2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
74 * css_set_lock protects task->cgroups pointer, the list of css_set
75 * objects, and the chain of tasks off each css_set.
77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78 * cgroup.h can use them for lockdep annotations.
80 DEFINE_MUTEX(cgroup_mutex
);
81 DEFINE_SPINLOCK(css_set_lock
);
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex
);
85 EXPORT_SYMBOL_GPL(css_set_lock
);
88 DEFINE_SPINLOCK(trace_cgroup_path_lock
);
89 char trace_cgroup_path
[TRACE_CGROUP_PATH_LEN
];
90 bool cgroup_debug __read_mostly
;
93 * Protects cgroup_idr and css_idr so that IDs can be released without
94 * grabbing cgroup_mutex.
96 static DEFINE_SPINLOCK(cgroup_idr_lock
);
99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
100 * against file removal/re-creation across css hiding.
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock
);
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem
);
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
108 !lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
117 static struct workqueue_struct
*cgroup_destroy_wq
;
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys
*cgroup_subsys
[] = {
122 #include <linux/cgroup_subsys.h>
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name
[] = {
129 #include <linux/cgroup_subsys.h>
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true
*cgroup_subsys_enabled_key
[] = {
144 #include <linux/cgroup_subsys.h>
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true
*cgroup_subsys_on_dfl_key
[] = {
150 #include <linux/cgroup_subsys.h>
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu
, cgrp_dfl_root_rstat_cpu
);
157 * The default hierarchy, reserved for the subsystems that are otherwise
158 * unattached - it never has more than a single cgroup, and all tasks are
159 * part of that cgroup.
161 struct cgroup_root cgrp_dfl_root
= { .cgrp
.rstat_cpu
= &cgrp_dfl_root_rstat_cpu
};
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root
);
165 * The default hierarchy always exists but is hidden until mounted for the
166 * first time. This is for backward compatibility.
168 static bool cgrp_dfl_visible
;
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask
;
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask
;
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask
;
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots
);
181 static int cgroup_root_count
;
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr
);
187 * Assign a monotonically increasing serial number to csses. It guarantees
188 * cgroups with bigger numbers are newer than those with smaller numbers.
189 * Also, as csses are always appended to the parent's ->children list, it
190 * guarantees that sibling csses are always sorted in the ascending serial
191 * number order on the list. Protected by cgroup_mutex.
193 static u64 css_serial_nr_next
= 1;
196 * These bitmasks identify subsystems with specific features to avoid
197 * having to do iterative checks repeatedly.
199 static u16 have_fork_callback __read_mostly
;
200 static u16 have_exit_callback __read_mostly
;
201 static u16 have_release_callback __read_mostly
;
202 static u16 have_canfork_callback __read_mostly
;
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns
= {
206 .count
= REFCOUNT_INIT(2),
207 .user_ns
= &init_user_ns
,
208 .ns
.ops
= &cgroupns_operations
,
209 .ns
.inum
= PROC_CGROUP_INIT_INO
,
210 .root_cset
= &init_css_set
,
213 static struct file_system_type cgroup2_fs_type
;
214 static struct cftype cgroup_base_files
[];
216 static int cgroup_apply_control(struct cgroup
*cgrp
);
217 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
);
218 static void css_task_iter_skip(struct css_task_iter
*it
,
219 struct task_struct
*task
);
220 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
221 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
222 struct cgroup_subsys
*ss
);
223 static void css_release(struct percpu_ref
*ref
);
224 static void kill_css(struct cgroup_subsys_state
*css
);
225 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
226 struct cgroup
*cgrp
, struct cftype cfts
[],
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
237 bool cgroup_ssid_enabled(int ssid
)
239 if (CGROUP_SUBSYS_COUNT
== 0)
242 return static_key_enabled(cgroup_subsys_enabled_key
[ssid
]);
246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247 * @cgrp: the cgroup of interest
249 * The default hierarchy is the v2 interface of cgroup and this function
250 * can be used to test whether a cgroup is on the default hierarchy for
251 * cases where a subsystem should behave differnetly depending on the
254 * The set of behaviors which change on the default hierarchy are still
255 * being determined and the mount option is prefixed with __DEVEL__.
257 * List of changed behaviors:
259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260 * and "name" are disallowed.
262 * - When mounting an existing superblock, mount options should match.
264 * - Remount is disallowed.
266 * - rename(2) is disallowed.
268 * - "tasks" is removed. Everything should be at process granularity. Use
269 * "cgroup.procs" instead.
271 * - "cgroup.procs" is not sorted. pids will be unique unless they got
272 * recycled inbetween reads.
274 * - "release_agent" and "notify_on_release" are removed. Replacement
275 * notification mechanism will be implemented.
277 * - "cgroup.clone_children" is removed.
279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
280 * and its descendants contain no task; otherwise, 1. The file also
281 * generates kernfs notification which can be monitored through poll and
282 * [di]notify when the value of the file changes.
284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285 * take masks of ancestors with non-empty cpus/mems, instead of being
286 * moved to an ancestor.
288 * - cpuset: a task can be moved into an empty cpuset, and again it takes
289 * masks of ancestors.
291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
294 * - blkcg: blk-throttle becomes properly hierarchical.
296 * - debug: disallowed on the default hierarchy.
298 bool cgroup_on_dfl(const struct cgroup
*cgrp
)
300 return cgrp
->root
== &cgrp_dfl_root
;
303 /* IDR wrappers which synchronize using cgroup_idr_lock */
304 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
309 idr_preload(gfp_mask
);
310 spin_lock_bh(&cgroup_idr_lock
);
311 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
& ~__GFP_DIRECT_RECLAIM
);
312 spin_unlock_bh(&cgroup_idr_lock
);
317 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
321 spin_lock_bh(&cgroup_idr_lock
);
322 ret
= idr_replace(idr
, ptr
, id
);
323 spin_unlock_bh(&cgroup_idr_lock
);
327 static void cgroup_idr_remove(struct idr
*idr
, int id
)
329 spin_lock_bh(&cgroup_idr_lock
);
331 spin_unlock_bh(&cgroup_idr_lock
);
334 static bool cgroup_has_tasks(struct cgroup
*cgrp
)
336 return cgrp
->nr_populated_csets
;
339 bool cgroup_is_threaded(struct cgroup
*cgrp
)
341 return cgrp
->dom_cgrp
!= cgrp
;
344 /* can @cgrp host both domain and threaded children? */
345 static bool cgroup_is_mixable(struct cgroup
*cgrp
)
348 * Root isn't under domain level resource control exempting it from
349 * the no-internal-process constraint, so it can serve as a thread
350 * root and a parent of resource domains at the same time.
352 return !cgroup_parent(cgrp
);
355 /* can @cgrp become a thread root? should always be true for a thread root */
356 static bool cgroup_can_be_thread_root(struct cgroup
*cgrp
)
358 /* mixables don't care */
359 if (cgroup_is_mixable(cgrp
))
362 /* domain roots can't be nested under threaded */
363 if (cgroup_is_threaded(cgrp
))
366 /* can only have either domain or threaded children */
367 if (cgrp
->nr_populated_domain_children
)
370 /* and no domain controllers can be enabled */
371 if (cgrp
->subtree_control
& ~cgrp_dfl_threaded_ss_mask
)
377 /* is @cgrp root of a threaded subtree? */
378 bool cgroup_is_thread_root(struct cgroup
*cgrp
)
380 /* thread root should be a domain */
381 if (cgroup_is_threaded(cgrp
))
384 /* a domain w/ threaded children is a thread root */
385 if (cgrp
->nr_threaded_children
)
389 * A domain which has tasks and explicit threaded controllers
390 * enabled is a thread root.
392 if (cgroup_has_tasks(cgrp
) &&
393 (cgrp
->subtree_control
& cgrp_dfl_threaded_ss_mask
))
399 /* a domain which isn't connected to the root w/o brekage can't be used */
400 static bool cgroup_is_valid_domain(struct cgroup
*cgrp
)
402 /* the cgroup itself can be a thread root */
403 if (cgroup_is_threaded(cgrp
))
406 /* but the ancestors can't be unless mixable */
407 while ((cgrp
= cgroup_parent(cgrp
))) {
408 if (!cgroup_is_mixable(cgrp
) && cgroup_is_thread_root(cgrp
))
410 if (cgroup_is_threaded(cgrp
))
417 /* subsystems visibly enabled on a cgroup */
418 static u16
cgroup_control(struct cgroup
*cgrp
)
420 struct cgroup
*parent
= cgroup_parent(cgrp
);
421 u16 root_ss_mask
= cgrp
->root
->subsys_mask
;
424 u16 ss_mask
= parent
->subtree_control
;
426 /* threaded cgroups can only have threaded controllers */
427 if (cgroup_is_threaded(cgrp
))
428 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
432 if (cgroup_on_dfl(cgrp
))
433 root_ss_mask
&= ~(cgrp_dfl_inhibit_ss_mask
|
434 cgrp_dfl_implicit_ss_mask
);
438 /* subsystems enabled on a cgroup */
439 static u16
cgroup_ss_mask(struct cgroup
*cgrp
)
441 struct cgroup
*parent
= cgroup_parent(cgrp
);
444 u16 ss_mask
= parent
->subtree_ss_mask
;
446 /* threaded cgroups can only have threaded controllers */
447 if (cgroup_is_threaded(cgrp
))
448 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
452 return cgrp
->root
->subsys_mask
;
456 * cgroup_css - obtain a cgroup's css for the specified subsystem
457 * @cgrp: the cgroup of interest
458 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
460 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
461 * function must be called either under cgroup_mutex or rcu_read_lock() and
462 * the caller is responsible for pinning the returned css if it wants to
463 * keep accessing it outside the said locks. This function may return
464 * %NULL if @cgrp doesn't have @subsys_id enabled.
466 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
467 struct cgroup_subsys
*ss
)
470 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
471 lockdep_is_held(&cgroup_mutex
));
477 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
478 * @cgrp: the cgroup of interest
479 * @ss: the subsystem of interest
481 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
482 * or is offline, %NULL is returned.
484 static struct cgroup_subsys_state
*cgroup_tryget_css(struct cgroup
*cgrp
,
485 struct cgroup_subsys
*ss
)
487 struct cgroup_subsys_state
*css
;
490 css
= cgroup_css(cgrp
, ss
);
491 if (css
&& !css_tryget_online(css
))
499 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
500 * @cgrp: the cgroup of interest
501 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
503 * Similar to cgroup_css() but returns the effective css, which is defined
504 * as the matching css of the nearest ancestor including self which has @ss
505 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
506 * function is guaranteed to return non-NULL css.
508 static struct cgroup_subsys_state
*cgroup_e_css_by_mask(struct cgroup
*cgrp
,
509 struct cgroup_subsys
*ss
)
511 lockdep_assert_held(&cgroup_mutex
);
517 * This function is used while updating css associations and thus
518 * can't test the csses directly. Test ss_mask.
520 while (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
))) {
521 cgrp
= cgroup_parent(cgrp
);
526 return cgroup_css(cgrp
, ss
);
530 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
531 * @cgrp: the cgroup of interest
532 * @ss: the subsystem of interest
534 * Find and get the effective css of @cgrp for @ss. The effective css is
535 * defined as the matching css of the nearest ancestor including self which
536 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
537 * the root css is returned, so this function always returns a valid css.
539 * The returned css is not guaranteed to be online, and therefore it is the
540 * callers responsiblity to tryget a reference for it.
542 struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
543 struct cgroup_subsys
*ss
)
545 struct cgroup_subsys_state
*css
;
548 css
= cgroup_css(cgrp
, ss
);
552 cgrp
= cgroup_parent(cgrp
);
555 return init_css_set
.subsys
[ss
->id
];
559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
560 * @cgrp: the cgroup of interest
561 * @ss: the subsystem of interest
563 * Find and get the effective css of @cgrp for @ss. The effective css is
564 * defined as the matching css of the nearest ancestor including self which
565 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
566 * the root css is returned, so this function always returns a valid css.
567 * The returned css must be put using css_put().
569 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
570 struct cgroup_subsys
*ss
)
572 struct cgroup_subsys_state
*css
;
577 css
= cgroup_css(cgrp
, ss
);
579 if (css
&& css_tryget_online(css
))
581 cgrp
= cgroup_parent(cgrp
);
584 css
= init_css_set
.subsys
[ss
->id
];
591 static void cgroup_get_live(struct cgroup
*cgrp
)
593 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
594 css_get(&cgrp
->self
);
598 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
599 * is responsible for taking the css_set_lock.
600 * @cgrp: the cgroup in question
602 int __cgroup_task_count(const struct cgroup
*cgrp
)
605 struct cgrp_cset_link
*link
;
607 lockdep_assert_held(&css_set_lock
);
609 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
610 count
+= link
->cset
->nr_tasks
;
616 * cgroup_task_count - count the number of tasks in a cgroup.
617 * @cgrp: the cgroup in question
619 int cgroup_task_count(const struct cgroup
*cgrp
)
623 spin_lock_irq(&css_set_lock
);
624 count
= __cgroup_task_count(cgrp
);
625 spin_unlock_irq(&css_set_lock
);
630 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
632 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
633 struct cftype
*cft
= of_cft(of
);
636 * This is open and unprotected implementation of cgroup_css().
637 * seq_css() is only called from a kernfs file operation which has
638 * an active reference on the file. Because all the subsystem
639 * files are drained before a css is disassociated with a cgroup,
640 * the matching css from the cgroup's subsys table is guaranteed to
641 * be and stay valid until the enclosing operation is complete.
644 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
648 EXPORT_SYMBOL_GPL(of_css
);
651 * for_each_css - iterate all css's of a cgroup
652 * @css: the iteration cursor
653 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
654 * @cgrp: the target cgroup to iterate css's of
656 * Should be called under cgroup_[tree_]mutex.
658 #define for_each_css(css, ssid, cgrp) \
659 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
660 if (!((css) = rcu_dereference_check( \
661 (cgrp)->subsys[(ssid)], \
662 lockdep_is_held(&cgroup_mutex)))) { } \
666 * for_each_e_css - iterate all effective css's of a cgroup
667 * @css: the iteration cursor
668 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
669 * @cgrp: the target cgroup to iterate css's of
671 * Should be called under cgroup_[tree_]mutex.
673 #define for_each_e_css(css, ssid, cgrp) \
674 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
675 if (!((css) = cgroup_e_css_by_mask(cgrp, \
676 cgroup_subsys[(ssid)]))) \
681 * do_each_subsys_mask - filter for_each_subsys with a bitmask
682 * @ss: the iteration cursor
683 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
684 * @ss_mask: the bitmask
686 * The block will only run for cases where the ssid-th bit (1 << ssid) of
689 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
690 unsigned long __ss_mask = (ss_mask); \
691 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
695 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
696 (ss) = cgroup_subsys[ssid]; \
699 #define while_each_subsys_mask() \
704 /* iterate over child cgrps, lock should be held throughout iteration */
705 #define cgroup_for_each_live_child(child, cgrp) \
706 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
707 if (({ lockdep_assert_held(&cgroup_mutex); \
708 cgroup_is_dead(child); })) \
712 /* walk live descendants in preorder */
713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
714 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
715 if (({ lockdep_assert_held(&cgroup_mutex); \
716 (dsct) = (d_css)->cgroup; \
717 cgroup_is_dead(dsct); })) \
721 /* walk live descendants in postorder */
722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
723 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
724 if (({ lockdep_assert_held(&cgroup_mutex); \
725 (dsct) = (d_css)->cgroup; \
726 cgroup_is_dead(dsct); })) \
731 * The default css_set - used by init and its children prior to any
732 * hierarchies being mounted. It contains a pointer to the root state
733 * for each subsystem. Also used to anchor the list of css_sets. Not
734 * reference-counted, to improve performance when child cgroups
735 * haven't been created.
737 struct css_set init_css_set
= {
738 .refcount
= REFCOUNT_INIT(1),
739 .dom_cset
= &init_css_set
,
740 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
741 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
742 .dying_tasks
= LIST_HEAD_INIT(init_css_set
.dying_tasks
),
743 .task_iters
= LIST_HEAD_INIT(init_css_set
.task_iters
),
744 .threaded_csets
= LIST_HEAD_INIT(init_css_set
.threaded_csets
),
745 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
746 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
747 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
750 * The following field is re-initialized when this cset gets linked
751 * in cgroup_init(). However, let's initialize the field
752 * statically too so that the default cgroup can be accessed safely
755 .dfl_cgrp
= &cgrp_dfl_root
.cgrp
,
758 static int css_set_count
= 1; /* 1 for init_css_set */
760 static bool css_set_threaded(struct css_set
*cset
)
762 return cset
->dom_cset
!= cset
;
766 * css_set_populated - does a css_set contain any tasks?
767 * @cset: target css_set
769 * css_set_populated() should be the same as !!cset->nr_tasks at steady
770 * state. However, css_set_populated() can be called while a task is being
771 * added to or removed from the linked list before the nr_tasks is
772 * properly updated. Hence, we can't just look at ->nr_tasks here.
774 static bool css_set_populated(struct css_set
*cset
)
776 lockdep_assert_held(&css_set_lock
);
778 return !list_empty(&cset
->tasks
) || !list_empty(&cset
->mg_tasks
);
782 * cgroup_update_populated - update the populated count of a cgroup
783 * @cgrp: the target cgroup
784 * @populated: inc or dec populated count
786 * One of the css_sets associated with @cgrp is either getting its first
787 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
788 * count is propagated towards root so that a given cgroup's
789 * nr_populated_children is zero iff none of its descendants contain any
792 * @cgrp's interface file "cgroup.populated" is zero if both
793 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
794 * 1 otherwise. When the sum changes from or to zero, userland is notified
795 * that the content of the interface file has changed. This can be used to
796 * detect when @cgrp and its descendants become populated or empty.
798 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
800 struct cgroup
*child
= NULL
;
801 int adj
= populated
? 1 : -1;
803 lockdep_assert_held(&css_set_lock
);
806 bool was_populated
= cgroup_is_populated(cgrp
);
809 cgrp
->nr_populated_csets
+= adj
;
811 if (cgroup_is_threaded(child
))
812 cgrp
->nr_populated_threaded_children
+= adj
;
814 cgrp
->nr_populated_domain_children
+= adj
;
817 if (was_populated
== cgroup_is_populated(cgrp
))
820 cgroup1_check_for_release(cgrp
);
821 TRACE_CGROUP_PATH(notify_populated
, cgrp
,
822 cgroup_is_populated(cgrp
));
823 cgroup_file_notify(&cgrp
->events_file
);
826 cgrp
= cgroup_parent(cgrp
);
831 * css_set_update_populated - update populated state of a css_set
832 * @cset: target css_set
833 * @populated: whether @cset is populated or depopulated
835 * @cset is either getting the first task or losing the last. Update the
836 * populated counters of all associated cgroups accordingly.
838 static void css_set_update_populated(struct css_set
*cset
, bool populated
)
840 struct cgrp_cset_link
*link
;
842 lockdep_assert_held(&css_set_lock
);
844 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
)
845 cgroup_update_populated(link
->cgrp
, populated
);
849 * @task is leaving, advance task iterators which are pointing to it so
850 * that they can resume at the next position. Advancing an iterator might
851 * remove it from the list, use safe walk. See css_task_iter_skip() for
854 static void css_set_skip_task_iters(struct css_set
*cset
,
855 struct task_struct
*task
)
857 struct css_task_iter
*it
, *pos
;
859 list_for_each_entry_safe(it
, pos
, &cset
->task_iters
, iters_node
)
860 css_task_iter_skip(it
, task
);
864 * css_set_move_task - move a task from one css_set to another
865 * @task: task being moved
866 * @from_cset: css_set @task currently belongs to (may be NULL)
867 * @to_cset: new css_set @task is being moved to (may be NULL)
868 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
870 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
871 * css_set, @from_cset can be NULL. If @task is being disassociated
872 * instead of moved, @to_cset can be NULL.
874 * This function automatically handles populated counter updates and
875 * css_task_iter adjustments but the caller is responsible for managing
876 * @from_cset and @to_cset's reference counts.
878 static void css_set_move_task(struct task_struct
*task
,
879 struct css_set
*from_cset
, struct css_set
*to_cset
,
882 lockdep_assert_held(&css_set_lock
);
884 if (to_cset
&& !css_set_populated(to_cset
))
885 css_set_update_populated(to_cset
, true);
888 WARN_ON_ONCE(list_empty(&task
->cg_list
));
890 css_set_skip_task_iters(from_cset
, task
);
891 list_del_init(&task
->cg_list
);
892 if (!css_set_populated(from_cset
))
893 css_set_update_populated(from_cset
, false);
895 WARN_ON_ONCE(!list_empty(&task
->cg_list
));
900 * We are synchronized through cgroup_threadgroup_rwsem
901 * against PF_EXITING setting such that we can't race
902 * against cgroup_exit()/cgroup_free() dropping the css_set.
904 WARN_ON_ONCE(task
->flags
& PF_EXITING
);
906 cgroup_move_task(task
, to_cset
);
907 list_add_tail(&task
->cg_list
, use_mg_tasks
? &to_cset
->mg_tasks
:
913 * hash table for cgroup groups. This improves the performance to find
914 * an existing css_set. This hash doesn't (currently) take into
915 * account cgroups in empty hierarchies.
917 #define CSS_SET_HASH_BITS 7
918 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
920 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
922 unsigned long key
= 0UL;
923 struct cgroup_subsys
*ss
;
926 for_each_subsys(ss
, i
)
927 key
+= (unsigned long)css
[i
];
928 key
= (key
>> 16) ^ key
;
933 void put_css_set_locked(struct css_set
*cset
)
935 struct cgrp_cset_link
*link
, *tmp_link
;
936 struct cgroup_subsys
*ss
;
939 lockdep_assert_held(&css_set_lock
);
941 if (!refcount_dec_and_test(&cset
->refcount
))
944 WARN_ON_ONCE(!list_empty(&cset
->threaded_csets
));
946 /* This css_set is dead. unlink it and release cgroup and css refs */
947 for_each_subsys(ss
, ssid
) {
948 list_del(&cset
->e_cset_node
[ssid
]);
949 css_put(cset
->subsys
[ssid
]);
951 hash_del(&cset
->hlist
);
954 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
955 list_del(&link
->cset_link
);
956 list_del(&link
->cgrp_link
);
957 if (cgroup_parent(link
->cgrp
))
958 cgroup_put(link
->cgrp
);
962 if (css_set_threaded(cset
)) {
963 list_del(&cset
->threaded_csets_node
);
964 put_css_set_locked(cset
->dom_cset
);
967 kfree_rcu(cset
, rcu_head
);
971 * compare_css_sets - helper function for find_existing_css_set().
