octeontx2-pf: Fix error return code in otx2_probe()
[linux/fpc-iii.git] / kernel / cgroup / cgroup.c
blob06b5ea9d899d81d020fbd51ce8d6fdf1a75e169f
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
74 * css_set_lock protects task->cgroups pointer, the list of css_set
75 * objects, and the chain of tasks off each css_set.
77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78 * cgroup.h can use them for lockdep annotations.
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
93 * Protects cgroup_idr and css_idr so that IDs can be released without
94 * grabbing cgroup_mutex.
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
100 * against file removal/re-creation across css hiding.
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
108 !lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
117 static struct workqueue_struct *cgroup_destroy_wq;
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
124 #undef SUBSYS
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
131 #undef SUBSYS
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x) \
135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
146 #undef SUBSYS
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
152 #undef SUBSYS
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
157 * The default hierarchy, reserved for the subsystems that are otherwise
158 * unattached - it never has more than a single cgroup, and all tasks are
159 * part of that cgroup.
161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
165 * The default hierarchy always exists but is hidden until mounted for the
166 * first time. This is for backward compatibility.
168 static bool cgrp_dfl_visible;
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask;
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask;
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask;
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots);
181 static int cgroup_root_count;
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr);
187 * Assign a monotonically increasing serial number to csses. It guarantees
188 * cgroups with bigger numbers are newer than those with smaller numbers.
189 * Also, as csses are always appended to the parent's ->children list, it
190 * guarantees that sibling csses are always sorted in the ascending serial
191 * number order on the list. Protected by cgroup_mutex.
193 static u64 css_serial_nr_next = 1;
196 * These bitmasks identify subsystems with specific features to avoid
197 * having to do iterative checks repeatedly.
199 static u16 have_fork_callback __read_mostly;
200 static u16 have_exit_callback __read_mostly;
201 static u16 have_release_callback __read_mostly;
202 static u16 have_canfork_callback __read_mostly;
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns = {
206 .count = REFCOUNT_INIT(2),
207 .user_ns = &init_user_ns,
208 .ns.ops = &cgroupns_operations,
209 .ns.inum = PROC_CGROUP_INIT_INO,
210 .root_cset = &init_css_set,
213 static struct file_system_type cgroup2_fs_type;
214 static struct cftype cgroup_base_files[];
216 static int cgroup_apply_control(struct cgroup *cgrp);
217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
218 static void css_task_iter_skip(struct css_task_iter *it,
219 struct task_struct *task);
220 static int cgroup_destroy_locked(struct cgroup *cgrp);
221 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
222 struct cgroup_subsys *ss);
223 static void css_release(struct percpu_ref *ref);
224 static void kill_css(struct cgroup_subsys_state *css);
225 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 struct cgroup *cgrp, struct cftype cfts[],
227 bool is_add);
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
237 bool cgroup_ssid_enabled(int ssid)
239 if (CGROUP_SUBSYS_COUNT == 0)
240 return false;
242 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247 * @cgrp: the cgroup of interest
249 * The default hierarchy is the v2 interface of cgroup and this function
250 * can be used to test whether a cgroup is on the default hierarchy for
251 * cases where a subsystem should behave differnetly depending on the
252 * interface version.
254 * The set of behaviors which change on the default hierarchy are still
255 * being determined and the mount option is prefixed with __DEVEL__.
257 * List of changed behaviors:
259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260 * and "name" are disallowed.
262 * - When mounting an existing superblock, mount options should match.
264 * - Remount is disallowed.
266 * - rename(2) is disallowed.
268 * - "tasks" is removed. Everything should be at process granularity. Use
269 * "cgroup.procs" instead.
271 * - "cgroup.procs" is not sorted. pids will be unique unless they got
272 * recycled inbetween reads.
274 * - "release_agent" and "notify_on_release" are removed. Replacement
275 * notification mechanism will be implemented.
277 * - "cgroup.clone_children" is removed.
279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
280 * and its descendants contain no task; otherwise, 1. The file also
281 * generates kernfs notification which can be monitored through poll and
282 * [di]notify when the value of the file changes.
284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285 * take masks of ancestors with non-empty cpus/mems, instead of being
286 * moved to an ancestor.
288 * - cpuset: a task can be moved into an empty cpuset, and again it takes
289 * masks of ancestors.
291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
292 * is not created.
294 * - blkcg: blk-throttle becomes properly hierarchical.
296 * - debug: disallowed on the default hierarchy.
