417 * If the current CPU has more than one RT task, see if the non
1418 * running task can migrate over to a CPU that is running a task
1419 * of lesser priority.
1421 static int push_rt_task(struct rq
*rq
)
1423 struct task_struct
*next_task
;
1424 struct rq
*lowest_rq
;
1427 if (!rq
->rt
.overloaded
)
1430 next_task
= pick_next_pushable_task(rq
);
1434 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1435 if (unlikely(task_running(rq
, next_task
)))
1440 if (unlikely(next_task
== rq
->curr
)) {
1446 * It's possible that the next_task slipped in of
1447 * higher priority than current. If that's the case
1448 * just reschedule current.
1450 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1451 resched_task(rq
->curr
);
1455 /* We might release rq lock */
1456 get_task_struct(next_task
);
1458 /* find_lock_lowest_rq locks the rq if found */
1459 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1461 struct task_struct
*task
;
1463 * find_lock_lowest_rq releases rq->lock
1464 * so it is possible that next_task has migrated.
1466 * We need to make sure that the task is still on the same
1467 * run-queue and is also still the next task eligible for
1470 task
= pick_next_pushable_task(rq
);
1471 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1473 * The task hasn't migrated, and is still the next
1474 * eligible task, but we failed to find a run-queue
1475 * to push it to. Do not retry in this case, since
1476 * other cpus will pull from us when ready.
1482 /* No more tasks, just exit */
1486 * Something has shifted, try again.
1488 put_task_struct(next_task
);
1493 deactivate_task(rq
, next_task
, 0);
1494 set_task_cpu(next_task
, lowest_rq
->cpu
);
1495 activate_task(lowest_rq
, next_task
, 0);
1498 resched_task(lowest_rq
->curr
);
1500 double_unlock_balance(rq
, lowest_rq
);
1503 put_task_struct(next_task
);
1508 static void push_rt_tasks(struct rq
*rq
)
1510 /* push_rt_task will return true if it moved an RT */
1511 while (push_rt_task(rq
))
1515 static int pull_rt_task(struct rq
*this_rq
)
1517 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1518 struct task_struct
*p
;
1521 if (likely(!rt_overloaded(this_rq
)))
1524 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
1525 if (this_cpu
== cpu
)
1528 src_rq
= cpu_rq(cpu
);
1531 * Don't bother taking the src_rq->lock if the next highest
1532 * task is known to be lower-priority than our current task.
1533 * This may look racy, but if this value is about to go
1534 * logically higher, the src_rq will push this task away.
1535 * And if its going logically lower, we do not care
1537 if (src_rq
->rt
.highest_prio
.next
>=
1538 this_rq
->rt
.highest_prio
.curr
)
1542 * We can potentially drop this_rq's lock in
1543 * double_lock_balance, and another CPU could
1546 double_lock_balance(this_rq
, src_rq
);
1549 * Are there still pullable RT tasks?
1551 if (src_rq
->rt
.rt_nr_running
<= 1)
1554 p
= pick_next_highest_task_rt(src_rq
, this_cpu
);
1557 * Do we have an RT task that preempts
1558 * the to-be-scheduled task?
1560 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
1561 WARN_ON(p
== src_rq
->curr
);
1565 * There's a chance that p is higher in priority
1566 * than what's currently running on its cpu.