972 * @cset: candidate css_set being tested
973 * @old_cset: existing css_set for a task
974 * @new_cgrp: cgroup that's being entered by the task
975 * @template: desired set of css pointers in css_set (pre-calculated)
977 * Returns true if "cset" matches "old_cset" except for the hierarchy
978 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
980 static bool compare_css_sets(struct css_set
*cset
,
981 struct css_set
*old_cset
,
982 struct cgroup
*new_cgrp
,
983 struct cgroup_subsys_state
*template[])
985 struct cgroup
*new_dfl_cgrp
;
986 struct list_head
*l1
, *l2
;
989 * On the default hierarchy, there can be csets which are
990 * associated with the same set of cgroups but different csses.
991 * Let's first ensure that csses match.
993 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
997 /* @cset's domain should match the default cgroup's */
998 if (cgroup_on_dfl(new_cgrp
))
999 new_dfl_cgrp
= new_cgrp
;
1001 new_dfl_cgrp
= old_cset
->dfl_cgrp
;
1003 if (new_dfl_cgrp
->dom_cgrp
!= cset
->dom_cset
->dfl_cgrp
)
1007 * Compare cgroup pointers in order to distinguish between
1008 * different cgroups in hierarchies. As different cgroups may
1009 * share the same effective css, this comparison is always
1012 l1
= &cset
->cgrp_links
;
1013 l2
= &old_cset
->cgrp_links
;
1015 struct cgrp_cset_link
*link1
, *link2
;
1016 struct cgroup
*cgrp1
, *cgrp2
;
1020 /* See if we reached the end - both lists are equal length. */
1021 if (l1
== &cset
->cgrp_links
) {
1022 BUG_ON(l2
!= &old_cset
->cgrp_links
);
1025 BUG_ON(l2
== &old_cset
->cgrp_links
);
1027 /* Locate the cgroups associated with these links. */
1028 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
1029 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
1030 cgrp1
= link1
->cgrp
;
1031 cgrp2
= link2
->cgrp
;
1032 /* Hierarchies should be linked in the same order. */
1033 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
1036 * If this hierarchy is the hierarchy of the cgroup
1037 * that's changing, then we need to check that this
1038 * css_set points to the new cgroup; if it's any other
1039 * hierarchy, then this css_set should point to the
1040 * same cgroup as the old css_set.
1042 if (cgrp1
->root
== new_cgrp
->root
) {
1043 if (cgrp1
!= new_cgrp
)
1054 * find_existing_css_set - init css array and find the matching css_set
1055 * @old_cset: the css_set that we're using before the cgroup transition
1056 * @cgrp: the cgroup that we're moving into
1057 * @template: out param for the new set of csses, should be clear on entry
1059 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
1060 struct cgroup
*cgrp
,
1061 struct cgroup_subsys_state
*template[])
1063 struct cgroup_root
*root
= cgrp
->root
;
1064 struct cgroup_subsys
*ss
;
1065 struct css_set
*cset
;
1070 * Build the set of subsystem state objects that we want to see in the
1071 * new css_set. while subsystems can change globally, the entries here
1072 * won't change, so no need for locking.
1074 for_each_subsys(ss
, i
) {
1075 if (root
->subsys_mask
& (1UL << i
)) {
1077 * @ss is in this hierarchy, so we want the
1078 * effective css from @cgrp.
1080 template[i
] = cgroup_e_css_by_mask(cgrp
, ss
);
1083 * @ss is not in this hierarchy, so we don't want
1084 * to change the css.
1086 template[i
] = old_cset
->subsys
[i
];
1090 key
= css_set_hash(template);
1091 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
1092 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
1095 /* This css_set matches what we need */
1099 /* No existing cgroup group matched */
1103 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
1105 struct cgrp_cset_link
*link
, *tmp_link
;
1107 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
1108 list_del(&link
->cset_link
);
1114 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1115 * @count: the number of links to allocate
1116 * @tmp_links: list_head the allocated links are put on
1118 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1119 * through ->cset_link. Returns 0 on success or -errno.
1121 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
1123 struct cgrp_cset_link
*link
;
1126 INIT_LIST_HEAD(tmp_links
);
1128 for (i
= 0; i
< count
; i
++) {
1129 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
1131 free_cgrp_cset_links(tmp_links
);
1134 list_add(&link
->cset_link
, tmp_links
);
1140 * link_css_set - a helper function to link a css_set to a cgroup
1141 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1142 * @cset: the css_set to be linked
1143 * @cgrp: the destination cgroup
1145 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
1146 struct cgroup
*cgrp
)
1148 struct cgrp_cset_link
*link
;
1150 BUG_ON(list_empty(tmp_links
));
1152 if (cgroup_on_dfl(cgrp
))
1153 cset
->dfl_cgrp
= cgrp
;
1155 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
1160 * Always add links to the tail of the lists so that the lists are
1161 * in choronological order.
1163 list_move_tail(&link
->cset_link
, &cgrp
->cset_links
);
1164 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
1166 if (cgroup_parent(cgrp
))
1167 cgroup_get_live(cgrp
);
1171 * find_css_set - return a new css_set with one cgroup updated
1172 * @old_cset: the baseline css_set
1173 * @cgrp: the cgroup to be updated
1175 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1176 * substituted into the appropriate hierarchy.
1178 static struct css_set
*find_css_set(struct css_set
*old_cset
,
1179 struct cgroup
*cgrp
)
1181 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
1182 struct css_set
*cset
;
1183 struct list_head tmp_links
;
1184 struct cgrp_cset_link
*link
;
1185 struct cgroup_subsys
*ss
;
1189 lockdep_assert_held(&cgroup_mutex
);
1191 /* First see if we already have a cgroup group that matches
1192 * the desired set */
1193 spin_lock_irq(&css_set_lock
);
1194 cset
= find_existing_css_set(old_cset
, cgrp
, template);
1197 spin_unlock_irq(&css_set_lock
);
1202 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
1206 /* Allocate all the cgrp_cset_link objects that we'll need */
1207 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
1212 refcount_set(&cset
->refcount
, 1);
1213 cset
->dom_cset
= cset
;
1214 INIT_LIST_HEAD(&cset
->tasks
);
1215 INIT_LIST_HEAD(&cset
->mg_tasks
);
1216 INIT_LIST_HEAD(&cset
->dying_tasks
);
1217 INIT_LIST_HEAD(&cset
->task_iters
);
1218 INIT_LIST_HEAD(&cset
->threaded_csets
);
1219 INIT_HLIST_NODE(&cset
->hlist
);
1220 INIT_LIST_HEAD(&cset
->cgrp_links
);
1221 INIT_LIST_HEAD(&cset
->mg_preload_node
);
1222 INIT_LIST_HEAD(&cset
->mg_node
);
1224 /* Copy the set of subsystem state objects generated in
1225 * find_existing_css_set() */
1226 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
1228 spin_lock_irq(&css_set_lock
);
1229 /* Add reference counts and links from the new css_set. */
1230 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
1231 struct cgroup
*c
= link
->cgrp
;
1233 if (c
->root
== cgrp
->root
)
1235 link_css_set(&tmp_links
, cset
, c
);
1238 BUG_ON(!list_empty(&tmp_links
));
1242 /* Add @cset to the hash table */
1243 key
= css_set_hash(cset
->subsys
);
1244 hash_add(css_set_table
, &cset
->hlist
, key
);
1246 for_each_subsys(ss
, ssid
) {
1247 struct cgroup_subsys_state
*css
= cset
->subsys
[ssid
];
1249 list_add_tail(&cset
->e_cset_node
[ssid
],
1250 &css
->cgroup
->e_csets
[ssid
]);
1254 spin_unlock_irq(&css_set_lock
);
1257 * If @cset should be threaded, look up the matching dom_cset and
1258 * link them up. We first fully initialize @cset then look for the
1259 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1260 * to stay empty until we return.
1262 if (cgroup_is_threaded(cset
->dfl_cgrp
)) {
1263 struct css_set
*dcset
;
1265 dcset
= find_css_set(cset
, cset
->dfl_cgrp
->dom_cgrp
);
1271 spin_lock_irq(&css_set_lock
);
1272 cset
->dom_cset
= dcset
;
1273 list_add_tail(&cset
->threaded_csets_node
,
1274 &dcset
->threaded_csets
);
1275 spin_unlock_irq(&css_set_lock
);
1281 struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
1283 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
1285 return root_cgrp
->root
;
1288 static int cgroup_init_root_id(struct cgroup_root
*root
)
1292 lockdep_assert_held(&cgroup_mutex
);
1294 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
1298 root
->hierarchy_id
= id
;
1302 static void cgroup_exit_root_id(struct cgroup_root
*root
)
1304 lockdep_assert_held(&cgroup_mutex
);
1306 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1309 void cgroup_free_root(struct cgroup_root
*root
)
1314 static void cgroup_destroy_root(struct cgroup_root
*root
)
1316 struct cgroup
*cgrp
= &root
->cgrp
;
1317 struct cgrp_cset_link
*link
, *tmp_link
;
1319 trace_cgroup_destroy_root(root
);
1321 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
1323 BUG_ON(atomic_read(&root
->nr_cgrps
));
1324 BUG_ON(!list_empty(&cgrp
->self
.children
));
1326 /* Rebind all subsystems back to the default hierarchy */
1327 WARN_ON(rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
));
1330 * Release all the links from cset_links to this hierarchy's
1333 spin_lock_irq(&css_set_lock
);
1335 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1336 list_del(&link
->cset_link
);
1337 list_del(&link
->cgrp_link
);
1341 spin_unlock_irq(&css_set_lock
);
1343 if (!list_empty(&root
->root_list
)) {
1344 list_del(&root
->root_list
);
1345 cgroup_root_count
--;
1348 cgroup_exit_root_id(root
);
1350 mutex_unlock(&cgroup_mutex
);
1352 kernfs_destroy_root(root
->kf_root
);
1353 cgroup_free_root(root
);
1357 * look up cgroup associated with current task's cgroup namespace on the
1358 * specified hierarchy
1360 static struct cgroup
*
1361 current_cgns_cgroup_from_root(struct cgroup_root
*root
)
1363 struct cgroup
*res
= NULL
;
1364 struct css_set
*cset
;
1366 lockdep_assert_held(&css_set_lock
);
1370 cset
= current
->nsproxy
->cgroup_ns
->root_cset
;
1371 if (cset
== &init_css_set
) {
1373 } else if (root
== &cgrp_dfl_root
) {
1374 res
= cset
->dfl_cgrp
;
1376 struct cgrp_cset_link
*link
;
1378 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1379 struct cgroup
*c
= link
->cgrp
;
1381 if (c
->root
== root
) {
1393 /* look up cgroup associated with given css_set on the specified hierarchy */
1394 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
1395 struct cgroup_root
*root
)
1397 struct cgroup
*res
= NULL
;
1399 lockdep_assert_held(&cgroup_mutex
);
1400 lockdep_assert_held(&css_set_lock
);
1402 if (cset
== &init_css_set
) {
1404 } else if (root
== &cgrp_dfl_root
) {
1405 res
= cset
->dfl_cgrp
;
1407 struct cgrp_cset_link
*link
;
1409 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1410 struct cgroup
*c
= link
->cgrp
;
1412 if (c
->root
== root
) {
1424 * Return the cgroup for "task" from the given hierarchy. Must be
1425 * called with cgroup_mutex and css_set_lock held.
1427 struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1428 struct cgroup_root
*root
)
1431 * No need to lock the task - since we hold css_set_lock the
1432 * task can't change groups.
1434 return cset_cgroup_from_root(task_css_set(task
), root
);
1438 * A task must hold cgroup_mutex to modify cgroups.
1440 * Any task can increment and decrement the count field without lock.
1441 * So in general, code holding cgroup_mutex can't rely on the count
1442 * field not changing. However, if the count goes to zero, then only
1443 * cgroup_attach_task() can increment it again. Because a count of zero
1444 * means that no tasks are currently attached, therefore there is no
1445 * way a task attached to that cgroup can fork (the other way to
1446 * increment the count). So code holding cgroup_mutex can safely
1447 * assume that if the count is zero, it will stay zero. Similarly, if
1448 * a task holds cgroup_mutex on a cgroup with zero count, it
1449 * knows that the cgroup won't be removed, as cgroup_rmdir()
1452 * A cgroup can only be deleted if both its 'count' of using tasks
1453 * is zero, and its list of 'children' cgroups is empty. Since all
1454 * tasks in the system use _some_ cgroup, and since there is always at
1455 * least one task in the system (init, pid == 1), therefore, root cgroup
1456 * always has either children cgroups and/or using tasks. So we don't
1457 * need a special hack to ensure that root cgroup cannot be deleted.
1459 * P.S. One more locking exception. RCU is used to guard the
1460 * update of a tasks cgroup pointer by cgroup_attach_task()
1463 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1465 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1468 struct cgroup_subsys
*ss
= cft
->ss
;
1470 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1471 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
)) {
1472 const char *dbg
= (cft
->flags
& CFTYPE_DEBUG
) ? ".__DEBUG__." : "";
1474 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s%s.%s",
1475 dbg
, cgroup_on_dfl(cgrp
) ? ss
->name
: ss
->legacy_name
,
1478 strscpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1484 * cgroup_file_mode - deduce file mode of a control file
1485 * @cft: the control file in question
1487 * S_IRUGO for read, S_IWUSR for write.
1489 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1493 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1496 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
) {
1497 if (cft
->flags
& CFTYPE_WORLD_WRITABLE
)
1507 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1508 * @subtree_control: the new subtree_control mask to consider
1509 * @this_ss_mask: available subsystems
1511 * On the default hierarchy, a subsystem may request other subsystems to be
1512 * enabled together through its ->depends_on mask. In such cases, more
1513 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1515 * This function calculates which subsystems need to be enabled if
1516 * @subtree_control is to be applied while restricted to @this_ss_mask.
1518 static u16
cgroup_calc_subtree_ss_mask(u16 subtree_control
, u16 this_ss_mask
)
1520 u16 cur_ss_mask
= subtree_control
;
1521 struct cgroup_subsys
*ss
;
1524 lockdep_assert_held(&cgroup_mutex
);
1526 cur_ss_mask
|= cgrp_dfl_implicit_ss_mask
;
1529 u16 new_ss_mask
= cur_ss_mask
;
1531 do_each_subsys_mask(ss
, ssid
, cur_ss_mask
) {
1532 new_ss_mask
|= ss
->depends_on
;
1533 } while_each_subsys_mask();
1536 * Mask out subsystems which aren't available. This can
1537 * happen only if some depended-upon subsystems were bound
1538 * to non-default hierarchies.
1540 new_ss_mask
&= this_ss_mask
;
1542 if (new_ss_mask
== cur_ss_mask
)
1544 cur_ss_mask
= new_ss_mask
;
1551 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1552 * @kn: the kernfs_node being serviced
1554 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1555 * the method finishes if locking succeeded. Note that once this function
1556 * returns the cgroup returned by cgroup_kn_lock_live() may become
1557 * inaccessible any time. If the caller intends to continue to access the
1558 * cgroup, it should pin it before invoking this function.
1560 void cgroup_kn_unlock(struct kernfs_node
*kn
)
1562 struct cgroup
*cgrp
;
1564 if (kernfs_type(kn
) == KERNFS_DIR
)
1567 cgrp
= kn
->parent
->priv
;
1569 mutex_unlock(&cgroup_mutex
);
1571 kernfs_unbreak_active_protection(kn
);
1576 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1577 * @kn: the kernfs_node being serviced
1578 * @drain_offline: perform offline draining on the cgroup
1580 * This helper is to be used by a cgroup kernfs method currently servicing
1581 * @kn. It breaks the active protection, performs cgroup locking and
1582 * verifies that the associated cgroup is alive. Returns the cgroup if
1583 * alive; otherwise, %NULL. A successful return should be undone by a
1584 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1585 * cgroup is drained of offlining csses before return.
1587 * Any cgroup kernfs method implementation which requires locking the
1588 * associated cgroup should use this helper. It avoids nesting cgroup
1589 * locking under kernfs active protection and allows all kernfs operations
1590 * including self-removal.
1592 struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
, bool drain_offline
)
1594 struct cgroup
*cgrp
;
1596 if (kernfs_type(kn
) == KERNFS_DIR
)
1599 cgrp
= kn
->parent
->priv
;
1602 * We're gonna grab cgroup_mutex which nests outside kernfs
1603 * active_ref. cgroup liveliness check alone provides enough
1604 * protection against removal. Ensure @cgrp stays accessible and
1605 * break the active_ref protection.
1607 if (!cgroup_tryget(cgrp
))
1609 kernfs_break_active_protection(kn
);
1612 cgroup_lock_and_drain_offline(cgrp
);
1614 mutex_lock(&cgroup_mutex
);
1616 if (!cgroup_is_dead(cgrp
))
1619 cgroup_kn_unlock(kn
);
1623 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1625 char name
[CGROUP_FILE_NAME_MAX
];
1627 lockdep_assert_held(&cgroup_mutex
);
1629 if (cft
->file_offset
) {
1630 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, cft
->ss
);
1631 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
1633 spin_lock_irq(&cgroup_file_kn_lock
);
1635 spin_unlock_irq(&cgroup_file_kn_lock
);
1637 del_timer_sync(&cfile
->notify_timer
);
1640 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1644 * css_clear_dir - remove subsys files in a cgroup directory
1647 static void css_clear_dir(struct cgroup_subsys_state
*css
)
1649 struct cgroup
*cgrp
= css
->cgroup
;
1650 struct cftype
*cfts
;
1652 if (!(css
->flags
& CSS_VISIBLE
))
1655 css
->flags
&= ~CSS_VISIBLE
;
1658 if (cgroup_on_dfl(cgrp
))
1659 cfts
= cgroup_base_files
;
1661 cfts
= cgroup1_base_files
;
1663 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1665 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
)
1666 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1671 * css_populate_dir - create subsys files in a cgroup directory
1674 * On failure, no file is added.
1676 static int css_populate_dir(struct cgroup_subsys_state
*css
)
1678 struct cgroup
*cgrp
= css
->cgroup
;
1679 struct cftype
*cfts
, *failed_cfts
;
1682 if ((css
->flags
& CSS_VISIBLE
) || !cgrp
->kn
)
1686 if (cgroup_on_dfl(cgrp
))
1687 cfts
= cgroup_base_files
;
1689 cfts
= cgroup1_base_files
;
1691 ret
= cgroup_addrm_files(&cgrp
->self
, cgrp
, cfts
, true);
1695 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1696 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, true);
1704 css
->flags
|= CSS_VISIBLE
;
1708 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1709 if (cfts
== failed_cfts
)
1711 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1716 int rebind_subsystems(struct cgroup_root
*dst_root
, u16 ss_mask
)
1718 struct cgroup
*dcgrp
= &dst_root
->cgrp
;
1719 struct cgroup_subsys
*ss
;
1722 lockdep_assert_held(&cgroup_mutex
);
1724 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1726 * If @ss has non-root csses attached to it, can't move.
1727 * If @ss is an implicit controller, it is exempt from this
1728 * rule and can be stolen.