298 bool cgroup_on_dfl(const struct cgroup *cgrp)
300 return cgrp->root == &cgrp_dfl_root;
303 /* IDR wrappers which synchronize using cgroup_idr_lock */
304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
305 gfp_t gfp_mask)
307 int ret;
309 idr_preload(gfp_mask);
310 spin_lock_bh(&cgroup_idr_lock);
311 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
312 spin_unlock_bh(&cgroup_idr_lock);
313 idr_preload_end();
314 return ret;
317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
319 void *ret;
321 spin_lock_bh(&cgroup_idr_lock);
322 ret = idr_replace(idr, ptr, id);
323 spin_unlock_bh(&cgroup_idr_lock);
324 return ret;
327 static void cgroup_idr_remove(struct idr *idr, int id)
329 spin_lock_bh(&cgroup_idr_lock);
330 idr_remove(idr, id);
331 spin_unlock_bh(&cgroup_idr_lock);
334 static bool cgroup_has_tasks(struct cgroup *cgrp)
336 return cgrp->nr_populated_csets;
339 bool cgroup_is_threaded(struct cgroup *cgrp)
341 return cgrp->dom_cgrp != cgrp;
344 /* can @cgrp host both domain and threaded children? */
345 static bool cgroup_is_mixable(struct cgroup *cgrp)
348 * Root isn't under domain level resource control exempting it from
349 * the no-internal-process constraint, so it can serve as a thread
350 * root and a parent of resource domains at the same time.
352 return !cgroup_parent(cgrp);
355 /* can @cgrp become a thread root? should always be true for a thread root */
356 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
358 /* mixables don't care */
359 if (cgroup_is_mixable(cgrp))
360 return true;
362 /* domain roots can't be nested under threaded */
363 if (cgroup_is_threaded(cgrp))
364 return false;
366 /* can only have either domain or threaded children */
367 if (cgrp->nr_populated_domain_children)
368 return false;
370 /* and no domain controllers can be enabled */
371 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
372 return false;
374 return true;
377 /* is @cgrp root of a threaded subtree? */
378 bool cgroup_is_thread_root(struct cgroup *cgrp)
380 /* thread root should be a domain */
381 if (cgroup_is_threaded(cgrp))
382 return false;
384 /* a domain w/ threaded children is a thread root */
385 if (cgrp->nr_threaded_children)
386 return true;
389 * A domain which has tasks and explicit threaded controllers
390 * enabled is a thread root.
392 if (cgroup_has_tasks(cgrp) &&
393 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
394 return true;
396 return false;
399 /* a domain which isn't connected to the root w/o brekage can't be used */
400 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
402 /* the cgroup itself can be a thread root */
403 if (cgroup_is_threaded(cgrp))
404 return false;
406 /* but the ancestors can't be unless mixable */
407 while ((cgrp = cgroup_parent(cgrp))) {
408 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
409 return false;
410 if (cgroup_is_threaded(cgrp))
411 return false;
414 return true;
417 /* subsystems visibly enabled on a cgroup */
418 static u16 cgroup_control(struct cgroup *cgrp)
420 struct cgroup *parent = cgroup_parent(cgrp);
421 u16 root_ss_mask = cgrp->root->subsys_mask;
423 if (parent) {
424 u16 ss_mask = parent->subtree_control;
426 /* threaded cgroups can only have threaded controllers */
427 if (cgroup_is_threaded(cgrp))
428 ss_mask &= cgrp_dfl_threaded_ss_mask;
429 return ss_mask;
432 if (cgroup_on_dfl(cgrp))
433 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
434 cgrp_dfl_implicit_ss_mask);
435 return root_ss_mask;
438 /* subsystems enabled on a cgroup */
439 static u16 cgroup_ss_mask(struct cgroup *cgrp)
441 struct cgroup *parent = cgroup_parent(cgrp);
443 if (parent) {
444 u16 ss_mask = parent->subtree_ss_mask;
446 /* threaded cgroups can only have threaded controllers */
447 if (cgroup_is_threaded(cgrp))
448 ss_mask &= cgrp_dfl_threaded_ss_mask;
449 return ss_mask;
452 return cgrp->root->subsys_mask;
456 * cgroup_css - obtain a cgroup's css for the specified subsystem
457 * @cgrp: the cgroup of interest
458 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
460 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
461 * function must be called either under cgroup_mutex or rcu_read_lock() and
462 * the caller is responsible for pinning the returned css if it wants to
463 * keep accessing it outside the said locks. This function may return
464 * %NULL if @cgrp doesn't have @subsys_id enabled.