1567 * This is just that p is wakeing up and hasn't
1568 * had a chance to schedule. We only pull
1569 * p if it is lower in priority than the
1570 * current task on the run queue
1572 if (p
->prio
< src_rq
->curr
->prio
)
1577 deactivate_task(src_rq
, p
, 0);
1578 set_task_cpu(p
, this_cpu
);
1579 activate_task(this_rq
, p
, 0);
1581 * We continue with the search, just in
1582 * case there's an even higher prio task
1583 * in another runqueue. (low likelihood
1588 double_unlock_balance(this_rq
, src_rq
);
1594 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
1596 /* Try to pull RT tasks here if we lower this rq's prio */
1597 if (rq
->rt
.highest_prio
.curr
> prev
->prio
)
1601 static void post_schedule_rt(struct rq
*rq
)
1607 * If we are not running and we are not going to reschedule soon, we should
1608 * try to push tasks away now
1610 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
1612 if (!task_running(rq
, p
) &&
1613 !test_tsk_need_resched(rq
->curr
) &&
1614 has_pushable_tasks(rq
) &&
1615 p
->rt
.nr_cpus_allowed
> 1 &&
1616 rt_task(rq
->curr
) &&
1617 (rq
->curr
->rt
.nr_cpus_allowed
< 2 ||
1618 rq
->curr
->prio
<= p
->prio
))
1622 static void set_cpus_allowed_rt(struct task_struct
*p
,
1623 const struct cpumask
*new_mask
)
1625 int weight
= cpumask_weight(new_mask
);
1627 BUG_ON(!rt_task(p
));
1630 * Update the migration status of the RQ if we have an RT task
1631 * which is running AND changing its weight value.
1633 if (p
->on_rq
&& (weight
!= p
->rt
.nr_cpus_allowed
)) {
1634 struct rq
*rq
= task_rq(p
);
1636 if (!task_current(rq
, p
)) {
1638 * Make sure we dequeue this task from the pushable list
1639 * before going further. It will either remain off of
1640 * the list because we are no longer pushable, or it
1643 if (p
->rt
.nr_cpus_allowed
> 1)
1644 dequeue_pushable_task(rq
, p
);
1647 * Requeue if our weight is changing and still > 1
1650 enqueue_pushable_task(rq
, p
);
1654 if ((p
->rt
.nr_cpus_allowed
<= 1) && (weight
> 1)) {
1655 rq
->rt
.rt_nr_migratory
++;
1656 } else if ((p
->rt
.nr_cpus_allowed
> 1) && (weight
<= 1)) {
1657 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1658 rq
->rt
.rt_nr_migratory
--;
1661 update_rt_migration(&rq
->rt
);
1665 /* Assumes rq->lock is held */
1666 static void rq_online_rt(struct rq
*rq
)
1668 if (rq
->rt
.overloaded
)
1669 rt_set_overload(rq
);
1671 __enable_runtime(rq
);
1673 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
1676 /* Assumes rq->lock is held */
1677 static void rq_offline_rt(struct rq
*rq
)
1679 if (rq
->rt
.overloaded
)
1680 rt_clear_overload(rq
);
1682 __disable_runtime(rq
);
1684 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
1688 * When switch from the rt queue, we bring ourselves to a position
1689 * that we might want to pull RT tasks from other runqueues.
1691 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
1694 * If there are other RT tasks then we will reschedule
1695 * and the scheduling of the other RT tasks will handle
1696 * the balancing. But if we are the last RT task
1697 * we may need to handle the pulling of RT tasks
1700 if (p
->on_rq
&& !rq
->rt
.rt_nr_running
)
1704 static inline void init_sched_rt_class(void)
1708 for_each_possible_cpu(i
)
1709 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
1710 GFP_KERNEL
, cpu_to_node(i
));
1712 #endif /* CONFIG_SMP */
1715 * When switching a task to RT, we may overload the runqueue
1716 * with RT tasks. In this case we try to push them off to
1719 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
1721 int check_resched
= 1;
1724 * If we are already running, then there's nothing
1725 * that needs to be done. But if we are not running
1726 * we may need to preempt the current running task.
1727 * If that current running task is also an RT task
1728 * then see if we can move to another run queue.
1730 if (p
->on_rq
&& rq
->curr
!= p
) {
1732 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1733 /* Don't resched if we changed runqueues */
1736 #endif /* CONFIG_SMP */
1737 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1738 resched_task(rq
->curr
);
1743 * Priority of the task has changed. This may cause
1744 * us to initiate a push or pull.
1747 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
1752 if (rq
->curr
== p
) {
1755 * If our priority decreases while running, we
1756 * may need to pull tasks to this runqueue.