1730 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)) &&
1731 !ss
->implicit_on_dfl
)
1734 /* can't move between two non-dummy roots either */
1735 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1737 } while_each_subsys_mask();
1739 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1740 struct cgroup_root
*src_root
= ss
->root
;
1741 struct cgroup
*scgrp
= &src_root
->cgrp
;
1742 struct cgroup_subsys_state
*css
= cgroup_css(scgrp
, ss
);
1743 struct css_set
*cset
;
1745 WARN_ON(!css
|| cgroup_css(dcgrp
, ss
));
1747 /* disable from the source */
1748 src_root
->subsys_mask
&= ~(1 << ssid
);
1749 WARN_ON(cgroup_apply_control(scgrp
));
1750 cgroup_finalize_control(scgrp
, 0);
1753 RCU_INIT_POINTER(scgrp
->subsys
[ssid
], NULL
);
1754 rcu_assign_pointer(dcgrp
->subsys
[ssid
], css
);
1755 ss
->root
= dst_root
;
1756 css
->cgroup
= dcgrp
;
1758 spin_lock_irq(&css_set_lock
);
1759 hash_for_each(css_set_table
, i
, cset
, hlist
)
1760 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1761 &dcgrp
->e_csets
[ss
->id
]);
1762 spin_unlock_irq(&css_set_lock
);
1764 /* default hierarchy doesn't enable controllers by default */
1765 dst_root
->subsys_mask
|= 1 << ssid
;
1766 if (dst_root
== &cgrp_dfl_root
) {
1767 static_branch_enable(cgroup_subsys_on_dfl_key
[ssid
]);
1769 dcgrp
->subtree_control
|= 1 << ssid
;
1770 static_branch_disable(cgroup_subsys_on_dfl_key
[ssid
]);
1773 ret
= cgroup_apply_control(dcgrp
);
1775 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1780 } while_each_subsys_mask();
1782 kernfs_activate(dcgrp
->kn
);
1786 int cgroup_show_path(struct seq_file
*sf
, struct kernfs_node
*kf_node
,
1787 struct kernfs_root
*kf_root
)
1791 struct cgroup_root
*kf_cgroot
= cgroup_root_from_kf(kf_root
);
1792 struct cgroup
*ns_cgroup
;
1794 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
1798 spin_lock_irq(&css_set_lock
);
1799 ns_cgroup
= current_cgns_cgroup_from_root(kf_cgroot
);
1800 len
= kernfs_path_from_node(kf_node
, ns_cgroup
->kn
, buf
, PATH_MAX
);
1801 spin_unlock_irq(&css_set_lock
);
1803 if (len
>= PATH_MAX
)
1806 seq_escape(sf
, buf
, " \t\n\\");
1813 enum cgroup2_param
{
1815 Opt_memory_localevents
,
1816 Opt_memory_recursiveprot
,
1820 static const struct fs_parameter_spec cgroup2_fs_parameters
[] = {
1821 fsparam_flag("nsdelegate", Opt_nsdelegate
),
1822 fsparam_flag("memory_localevents", Opt_memory_localevents
),
1823 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot
),
1827 static int cgroup2_parse_param(struct fs_context
*fc
, struct fs_parameter
*param
)
1829 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
1830 struct fs_parse_result result
;
1833 opt
= fs_parse(fc
, cgroup2_fs_parameters
, param
, &result
);
1838 case Opt_nsdelegate
:
1839 ctx
->flags
|= CGRP_ROOT_NS_DELEGATE
;
1841 case Opt_memory_localevents
:
1842 ctx
->flags
|= CGRP_ROOT_MEMORY_LOCAL_EVENTS
;
1844 case Opt_memory_recursiveprot
:
1845 ctx
->flags
|= CGRP_ROOT_MEMORY_RECURSIVE_PROT
;
1851 static void apply_cgroup_root_flags(unsigned int root_flags
)
1853 if (current
->nsproxy
->cgroup_ns
== &init_cgroup_ns
) {
1854 if (root_flags
& CGRP_ROOT_NS_DELEGATE
)
1855 cgrp_dfl_root
.flags
|= CGRP_ROOT_NS_DELEGATE
;
1857 cgrp_dfl_root
.flags
&= ~CGRP_ROOT_NS_DELEGATE
;
1859 if (root_flags
& CGRP_ROOT_MEMORY_LOCAL_EVENTS
)
1860 cgrp_dfl_root
.flags
|= CGRP_ROOT_MEMORY_LOCAL_EVENTS
;
1862 cgrp_dfl_root
.flags
&= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS
;
1864 if (root_flags
& CGRP_ROOT_MEMORY_RECURSIVE_PROT
)
1865 cgrp_dfl_root
.flags
|= CGRP_ROOT_MEMORY_RECURSIVE_PROT
;
1867 cgrp_dfl_root
.flags
&= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT
;
1871 static int cgroup_show_options(struct seq_file
*seq
, struct kernfs_root
*kf_root
)
1873 if (cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
)
1874 seq_puts(seq
, ",nsdelegate");
1875 if (cgrp_dfl_root
.flags
& CGRP_ROOT_MEMORY_LOCAL_EVENTS
)
1876 seq_puts(seq
, ",memory_localevents");
1877 if (cgrp_dfl_root
.flags
& CGRP_ROOT_MEMORY_RECURSIVE_PROT
)
1878 seq_puts(seq
, ",memory_recursiveprot");
1882 static int cgroup_reconfigure(struct fs_context
*fc
)
1884 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
1886 apply_cgroup_root_flags(ctx
->flags
);
1890 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1892 struct cgroup_subsys
*ss
;
1895 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1896 INIT_LIST_HEAD(&cgrp
->self
.children
);
1897 INIT_LIST_HEAD(&cgrp
->cset_links
);
1898 INIT_LIST_HEAD(&cgrp
->pidlists
);
1899 mutex_init(&cgrp
->pidlist_mutex
);
1900 cgrp
->self
.cgroup
= cgrp
;
1901 cgrp
->self
.flags
|= CSS_ONLINE
;
1902 cgrp
->dom_cgrp
= cgrp
;
1903 cgrp
->max_descendants
= INT_MAX
;
1904 cgrp
->max_depth
= INT_MAX
;
1905 INIT_LIST_HEAD(&cgrp
->rstat_css_list
);
1906 prev_cputime_init(&cgrp
->prev_cputime
);
1908 for_each_subsys(ss
, ssid
)
1909 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1911 init_waitqueue_head(&cgrp
->offline_waitq
);
1912 INIT_WORK(&cgrp
->release_agent_work
, cgroup1_release_agent
);
1915 void init_cgroup_root(struct cgroup_fs_context
*ctx
)
1917 struct cgroup_root
*root
= ctx
->root
;
1918 struct cgroup
*cgrp
= &root
->cgrp
;
1920 INIT_LIST_HEAD(&root
->root_list
);
1921 atomic_set(&root
->nr_cgrps
, 1);
1923 init_cgroup_housekeeping(cgrp
);
1925 root
->flags
= ctx
->flags
;
1926 if (ctx
->release_agent
)
1927 strscpy(root
->release_agent_path
, ctx
->release_agent
, PATH_MAX
);
1929 strscpy(root
->name
, ctx
->name
, MAX_CGROUP_ROOT_NAMELEN
);
1930 if (ctx
->cpuset_clone_children
)
1931 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1934 int cgroup_setup_root(struct cgroup_root
*root
, u16 ss_mask
)
1936 LIST_HEAD(tmp_links
);
1937 struct cgroup
*root_cgrp
= &root
->cgrp
;
1938 struct kernfs_syscall_ops
*kf_sops
;
1939 struct css_set
*cset
;
1942 lockdep_assert_held(&cgroup_mutex
);
1944 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
,
1950 * We're accessing css_set_count without locking css_set_lock here,
1951 * but that's OK - it can only be increased by someone holding
1952 * cgroup_lock, and that's us. Later rebinding may disable
1953 * controllers on the default hierarchy and thus create new csets,
1954 * which can't be more than the existing ones. Allocate 2x.
1956 ret
= allocate_cgrp_cset_links(2 * css_set_count
, &tmp_links
);
1960 ret
= cgroup_init_root_id(root
);
1964 kf_sops
= root
== &cgrp_dfl_root
?
1965 &cgroup_kf_syscall_ops
: &cgroup1_kf_syscall_ops
;
1967 root
->kf_root
= kernfs_create_root(kf_sops
,
1968 KERNFS_ROOT_CREATE_DEACTIVATED
|
1969 KERNFS_ROOT_SUPPORT_EXPORTOP
|
1970 KERNFS_ROOT_SUPPORT_USER_XATTR
,
1972 if (IS_ERR(root
->kf_root
)) {
1973 ret
= PTR_ERR(root
->kf_root
);
1976 root_cgrp
->kn
= root
->kf_root
->kn
;
1977 WARN_ON_ONCE(cgroup_ino(root_cgrp
) != 1);
1978 root_cgrp
->ancestor_ids
[0] = cgroup_id(root_cgrp
);
1980 ret
= css_populate_dir(&root_cgrp
->self
);
1984 ret
= rebind_subsystems(root
, ss_mask
);
1988 ret
= cgroup_bpf_inherit(root_cgrp
);
1991 trace_cgroup_setup_root(root
);
1994 * There must be no failure case after here, since rebinding takes
1995 * care of subsystems' refcounts, which are explicitly dropped in
1996 * the failure exit path.
1998 list_add(&root
->root_list
, &cgroup_roots
);
1999 cgroup_root_count
++;
2002 * Link the root cgroup in this hierarchy into all the css_set
2005 spin_lock_irq(&css_set_lock
);
2006 hash_for_each(css_set_table
, i
, cset
, hlist
) {
2007 link_css_set(&tmp_links
, cset
, root_cgrp
);
2008 if (css_set_populated(cset
))
2009 cgroup_update_populated(root_cgrp
, true);
2011 spin_unlock_irq(&css_set_lock
);
2013 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
2014 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
2016 kernfs_activate(root_cgrp
->kn
);
2021 kernfs_destroy_root(root
->kf_root
);
2022 root
->kf_root
= NULL
;
2024 cgroup_exit_root_id(root
);
2026 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
2028 free_cgrp_cset_links(&tmp_links
);
2032 int cgroup_do_get_tree(struct fs_context
*fc
)
2034 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
2037 ctx
->kfc
.root
= ctx
->root
->kf_root
;
2038 if (fc
->fs_type
== &cgroup2_fs_type
)
2039 ctx
->kfc
.magic
= CGROUP2_SUPER_MAGIC
;
2041 ctx
->kfc
.magic
= CGROUP_SUPER_MAGIC
;
2042 ret
= kernfs_get_tree(fc
);
2045 * In non-init cgroup namespace, instead of root cgroup's dentry,
2046 * we return the dentry corresponding to the cgroupns->root_cgrp.
2048 if (!ret
&& ctx
->ns
!= &init_cgroup_ns
) {
2049 struct dentry
*nsdentry
;
2050 struct super_block
*sb
= fc
->root
->d_sb
;
2051 struct cgroup
*cgrp
;
2053 mutex_lock(&cgroup_mutex
);
2054 spin_lock_irq(&css_set_lock
);
2056 cgrp
= cset_cgroup_from_root(ctx
->ns
->root_cset
, ctx
->root
);
2058 spin_unlock_irq(&css_set_lock
);
2059 mutex_unlock(&cgroup_mutex
);
2061 nsdentry
= kernfs_node_dentry(cgrp
->kn
, sb
);
2063 if (IS_ERR(nsdentry
)) {
2064 deactivate_locked_super(sb
);
2065 ret
= PTR_ERR(nsdentry
);
2068 fc
->root
= nsdentry
;
2071 if (!ctx
->kfc
.new_sb_created
)
2072 cgroup_put(&ctx
->root
->cgrp
);
2078 * Destroy a cgroup filesystem context.
2080 static void cgroup_fs_context_free(struct fs_context
*fc
)
2082 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
2085 kfree(ctx
->release_agent
);
2086 put_cgroup_ns(ctx
->ns
);
2087 kernfs_free_fs_context(fc
);
2091 static int cgroup_get_tree(struct fs_context
*fc
)
2093 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
2096 cgrp_dfl_visible
= true;
2097 cgroup_get_live(&cgrp_dfl_root
.cgrp
);
2098 ctx
->root
= &cgrp_dfl_root
;
2100 ret
= cgroup_do_get_tree(fc
);
2102 apply_cgroup_root_flags(ctx
->flags
);
2106 static const struct fs_context_operations cgroup_fs_context_ops
= {
2107 .free
= cgroup_fs_context_free
,
2108 .parse_param
= cgroup2_parse_param
,
2109 .get_tree
= cgroup_get_tree
,
2110 .reconfigure
= cgroup_reconfigure
,
2113 static const struct fs_context_operations cgroup1_fs_context_ops
= {
2114 .free
= cgroup_fs_context_free
,
2115 .parse_param
= cgroup1_parse_param
,
2116 .get_tree
= cgroup1_get_tree
,
2117 .reconfigure
= cgroup1_reconfigure
,
2121 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2122 * we select the namespace we're going to use.
2124 static int cgroup_init_fs_context(struct fs_context
*fc
)
2126 struct cgroup_fs_context
*ctx
;
2128 ctx
= kzalloc(sizeof(struct cgroup_fs_context
), GFP_KERNEL
);
2132 ctx
->ns
= current
->nsproxy
->cgroup_ns
;
2133 get_cgroup_ns(ctx
->ns
);
2134 fc
->fs_private
= &ctx
->kfc
;
2135 if (fc
->fs_type
== &cgroup2_fs_type
)
2136 fc
->ops
= &cgroup_fs_context_ops
;
2138 fc
->ops
= &cgroup1_fs_context_ops
;
2139 put_user_ns(fc
->user_ns
);
2140 fc
->user_ns
= get_user_ns(ctx
->ns
->user_ns
);
2145 static void cgroup_kill_sb(struct super_block
*sb
)
2147 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
2148 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
2151 * If @root doesn't have any children, start killing it.
2152 * This prevents new mounts by disabling percpu_ref_tryget_live().
2153 * cgroup_mount() may wait for @root's release.
2155 * And don't kill the default root.
2157 if (list_empty(&root
->cgrp
.self
.children
) && root
!= &cgrp_dfl_root
&&
2158 !percpu_ref_is_dying(&root
->cgrp
.self
.refcnt
))
2159 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
2160 cgroup_put(&root
->cgrp
);
2164 struct file_system_type cgroup_fs_type
= {
2166 .init_fs_context
= cgroup_init_fs_context
,
2167 .parameters
= cgroup1_fs_parameters
,
2168 .kill_sb
= cgroup_kill_sb
,
2169 .fs_flags
= FS_USERNS_MOUNT
,
2172 static struct file_system_type cgroup2_fs_type
= {
2174 .init_fs_context
= cgroup_init_fs_context
,
2175 .parameters
= cgroup2_fs_parameters
,
2176 .kill_sb
= cgroup_kill_sb
,
2177 .fs_flags
= FS_USERNS_MOUNT
,
2180 #ifdef CONFIG_CPUSETS
2181 static const struct fs_context_operations cpuset_fs_context_ops
= {
2182 .get_tree
= cgroup1_get_tree
,
2183 .free
= cgroup_fs_context_free
,
2187 * This is ugly, but preserves the userspace API for existing cpuset
2188 * users. If someone tries to mount the "cpuset" filesystem, we
2189 * silently switch it to mount "cgroup" instead
2191 static int cpuset_init_fs_context(struct fs_context
*fc
)
2193 char *agent
= kstrdup("/sbin/cpuset_release_agent", GFP_USER
);
2194 struct cgroup_fs_context
*ctx
;
2197 err
= cgroup_init_fs_context(fc
);
2203 fc
->ops
= &cpuset_fs_context_ops
;
2205 ctx
= cgroup_fc2context(fc
);
2206 ctx
->subsys_mask
= 1 << cpuset_cgrp_id
;
2207 ctx
->flags
|= CGRP_ROOT_NOPREFIX
;
2208 ctx
->release_agent
= agent
;
2210 get_filesystem(&cgroup_fs_type
);
2211 put_filesystem(fc
->fs_type
);
2212 fc
->fs_type
= &cgroup_fs_type
;
2217 static struct file_system_type cpuset_fs_type
= {
2219 .init_fs_context
= cpuset_init_fs_context
,
2220 .fs_flags
= FS_USERNS_MOUNT
,
2224 int cgroup_path_ns_locked(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2225 struct cgroup_namespace
*ns
)
2227 struct cgroup
*root
= cset_cgroup_from_root(ns
->root_cset
, cgrp
->root
);
2229 return kernfs_path_from_node(cgrp
->kn
, root
->kn
, buf
, buflen
);
2232 int cgroup_path_ns(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2233 struct cgroup_namespace
*ns
)
2237 mutex_lock(&cgroup_mutex
);
2238 spin_lock_irq(&css_set_lock
);
2240 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, ns
);
2242 spin_unlock_irq(&css_set_lock
);
2243 mutex_unlock(&cgroup_mutex
);
2247 EXPORT_SYMBOL_GPL(cgroup_path_ns
);
2250 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2251 * @task: target task
2252 * @buf: the buffer to write the path into
2253 * @buflen: the length of the buffer
2255 * Determine @task's cgroup on the first (the one with the lowest non-zero
2256 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2257 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2258 * cgroup controller callbacks.
2260 * Return value is the same as kernfs_path().
2262 int task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
2264 struct cgroup_root
*root
;
2265 struct cgroup
*cgrp
;
2266 int hierarchy_id
= 1;
2269 mutex_lock(&cgroup_mutex
);
2270 spin_lock_irq(&css_set_lock
);
2272 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2275 cgrp
= task_cgroup_from_root(task
, root
);
2276 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, &init_cgroup_ns
);
2278 /* if no hierarchy exists, everyone is in "/" */
2279 ret
= strlcpy(buf
, "/", buflen
);
2282 spin_unlock_irq(&css_set_lock
);
2283 mutex_unlock(&cgroup_mutex
);
2286 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2289 * cgroup_migrate_add_task - add a migration target task to a migration context
2290 * @task: target task
2291 * @mgctx: target migration context
2293 * Add @task, which is a migration target, to @mgctx->tset. This function
2294 * becomes noop if @task doesn't need to be migrated. @task's css_set
2295 * should have been added as a migration source and @task->cg_list will be
2296 * moved from the css_set's tasks list to mg_tasks one.
2298 static void cgroup_migrate_add_task(struct task_struct
*task
,
2299 struct cgroup_mgctx
*mgctx
)
2301 struct css_set
*cset
;
2303 lockdep_assert_held(&css_set_lock
);
2305 /* @task either already exited or can't exit until the end */
2306 if (task
->flags
& PF_EXITING
)
2309 /* cgroup_threadgroup_rwsem protects racing against forks */
2310 WARN_ON_ONCE(list_empty(&task
->cg_list
));
2312 cset
= task_css_set(task
);
2313 if (!cset
->mg_src_cgrp
)
2316 mgctx
->tset
.nr_tasks
++;
2318 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2319 if (list_empty(&cset
->mg_node
))
2320 list_add_tail(&cset
->mg_node
,
2321 &mgctx
->tset
.src_csets
);
2322 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2323 list_add_tail(&cset
->mg_dst_cset
->mg_node
,
2324 &mgctx
->tset
.dst_csets
);
2328 * cgroup_taskset_first - reset taskset and return the first task
2329 * @tset: taskset of interest
2330 * @dst_cssp: output variable for the destination css
2332 * @tset iteration is initialized and the first task is returned.
2334 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
,
2335 struct cgroup_subsys_state
**dst_cssp
)
2337 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2338 tset
->cur_task
= NULL
;
2340 return cgroup_taskset_next(tset
, dst_cssp
);
2344 * cgroup_taskset_next - iterate to the next task in taskset
2345 * @tset: taskset of interest
2346 * @dst_cssp: output variable for the destination css
2348 * Return the next task in @tset. Iteration must have been initialized
2349 * with cgroup_taskset_first().
2351 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
,
2352 struct cgroup_subsys_state
**dst_cssp
)
2354 struct css_set
*cset
= tset
->cur_cset
;
2355 struct task_struct
*task
= tset
->cur_task
;
2357 while (&cset
->mg_node
!= tset
->csets
) {
2359 task
= list_first_entry(&cset
->mg_tasks
,
2360 struct task_struct
, cg_list
);
2362 task
= list_next_entry(task
, cg_list
);
2364 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2365 tset
->cur_cset
= cset
;
2366 tset
->cur_task
= task
;
2369 * This function may be called both before and
2370 * after cgroup_taskset_migrate(). The two cases
2371 * can be distinguished by looking at whether @cset
2372 * has its ->mg_dst_cset set.
2374 if (cset
->mg_dst_cset
)
2375 *dst_cssp
= cset
->mg_dst_cset
->subsys
[tset
->ssid
];
2377 *dst_cssp
= cset
->subsys
[tset
->ssid
];
2382 cset
= list_next_entry(cset
, mg_node
);
2390 * cgroup_taskset_migrate - migrate a taskset
2391 * @mgctx: migration context
2393 * Migrate tasks in @mgctx as setup by migration preparation functions.
2394 * This function fails iff one of the ->can_attach callbacks fails and
2395 * guarantees that either all or none of the tasks in @mgctx are migrated.
2396 * @mgctx is consumed regardless of success.
2398 static int cgroup_migrate_execute(struct cgroup_mgctx
*mgctx
)
2400 struct cgroup_taskset
*tset
= &mgctx
->tset
;
2401 struct cgroup_subsys
*ss
;
2402 struct task_struct
*task
, *tmp_task
;
2403 struct css_set
*cset
, *tmp_cset
;
2404 int ssid
, failed_ssid
, ret
;
2406 /* check that we can legitimately attach to the cgroup */
2407 if (tset
->nr_tasks
) {
2408 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2409 if (ss
->can_attach
) {
2411 ret
= ss
->can_attach(tset
);
2414 goto out_cancel_attach
;
2417 } while_each_subsys_mask();
2421 * Now that we're guaranteed success, proceed to move all tasks to
2422 * the new cgroup. There are no failure cases after here, so this
2423 * is the commit point.
2425 spin_lock_irq(&css_set_lock
);
2426 list_for_each_entry(cset
, &tset
->src_csets
, mg_node
) {
2427 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
) {
2428 struct css_set
*from_cset
= task_css_set(task
);
2429 struct css_set
*to_cset
= cset
->mg_dst_cset
;
2431 get_css_set(to_cset
);
2432 to_cset
->nr_tasks
++;
2433 css_set_move_task(task
, from_cset
, to_cset
, true);
2434 from_cset
->nr_tasks
--;
2436 * If the source or destination cgroup is frozen,
2437 * the task might require to change its state.
2439 cgroup_freezer_migrate_task(task
, from_cset
->dfl_cgrp
,
2441 put_css_set_locked(from_cset
);
2445 spin_unlock_irq(&css_set_lock
);
2448 * Migration is committed, all target tasks are now on dst_csets.
2449 * Nothing is sensitive to fork() after this point. Notify
2450 * controllers that migration is complete.
2452 tset
->csets
= &tset
->dst_csets
;
2454 if (tset
->nr_tasks
) {
2455 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2460 } while_each_subsys_mask();
2464 goto out_release_tset
;
2467 if (tset
->nr_tasks
) {
2468 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2469 if (ssid
== failed_ssid
)
2471 if (ss
->cancel_attach
) {
2473 ss
->cancel_attach(tset
);
2475 } while_each_subsys_mask();
2478 spin_lock_irq(&css_set_lock
);
2479 list_splice_init(&tset
->dst_csets
, &tset
->src_csets
);
2480 list_for_each_entry_safe(cset
, tmp_cset
, &tset
->src_csets
, mg_node
) {
2481 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2482 list_del_init(&cset
->mg_node
);
2484 spin_unlock_irq(&css_set_lock
);
2487 * Re-initialize the cgroup_taskset structure in case it is reused
2488 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2492 tset
->csets
= &tset
->src_csets
;
2497 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2498 * @dst_cgrp: destination cgroup to test
2500 * On the default hierarchy, except for the mixable, (possible) thread root
2501 * and threaded cgroups, subtree_control must be zero for migration
2502 * destination cgroups with tasks so that child cgroups don't compete
2505 int cgroup_migrate_vet_dst(struct cgroup
*dst_cgrp
)
2507 /* v1 doesn't have any restriction */
2508 if (!cgroup_on_dfl(dst_cgrp
))
2511 /* verify @dst_cgrp can host resources */
2512 if (!cgroup_is_valid_domain(dst_cgrp
->dom_cgrp
))
2515 /* mixables don't care */
2516 if (cgroup_is_mixable(dst_cgrp
))
2520 * If @dst_cgrp is already or can become a thread root or is
2521 * threaded, it doesn't matter.