466 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
467 struct cgroup_subsys *ss)
469 if (ss)
470 return rcu_dereference_check(cgrp->subsys[ss->id],
471 lockdep_is_held(&cgroup_mutex));
472 else
473 return &cgrp->self;
477 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
478 * @cgrp: the cgroup of interest
479 * @ss: the subsystem of interest
481 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
482 * or is offline, %NULL is returned.
484 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
485 struct cgroup_subsys *ss)
487 struct cgroup_subsys_state *css;
489 rcu_read_lock();
490 css = cgroup_css(cgrp, ss);
491 if (css && !css_tryget_online(css))
492 css = NULL;
493 rcu_read_unlock();
495 return css;
499 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
500 * @cgrp: the cgroup of interest
501 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
503 * Similar to cgroup_css() but returns the effective css, which is defined
504 * as the matching css of the nearest ancestor including self which has @ss
505 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
506 * function is guaranteed to return non-NULL css.
508 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
509 struct cgroup_subsys *ss)
511 lockdep_assert_held(&cgroup_mutex);
513 if (!ss)
514 return &cgrp->self;
517 * This function is used while updating css associations and thus
518 * can't test the csses directly. Test ss_mask.
520 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
521 cgrp = cgroup_parent(cgrp);
522 if (!cgrp)
523 return NULL;
526 return cgroup_css(cgrp, ss);
530 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
531 * @cgrp: the cgroup of interest
532 * @ss: the subsystem of interest
534 * Find and get the effective css of @cgrp for @ss. The effective css is
535 * defined as the matching css of the nearest ancestor including self which
536 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
537 * the root css is returned, so this function always returns a valid css.
539 * The returned css is not guaranteed to be online, and therefore it is the
540 * callers responsiblity to tryget a reference for it.
542 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
543 struct cgroup_subsys *ss)
545 struct cgroup_subsys_state *css;
547 do {
548 css = cgroup_css(cgrp, ss);
550 if (css)
551 return css;
552 cgrp = cgroup_parent(cgrp);
553 } while (cgrp);
555 return init_css_set.subsys[ss->id];
559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
560 * @cgrp: the cgroup of interest
561 * @ss: the subsystem of interest
563 * Find and get the effective css of @cgrp for @ss. The effective css is
564 * defined as the matching css of the nearest ancestor including self which
565 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
566 * the root css is returned, so this function always returns a valid css.
567 * The returned css must be put using css_put().
569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
570 struct cgroup_subsys *ss)
572 struct cgroup_subsys_state *css;
574 rcu_read_lock();
576 do {
577 css = cgroup_css(cgrp, ss);
579 if (css && css_tryget_online(css))
580 goto out_unlock;
581 cgrp = cgroup_parent(cgrp);
582 } while (cgrp);
584 css = init_css_set.subsys[ss->id];
585 css_get(css);
586 out_unlock:
587 rcu_read_unlock();
588 return css;
591 static void cgroup_get_live(struct cgroup *cgrp)
593 WARN_ON_ONCE(cgroup_is_dead(cgrp));
594 css_get(&cgrp->self);
598 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
599 * is responsible for taking the css_set_lock.
600 * @cgrp: the cgroup in question
602 int __cgroup_task_count(const struct cgroup *cgrp)
604 int count = 0;
605 struct cgrp_cset_link *link;
607 lockdep_assert_held(&css_set_lock);
609 list_for_each_entry(link, &cgrp->cset_links, cset_link)
610 count += link->cset->nr_tasks;
612 return count;
616 * cgroup_task_count - count the number of tasks in a cgroup.
617 * @cgrp: the cgroup in question
619 int cgroup_task_count(const struct cgroup *cgrp)
621 int count;
623 spin_lock_irq(&css_set_lock);
624 count = __cgroup_task_count(cgrp);
625 spin_unlock_irq(&css_set_lock);
627 return count;
630 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
632 struct cgroup *cgrp = of->kn->parent->priv;
633 struct cftype *cft = of_cft(of);
636 * This is open and unprotected implementation of cgroup_css().
637 * seq_css() is only called from a kernfs file operation which has
638 * an active reference on the file. Because all the subsystem
639 * files are drained before a css is disassociated with a cgroup,
640 * the matching css from the cgroup's subsys table is guaranteed to
641 * be and stay valid until the enclosing operation is complete.
643 if (cft->ss)
644 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
645 else
646 return &cgrp->self;
648 EXPORT_SYMBOL_GPL(of_css);
651 * for_each_css - iterate all css's of a cgroup
652 * @css: the iteration cursor
653 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
654 * @cgrp: the target cgroup to iterate css's of
656 * Should be called under cgroup_[tree_]mutex.