1758 if (oldprio
< p
->prio
)
1761 * If there's a higher priority task waiting to run
1762 * then reschedule. Note, the above pull_rt_task
1763 * can release the rq lock and p could migrate.
1764 * Only reschedule if p is still on the same runqueue.
1766 if (p
->prio
> rq
->rt
.highest_prio
.curr
&& rq
->curr
== p
)
1769 /* For UP simply resched on drop of prio */
1770 if (oldprio
< p
->prio
)
1772 #endif /* CONFIG_SMP */
1775 * This task is not running, but if it is
1776 * greater than the current running task
1779 if (p
->prio
< rq
->curr
->prio
)
1780 resched_task(rq
->curr
);
1784 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1786 unsigned long soft
, hard
;
1788 /* max may change after cur was read, this will be fixed next tick */
1789 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
1790 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
1792 if (soft
!= RLIM_INFINITY
) {
1795 if (p
->rt
.watchdog_stamp
!= jiffies
) {
1797 p
->rt
.watchdog_stamp
= jiffies
;
1800 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1801 if (p
->rt
.timeout
> next
)
1802 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
1806 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
1808 struct sched_rt_entity
*rt_se
= &p
->rt
;
1815 * RR tasks need a special form of timeslice management.
1816 * FIFO tasks have no timeslices.
1818 if (p
->policy
!= SCHED_RR
)
1821 if (--p
->rt
.time_slice
)
1824 p
->rt
.time_slice
= DEF_TIMESLICE
;
1827 * Requeue to the end of queue if we (and all of our ancestors) are the
1828 * only element on the queue
1830 for_each_sched_rt_entity(rt_se
) {
1831 if (rt_se
->run_list
.prev
!= rt_se
->run_list
.next
) {
1832 requeue_task_rt(rq
, p
, 0);
1833 set_tsk_need_resched(p
);
1839 static void set_curr_task_rt(struct rq
*rq
)
1841 struct task_struct
*p
= rq
->curr
;
1843 p
->se
.exec_start
= rq
->clock_task
;
1845 /* The running task is never eligible for pushing */
1846 dequeue_pushable_task(rq
, p
);
1849 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
1852 * Time slice is 0 for SCHED_FIFO tasks
1854 if (task
->policy
== SCHED_RR
)
1855 return DEF_TIMESLICE
;
1860 static const struct sched_class rt_sched_class
= {
1861 .next
= &fair_sched_class
,
1862 .enqueue_task
= enqueue_task_rt
,
1863 .dequeue_task
= dequeue_task_rt
,
1864 .yield_task
= yield_task_rt
,
1866 .check_preempt_curr
= check_preempt_curr_rt
,
1868 .pick_next_task
= pick_next_task_rt
,
1869 .put_prev_task
= put_prev_task_rt
,
1872 .select_task_rq
= select_task_rq_rt
,
1874 .set_cpus_allowed
= set_cpus_allowed_rt
,
1875 .rq_online
= rq_online_rt
,
1876 .rq_offline
= rq_offline_rt
,
1877 .pre_schedule
= pre_schedule_rt
,
1878 .post_schedule
= post_schedule_rt
,
1879 .task_woken
= task_woken_rt
,
1880 .switched_from
= switched_from_rt
,
1883 .set_curr_task
= set_curr_task_rt
,
1884 .task_tick
= task_tick_rt
,
1886 .get_rr_interval
= get_rr_interval_rt
,
1888 .prio_changed
= prio_changed_rt
,
1889 .switched_to
= switched_to_rt
,
1892 #ifdef CONFIG_SCHED_DEBUG
1893 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
1895 static void print_rt_stats(struct seq_file
*m
, int cpu
)
1898 struct rt_rq
*rt_rq
;
1901 for_each_rt_rq(rt_rq
, iter
, cpu_rq(cpu
))
1902 print_rt_rq(m
, cpu
, rt_rq
);
1905 #endif /* CONFIG_SCHED_DEBUG */