2523 if (cgroup_can_be_thread_root(dst_cgrp
) || cgroup_is_threaded(dst_cgrp
))
2526 /* apply no-internal-process constraint */
2527 if (dst_cgrp
->subtree_control
)
2534 * cgroup_migrate_finish - cleanup after attach
2535 * @mgctx: migration context
2537 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2538 * those functions for details.
2540 void cgroup_migrate_finish(struct cgroup_mgctx
*mgctx
)
2542 LIST_HEAD(preloaded
);
2543 struct css_set
*cset
, *tmp_cset
;
2545 lockdep_assert_held(&cgroup_mutex
);
2547 spin_lock_irq(&css_set_lock
);
2549 list_splice_tail_init(&mgctx
->preloaded_src_csets
, &preloaded
);
2550 list_splice_tail_init(&mgctx
->preloaded_dst_csets
, &preloaded
);
2552 list_for_each_entry_safe(cset
, tmp_cset
, &preloaded
, mg_preload_node
) {
2553 cset
->mg_src_cgrp
= NULL
;
2554 cset
->mg_dst_cgrp
= NULL
;
2555 cset
->mg_dst_cset
= NULL
;
2556 list_del_init(&cset
->mg_preload_node
);
2557 put_css_set_locked(cset
);
2560 spin_unlock_irq(&css_set_lock
);
2564 * cgroup_migrate_add_src - add a migration source css_set
2565 * @src_cset: the source css_set to add
2566 * @dst_cgrp: the destination cgroup
2567 * @mgctx: migration context
2569 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2570 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2571 * up by cgroup_migrate_finish().
2573 * This function may be called without holding cgroup_threadgroup_rwsem
2574 * even if the target is a process. Threads may be created and destroyed
2575 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2576 * into play and the preloaded css_sets are guaranteed to cover all
2579 void cgroup_migrate_add_src(struct css_set
*src_cset
,
2580 struct cgroup
*dst_cgrp
,
2581 struct cgroup_mgctx
*mgctx
)
2583 struct cgroup
*src_cgrp
;
2585 lockdep_assert_held(&cgroup_mutex
);
2586 lockdep_assert_held(&css_set_lock
);
2589 * If ->dead, @src_set is associated with one or more dead cgroups
2590 * and doesn't contain any migratable tasks. Ignore it early so
2591 * that the rest of migration path doesn't get confused by it.
2596 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2598 if (!list_empty(&src_cset
->mg_preload_node
))
2601 WARN_ON(src_cset
->mg_src_cgrp
);
2602 WARN_ON(src_cset
->mg_dst_cgrp
);
2603 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2604 WARN_ON(!list_empty(&src_cset
->mg_node
));
2606 src_cset
->mg_src_cgrp
= src_cgrp
;
2607 src_cset
->mg_dst_cgrp
= dst_cgrp
;
2608 get_css_set(src_cset
);
2609 list_add_tail(&src_cset
->mg_preload_node
, &mgctx
->preloaded_src_csets
);
2613 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2614 * @mgctx: migration context
2616 * Tasks are about to be moved and all the source css_sets have been
2617 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2618 * pins all destination css_sets, links each to its source, and append them
2619 * to @mgctx->preloaded_dst_csets.
2621 * This function must be called after cgroup_migrate_add_src() has been
2622 * called on each migration source css_set. After migration is performed
2623 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2626 int cgroup_migrate_prepare_dst(struct cgroup_mgctx
*mgctx
)
2628 struct css_set
*src_cset
, *tmp_cset
;
2630 lockdep_assert_held(&cgroup_mutex
);
2632 /* look up the dst cset for each src cset and link it to src */
2633 list_for_each_entry_safe(src_cset
, tmp_cset
, &mgctx
->preloaded_src_csets
,
2635 struct css_set
*dst_cset
;
2636 struct cgroup_subsys
*ss
;
2639 dst_cset
= find_css_set(src_cset
, src_cset
->mg_dst_cgrp
);
2643 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2646 * If src cset equals dst, it's noop. Drop the src.
2647 * cgroup_migrate() will skip the cset too. Note that we
2648 * can't handle src == dst as some nodes are used by both.
2650 if (src_cset
== dst_cset
) {
2651 src_cset
->mg_src_cgrp
= NULL
;
2652 src_cset
->mg_dst_cgrp
= NULL
;
2653 list_del_init(&src_cset
->mg_preload_node
);
2654 put_css_set(src_cset
);
2655 put_css_set(dst_cset
);
2659 src_cset
->mg_dst_cset
= dst_cset
;
2661 if (list_empty(&dst_cset
->mg_preload_node
))
2662 list_add_tail(&dst_cset
->mg_preload_node
,
2663 &mgctx
->preloaded_dst_csets
);
2665 put_css_set(dst_cset
);
2667 for_each_subsys(ss
, ssid
)
2668 if (src_cset
->subsys
[ssid
] != dst_cset
->subsys
[ssid
])
2669 mgctx
->ss_mask
|= 1 << ssid
;
2676 * cgroup_migrate - migrate a process or task to a cgroup
2677 * @leader: the leader of the process or the task to migrate
2678 * @threadgroup: whether @leader points to the whole process or a single task
2679 * @mgctx: migration context
2681 * Migrate a process or task denoted by @leader. If migrating a process,
2682 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2683 * responsible for invoking cgroup_migrate_add_src() and
2684 * cgroup_migrate_prepare_dst() on the targets before invoking this
2685 * function and following up with cgroup_migrate_finish().
2687 * As long as a controller's ->can_attach() doesn't fail, this function is
2688 * guaranteed to succeed. This means that, excluding ->can_attach()
2689 * failure, when migrating multiple targets, the success or failure can be
2690 * decided for all targets by invoking group_migrate_prepare_dst() before
2691 * actually starting migrating.
2693 int cgroup_migrate(struct task_struct
*leader
, bool threadgroup
,
2694 struct cgroup_mgctx
*mgctx
)
2696 struct task_struct
*task
;
2699 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2700 * already PF_EXITING could be freed from underneath us unless we
2701 * take an rcu_read_lock.
2703 spin_lock_irq(&css_set_lock
);
2707 cgroup_migrate_add_task(task
, mgctx
);
2710 } while_each_thread(leader
, task
);
2712 spin_unlock_irq(&css_set_lock
);
2714 return cgroup_migrate_execute(mgctx
);
2718 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2719 * @dst_cgrp: the cgroup to attach to
2720 * @leader: the task or the leader of the threadgroup to be attached
2721 * @threadgroup: attach the whole threadgroup?
2723 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2725 int cgroup_attach_task(struct cgroup
*dst_cgrp
, struct task_struct
*leader
,
2728 DEFINE_CGROUP_MGCTX(mgctx
);
2729 struct task_struct
*task
;
2732 /* look up all src csets */
2733 spin_lock_irq(&css_set_lock
);
2737 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
, &mgctx
);
2740 } while_each_thread(leader
, task
);
2742 spin_unlock_irq(&css_set_lock
);
2744 /* prepare dst csets and commit */
2745 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2747 ret
= cgroup_migrate(leader
, threadgroup
, &mgctx
);
2749 cgroup_migrate_finish(&mgctx
);
2752 TRACE_CGROUP_PATH(attach_task
, dst_cgrp
, leader
, threadgroup
);
2757 struct task_struct
*cgroup_procs_write_start(char *buf
, bool threadgroup
,
2759 __acquires(&cgroup_threadgroup_rwsem
)
2761 struct task_struct
*tsk
;
2764 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2765 return ERR_PTR(-EINVAL
);
2768 * If we migrate a single thread, we don't care about threadgroup
2769 * stability. If the thread is `current`, it won't exit(2) under our
2770 * hands or change PID through exec(2). We exclude
2771 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2772 * callers by cgroup_mutex.
2773 * Therefore, we can skip the global lock.
2775 lockdep_assert_held(&cgroup_mutex
);
2776 if (pid
|| threadgroup
) {
2777 percpu_down_write(&cgroup_threadgroup_rwsem
);
2785 tsk
= find_task_by_vpid(pid
);
2787 tsk
= ERR_PTR(-ESRCH
);
2788 goto out_unlock_threadgroup
;
2795 tsk
= tsk
->group_leader
;
2798 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2799 * If userland migrates such a kthread to a non-root cgroup, it can
2800 * become trapped in a cpuset, or RT kthread may be born in a
2801 * cgroup with no rt_runtime allocated. Just say no.
2803 if (tsk
->no_cgroup_migration
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2804 tsk
= ERR_PTR(-EINVAL
);
2805 goto out_unlock_threadgroup
;
2808 get_task_struct(tsk
);
2809 goto out_unlock_rcu
;
2811 out_unlock_threadgroup
:
2813 percpu_up_write(&cgroup_threadgroup_rwsem
);
2821 void cgroup_procs_write_finish(struct task_struct
*task
, bool locked
)
2822 __releases(&cgroup_threadgroup_rwsem
)
2824 struct cgroup_subsys
*ss
;
2827 /* release reference from cgroup_procs_write_start() */
2828 put_task_struct(task
);
2831 percpu_up_write(&cgroup_threadgroup_rwsem
);
2832 for_each_subsys(ss
, ssid
)
2833 if (ss
->post_attach
)
2837 static void cgroup_print_ss_mask(struct seq_file
*seq
, u16 ss_mask
)
2839 struct cgroup_subsys
*ss
;
2840 bool printed
= false;
2843 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
2846 seq_puts(seq
, ss
->name
);
2848 } while_each_subsys_mask();
2850 seq_putc(seq
, '\n');
2853 /* show controllers which are enabled from the parent */
2854 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2856 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2858 cgroup_print_ss_mask(seq
, cgroup_control(cgrp
));
2862 /* show controllers which are enabled for a given cgroup's children */
2863 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2865 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2867 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2872 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2873 * @cgrp: root of the subtree to update csses for
2875 * @cgrp's control masks have changed and its subtree's css associations
2876 * need to be updated accordingly. This function looks up all css_sets
2877 * which are attached to the subtree, creates the matching updated css_sets
2878 * and migrates the tasks to the new ones.
2880 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2882 DEFINE_CGROUP_MGCTX(mgctx
);
2883 struct cgroup_subsys_state
*d_css
;
2884 struct cgroup
*dsct
;
2885 struct css_set
*src_cset
;
2888 lockdep_assert_held(&cgroup_mutex
);
2890 percpu_down_write(&cgroup_threadgroup_rwsem
);
2892 /* look up all csses currently attached to @cgrp's subtree */
2893 spin_lock_irq(&css_set_lock
);
2894 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2895 struct cgrp_cset_link
*link
;
2897 list_for_each_entry(link
, &dsct
->cset_links
, cset_link
)
2898 cgroup_migrate_add_src(link
->cset
, dsct
, &mgctx
);
2900 spin_unlock_irq(&css_set_lock
);
2902 /* NULL dst indicates self on default hierarchy */
2903 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2907 spin_lock_irq(&css_set_lock
);
2908 list_for_each_entry(src_cset
, &mgctx
.preloaded_src_csets
, mg_preload_node
) {
2909 struct task_struct
*task
, *ntask
;
2911 /* all tasks in src_csets need to be migrated */
2912 list_for_each_entry_safe(task
, ntask
, &src_cset
->tasks
, cg_list
)
2913 cgroup_migrate_add_task(task
, &mgctx
);
2915 spin_unlock_irq(&css_set_lock
);
2917 ret
= cgroup_migrate_execute(&mgctx
);
2919 cgroup_migrate_finish(&mgctx
);
2920 percpu_up_write(&cgroup_threadgroup_rwsem
);
2925 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2926 * @cgrp: root of the target subtree
2928 * Because css offlining is asynchronous, userland may try to re-enable a
2929 * controller while the previous css is still around. This function grabs
2930 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2932 void cgroup_lock_and_drain_offline(struct cgroup
*cgrp
)
2933 __acquires(&cgroup_mutex
)
2935 struct cgroup
*dsct
;
2936 struct cgroup_subsys_state
*d_css
;
2937 struct cgroup_subsys
*ss
;
2941 mutex_lock(&cgroup_mutex
);
2943 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2944 for_each_subsys(ss
, ssid
) {
2945 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2948 if (!css
|| !percpu_ref_is_dying(&css
->refcnt
))
2951 cgroup_get_live(dsct
);
2952 prepare_to_wait(&dsct
->offline_waitq
, &wait
,
2953 TASK_UNINTERRUPTIBLE
);
2955 mutex_unlock(&cgroup_mutex
);
2957 finish_wait(&dsct
->offline_waitq
, &wait
);
2966 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2967 * @cgrp: root of the target subtree
2969 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2970 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2973 static void cgroup_save_control(struct cgroup
*cgrp
)
2975 struct cgroup
*dsct
;
2976 struct cgroup_subsys_state
*d_css
;
2978 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2979 dsct
->old_subtree_control
= dsct
->subtree_control
;
2980 dsct
->old_subtree_ss_mask
= dsct
->subtree_ss_mask
;
2981 dsct
->old_dom_cgrp
= dsct
->dom_cgrp
;
2986 * cgroup_propagate_control - refresh control masks of a subtree
2987 * @cgrp: root of the target subtree
2989 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2990 * ->subtree_control and propagate controller availability through the
2991 * subtree so that descendants don't have unavailable controllers enabled.
2993 static void cgroup_propagate_control(struct cgroup
*cgrp
)
2995 struct cgroup
*dsct
;
2996 struct cgroup_subsys_state
*d_css
;
2998 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2999 dsct
->subtree_control
&= cgroup_control(dsct
);
3000 dsct
->subtree_ss_mask
=
3001 cgroup_calc_subtree_ss_mask(dsct
->subtree_control
,
3002 cgroup_ss_mask(dsct
));
3007 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3008 * @cgrp: root of the target subtree
3010 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3011 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3014 static void cgroup_restore_control(struct cgroup
*cgrp
)
3016 struct cgroup
*dsct
;
3017 struct cgroup_subsys_state
*d_css
;
3019 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3020 dsct
->subtree_control
= dsct
->old_subtree_control
;
3021 dsct
->subtree_ss_mask
= dsct
->old_subtree_ss_mask
;
3022 dsct
->dom_cgrp
= dsct
->old_dom_cgrp
;
3026 static bool css_visible(struct cgroup_subsys_state
*css
)
3028 struct cgroup_subsys
*ss
= css
->ss
;
3029 struct cgroup
*cgrp
= css
->cgroup
;
3031 if (cgroup_control(cgrp
) & (1 << ss
->id
))
3033 if (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
)))
3035 return cgroup_on_dfl(cgrp
) && ss
->implicit_on_dfl
;
3039 * cgroup_apply_control_enable - enable or show csses according to control
3040 * @cgrp: root of the target subtree
3042 * Walk @cgrp's subtree and create new csses or make the existing ones
3043 * visible. A css is created invisible if it's being implicitly enabled
3044 * through dependency. An invisible css is made visible when the userland
3045 * explicitly enables it.
3047 * Returns 0 on success, -errno on failure. On failure, csses which have
3048 * been processed already aren't cleaned up. The caller is responsible for
3049 * cleaning up with cgroup_apply_control_disable().
3051 static int cgroup_apply_control_enable(struct cgroup
*cgrp
)
3053 struct cgroup
*dsct
;
3054 struct cgroup_subsys_state
*d_css
;
3055 struct cgroup_subsys
*ss
;
3058 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3059 for_each_subsys(ss
, ssid
) {
3060 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3062 if (!(cgroup_ss_mask(dsct
) & (1 << ss
->id
)))
3066 css
= css_create(dsct
, ss
);
3068 return PTR_ERR(css
);
3071 WARN_ON_ONCE(percpu_ref_is_dying(&css
->refcnt
));
3073 if (css_visible(css
)) {
3074 ret
= css_populate_dir(css
);
3085 * cgroup_apply_control_disable - kill or hide csses according to control
3086 * @cgrp: root of the target subtree
3088 * Walk @cgrp's subtree and kill and hide csses so that they match
3089 * cgroup_ss_mask() and cgroup_visible_mask().
3091 * A css is hidden when the userland requests it to be disabled while other
3092 * subsystems are still depending on it. The css must not actively control
3093 * resources and be in the vanilla state if it's made visible again later.
3094 * Controllers which may be depended upon should provide ->css_reset() for
3097 static void cgroup_apply_control_disable(struct cgroup
*cgrp
)
3099 struct cgroup
*dsct
;
3100 struct cgroup_subsys_state
*d_css
;
3101 struct cgroup_subsys
*ss
;
3104 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3105 for_each_subsys(ss
, ssid
) {
3106 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3111 WARN_ON_ONCE(percpu_ref_is_dying(&css
->refcnt
));
3114 !(cgroup_ss_mask(dsct
) & (1 << ss
->id
))) {
3116 } else if (!css_visible(css
)) {
3126 * cgroup_apply_control - apply control mask updates to the subtree
3127 * @cgrp: root of the target subtree
3129 * subsystems can be enabled and disabled in a subtree using the following
3132 * 1. Call cgroup_save_control() to stash the current state.
3133 * 2. Update ->subtree_control masks in the subtree as desired.
3134 * 3. Call cgroup_apply_control() to apply the changes.
3135 * 4. Optionally perform other related operations.
3136 * 5. Call cgroup_finalize_control() to finish up.
3138 * This function implements step 3 and propagates the mask changes
3139 * throughout @cgrp's subtree, updates csses accordingly and perform
3140 * process migrations.
3142 static int cgroup_apply_control(struct cgroup
*cgrp
)
3146 cgroup_propagate_control(cgrp
);
3148 ret
= cgroup_apply_control_enable(cgrp
);
3153 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3154 * making the following cgroup_update_dfl_csses() properly update
3155 * css associations of all tasks in the subtree.
3157 ret
= cgroup_update_dfl_csses(cgrp
);
3165 * cgroup_finalize_control - finalize control mask update
3166 * @cgrp: root of the target subtree
3167 * @ret: the result of the update
3169 * Finalize control mask update. See cgroup_apply_control() for more info.
3171 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
)
3174 cgroup_restore_control(cgrp
);
3175 cgroup_propagate_control(cgrp
);
3178 cgroup_apply_control_disable(cgrp
);
3181 static int cgroup_vet_subtree_control_enable(struct cgroup
*cgrp
, u16 enable
)
3183 u16 domain_enable
= enable
& ~cgrp_dfl_threaded_ss_mask
;
3185 /* if nothing is getting enabled, nothing to worry about */
3189 /* can @cgrp host any resources? */
3190 if (!cgroup_is_valid_domain(cgrp
->dom_cgrp
))
3193 /* mixables don't care */
3194 if (cgroup_is_mixable(cgrp
))
3197 if (domain_enable
) {
3198 /* can't enable domain controllers inside a thread subtree */
3199 if (cgroup_is_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3203 * Threaded controllers can handle internal competitions
3204 * and are always allowed inside a (prospective) thread
3207 if (cgroup_can_be_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3212 * Controllers can't be enabled for a cgroup with tasks to avoid
3213 * child cgroups competing against tasks.
3215 if (cgroup_has_tasks(cgrp
))
3221 /* change the enabled child controllers for a cgroup in the default hierarchy */
3222 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
3223 char *buf
, size_t nbytes
,
3226 u16 enable
= 0, disable
= 0;
3227 struct cgroup
*cgrp
, *child
;
3228 struct cgroup_subsys
*ss
;
3233 * Parse input - space separated list of subsystem names prefixed
3234 * with either + or -.
3236 buf
= strstrip(buf
);
3237 while ((tok
= strsep(&buf
, " "))) {
3240 do_each_subsys_mask(ss
, ssid
, ~cgrp_dfl_inhibit_ss_mask
) {
3241 if (!cgroup_ssid_enabled(ssid
) ||
3242 strcmp(tok
+ 1, ss
->name
))
3246 enable
|= 1 << ssid
;
3247 disable
&= ~(1 << ssid
);
3248 } else if (*tok
== '-') {
3249 disable
|= 1 << ssid
;
3250 enable
&= ~(1 << ssid
);
3255 } while_each_subsys_mask();
3256 if (ssid
== CGROUP_SUBSYS_COUNT
)
3260 cgrp
= cgroup_kn_lock_live(of
->kn
, true);
3264 for_each_subsys(ss
, ssid
) {
3265 if (enable
& (1 << ssid
)) {
3266 if (cgrp
->subtree_control
& (1 << ssid
)) {
3267 enable
&= ~(1 << ssid
);
3271 if (!(cgroup_control(cgrp
) & (1 << ssid
))) {
3275 } else if (disable
& (1 << ssid
)) {
3276 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
3277 disable
&= ~(1 << ssid
);
3281 /* a child has it enabled? */
3282 cgroup_for_each_live_child(child
, cgrp
) {
3283 if (child
->subtree_control
& (1 << ssid
)) {
3291 if (!enable
&& !disable
) {
3296 ret
= cgroup_vet_subtree_control_enable(cgrp
, enable
);
3300 /* save and update control masks and prepare csses */
3301 cgroup_save_control(cgrp
);
3303 cgrp
->subtree_control
|= enable
;
3304 cgrp
->subtree_control
&= ~disable
;
3306 ret
= cgroup_apply_control(cgrp
);
3307 cgroup_finalize_control(cgrp
, ret
);
3311 kernfs_activate(cgrp
->kn
);
3313 cgroup_kn_unlock(of
->kn
);
3314 return ret
?: nbytes
;
3318 * cgroup_enable_threaded - make @cgrp threaded
3319 * @cgrp: the target cgroup
3321 * Called when "threaded" is written to the cgroup.type interface file and
3322 * tries to make @cgrp threaded and join the parent's resource domain.
3323 * This function is never called on the root cgroup as cgroup.type doesn't
3326 static int cgroup_enable_threaded(struct cgroup
*cgrp
)
3328 struct cgroup
*parent
= cgroup_parent(cgrp
);
3329 struct cgroup
*dom_cgrp
= parent
->dom_cgrp
;
3330 struct cgroup
*dsct
;
3331 struct cgroup_subsys_state
*d_css
;
3334 lockdep_assert_held(&cgroup_mutex
);
3336 /* noop if already threaded */
3337 if (cgroup_is_threaded(cgrp
))
3341 * If @cgroup is populated or has domain controllers enabled, it
3342 * can't be switched. While the below cgroup_can_be_thread_root()
3343 * test can catch the same conditions, that's only when @parent is
3344 * not mixable, so let's check it explicitly.
3346 if (cgroup_is_populated(cgrp
) ||
3347 cgrp
->subtree_control
& ~cgrp_dfl_threaded_ss_mask
)
3350 /* we're joining the parent's domain, ensure its validity */
3351 if (!cgroup_is_valid_domain(dom_cgrp
) ||
3352 !cgroup_can_be_thread_root(dom_cgrp
))
3356 * The following shouldn't cause actual migrations and should
3359 cgroup_save_control(cgrp
);
3361 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
)
3362 if (dsct
== cgrp
|| cgroup_is_threaded(dsct
))
3363 dsct
->dom_cgrp
= dom_cgrp
;
3365 ret
= cgroup_apply_control(cgrp
);
3367 parent
->nr_threaded_children
++;
3369 cgroup_finalize_control(cgrp
, ret
);
3373 static int cgroup_type_show(struct seq_file
*seq
, void *v
)
3375 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3377 if (cgroup_is_threaded(cgrp
))
3378 seq_puts(seq
, "threaded\n");
3379 else if (!cgroup_is_valid_domain(cgrp
))
3380 seq_puts(seq
, "domain invalid\n");
3381 else if (cgroup_is_thread_root(cgrp
))
3382 seq_puts(seq
, "domain threaded\n");
3384 seq_puts(seq
, "domain\n");
3389 static ssize_t
cgroup_type_write(struct kernfs_open_file
*of
, char *buf
,
3390 size_t nbytes
, loff_t off
)
3392 struct cgroup
*cgrp
;
3395 /* only switching to threaded mode is supported */
3396 if (strcmp(strstrip(buf
), "threaded"))
3399 /* drain dying csses before we re-apply (threaded) subtree control */
3400 cgrp
= cgroup_kn_lock_live(of
->kn
, true);
3404 /* threaded can only be enabled */
3405 ret
= cgroup_enable_threaded(cgrp
);
3407 cgroup_kn_unlock(of
->kn
);
3408 return ret
?: nbytes
;
3411 static int cgroup_max_descendants_show(struct seq_file
*seq
, void *v
)
3413 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3414 int descendants
= READ_ONCE(cgrp
->max_descendants
);
3416 if (descendants
== INT_MAX
)
3417 seq_puts(seq
, "max\n");
3419 seq_printf(seq
, "%d\n", descendants
);
3424 static ssize_t
cgroup_max_descendants_write(struct kernfs_open_file
*of
,
3425 char *buf
, size_t nbytes
, loff_t off
)
3427 struct cgroup
*cgrp
;
3431 buf
= strstrip(buf
);
3432 if (!strcmp(buf
, "max")) {
3433 descendants
= INT_MAX
;
3435 ret
= kstrtoint(buf
, 0, &descendants
);
3440 if (descendants
< 0)
3443 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3447 cgrp
->max_descendants
= descendants
;
3449 cgroup_kn_unlock(of
->kn
);
3454 static int cgroup_max_depth_show(struct seq_file
*seq
, void *v
)
3456 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3457 int depth
= READ_ONCE(cgrp
->max_depth
);
3459 if (depth
== INT_MAX
)
3460 seq_puts(seq
, "max\n");
3462 seq_printf(seq
, "%d\n", depth
);
3467 static ssize_t
cgroup_max_depth_write(struct kernfs_open_file
*of
,
3468 char *buf
, size_t nbytes
, loff_t off
)
3470 struct cgroup
*cgrp
;
3474 buf
= strstrip(buf
);
3475 if (!strcmp(buf
, "max")) {
3478 ret
= kstrtoint(buf
, 0, &depth
);
3486 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3490 cgrp
->max_depth
= depth
;
3492 cgroup_kn_unlock(of
->kn
);
3497 static int cgroup_events_show(struct seq_file
*seq
, void *v
)
3499 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3501 seq_printf(seq
, "populated %d\n", cgroup_is_populated(cgrp
));
3502 seq_printf(seq
, "frozen %d\n", test_bit(CGRP_FROZEN
, &cgrp
->flags
));
3507 static int cgroup_stat_show(struct seq_file
*seq
, void *v
)
3509 struct cgroup
*cgroup
= seq_css(seq
)->cgroup
;
3511 seq_printf(seq
, "nr_descendants %d\n",
3512 cgroup
->nr_descendants
);
3513 seq_printf(seq
, "nr_dying_descendants %d\n",
3514 cgroup
->nr_dying_descendants
);
3519 static int __maybe_unused
cgroup_extra_stat_show(struct seq_file
*seq
,
3520 struct cgroup
*cgrp
, int ssid
)
3522 struct cgroup_subsys
*ss
= cgroup_subsys
[ssid
];
3523 struct cgroup_subsys_state
*css
;
3526 if (!ss
->css_extra_stat_show
)
3529 css
= cgroup_tryget_css(cgrp
, ss
);
3533 ret
= ss
->css_extra_stat_show(seq
, css
);
3538 static int cpu_stat_show(struct seq_file
*seq
, void *v
)
3540 struct cgroup __maybe_unused
*cgrp
= seq_css(seq
)->cgroup
;
3543 cgroup_base_stat_cputime_show(seq
);
3544 #ifdef CONFIG_CGROUP_SCHED
3545 ret
= cgroup_extra_stat_show(seq
, cgrp
, cpu_cgrp_id
);
3551 static int cgroup_io_pressure_show(struct seq_file
*seq
, void *v
)
3553 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3554 struct psi_group
*psi
= cgroup_ino(cgrp
) == 1 ? &psi_system
: &cgrp
->psi
;
3556 return psi_show(seq
, psi
, PSI_IO
);
3558 static int cgroup_memory_pressure_show(struct seq_file
*seq
, void *v
)
3560 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3561 struct psi_group
*psi
= cgroup_ino(cgrp
) == 1 ? &psi_system
: &cgrp
->psi
;
3563 return psi_show(seq
, psi
, PSI_MEM
);
3565 static int cgroup_cpu_pressure_show(struct seq_file
*seq
, void *v
)
3567 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3568 struct psi_group
*psi
= cgroup_ino(cgrp
) == 1 ? &psi_system
: &cgrp
->psi
;
3570 return psi_show(seq
, psi
, PSI_CPU
);
3573 static ssize_t
cgroup_pressure_write(struct kernfs_open_file
*of
, char *buf
,
3574 size_t nbytes
, enum psi_res res
)
3576 struct psi_trigger
*new;
3577 struct cgroup
*cgrp
;
3579 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3584 cgroup_kn_unlock(of
->kn
);
3586 new = psi_trigger_create(&cgrp
->psi
, buf
, nbytes
, res
);
3589 return PTR_ERR(new);
3592 psi_trigger_replace(&of
->priv
, new);
3599 static ssize_t
cgroup_io_pressure_write(struct kernfs_open_file
*of
,
3600 char *buf
, size_t nbytes
,
3603 return cgroup_pressure_write(of
, buf
, nbytes
, PSI_IO
);
3606 static ssize_t
cgroup_memory_pressure_write(struct kernfs_open_file
*of
,
3607 char *buf
, size_t nbytes
,
3610 return cgroup_pressure_write(of
, buf
, nbytes
, PSI_MEM
);
3613 static ssize_t
cgroup_cpu_pressure_write(struct kernfs_open_file
*of
,
3614 char *buf
, size_t nbytes
,
3617 return cgroup_pressure_write(of
, buf
, nbytes
, PSI_CPU
);
3620 static __poll_t
cgroup_pressure_poll(struct kernfs_open_file
*of
,
3623 return psi_trigger_poll(&of
->priv
, of
->file
, pt
);
3626 static void cgroup_pressure_release(struct kernfs_open_file
*of
)
3628 psi_trigger_replace(&of
->priv
, NULL
);
3630 #endif /* CONFIG_PSI */
3632 static int cgroup_freeze_show(struct seq_file
*seq
, void *v
)
3634 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3636 seq_printf(seq
, "%d\n", cgrp
->freezer
.freeze
);
3641 static ssize_t
cgroup_freeze_write(struct kernfs_open_file
*of
,
3642 char *buf
, size_t nbytes
, loff_t off
)
3644 struct cgroup
*cgrp
;
3648 ret
= kstrtoint(strstrip(buf
), 0, &freeze
);
3652 if (freeze
< 0 || freeze
> 1)
3655 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3659 cgroup_freeze(cgrp
, freeze
);
3661 cgroup_kn_unlock(of
->kn
);
3666 static int cgroup_file_open(struct kernfs_open_file
*of
)
3668 struct cftype
*cft
= of
->kn
->priv
;
3671 return cft
->open(of
);
3675 static void cgroup_file_release(struct kernfs_open_file
*of
)
3677 struct cftype
*cft
= of
->kn
->priv
;
3683 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3684 size_t nbytes
, loff_t off
)
3686 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
3687 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3688 struct cftype
*cft
= of
->kn
->priv
;
3689 struct cgroup_subsys_state
*css
;
3693 * If namespaces are delegation boundaries, disallow writes to
3694 * files in an non-init namespace root from inside the namespace
3695 * except for the files explicitly marked delegatable -
3696 * cgroup.procs and cgroup.subtree_control.
3698 if ((cgrp
->root
->flags
& CGRP_ROOT_NS_DELEGATE
) &&
3699 !(cft
->flags
& CFTYPE_NS_DELEGATABLE
) &&
3700 ns
!= &init_cgroup_ns
&& ns
->root_cset
->dfl_cgrp
== cgrp
)
3704 return cft
->write(of
, buf
, nbytes
, off
);
3707 * kernfs guarantees that a file isn't deleted with operations in
3708 * flight, which means that the matching css is and stays alive and
3709 * doesn't need to be pinned. The RCU locking is not necessary
3710 * either. It's just for the convenience of using cgroup_css().
3713 css
= cgroup_css(cgrp
, cft
->ss
);
3716 if (cft
->write_u64
) {
3717 unsigned long long v
;
3718 ret
= kstrtoull(buf
, 0, &v
);
3720 ret
= cft
->write_u64(css
, cft
, v
);
3721 } else if (cft
->write_s64
) {
3723 ret
= kstrtoll(buf
, 0, &v
);
3725 ret
= cft
->write_s64(css
, cft
, v
);
3730 return ret
?: nbytes
;
3733 static __poll_t
cgroup_file_poll(struct kernfs_open_file
*of
, poll_table
*pt
)
3735 struct cftype
*cft
= of
->kn
->priv
;
3738 return cft
->poll(of
, pt
);
3740 return kernfs_generic_poll(of
, pt
);
3743 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3745 return seq_cft(seq
)->seq_start(seq
, ppos
);
3748 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3750 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3753 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3755 if (seq_cft(seq
)->seq_stop
)
3756 seq_cft(seq
)->seq_stop(seq
, v
);
3759 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3761 struct cftype
*cft
= seq_cft(m
);
3762 struct cgroup_subsys_state
*css
= seq_css(m
);
3765 return cft
->seq_show(m
, arg
);
3768 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3769 else if (cft
->read_s64
)
3770 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3776 static struct kernfs_ops cgroup_kf_single_ops
= {
3777 .atomic_write_len
= PAGE_SIZE
,
3778 .open
= cgroup_file_open
,
3779 .release
= cgroup_file_release
,
3780 .write
= cgroup_file_write
,
3781 .poll
= cgroup_file_poll
,
3782 .seq_show
= cgroup_seqfile_show
,
3785 static struct kernfs_ops cgroup_kf_ops
= {
3786 .atomic_write_len
= PAGE_SIZE
,
3787 .open
= cgroup_file_open
,
3788 .release
= cgroup_file_release
,
3789 .write
= cgroup_file_write
,
3790 .poll
= cgroup_file_poll
,
3791 .seq_start
= cgroup_seqfile_start
,
3792 .seq_next
= cgroup_seqfile_next
,
3793 .seq_stop
= cgroup_seqfile_stop
,
3794 .seq_show
= cgroup_seqfile_show
,
3797 /* set uid and gid of cgroup dirs and files to that of the creator */
3798 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3800 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3801 .ia_uid
= current_fsuid(),
3802 .ia_gid
= current_fsgid(), };
3804 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3805 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3808 return kernfs_setattr(kn
, &iattr
);
3811 static void cgroup_file_notify_timer(struct timer_list
*timer
)
3813 cgroup_file_notify(container_of(timer
, struct cgroup_file
,
3817 static int cgroup_add_file(struct cgroup_subsys_state
*css
, struct cgroup
*cgrp
,
3820 char name
[CGROUP_FILE_NAME_MAX
];
3821 struct kernfs_node
*kn
;
3822 struct lock_class_key
*key
= NULL
;
3825 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3826 key
= &cft
->lockdep_key
;
3828 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3829 cgroup_file_mode(cft
),
3830 GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
,
3831 0, cft
->kf_ops
, cft
,
3836 ret
= cgroup_kn_set_ugid(kn
);
3842 if (cft
->file_offset
) {
3843 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
3845 timer_setup(&cfile
->notify_timer
, cgroup_file_notify_timer
, 0);
3847 spin_lock_irq(&cgroup_file_kn_lock
);
3849 spin_unlock_irq(&cgroup_file_kn_lock
);
3856 * cgroup_addrm_files - add or remove files to a cgroup directory
3857 * @css: the target css
3858 * @cgrp: the target cgroup (usually css->cgroup)
3859 * @cfts: array of cftypes to be added
3860 * @is_add: whether to add or remove
3862 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3863 * For removals, this function never fails.
3865 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
3866 struct cgroup
*cgrp
, struct cftype cfts
[],
3869 struct cftype
*cft
, *cft_end
= NULL
;
3872 lockdep_assert_held(&cgroup_mutex
);
3875 for (cft
= cfts
; cft
!= cft_end
&& cft
->name
[0] != '\0'; cft
++) {
3876 /* does cft->flags tell us to skip this file on @cgrp? */
3877 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3879 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3881 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3883 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3885 if ((cft
->flags
& CFTYPE_DEBUG
) && !cgroup_debug
)
3888 ret
= cgroup_add_file(css
, cgrp
, cft
);
3890 pr_warn("%s: failed to add %s, err=%d\n",
3891 __func__
, cft
->name
, ret
);
3897 cgroup_rm_file(cgrp
, cft
);
3903 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3905 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3906 struct cgroup
*root
= &ss
->root
->cgrp
;
3907 struct cgroup_subsys_state
*css
;
3910 lockdep_assert_held(&cgroup_mutex
);
3912 /* add/rm files for all cgroups created before */
3913 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3914 struct cgroup
*cgrp
= css
->cgroup
;
3916 if (!(css
->flags
& CSS_VISIBLE
))
3919 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, is_add
);
3925 kernfs_activate(root
->kn
);
3929 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3933 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3934 /* free copy for custom atomic_write_len, see init_cftypes() */
3935 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3940 /* revert flags set by cgroup core while adding @cfts */
3941 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3945 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3949 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3950 struct kernfs_ops
*kf_ops
;
3952 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3955 kf_ops
= &cgroup_kf_ops
;
3957 kf_ops
= &cgroup_kf_single_ops
;
3960 * Ugh... if @cft wants a custom max_write_len, we need to
3961 * make a copy of kf_ops to set its atomic_write_len.
3963 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3964 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3966 cgroup_exit_cftypes(cfts
);
3969 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3972 cft
->kf_ops
= kf_ops
;
3979 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3981 lockdep_assert_held(&cgroup_mutex
);
3983 if (!cfts
|| !cfts
[0].ss
)
3986 list_del(&cfts
->node
);
3987 cgroup_apply_cftypes(cfts
, false);
3988 cgroup_exit_cftypes(cfts
);
3993 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3994 * @cfts: zero-length name terminated array of cftypes
3996 * Unregister @cfts. Files described by @cfts are removed from all
3997 * existing cgroups and all future cgroups won't have them either. This
3998 * function can be called anytime whether @cfts' subsys is attached or not.
4000 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4003 int cgroup_rm_cftypes(struct cftype
*cfts
)
4007 mutex_lock(&cgroup_mutex
);
4008 ret
= cgroup_rm_cftypes_locked(cfts
);
4009 mutex_unlock(&cgroup_mutex
);
4014 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4015 * @ss: target cgroup subsystem
4016 * @cfts: zero-length name terminated array of cftypes
4018 * Register @cfts to @ss. Files described by @cfts are created for all
4019 * existing cgroups to which @ss is attached and all future cgroups will
4020 * have them too. This function can be called anytime whether @ss is
4023 * Returns 0 on successful registration, -errno on failure. Note that this
4024 * function currently returns 0 as long as @cfts registration is successful
4025 * even if some file creation attempts on existing cgroups fail.
4027 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
4031 if (!cgroup_ssid_enabled(ss
->id
))
4034 if (!cfts
|| cfts
[0].name
[0] == '\0')
4037 ret
= cgroup_init_cftypes(ss
, cfts
);
4041 mutex_lock(&cgroup_mutex
);
4043 list_add_tail(&cfts
->node
, &ss
->cfts
);
4044 ret
= cgroup_apply_cftypes(cfts
, true);
4046 cgroup_rm_cftypes_locked(cfts
);
4048 mutex_unlock(&cgroup_mutex
);
4053 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4054 * @ss: target cgroup subsystem
4055 * @cfts: zero-length name terminated array of cftypes
4057 * Similar to cgroup_add_cftypes() but the added files are only used for
4058 * the default hierarchy.
4060 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
4064 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
4065 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
4066 return cgroup_add_cftypes(ss
, cfts
);
4070 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4071 * @ss: target cgroup subsystem
4072 * @cfts: zero-length name terminated array of cftypes
4074 * Similar to cgroup_add_cftypes() but the added files are only used for
4075 * the legacy hierarchies.
4077 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
4081 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
4082 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
4083 return cgroup_add_cftypes(ss
, cfts
);
4087 * cgroup_file_notify - generate a file modified event for a cgroup_file
4088 * @cfile: target cgroup_file
4090 * @cfile must have been obtained by setting cftype->file_offset.
4092 void cgroup_file_notify(struct cgroup_file
*cfile
)
4094 unsigned long flags
;
4096 spin_lock_irqsave(&cgroup_file_kn_lock
, flags
);
4098 unsigned long last
= cfile
->notified_at
;
4099 unsigned long next
= last
+ CGROUP_FILE_NOTIFY_MIN_INTV
;
4101 if (time_in_range(jiffies
, last
, next
)) {
4102 timer_reduce(&cfile
->notify_timer
, next
);
4104 kernfs_notify(cfile
->kn
);
4105 cfile
->notified_at
= jiffies
;
4108 spin_unlock_irqrestore(&cgroup_file_kn_lock
, flags
);
4112 * css_next_child - find the next child of a given css
4113 * @pos: the current position (%NULL to initiate traversal)
4114 * @parent: css whose children to walk
4116 * This function returns the next child of @parent and should be called
4117 * under either cgroup_mutex or RCU read lock. The only requirement is
4118 * that @parent and @pos are accessible. The next sibling is guaranteed to
4119 * be returned regardless of their states.
4121 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4122 * css which finished ->css_online() is guaranteed to be visible in the
4123 * future iterations and will stay visible until the last reference is put.
4124 * A css which hasn't finished ->css_online() or already finished
4125 * ->css_offline() may show up during traversal. It's each subsystem's
4126 * responsibility to synchronize against on/offlining.
4128 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
4129 struct cgroup_subsys_state
*parent
)
4131 struct cgroup_subsys_state
*next
;
4133 cgroup_assert_mutex_or_rcu_locked();
4136 * @pos could already have been unlinked from the sibling list.
4137 * Once a cgroup is removed, its ->sibling.next is no longer
4138 * updated when its next sibling changes. CSS_RELEASED is set when
4139 * @pos is taken off list, at which time its next pointer is valid,
4140 * and, as releases are serialized, the one pointed to by the next
4141 * pointer is guaranteed to not have started release yet. This
4142 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4143 * critical section, the one pointed to by its next pointer is
4144 * guaranteed to not have finished its RCU grace period even if we
4145 * have dropped rcu_read_lock() inbetween iterations.
4147 * If @pos has CSS_RELEASED set, its next pointer can't be
4148 * dereferenced; however, as each css is given a monotonically
4149 * increasing unique serial number and always appended to the
4150 * sibling list, the next one can be found by walking the parent's
4151 * children until the first css with higher serial number than
4152 * @pos's. While this path can be slower, it happens iff iteration
4153 * races against release and the race window is very small.
4156 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
4157 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
4158 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
4160 list_for_each_entry_rcu(next
, &parent
->children
, sibling
,
4161 lockdep_is_held(&cgroup_mutex
))
4162 if (next
->serial_nr
> pos
->serial_nr
)
4167 * @next, if not pointing to the head, can be dereferenced and is
4170 if (&next
->sibling
!= &parent
->children
)
4176 * css_next_descendant_pre - find the next descendant for pre-order walk
4177 * @pos: the current position (%NULL to initiate traversal)
4178 * @root: css whose descendants to walk
4180 * To be used by css_for_each_descendant_pre(). Find the next descendant
4181 * to visit for pre-order traversal of @root's descendants. @root is
4182 * included in the iteration and the first node to be visited.
4184 * While this function requires cgroup_mutex or RCU read locking, it
4185 * doesn't require the whole traversal to be contained in a single critical
4186 * section. This function will return the correct next descendant as long
4187 * as both @pos and @root are accessible and @pos is a descendant of @root.
4189 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4190 * css which finished ->css_online() is guaranteed to be visible in the
4191 * future iterations and will stay visible until the last reference is put.
4192 * A css which hasn't finished ->css_online() or already finished
4193 * ->css_offline() may show up during traversal. It's each subsystem's
4194 * responsibility to synchronize against on/offlining.
4196 struct cgroup_subsys_state
*
4197 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
4198 struct cgroup_subsys_state
*root
)
4200 struct cgroup_subsys_state
*next
;
4202 cgroup_assert_mutex_or_rcu_locked();
4204 /* if first iteration, visit @root */
4208 /* visit the first child if exists */
4209 next
= css_next_child(NULL
, pos
);
4213 /* no child, visit my or the closest ancestor's next sibling */
4214 while (pos
!= root
) {
4215 next
= css_next_child(pos
, pos
->parent
);
4223 EXPORT_SYMBOL_GPL(css_next_descendant_pre
);
4226 * css_rightmost_descendant - return the rightmost descendant of a css
4227 * @pos: css of interest
4229 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4230 * is returned. This can be used during pre-order traversal to skip
4233 * While this function requires cgroup_mutex or RCU read locking, it
4234 * doesn't require the whole traversal to be contained in a single critical
4235 * section. This function will return the correct rightmost descendant as
4236 * long as @pos is accessible.
4238 struct cgroup_subsys_state
*
4239 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
4241 struct cgroup_subsys_state
*last
, *tmp
;
4243 cgroup_assert_mutex_or_rcu_locked();
4247 /* ->prev isn't RCU safe, walk ->next till the end */
4249 css_for_each_child(tmp
, last
)
4256 static struct cgroup_subsys_state
*
4257 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
4259 struct cgroup_subsys_state
*last
;
4263 pos
= css_next_child(NULL
, pos
);
4270 * css_next_descendant_post - find the next descendant for post-order walk
4271 * @pos: the current position (%NULL to initiate traversal)
4272 * @root: css whose descendants to walk
4274 * To be used by css_for_each_descendant_post(). Find the next descendant
4275 * to visit for post-order traversal of @root's descendants. @root is
4276 * included in the iteration and the last node to be visited.
4278 * While this function requires cgroup_mutex or RCU read locking, it
4279 * doesn't require the whole traversal to be contained in a single critical
4280 * section. This function will return the correct next descendant as long
4281 * as both @pos and @cgroup are accessible and @pos is a descendant of
4284 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4285 * css which finished ->css_online() is guaranteed to be visible in the
4286 * future iterations and will stay visible until the last reference is put.
4287 * A css which hasn't finished ->css_online() or already finished
4288 * ->css_offline() may show up during traversal. It's each subsystem's
4289 * responsibility to synchronize against on/offlining.
4291 struct cgroup_subsys_state
*
4292 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
4293 struct cgroup_subsys_state
*root
)
4295 struct cgroup_subsys_state
*next
;
4297 cgroup_assert_mutex_or_rcu_locked();
4299 /* if first iteration, visit leftmost descendant which may be @root */
4301 return css_leftmost_descendant(root
);
4303 /* if we visited @root, we're done */
4307 /* if there's an unvisited sibling, visit its leftmost descendant */
4308 next
= css_next_child(pos
, pos
->parent
);
4310 return css_leftmost_descendant(next
);
4312 /* no sibling left, visit parent */
4317 * css_has_online_children - does a css have online children
4318 * @css: the target css
4320 * Returns %true if @css has any online children; otherwise, %false. This
4321 * function can be called from any context but the caller is responsible
4322 * for synchronizing against on/offlining as necessary.
4324 bool css_has_online_children(struct cgroup_subsys_state
*css
)
4326 struct cgroup_subsys_state
*child
;
4330 css_for_each_child(child
, css
) {
4331 if (child
->flags
& CSS_ONLINE
) {
4340 static struct css_set
*css_task_iter_next_css_set(struct css_task_iter
*it
)
4342 struct list_head
*l
;
4343 struct cgrp_cset_link
*link
;
4344 struct css_set
*cset
;
4346 lockdep_assert_held(&css_set_lock
);
4348 /* find the next threaded cset */
4349 if (it
->tcset_pos
) {
4350 l
= it
->tcset_pos
->next
;
4352 if (l
!= it
->tcset_head
) {
4354 return container_of(l
, struct css_set
,
4355 threaded_csets_node
);
4358 it
->tcset_pos
= NULL
;
4361 /* find the next cset */
4364 if (l
== it
->cset_head
) {
4365 it
->cset_pos
= NULL
;
4370 cset
= container_of(l
, struct css_set
, e_cset_node
[it
->ss
->id
]);
4372 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
4378 /* initialize threaded css_set walking */
4379 if (it
->flags
& CSS_TASK_ITER_THREADED
) {
4381 put_css_set_locked(it
->cur_dcset
);
4382 it
->cur_dcset
= cset
;
4385 it
->tcset_head
= &cset
->threaded_csets
;
4386 it
->tcset_pos
= &cset
->threaded_csets
;
4393 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4394 * @it: the iterator to advance
4396 * Advance @it to the next css_set to walk.
4398 static void css_task_iter_advance_css_set(struct css_task_iter
*it
)
4400 struct css_set
*cset
;
4402 lockdep_assert_held(&css_set_lock
);
4404 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4405 while ((cset
= css_task_iter_next_css_set(it
))) {
4406 if (!list_empty(&cset
->tasks
)) {
4407 it
->cur_tasks_head
= &cset
->tasks
;
4409 } else if (!list_empty(&cset
->mg_tasks
)) {
4410 it
->cur_tasks_head
= &cset
->mg_tasks
;
4412 } else if (!list_empty(&cset
->dying_tasks
)) {
4413 it
->cur_tasks_head
= &cset
->dying_tasks
;
4418 it
->task_pos
= NULL
;
4421 it
->task_pos
= it
->cur_tasks_head
->next
;
4424 * We don't keep css_sets locked across iteration steps and thus
4425 * need to take steps to ensure that iteration can be resumed after
4426 * the lock is re-acquired. Iteration is performed at two levels -
4427 * css_sets and tasks in them.
4429 * Once created, a css_set never leaves its cgroup lists, so a
4430 * pinned css_set is guaranteed to stay put and we can resume
4431 * iteration afterwards.
4433 * Tasks may leave @cset across iteration steps. This is resolved
4434 * by registering each iterator with the css_set currently being
4435 * walked and making css_set_move_task() advance iterators whose
4436 * next task is leaving.
4439 list_del(&it
->iters_node
);
4440 put_css_set_locked(it
->cur_cset
);
4443 it
->cur_cset
= cset
;
4444 list_add(&it
->iters_node
, &cset
->task_iters
);
4447 static void css_task_iter_skip(struct css_task_iter
*it
,
4448 struct task_struct
*task
)
4450 lockdep_assert_held(&css_set_lock
);
4452 if (it
->task_pos
== &task
->cg_list
) {
4453 it
->task_pos
= it
->task_pos
->next
;
4454 it
->flags
|= CSS_TASK_ITER_SKIPPED
;
4458 static void css_task_iter_advance(struct css_task_iter
*it
)
4460 struct task_struct
*task
;
4462 lockdep_assert_held(&css_set_lock
);
4466 * Advance iterator to find next entry. We go through cset
4467 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4470 if (it
->flags
& CSS_TASK_ITER_SKIPPED
)
4471 it
->flags
&= ~CSS_TASK_ITER_SKIPPED
;
4473 it
->task_pos
= it
->task_pos
->next
;
4475 if (it
->task_pos
== &it
->cur_cset
->tasks
) {
4476 it
->cur_tasks_head
= &it
->cur_cset
->mg_tasks
;
4477 it
->task_pos
= it
->cur_tasks_head
->next
;
4479 if (it
->task_pos
== &it
->cur_cset
->mg_tasks
) {
4480 it
->cur_tasks_head
= &it
->cur_cset
->dying_tasks
;
4481 it
->task_pos
= it
->cur_tasks_head
->next
;
4483 if (it
->task_pos
== &it
->cur_cset
->dying_tasks
)
4484 css_task_iter_advance_css_set(it
);
4486 /* called from start, proceed to the first cset */
4487 css_task_iter_advance_css_set(it
);
4493 task
= list_entry(it
->task_pos
, struct task_struct
, cg_list
);
4495 if (it
->flags
& CSS_TASK_ITER_PROCS
) {
4496 /* if PROCS, skip over tasks which aren't group leaders */
4497 if (!thread_group_leader(task
))
4500 /* and dying leaders w/o live member threads */
4501 if (it
->cur_tasks_head
== &it
->cur_cset
->dying_tasks
&&
4502 !atomic_read(&task
->signal
->live
))
4505 /* skip all dying ones */
4506 if (it
->cur_tasks_head
== &it
->cur_cset
->dying_tasks
)
4512 * css_task_iter_start - initiate task iteration
4513 * @css: the css to walk tasks of
4514 * @flags: CSS_TASK_ITER_* flags
4515 * @it: the task iterator to use
4517 * Initiate iteration through the tasks of @css. The caller can call
4518 * css_task_iter_next() to walk through the tasks until the function
4519 * returns NULL. On completion of iteration, css_task_iter_end() must be
4522 void css_task_iter_start(struct cgroup_subsys_state
*css
, unsigned int flags
,
4523 struct css_task_iter
*it
)
4525 memset(it
, 0, sizeof(*it
));
4527 spin_lock_irq(&css_set_lock
);
4533 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
4535 it
->cset_pos
= &css
->cgroup
->cset_links
;
4537 it
->cset_head
= it
->cset_pos
;
4539 css_task_iter_advance(it
);
4541 spin_unlock_irq(&css_set_lock
);
4545 * css_task_iter_next - return the next task for the iterator
4546 * @it: the task iterator being iterated
4548 * The "next" function for task iteration. @it should have been
4549 * initialized via css_task_iter_start(). Returns NULL when the iteration
4552 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
4555 put_task_struct(it
->cur_task
);
4556 it
->cur_task
= NULL
;
4559 spin_lock_irq(&css_set_lock
);
4561 /* @it may be half-advanced by skips, finish advancing */
4562 if (it
->flags
& CSS_TASK_ITER_SKIPPED
)
4563 css_task_iter_advance(it
);
4566 it
->cur_task
= list_entry(it
->task_pos
, struct task_struct
,
4568 get_task_struct(it
->cur_task
);
4569 css_task_iter_advance(it
);
4572 spin_unlock_irq(&css_set_lock
);
4574 return it
->cur_task
;
4578 * css_task_iter_end - finish task iteration
4579 * @it: the task iterator to finish
4581 * Finish task iteration started by css_task_iter_start().
4583 void css_task_iter_end(struct css_task_iter
*it
)
4586 spin_lock_irq(&css_set_lock
);
4587 list_del(&it
->iters_node
);
4588 put_css_set_locked(it
->cur_cset
);
4589 spin_unlock_irq(&css_set_lock
);
4593 put_css_set(it
->cur_dcset
);
4596 put_task_struct(it
->cur_task
);
4599 static void cgroup_procs_release(struct kernfs_open_file
*of
)
4602 css_task_iter_end(of
->priv
);
4607 static void *cgroup_procs_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4609 struct kernfs_open_file
*of
= s
->private;
4610 struct css_task_iter
*it
= of
->priv
;
4615 return css_task_iter_next(it
);
4618 static void *__cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
,
4619 unsigned int iter_flags
)
4621 struct kernfs_open_file
*of
= s
->private;
4622 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4623 struct css_task_iter
*it
= of
->priv
;
4626 * When a seq_file is seeked, it's always traversed sequentially
4627 * from position 0, so we can simply keep iterating on !0 *pos.
4630 if (WARN_ON_ONCE((*pos
)))
4631 return ERR_PTR(-EINVAL
);
4633 it
= kzalloc(sizeof(*it
), GFP_KERNEL
);
4635 return ERR_PTR(-ENOMEM
);
4637 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4638 } else if (!(*pos
)) {
4639 css_task_iter_end(it
);
4640 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4642 return it
->cur_task
;
4644 return cgroup_procs_next(s
, NULL
, NULL
);
4647 static void *cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
)
4649 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4652 * All processes of a threaded subtree belong to the domain cgroup
4653 * of the subtree. Only threads can be distributed across the
4654 * subtree. Reject reads on cgroup.procs in the subtree proper.
4655 * They're always empty anyway.
4657 if (cgroup_is_threaded(cgrp
))
4658 return ERR_PTR(-EOPNOTSUPP
);
4660 return __cgroup_procs_start(s
, pos
, CSS_TASK_ITER_PROCS
|
4661 CSS_TASK_ITER_THREADED
);
4664 static int cgroup_procs_show(struct seq_file
*s
, void *v
)
4666 seq_printf(s
, "%d\n", task_pid_vnr(v
));
4670 static int cgroup_may_write(const struct cgroup
*cgrp
, struct super_block
*sb
)
4673 struct inode
*inode
;
4675 lockdep_assert_held(&cgroup_mutex
);
4677 inode
= kernfs_get_inode(sb
, cgrp
->procs_file
.kn
);
4681 ret
= inode_permission(inode
, MAY_WRITE
);
4686 static int cgroup_procs_write_permission(struct cgroup
*src_cgrp
,
4687 struct cgroup
*dst_cgrp
,
4688 struct super_block
*sb
)
4690 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
4691 struct cgroup
*com_cgrp
= src_cgrp
;
4694 lockdep_assert_held(&cgroup_mutex
);
4696 /* find the common ancestor */
4697 while (!cgroup_is_descendant(dst_cgrp
, com_cgrp
))
4698 com_cgrp
= cgroup_parent(com_cgrp
);
4700 /* %current should be authorized to migrate to the common ancestor */
4701 ret
= cgroup_may_write(com_cgrp
, sb
);
4706 * If namespaces are delegation boundaries, %current must be able
4707 * to see both source and destination cgroups from its namespace.
4709 if ((cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
) &&
4710 (!cgroup_is_descendant(src_cgrp
, ns
->root_cset
->dfl_cgrp
) ||
4711 !cgroup_is_descendant(dst_cgrp
, ns
->root_cset
->dfl_cgrp
)))
4717 static int cgroup_attach_permissions(struct cgroup
*src_cgrp
,
4718 struct cgroup
*dst_cgrp
,
4719 struct super_block
*sb
, bool threadgroup
)
4723 ret
= cgroup_procs_write_permission(src_cgrp
, dst_cgrp
, sb
);
4727 ret
= cgroup_migrate_vet_dst(dst_cgrp
);
4731 if (!threadgroup
&& (src_cgrp
->dom_cgrp
!= dst_cgrp
->dom_cgrp
))
4737 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
4738 char *buf
, size_t nbytes
, loff_t off
)
4740 struct cgroup
*src_cgrp
, *dst_cgrp
;
4741 struct task_struct
*task
;
4745 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4749 task
= cgroup_procs_write_start(buf
, true, &locked
);
4750 ret
= PTR_ERR_OR_ZERO(task
);
4754 /* find the source cgroup */
4755 spin_lock_irq(&css_set_lock
);
4756 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4757 spin_unlock_irq(&css_set_lock
);
4759 ret
= cgroup_attach_permissions(src_cgrp
, dst_cgrp
,
4760 of
->file
->f_path
.dentry
->d_sb
, true);
4764 ret
= cgroup_attach_task(dst_cgrp
, task
, true);
4767 cgroup_procs_write_finish(task
, locked
);
4769 cgroup_kn_unlock(of
->kn
);
4771 return ret
?: nbytes
;
4774 static void *cgroup_threads_start(struct seq_file
*s
, loff_t
*pos
)
4776 return __cgroup_procs_start(s
, pos
, 0);
4779 static ssize_t
cgroup_threads_write(struct kernfs_open_file
*of
,
4780 char *buf
, size_t nbytes
, loff_t off
)
4782 struct cgroup
*src_cgrp
, *dst_cgrp
;
4783 struct task_struct
*task
;
4787 buf
= strstrip(buf
);
4789 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4793 task
= cgroup_procs_write_start(buf
, false, &locked
);
4794 ret
= PTR_ERR_OR_ZERO(task
);
4798 /* find the source cgroup */
4799 spin_lock_irq(&css_set_lock
);
4800 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4801 spin_unlock_irq(&css_set_lock
);
4803 /* thread migrations follow the cgroup.procs delegation rule */
4804 ret
= cgroup_attach_permissions(src_cgrp
, dst_cgrp
,
4805 of
->file
->f_path
.dentry
->d_sb
, false);
4809 ret
= cgroup_attach_task(dst_cgrp
, task
, false);
4812 cgroup_procs_write_finish(task
, locked
);
4814 cgroup_kn_unlock(of
->kn
);
4816 return ret
?: nbytes
;
4819 /* cgroup core interface files for the default hierarchy */
4820 static struct cftype cgroup_base_files
[] = {
4822 .name
= "cgroup.type",
4823 .flags
= CFTYPE_NOT_ON_ROOT
,
4824 .seq_show
= cgroup_type_show
,
4825 .write
= cgroup_type_write
,
4828 .name
= "cgroup.procs",
4829 .flags
= CFTYPE_NS_DELEGATABLE
,
4830 .file_offset
= offsetof(struct cgroup
, procs_file
),
4831 .release
= cgroup_procs_release
,
4832 .seq_start
= cgroup_procs_start
,
4833 .seq_next
= cgroup_procs_next
,
4834 .seq_show
= cgroup_procs_show
,
4835 .write
= cgroup_procs_write
,
4838 .name
= "cgroup.threads",
4839 .flags
= CFTYPE_NS_DELEGATABLE
,
4840 .release
= cgroup_procs_release
,
4841 .seq_start
= cgroup_threads_start
,
4842 .seq_next
= cgroup_procs_next
,
4843 .seq_show
= cgroup_procs_show
,
4844 .write
= cgroup_threads_write
,
4847 .name
= "cgroup.controllers",
4848 .seq_show
= cgroup_controllers_show
,
4851 .name
= "cgroup.subtree_control",
4852 .flags
= CFTYPE_NS_DELEGATABLE
,
4853 .seq_show
= cgroup_subtree_control_show
,
4854 .write
= cgroup_subtree_control_write
,
4857 .name
= "cgroup.events",
4858 .flags
= CFTYPE_NOT_ON_ROOT
,
4859 .file_offset
= offsetof(struct cgroup
, events_file
),
4860 .seq_show
= cgroup_events_show
,
4863 .name
= "cgroup.max.descendants",
4864 .seq_show
= cgroup_max_descendants_show
,
4865 .write
= cgroup_max_descendants_write
,
4868 .name
= "cgroup.max.depth",
4869 .seq_show
= cgroup_max_depth_show
,
4870 .write
= cgroup_max_depth_write
,
4873 .name
= "cgroup.stat",
4874 .seq_show
= cgroup_stat_show
,
4877 .name
= "cgroup.freeze",
4878 .flags
= CFTYPE_NOT_ON_ROOT
,
4879 .seq_show
= cgroup_freeze_show
,
4880 .write
= cgroup_freeze_write
,
4884 .flags
= CFTYPE_NOT_ON_ROOT
,
4885 .seq_show
= cpu_stat_show
,
4889 .name
= "io.pressure",
4890 .seq_show
= cgroup_io_pressure_show
,
4891 .write
= cgroup_io_pressure_write
,
4892 .poll
= cgroup_pressure_poll
,
4893 .release
= cgroup_pressure_release
,
4896 .name
= "memory.pressure",
4897 .seq_show
= cgroup_memory_pressure_show
,
4898 .write
= cgroup_memory_pressure_write
,
4899 .poll
= cgroup_pressure_poll
,
4900 .release
= cgroup_pressure_release
,
4903 .name
= "cpu.pressure",
4904 .seq_show
= cgroup_cpu_pressure_show
,
4905 .write
= cgroup_cpu_pressure_write
,
4906 .poll
= cgroup_pressure_poll
,
4907 .release
= cgroup_pressure_release
,
4909 #endif /* CONFIG_PSI */
4914 * css destruction is four-stage process.
4916 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4917 * Implemented in kill_css().
4919 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4920 * and thus css_tryget_online() is guaranteed to fail, the css can be
4921 * offlined by invoking offline_css(). After offlining, the base ref is
4922 * put. Implemented in css_killed_work_fn().
4924 * 3. When the percpu_ref reaches zero, the only possible remaining
4925 * accessors are inside RCU read sections. css_release() schedules the
4928 * 4. After the grace period, the css can be freed. Implemented in
4929 * css_free_work_fn().
4931 * It is actually hairier because both step 2 and 4 require process context
4932 * and thus involve punting to css->destroy_work adding two additional
4933 * steps to the already complex sequence.
4935 static void css_free_rwork_fn(struct work_struct
*work
)
4937 struct cgroup_subsys_state
*css
= container_of(to_rcu_work(work
),
4938 struct cgroup_subsys_state
, destroy_rwork
);
4939 struct cgroup_subsys
*ss
= css
->ss
;
4940 struct cgroup
*cgrp
= css
->cgroup
;
4942 percpu_ref_exit(&css
->refcnt
);
4946 struct cgroup_subsys_state
*parent
= css
->parent
;
4950 cgroup_idr_remove(&ss
->css_idr
, id
);
4956 /* cgroup free path */
4957 atomic_dec(&cgrp
->root
->nr_cgrps
);
4958 cgroup1_pidlist_destroy_all(cgrp
);
4959 cancel_work_sync(&cgrp
->release_agent_work
);
4961 if (cgroup_parent(cgrp
)) {
4963 * We get a ref to the parent, and put the ref when
4964 * this cgroup is being freed, so it's guaranteed
4965 * that the parent won't be destroyed before its
4968 cgroup_put(cgroup_parent(cgrp
));
4969 kernfs_put(cgrp
->kn
);
4970 psi_cgroup_free(cgrp
);
4971 if (cgroup_on_dfl(cgrp
))
4972 cgroup_rstat_exit(cgrp
);
4976 * This is root cgroup's refcnt reaching zero,
4977 * which indicates that the root should be
4980 cgroup_destroy_root(cgrp
->root
);
4985 static void css_release_work_fn(struct work_struct
*work
)
4987 struct cgroup_subsys_state
*css
=
4988 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4989 struct cgroup_subsys
*ss
= css
->ss
;
4990 struct cgroup
*cgrp
= css
->cgroup
;
4992 mutex_lock(&cgroup_mutex
);
4994 css
->flags
|= CSS_RELEASED
;
4995 list_del_rcu(&css
->sibling
);
4998 /* css release path */
4999 if (!list_empty(&css
->rstat_css_node
)) {
5000 cgroup_rstat_flush(cgrp
);
5001 list_del_rcu(&css
->rstat_css_node
);
5004 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
5005 if (ss
->css_released
)
5006 ss
->css_released(css
);
5008 struct cgroup
*tcgrp
;
5010 /* cgroup release path */
5011 TRACE_CGROUP_PATH(release
, cgrp
);
5013 if (cgroup_on_dfl(cgrp
))
5014 cgroup_rstat_flush(cgrp
);
5016 spin_lock_irq(&css_set_lock
);
5017 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
;
5018 tcgrp
= cgroup_parent(tcgrp
))
5019 tcgrp
->nr_dying_descendants
--;
5020 spin_unlock_irq(&css_set_lock
);
5023 * There are two control paths which try to determine
5024 * cgroup from dentry without going through kernfs -
5025 * cgroupstats_build() and css_tryget_online_from_dir().
5026 * Those are supported by RCU protecting clearing of
5027 * cgrp->kn->priv backpointer.
5030 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
,
5034 mutex_unlock(&cgroup_mutex
);
5036 INIT_RCU_WORK(&css
->destroy_rwork
, css_free_rwork_fn
);
5037 queue_rcu_work(cgroup_destroy_wq
, &css
->destroy_rwork
);
5040 static void css_release(struct percpu_ref
*ref
)
5042 struct cgroup_subsys_state
*css
=
5043 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5045 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
5046 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5049 static void init_and_link_css(struct cgroup_subsys_state
*css
,
5050 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
5052 lockdep_assert_held(&cgroup_mutex
);
5054 cgroup_get_live(cgrp
);
5056 memset(css
, 0, sizeof(*css
));
5060 INIT_LIST_HEAD(&css
->sibling
);
5061 INIT_LIST_HEAD(&css
->children
);
5062 INIT_LIST_HEAD(&css
->rstat_css_node
);
5063 css
->serial_nr
= css_serial_nr_next
++;
5064 atomic_set(&css
->online_cnt
, 0);
5066 if (cgroup_parent(cgrp
)) {
5067 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
5068 css_get(css
->parent
);
5071 if (cgroup_on_dfl(cgrp
) && ss
->css_rstat_flush
)
5072 list_add_rcu(&css
->rstat_css_node
, &cgrp
->rstat_css_list
);
5074 BUG_ON(cgroup_css(cgrp
, ss
));
5077 /* invoke ->css_online() on a new CSS and mark it online if successful */
5078 static int online_css(struct cgroup_subsys_state
*css
)
5080 struct cgroup_subsys
*ss
= css
->ss
;
5083 lockdep_assert_held(&cgroup_mutex
);
5086 ret
= ss
->css_online(css
);
5088 css
->flags
|= CSS_ONLINE
;
5089 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
5091 atomic_inc(&css
->online_cnt
);
5093 atomic_inc(&css
->parent
->online_cnt
);
5098 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5099 static void offline_css(struct cgroup_subsys_state
*css
)
5101 struct cgroup_subsys
*ss
= css
->ss
;
5103 lockdep_assert_held(&cgroup_mutex
);
5105 if (!(css
->flags
& CSS_ONLINE
))
5108 if (ss
->css_offline
)
5109 ss
->css_offline(css
);
5111 css
->flags
&= ~CSS_ONLINE
;
5112 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
5114 wake_up_all(&css
->cgroup
->offline_waitq
);
5118 * css_create - create a cgroup_subsys_state
5119 * @cgrp: the cgroup new css will be associated with
5120 * @ss: the subsys of new css
5122 * Create a new css associated with @cgrp - @ss pair. On success, the new
5123 * css is online and installed in @cgrp. This function doesn't create the
5124 * interface files. Returns 0 on success, -errno on failure.
5126 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
5127 struct cgroup_subsys
*ss
)
5129 struct cgroup
*parent
= cgroup_parent(cgrp
);
5130 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
5131 struct cgroup_subsys_state
*css
;
5134 lockdep_assert_held(&cgroup_mutex
);
5136 css
= ss
->css_alloc(parent_css
);
5138 css
= ERR_PTR(-ENOMEM
);
5142 init_and_link_css(css
, ss
, cgrp
);
5144 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
5148 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_KERNEL
);
5153 /* @css is ready to be brought online now, make it visible */
5154 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
5155 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
5157 err
= online_css(css
);
5161 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
5162 cgroup_parent(parent
)) {
5163 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5164 current
->comm
, current
->pid
, ss
->name
);
5165 if (!strcmp(ss
->name
, "memory"))
5166 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5167 ss
->warned_broken_hierarchy
= true;
5173 list_del_rcu(&css
->sibling
);
5175 list_del_rcu(&css
->rstat_css_node
);
5176 INIT_RCU_WORK(&css
->destroy_rwork
, css_free_rwork_fn
);
5177 queue_rcu_work(cgroup_destroy_wq
, &css
->destroy_rwork
);
5178 return ERR_PTR(err
);
5182 * The returned cgroup is fully initialized including its control mask, but
5183 * it isn't associated with its kernfs_node and doesn't have the control
5186 static struct cgroup
*cgroup_create(struct cgroup
*parent
, const char *name
,
5189 struct cgroup_root
*root
= parent
->root
;
5190 struct cgroup
*cgrp
, *tcgrp
;
5191 struct kernfs_node
*kn
;
5192 int level
= parent
->level
+ 1;
5195 /* allocate the cgroup and its ID, 0 is reserved for the root */
5196 cgrp
= kzalloc(struct_size(cgrp
, ancestor_ids
, (level
+ 1)),
5199 return ERR_PTR(-ENOMEM
);
5201 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
5205 if (cgroup_on_dfl(parent
)) {
5206 ret
= cgroup_rstat_init(cgrp
);
5208 goto out_cancel_ref
;
5211 /* create the directory */
5212 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
5219 init_cgroup_housekeeping(cgrp
);
5221 cgrp
->self
.parent
= &parent
->self
;
5223 cgrp
->level
= level
;
5225 ret
= psi_cgroup_alloc(cgrp
);
5227 goto out_kernfs_remove
;
5229 ret
= cgroup_bpf_inherit(cgrp
);
5234 * New cgroup inherits effective freeze counter, and
5235 * if the parent has to be frozen, the child has too.
5237 cgrp
->freezer
.e_freeze
= parent
->freezer
.e_freeze
;
5238 if (cgrp
->freezer
.e_freeze
) {
5240 * Set the CGRP_FREEZE flag, so when a process will be
5241 * attached to the child cgroup, it will become frozen.
5242 * At this point the new cgroup is unpopulated, so we can
5243 * consider it frozen immediately.
5245 set_bit(CGRP_FREEZE
, &cgrp
->flags
);
5246 set_bit(CGRP_FROZEN
, &cgrp
->flags
);
5249 spin_lock_irq(&css_set_lock
);
5250 for (tcgrp
= cgrp
; tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
5251 cgrp
->ancestor_ids
[tcgrp
->level
] = cgroup_id(tcgrp
);
5253 if (tcgrp
!= cgrp
) {
5254 tcgrp
->nr_descendants
++;
5257 * If the new cgroup is frozen, all ancestor cgroups
5258 * get a new frozen descendant, but their state can't
5259 * change because of this.
5261 if (cgrp
->freezer
.e_freeze
)
5262 tcgrp
->freezer
.nr_frozen_descendants
++;
5265 spin_unlock_irq(&css_set_lock
);
5267 if (notify_on_release(parent
))
5268 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
5270 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
5271 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
5273 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
5275 /* allocation complete, commit to creation */
5276 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
5277 atomic_inc(&root
->nr_cgrps
);
5278 cgroup_get_live(parent
);
5281 * On the default hierarchy, a child doesn't automatically inherit
5282 * subtree_control from the parent. Each is configured manually.
5284 if (!cgroup_on_dfl(cgrp
))
5285 cgrp
->subtree_control
= cgroup_control(cgrp
);
5287 cgroup_propagate_control(cgrp
);
5292 psi_cgroup_free(cgrp
);
5294 kernfs_remove(cgrp
->kn
);
5296 if (cgroup_on_dfl(parent
))
5297 cgroup_rstat_exit(cgrp
);
5299 percpu_ref_exit(&cgrp
->self
.refcnt
);
5302 return ERR_PTR(ret
);
5305 static bool cgroup_check_hierarchy_limits(struct cgroup
*parent
)
5307 struct cgroup
*cgroup
;
5311 lockdep_assert_held(&cgroup_mutex
);
5313 for (cgroup
= parent
; cgroup
; cgroup
= cgroup_parent(cgroup
)) {
5314 if (cgroup
->nr_descendants
>= cgroup
->max_descendants
)
5317 if (level
> cgroup
->max_depth
)
5328 int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
, umode_t mode
)
5330 struct cgroup
*parent
, *cgrp
;
5333 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5334 if (strchr(name
, '\n'))
5337 parent
= cgroup_kn_lock_live(parent_kn
, false);
5341 if (!cgroup_check_hierarchy_limits(parent
)) {
5346 cgrp
= cgroup_create(parent
, name
, mode
);
5348 ret
= PTR_ERR(cgrp
);
5353 * This extra ref will be put in cgroup_free_fn() and guarantees
5354 * that @cgrp->kn is always accessible.
5356 kernfs_get(cgrp
->kn
);
5358 ret
= cgroup_kn_set_ugid(cgrp
->kn
);
5362 ret
= css_populate_dir(&cgrp
->self
);
5366 ret
= cgroup_apply_control_enable(cgrp
);
5370 TRACE_CGROUP_PATH(mkdir
, cgrp
);
5372 /* let's create and online css's */
5373 kernfs_activate(cgrp
->kn
);
5379 cgroup_destroy_locked(cgrp
);
5381 cgroup_kn_unlock(parent_kn
);
5386 * This is called when the refcnt of a css is confirmed to be killed.
5387 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5388 * initate destruction and put the css ref from kill_css().
5390 static void css_killed_work_fn(struct work_struct
*work
)
5392 struct cgroup_subsys_state
*css
=
5393 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
5395 mutex_lock(&cgroup_mutex
);
5400 /* @css can't go away while we're holding cgroup_mutex */
5402 } while (css
&& atomic_dec_and_test(&css
->online_cnt
));
5404 mutex_unlock(&cgroup_mutex
);
5407 /* css kill confirmation processing requires process context, bounce */
5408 static void css_killed_ref_fn(struct percpu_ref
*ref
)
5410 struct cgroup_subsys_state
*css
=
5411 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5413 if (atomic_dec_and_test(&css
->online_cnt
)) {
5414 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
5415 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5420 * kill_css - destroy a css
5421 * @css: css to destroy
5423 * This function initiates destruction of @css by removing cgroup interface
5424 * files and putting its base reference. ->css_offline() will be invoked
5425 * asynchronously once css_tryget_online() is guaranteed to fail and when
5426 * the reference count reaches zero, @css will be released.
5428 static void kill_css(struct cgroup_subsys_state
*css
)
5430 lockdep_assert_held(&cgroup_mutex
);
5432 if (css
->flags
& CSS_DYING
)
5435 css
->flags
|= CSS_DYING
;
5438 * This must happen before css is disassociated with its cgroup.
5439 * See seq_css() for details.
5444 * Killing would put the base ref, but we need to keep it alive
5445 * until after ->css_offline().
5450 * cgroup core guarantees that, by the time ->css_offline() is
5451 * invoked, no new css reference will be given out via
5452 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5453 * proceed to offlining css's because percpu_ref_kill() doesn't
5454 * guarantee that the ref is seen as killed on all CPUs on return.
5456 * Use percpu_ref_kill_and_confirm() to get notifications as each
5457 * css is confirmed to be seen as killed on all CPUs.
5459 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
5463 * cgroup_destroy_locked - the first stage of cgroup destruction
5464 * @cgrp: cgroup to be destroyed
5466 * css's make use of percpu refcnts whose killing latency shouldn't be
5467 * exposed to userland and are RCU protected. Also, cgroup core needs to
5468 * guarantee that css_tryget_online() won't succeed by the time
5469 * ->css_offline() is invoked. To satisfy all the requirements,
5470 * destruction is implemented in the following two steps.
5472 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5473 * userland visible parts and start killing the percpu refcnts of
5474 * css's. Set up so that the next stage will be kicked off once all
5475 * the percpu refcnts are confirmed to be killed.
5477 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5478 * rest of destruction. Once all cgroup references are gone, the
5479 * cgroup is RCU-freed.
5481 * This function implements s1. After this step, @cgrp is gone as far as
5482 * the userland is concerned and a new cgroup with the same name may be
5483 * created. As cgroup doesn't care about the names internally, this
5484 * doesn't cause any problem.
5486 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
5487 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
5489 struct cgroup
*tcgrp
, *parent
= cgroup_parent(cgrp
);
5490 struct cgroup_subsys_state
*css
;
5491 struct cgrp_cset_link
*link
;
5494 lockdep_assert_held(&cgroup_mutex
);
5497 * Only migration can raise populated from zero and we're already
5498 * holding cgroup_mutex.
5500 if (cgroup_is_populated(cgrp
))
5504 * Make sure there's no live children. We can't test emptiness of
5505 * ->self.children as dead children linger on it while being
5506 * drained; otherwise, "rmdir parent/child parent" may fail.
5508 if (css_has_online_children(&cgrp
->self
))
5512 * Mark @cgrp and the associated csets dead. The former prevents
5513 * further task migration and child creation by disabling
5514 * cgroup_lock_live_group(). The latter makes the csets ignored by
5515 * the migration path.
5517 cgrp
->self
.flags
&= ~CSS_ONLINE
;
5519 spin_lock_irq(&css_set_lock
);
5520 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
5521 link
->cset
->dead
= true;
5522 spin_unlock_irq(&css_set_lock
);
5524 /* initiate massacre of all css's */
5525 for_each_css(css
, ssid
, cgrp
)
5528 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5529 css_clear_dir(&cgrp
->self
);
5530 kernfs_remove(cgrp
->kn
);
5532 if (parent
&& cgroup_is_threaded(cgrp
))
5533 parent
->nr_threaded_children
--;
5535 spin_lock_irq(&css_set_lock
);
5536 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
5537 tcgrp
->nr_descendants
--;
5538 tcgrp
->nr_dying_descendants
++;
5540 * If the dying cgroup is frozen, decrease frozen descendants
5541 * counters of ancestor cgroups.
5543 if (test_bit(CGRP_FROZEN
, &cgrp
->flags
))
5544 tcgrp
->freezer
.nr_frozen_descendants
--;
5546 spin_unlock_irq(&css_set_lock
);
5548 cgroup1_check_for_release(parent
);
5550 cgroup_bpf_offline(cgrp
);
5552 /* put the base reference */
5553 percpu_ref_kill(&cgrp
->self
.refcnt
);
5558 int cgroup_rmdir(struct kernfs_node
*kn
)
5560 struct cgroup
*cgrp
;
5563 cgrp
= cgroup_kn_lock_live(kn
, false);
5567 ret
= cgroup_destroy_locked(cgrp
);
5569 TRACE_CGROUP_PATH(rmdir
, cgrp
);
5571 cgroup_kn_unlock(kn
);
5575 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
5576 .show_options
= cgroup_show_options
,
5577 .mkdir
= cgroup_mkdir
,
5578 .rmdir
= cgroup_rmdir
,
5579 .show_path
= cgroup_show_path
,
5582 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
5584 struct cgroup_subsys_state
*css
;
5586 pr_debug("Initializing cgroup subsys %s\n", ss
->name
);
5588 mutex_lock(&cgroup_mutex
);
5590 idr_init(&ss
->css_idr
);
5591 INIT_LIST_HEAD(&ss
->cfts
);
5593 /* Create the root cgroup state for this subsystem */
5594 ss
->root
= &cgrp_dfl_root
;
5595 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
5596 /* We don't handle early failures gracefully */
5597 BUG_ON(IS_ERR(css
));
5598 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
5601 * Root csses are never destroyed and we can't initialize
5602 * percpu_ref during early init. Disable refcnting.
5604 css
->flags
|= CSS_NO_REF
;
5607 /* allocation can't be done safely during early init */
5610 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5611 BUG_ON(css
->id
< 0);
5614 /* Update the init_css_set to contain a subsys
5615 * pointer to this state - since the subsystem is
5616 * newly registered, all tasks and hence the
5617 * init_css_set is in the subsystem's root cgroup. */
5618 init_css_set
.subsys
[ss
->id
] = css
;
5620 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5621 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5622 have_release_callback
|= (bool)ss
->release
<< ss
->id
;
5623 have_canfork_callback
|= (bool)ss
->can_fork
<< ss
->id
;
5625 /* At system boot, before all subsystems have been
5626 * registered, no tasks have been forked, so we don't
5627 * need to invoke fork callbacks here. */
5628 BUG_ON(!list_empty(&init_task
.tasks
));
5630 BUG_ON(online_css(css
));
5632 mutex_unlock(&cgroup_mutex
);
5636 * cgroup_init_early - cgroup initialization at system boot
5638 * Initialize cgroups at system boot, and initialize any
5639 * subsystems that request early init.
5641 int __init
cgroup_init_early(void)
5643 static struct cgroup_fs_context __initdata ctx
;
5644 struct cgroup_subsys
*ss
;
5647 ctx
.root
= &cgrp_dfl_root
;
5648 init_cgroup_root(&ctx
);
5649 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5651 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5653 for_each_subsys(ss
, i
) {
5654 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5655 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5656 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5658 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5659 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5662 ss
->name
= cgroup_subsys_name
[i
];
5663 if (!ss
->legacy_name
)
5664 ss
->legacy_name
= cgroup_subsys_name
[i
];
5667 cgroup_init_subsys(ss
, true);
5672 static u16 cgroup_disable_mask __initdata
;
5675 * cgroup_init - cgroup initialization
5677 * Register cgroup filesystem and /proc file, and initialize
5678 * any subsystems that didn't request early init.
5680 int __init
cgroup_init(void)
5682 struct cgroup_subsys
*ss
;
5685 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT
> 16);
5686 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_base_files
));
5687 BUG_ON(cgroup_init_cftypes(NULL
, cgroup1_base_files
));
5689 cgroup_rstat_boot();
5692 * The latency of the synchronize_rcu() is too high for cgroups,
5693 * avoid it at the cost of forcing all readers into the slow path.
5695 rcu_sync_enter_start(&cgroup_threadgroup_rwsem
.rss
);
5697 get_user_ns(init_cgroup_ns
.user_ns
);
5699 mutex_lock(&cgroup_mutex
);
5702 * Add init_css_set to the hash table so that dfl_root can link to
5705 hash_add(css_set_table
, &init_css_set
.hlist
,
5706 css_set_hash(init_css_set
.subsys
));
5708 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0));
5710 mutex_unlock(&cgroup_mutex
);
5712 for_each_subsys(ss
, ssid
) {
5713 if (ss
->early_init
) {
5714 struct cgroup_subsys_state
*css
=
5715 init_css_set
.subsys
[ss
->id
];
5717 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5719 BUG_ON(css
->id
< 0);
5721 cgroup_init_subsys(ss
, false);
5724 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5725 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5728 * Setting dfl_root subsys_mask needs to consider the
5729 * disabled flag and cftype registration needs kmalloc,
5730 * both of which aren't available during early_init.
5732 if (cgroup_disable_mask
& (1 << ssid
)) {
5733 static_branch_disable(cgroup_subsys_enabled_key
[ssid
]);
5734 printk(KERN_INFO
"Disabling %s control group subsystem\n",
5739 if (cgroup1_ssid_disabled(ssid
))
5740 printk(KERN_INFO
"Disabling %s control group subsystem in v1 mounts\n",
5743 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5745 /* implicit controllers must be threaded too */
5746 WARN_ON(ss
->implicit_on_dfl
&& !ss
->threaded
);
5748 if (ss
->implicit_on_dfl
)
5749 cgrp_dfl_implicit_ss_mask
|= 1 << ss
->id
;
5750 else if (!ss
->dfl_cftypes
)
5751 cgrp_dfl_inhibit_ss_mask
|= 1 << ss
->id
;
5754 cgrp_dfl_threaded_ss_mask
|= 1 << ss
->id
;
5756 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5757 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5759 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5760 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5764 ss
->bind(init_css_set
.subsys
[ssid
]);
5766 mutex_lock(&cgroup_mutex
);
5767 css_populate_dir(init_css_set
.subsys
[ssid
]);
5768 mutex_unlock(&cgroup_mutex
);
5771 /* init_css_set.subsys[] has been updated, re-hash */
5772 hash_del(&init_css_set
.hlist
);
5773 hash_add(css_set_table
, &init_css_set
.hlist
,
5774 css_set_hash(init_css_set
.subsys
));
5776 WARN_ON(sysfs_create_mount_point(fs_kobj
, "cgroup"));
5777 WARN_ON(register_filesystem(&cgroup_fs_type
));
5778 WARN_ON(register_filesystem(&cgroup2_fs_type
));
5779 WARN_ON(!proc_create_single("cgroups", 0, NULL
, proc_cgroupstats_show
));
5780 #ifdef CONFIG_CPUSETS
5781 WARN_ON(register_filesystem(&cpuset_fs_type
));
5787 static int __init
cgroup_wq_init(void)
5790 * There isn't much point in executing destruction path in
5791 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5792 * Use 1 for @max_active.
5794 * We would prefer to do this in cgroup_init() above, but that
5795 * is called before init_workqueues(): so leave this until after.
5797 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5798 BUG_ON(!cgroup_destroy_wq
);
5801 core_initcall(cgroup_wq_init
);
5803 void cgroup_path_from_kernfs_id(u64 id
, char *buf
, size_t buflen
)
5805 struct kernfs_node
*kn
;
5807 kn
= kernfs_find_and_get_node_by_id(cgrp_dfl_root
.kf_root
, id
);
5810 kernfs_path(kn
, buf
, buflen
);
5815 * proc_cgroup_show()
5816 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5817 * - Used for /proc/<pid>/cgroup.
5819 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5820 struct pid
*pid
, struct task_struct
*tsk
)
5824 struct cgroup_root
*root
;
5827 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5831 mutex_lock(&cgroup_mutex
);
5832 spin_lock_irq(&css_set_lock
);
5834 for_each_root(root
) {
5835 struct cgroup_subsys
*ss
;
5836 struct cgroup
*cgrp
;
5837 int ssid
, count
= 0;
5839 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_visible
)
5842 seq_printf(m
, "%d:", root
->hierarchy_id
);
5843 if (root
!= &cgrp_dfl_root
)
5844 for_each_subsys(ss
, ssid
)
5845 if (root
->subsys_mask
& (1 << ssid
))
5846 seq_printf(m
, "%s%s", count
++ ? "," : "",
5848 if (strlen(root
->name
))
5849 seq_printf(m
, "%sname=%s", count
? "," : "",
5853 cgrp
= task_cgroup_from_root(tsk
, root
);
5856 * On traditional hierarchies, all zombie tasks show up as
5857 * belonging to the root cgroup. On the default hierarchy,
5858 * while a zombie doesn't show up in "cgroup.procs" and
5859 * thus can't be migrated, its /proc/PID/cgroup keeps
5860 * reporting the cgroup it belonged to before exiting. If
5861 * the cgroup is removed before the zombie is reaped,
5862 * " (deleted)" is appended to the cgroup path.
5864 if (cgroup_on_dfl(cgrp
) || !(tsk
->flags
& PF_EXITING
)) {
5865 retval
= cgroup_path_ns_locked(cgrp
, buf
, PATH_MAX
,
5866 current
->nsproxy
->cgroup_ns
);
5867 if (retval
>= PATH_MAX
)
5868 retval
= -ENAMETOOLONG
;
5877 if (cgroup_on_dfl(cgrp
) && cgroup_is_dead(cgrp
))
5878 seq_puts(m
, " (deleted)\n");
5885 spin_unlock_irq(&css_set_lock
);
5886 mutex_unlock(&cgroup_mutex
);
5893 * cgroup_fork - initialize cgroup related fields during copy_process()
5894 * @child: pointer to task_struct of forking parent process.
5896 * A task is associated with the init_css_set until cgroup_post_fork()
5897 * attaches it to the target css_set.
5899 void cgroup_fork(struct task_struct
*child
)
5901 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5902 INIT_LIST_HEAD(&child
->cg_list
);
5905 static struct cgroup
*cgroup_get_from_file(struct file
*f
)
5907 struct cgroup_subsys_state
*css
;
5908 struct cgroup
*cgrp
;
5910 css
= css_tryget_online_from_dir(f
->f_path
.dentry
, NULL
);
5912 return ERR_CAST(css
);
5915 if (!cgroup_on_dfl(cgrp
)) {
5917 return ERR_PTR(-EBADF
);
5924 * cgroup_css_set_fork - find or create a css_set for a child process
5925 * @kargs: the arguments passed to create the child process
5927 * This functions finds or creates a new css_set which the child
5928 * process will be attached to in cgroup_post_fork(). By default,
5929 * the child process will be given the same css_set as its parent.
5931 * If CLONE_INTO_CGROUP is specified this function will try to find an
5932 * existing css_set which includes the requested cgroup and if not create
5933 * a new css_set that the child will be attached to later. If this function
5934 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5935 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5936 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5937 * to the target cgroup.
5939 static int cgroup_css_set_fork(struct kernel_clone_args
*kargs
)
5940 __acquires(&cgroup_mutex
) __acquires(&cgroup_threadgroup_rwsem
)
5943 struct cgroup
*dst_cgrp
= NULL
;
5944 struct css_set
*cset
;
5945 struct super_block
*sb
;
5948 if (kargs
->flags
& CLONE_INTO_CGROUP
)
5949 mutex_lock(&cgroup_mutex
);
5951 cgroup_threadgroup_change_begin(current
);
5953 spin_lock_irq(&css_set_lock
);
5954 cset
= task_css_set(current
);
5956 spin_unlock_irq(&css_set_lock
);
5958 if (!(kargs
->flags
& CLONE_INTO_CGROUP
)) {
5963 f
= fget_raw(kargs
->cgroup
);
5968 sb
= f
->f_path
.dentry
->d_sb
;
5970 dst_cgrp
= cgroup_get_from_file(f
);
5971 if (IS_ERR(dst_cgrp
)) {
5972 ret
= PTR_ERR(dst_cgrp
);
5977 if (cgroup_is_dead(dst_cgrp
)) {
5983 * Verify that we the target cgroup is writable for us. This is
5984 * usually done by the vfs layer but since we're not going through
5985 * the vfs layer here we need to do it "manually".
5987 ret
= cgroup_may_write(dst_cgrp
, sb
);
5991 ret
= cgroup_attach_permissions(cset
->dfl_cgrp
, dst_cgrp
, sb
,
5992 !(kargs
->flags
& CLONE_THREAD
));
5996 kargs
->cset
= find_css_set(cset
, dst_cgrp
);
6004 kargs
->cgrp
= dst_cgrp
;
6008 cgroup_threadgroup_change_end(current
);
6009 mutex_unlock(&cgroup_mutex
);
6013 cgroup_put(dst_cgrp
);
6016 put_css_set(kargs
->cset
);
6021 * cgroup_css_set_put_fork - drop references we took during fork
6022 * @kargs: the arguments passed to create the child process
6024 * Drop references to the prepared css_set and target cgroup if
6025 * CLONE_INTO_CGROUP was requested.
6027 static void cgroup_css_set_put_fork(struct kernel_clone_args
*kargs
)
6028 __releases(&cgroup_threadgroup_rwsem
) __releases(&cgroup_mutex
)
6030 cgroup_threadgroup_change_end(current
);
6032 if (kargs
->flags
& CLONE_INTO_CGROUP
) {
6033 struct cgroup
*cgrp
= kargs
->cgrp
;
6034 struct css_set
*cset
= kargs
->cset
;
6036 mutex_unlock(&cgroup_mutex
);
6051 * cgroup_can_fork - called on a new task before the process is exposed
6052 * @child: the child process
6054 * This prepares a new css_set for the child process which the child will
6055 * be attached to in cgroup_post_fork().
6056 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6057 * callback returns an error, the fork aborts with that error code. This
6058 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6060 int cgroup_can_fork(struct task_struct
*child
, struct kernel_clone_args
*kargs
)
6062 struct cgroup_subsys
*ss
;
6065 ret
= cgroup_css_set_fork(kargs
);
6069 do_each_subsys_mask(ss
, i
, have_canfork_callback
) {
6070 ret
= ss
->can_fork(child
, kargs
->cset
);
6073 } while_each_subsys_mask();
6078 for_each_subsys(ss
, j
) {
6081 if (ss
->cancel_fork
)
6082 ss
->cancel_fork(child
, kargs
->cset
);
6085 cgroup_css_set_put_fork(kargs
);
6091 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6092 * @child: the child process
6093 * @kargs: the arguments passed to create the child process
6095 * This calls the cancel_fork() callbacks if a fork failed *after*
6096 * cgroup_can_fork() succeded and cleans up references we took to
6097 * prepare a new css_set for the child process in cgroup_can_fork().
6099 void cgroup_cancel_fork(struct task_struct
*child
,
6100 struct kernel_clone_args
*kargs
)
6102 struct cgroup_subsys
*ss
;
6105 for_each_subsys(ss
, i
)
6106 if (ss
->cancel_fork
)
6107 ss
->cancel_fork(child
, kargs
->cset
);
6109 cgroup_css_set_put_fork(kargs
);
6113 * cgroup_post_fork - finalize cgroup setup for the child process
6114 * @child: the child process
6116 * Attach the child process to its css_set calling the subsystem fork()
6119 void cgroup_post_fork(struct task_struct
*child
,
6120 struct kernel_clone_args
*kargs
)
6121 __releases(&cgroup_threadgroup_rwsem
) __releases(&cgroup_mutex
)
6123 struct cgroup_subsys
*ss
;
6124 struct css_set
*cset
;
6130 spin_lock_irq(&css_set_lock
);
6132 /* init tasks are special, only link regular threads */
6133 if (likely(child
->pid
)) {
6134 WARN_ON_ONCE(!list_empty(&child
->cg_list
));
6136 css_set_move_task(child
, NULL
, cset
, false);
6143 * If the cgroup has to be frozen, the new task has too. Let's set
6144 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6147 if (unlikely(cgroup_task_freeze(child
))) {
6148 spin_lock(&child
->sighand
->siglock
);
6149 WARN_ON_ONCE(child
->frozen
);
6150 child
->jobctl
|= JOBCTL_TRAP_FREEZE
;
6151 spin_unlock(&child
->sighand
->siglock
);
6154 * Calling cgroup_update_frozen() isn't required here,
6155 * because it will be called anyway a bit later from
6156 * do_freezer_trap(). So we avoid cgroup's transient switch
6157 * from the frozen state and back.
6161 spin_unlock_irq(&css_set_lock
);
6164 * Call ss->fork(). This must happen after @child is linked on
6165 * css_set; otherwise, @child might change state between ->fork()
6166 * and addition to css_set.
6168 do_each_subsys_mask(ss
, i
, have_fork_callback
) {
6170 } while_each_subsys_mask();
6172 /* Make the new cset the root_cset of the new cgroup namespace. */
6173 if (kargs
->flags
& CLONE_NEWCGROUP
) {
6174 struct css_set
*rcset
= child
->nsproxy
->cgroup_ns
->root_cset
;
6177 child
->nsproxy
->cgroup_ns
->root_cset
= cset
;
6181 cgroup_css_set_put_fork(kargs
);
6185 * cgroup_exit - detach cgroup from exiting task
6186 * @tsk: pointer to task_struct of exiting process
6188 * Description: Detach cgroup from @tsk.
6191 void cgroup_exit(struct task_struct
*tsk
)
6193 struct cgroup_subsys
*ss
;
6194 struct css_set
*cset
;
6197 spin_lock_irq(&css_set_lock
);
6199 WARN_ON_ONCE(list_empty(&tsk
->cg_list
));
6200 cset
= task_css_set(tsk
);
6201 css_set_move_task(tsk
, cset
, NULL
, false);
6202 list_add_tail(&tsk
->cg_list
, &cset
->dying_tasks
);
6205 WARN_ON_ONCE(cgroup_task_frozen(tsk
));
6206 if (unlikely(cgroup_task_freeze(tsk
)))
6207 cgroup_update_frozen(task_dfl_cgroup(tsk
));
6209 spin_unlock_irq(&css_set_lock
);
6211 /* see cgroup_post_fork() for details */
6212 do_each_subsys_mask(ss
, i
, have_exit_callback
) {
6214 } while_each_subsys_mask();
6217 void cgroup_release(struct task_struct
*task
)
6219 struct cgroup_subsys
*ss
;
6222 do_each_subsys_mask(ss
, ssid
, have_release_callback
) {
6224 } while_each_subsys_mask();
6226 spin_lock_irq(&css_set_lock
);
6227 css_set_skip_task_iters(task_css_set(task
), task
);
6228 list_del_init(&task
->cg_list
);
6229 spin_unlock_irq(&css_set_lock
);
6232 void cgroup_free(struct task_struct
*task
)
6234 struct css_set
*cset
= task_css_set(task
);
6238 static int __init
cgroup_disable(char *str
)
6240 struct cgroup_subsys
*ss
;
6244 while ((token
= strsep(&str
, ",")) != NULL
) {
6248 for_each_subsys(ss
, i
) {
6249 if (strcmp(token
, ss
->name
) &&
6250 strcmp(token
, ss
->legacy_name
))
6252 cgroup_disable_mask
|= 1 << i
;
6257 __setup("cgroup_disable=", cgroup_disable
);
6259 void __init __weak
enable_debug_cgroup(void) { }
6261 static int __init
enable_cgroup_debug(char *str
)
6263 cgroup_debug
= true;
6264 enable_debug_cgroup();
6267 __setup("cgroup_debug", enable_cgroup_debug
);
6270 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6271 * @dentry: directory dentry of interest
6272 * @ss: subsystem of interest
6274 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6275 * to get the corresponding css and return it. If such css doesn't exist
6276 * or can't be pinned, an ERR_PTR value is returned.
6278 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
6279 struct cgroup_subsys
*ss
)
6281 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
6282 struct file_system_type
*s_type
= dentry
->d_sb
->s_type
;
6283 struct cgroup_subsys_state
*css
= NULL
;
6284 struct cgroup
*cgrp
;
6286 /* is @dentry a cgroup dir? */
6287 if ((s_type
!= &cgroup_fs_type
&& s_type
!= &cgroup2_fs_type
) ||
6288 !kn
|| kernfs_type(kn
) != KERNFS_DIR
)
6289 return ERR_PTR(-EBADF
);
6294 * This path doesn't originate from kernfs and @kn could already
6295 * have been or be removed at any point. @kn->priv is RCU
6296 * protected for this access. See css_release_work_fn() for details.
6298 cgrp
= rcu_dereference(*(void __rcu __force
**)&kn
->priv
);
6300 css
= cgroup_css(cgrp
, ss
);
6302 if (!css
|| !css_tryget_online(css
))
6303 css
= ERR_PTR(-ENOENT
);
6310 * css_from_id - lookup css by id
6311 * @id: the cgroup id
6312 * @ss: cgroup subsys to be looked into
6314 * Returns the css if there's valid one with @id, otherwise returns NULL.
6315 * Should be called under rcu_read_lock().
6317 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
6319 WARN_ON_ONCE(!rcu_read_lock_held());
6320 return idr_find(&ss
->css_idr
, id
);
6324 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6325 * @path: path on the default hierarchy
6327 * Find the cgroup at @path on the default hierarchy, increment its
6328 * reference count and return it. Returns pointer to the found cgroup on
6329 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6330 * if @path points to a non-directory.
6332 struct cgroup
*cgroup_get_from_path(const char *path
)
6334 struct kernfs_node
*kn
;
6335 struct cgroup
*cgrp
;
6337 mutex_lock(&cgroup_mutex
);
6339 kn
= kernfs_walk_and_get(cgrp_dfl_root
.cgrp
.kn
, path
);
6341 if (kernfs_type(kn
) == KERNFS_DIR
) {
6343 cgroup_get_live(cgrp
);
6345 cgrp
= ERR_PTR(-ENOTDIR
);
6349 cgrp
= ERR_PTR(-ENOENT
);
6352 mutex_unlock(&cgroup_mutex
);
6355 EXPORT_SYMBOL_GPL(cgroup_get_from_path
);
6358 * cgroup_get_from_fd - get a cgroup pointer from a fd
6359 * @fd: fd obtained by open(cgroup2_dir)
6361 * Find the cgroup from a fd which should be obtained
6362 * by opening a cgroup directory. Returns a pointer to the
6363 * cgroup on success. ERR_PTR is returned if the cgroup
6366 struct cgroup
*cgroup_get_from_fd(int fd
)
6368 struct cgroup
*cgrp
;
6373 return ERR_PTR(-EBADF
);
6375 cgrp
= cgroup_get_from_file(f
);
6379 EXPORT_SYMBOL_GPL(cgroup_get_from_fd
);
6381 static u64
power_of_ten(int power
)
6390 * cgroup_parse_float - parse a floating number
6391 * @input: input string
6392 * @dec_shift: number of decimal digits to shift
6395 * Parse a decimal floating point number in @input and store the result in
6396 * @v with decimal point right shifted @dec_shift times. For example, if
6397 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6398 * Returns 0 on success, -errno otherwise.
6400 * There's nothing cgroup specific about this function except that it's
6401 * currently the only user.
6403 int cgroup_parse_float(const char *input
, unsigned dec_shift
, s64
*v
)
6405 s64 whole
, frac
= 0;
6406 int fstart
= 0, fend
= 0, flen
;
6408 if (!sscanf(input
, "%lld.%n%lld%n", &whole
, &fstart
, &frac
, &fend
))
6413 flen
= fend
> fstart
? fend
- fstart
: 0;
6414 if (flen
< dec_shift
)
6415 frac
*= power_of_ten(dec_shift
- flen
);
6417 frac
= DIV_ROUND_CLOSEST_ULL(frac
, power_of_ten(flen
- dec_shift
));
6419 *v
= whole
* power_of_ten(dec_shift
) + frac
;
6424 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6425 * definition in cgroup-defs.h.
6427 #ifdef CONFIG_SOCK_CGROUP_DATA
6429 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6431 DEFINE_SPINLOCK(cgroup_sk_update_lock
);
6432 static bool cgroup_sk_alloc_disabled __read_mostly
;
6434 void cgroup_sk_alloc_disable(void)
6436 if (cgroup_sk_alloc_disabled
)
6438 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6439 cgroup_sk_alloc_disabled
= true;
6444 #define cgroup_sk_alloc_disabled false
6448 void cgroup_sk_alloc(struct sock_cgroup_data
*skcd
)
6450 if (cgroup_sk_alloc_disabled
)
6453 /* Socket clone path */
6456 * We might be cloning a socket which is left in an empty
6457 * cgroup and the cgroup might have already been rmdir'd.
6458 * Don't use cgroup_get_live().
6460 cgroup_get(sock_cgroup_ptr(skcd
));
6461 cgroup_bpf_get(sock_cgroup_ptr(skcd
));
6465 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6472 struct css_set
*cset
;
6474 cset
= task_css_set(current
);
6475 if (likely(cgroup_tryget(cset
->dfl_cgrp
))) {
6476 skcd
->val
= (unsigned long)cset
->dfl_cgrp
;
6477 cgroup_bpf_get(cset
->dfl_cgrp
);
6486 void cgroup_sk_free(struct sock_cgroup_data
*skcd
)
6488 struct cgroup
*cgrp
= sock_cgroup_ptr(skcd
);
6490 cgroup_bpf_put(cgrp
);
6494 #endif /* CONFIG_SOCK_CGROUP_DATA */
6496 #ifdef CONFIG_CGROUP_BPF
6497 int cgroup_bpf_attach(struct cgroup
*cgrp
,
6498 struct bpf_prog
*prog
, struct bpf_prog
*replace_prog
,
6499 struct bpf_cgroup_link
*link
,
6500 enum bpf_attach_type type
,
6505 mutex_lock(&cgroup_mutex
);
6506 ret
= __cgroup_bpf_attach(cgrp
, prog
, replace_prog
, link
, type
, flags
);
6507 mutex_unlock(&cgroup_mutex
);
6511 int cgroup_bpf_replace(struct bpf_link
*link
, struct bpf_prog
*old_prog
,
6512 struct bpf_prog
*new_prog
)
6514 struct bpf_cgroup_link
*cg_link
;
6517 if (link
->ops
!= &bpf_cgroup_link_lops
)
6520 cg_link
= container_of(link
, struct bpf_cgroup_link
, link
);
6522 mutex_lock(&cgroup_mutex
);
6523 /* link might have been auto-released by dying cgroup, so fail */
6524 if (!cg_link
->cgroup
) {
6528 if (old_prog
&& link
->prog
!= old_prog
) {
6532 ret
= __cgroup_bpf_replace(cg_link
->cgroup
, cg_link
, new_prog
);
6534 mutex_unlock(&cgroup_mutex
);
6538 int cgroup_bpf_detach(struct cgroup
*cgrp
, struct bpf_prog
*prog
,
6539 enum bpf_attach_type type
)
6543 mutex_lock(&cgroup_mutex
);
6544 ret
= __cgroup_bpf_detach(cgrp
, prog
, NULL
, type
);
6545 mutex_unlock(&cgroup_mutex
);
6549 int cgroup_bpf_query(struct cgroup
*cgrp
, const union bpf_attr
*attr
,
6550 union bpf_attr __user
*uattr
)
6554 mutex_lock(&cgroup_mutex
);
6555 ret
= __cgroup_bpf_query(cgrp
, attr
, uattr
);
6556 mutex_unlock(&cgroup_mutex
);
6559 #endif /* CONFIG_CGROUP_BPF */
6562 static ssize_t
show_delegatable_files(struct cftype
*files
, char *buf
,
6563 ssize_t size
, const char *prefix
)
6568 for (cft
= files
; cft
&& cft
->name
[0] != '\0'; cft
++) {
6569 if (!(cft
->flags
& CFTYPE_NS_DELEGATABLE
))
6573 ret
+= snprintf(buf
+ ret
, size
- ret
, "%s.", prefix
);
6575 ret
+= snprintf(buf
+ ret
, size
- ret
, "%s\n", cft
->name
);
6577 if (WARN_ON(ret
>= size
))
6584 static ssize_t
delegate_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
6587 struct cgroup_subsys
*ss
;
6591 ret
= show_delegatable_files(cgroup_base_files
, buf
, PAGE_SIZE
- ret
,
6594 for_each_subsys(ss
, ssid
)
6595 ret
+= show_delegatable_files(ss
->dfl_cftypes
, buf
+ ret
,
6597 cgroup_subsys_name
[ssid
]);
6601 static struct kobj_attribute cgroup_delegate_attr
= __ATTR_RO(delegate
);
6603 static ssize_t
features_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
6606 return snprintf(buf
, PAGE_SIZE
,
6608 "memory_localevents\n"
6609 "memory_recursiveprot\n");
6611 static struct kobj_attribute cgroup_features_attr
= __ATTR_RO(features
);
6613 static struct attribute
*cgroup_sysfs_attrs
[] = {
6614 &cgroup_delegate_attr
.attr
,
6615 &cgroup_features_attr
.attr
,
6619 static const struct attribute_group cgroup_sysfs_attr_group
= {
6620 .attrs
= cgroup_sysfs_attrs
,
6624 static int __init
cgroup_sysfs_init(void)
6626 return sysfs_create_group(kernel_kobj
, &cgroup_sysfs_attr_group
);
6628 subsys_initcall(cgroup_sysfs_init
);
6630 #endif /* CONFIG_SYSFS */