658 #define for_each_css(css, ssid, cgrp) \
659 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
660 if (!((css) = rcu_dereference_check( \
661 (cgrp)->subsys[(ssid)], \
662 lockdep_is_held(&cgroup_mutex)))) { } \
663 else
666 * for_each_e_css - iterate all effective css's of a cgroup
667 * @css: the iteration cursor
668 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
669 * @cgrp: the target cgroup to iterate css's of
671 * Should be called under cgroup_[tree_]mutex.
673 #define for_each_e_css(css, ssid, cgrp) \
674 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
675 if (!((css) = cgroup_e_css_by_mask(cgrp, \
676 cgroup_subsys[(ssid)]))) \
678 else
681 * do_each_subsys_mask - filter for_each_subsys with a bitmask
682 * @ss: the iteration cursor
683 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
684 * @ss_mask: the bitmask
686 * The block will only run for cases where the ssid-th bit (1 << ssid) of
687 * @ss_mask is set.
689 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
690 unsigned long __ss_mask = (ss_mask); \
691 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
692 (ssid) = 0; \
693 break; \
695 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
696 (ss) = cgroup_subsys[ssid]; \
699 #define while_each_subsys_mask() \
702 } while (false)
704 /* iterate over child cgrps, lock should be held throughout iteration */
705 #define cgroup_for_each_live_child(child, cgrp) \
706 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
707 if (({ lockdep_assert_held(&cgroup_mutex); \
708 cgroup_is_dead(child); })) \
710 else
712 /* walk live descendants in preorder */
713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
714 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
715 if (({ lockdep_assert_held(&cgroup_mutex); \
716 (dsct) = (d_css)->cgroup; \
717 cgroup_is_dead(dsct); })) \
719 else
721 /* walk live descendants in postorder */
722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
723 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
724 if (({ lockdep_assert_held(&cgroup_mutex); \
725 (dsct) = (d_css)->cgroup; \
726 cgroup_is_dead(dsct); })) \
728 else
731 * The default css_set - used by init and its children prior to any
732 * hierarchies being mounted. It contains a pointer to the root state
733 * for each subsystem. Also used to anchor the list of css_sets. Not
734 * reference-counted, to improve performance when child cgroups
735 * haven't been created.
737 struct css_set init_css_set = {
738 .refcount = REFCOUNT_INIT(1),
739 .dom_cset = &init_css_set,
740 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
741 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
742 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
743 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
744 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
745 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
746 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
747 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
750 * The following field is re-initialized when this cset gets linked
751 * in cgroup_init(). However, let's initialize the field
752 * statically too so that the default cgroup can be accessed safely
753 * early during boot.
755 .dfl_cgrp = &cgrp_dfl_root.cgrp,
758 static int css_set_count = 1; /* 1 for init_css_set */
760 static bool css_set_threaded(struct css_set *cset)
762 return cset->dom_cset != cset;
766 * css_set_populated - does a css_set contain any tasks?
767 * @cset: target css_set
769 * css_set_populated() should be the same as !!cset->nr_tasks at steady
770 * state. However, css_set_populated() can be called while a task is being
771 * added to or removed from the linked list before the nr_tasks is
772 * properly updated. Hence, we can't just look at ->nr_tasks here.
774 static bool css_set_populated(struct css_set *cset)
776 lockdep_assert_held(&css_set_lock);
778 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
782 * cgroup_update_populated - update the populated count of a cgroup
783 * @cgrp: the target cgroup
784 * @populated: inc or dec populated count
786 * One of the css_sets associated with @cgrp is either getting its first
787 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
788 * count is propagated towards root so that a given cgroup's
789 * nr_populated_children is zero iff none of its descendants contain any
790 * tasks.
792 * @cgrp's interface file "cgroup.populated" is zero if both
793 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
794 * 1 otherwise. When the sum changes from or to zero, userland is notified
795 * that the content of the interface file has changed. This can be used to
796 * detect when @cgrp and its descendants become populated or empty.
798 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
800 struct cgroup *child = NULL;
801 int adj = populated ? 1 : -1;
803 lockdep_assert_held(&css_set_lock);
805 do {
806 bool was_populated = cgroup_is_populated(cgrp);
808 if (!child) {
809 cgrp->nr_populated_csets += adj;
810 } else {
811 if (cgroup_is_threaded(child))
812 cgrp->nr_populated_threaded_children += adj;
813 else
814 cgrp->nr_populated_domain_children += adj;
817 if (was_populated == cgroup_is_populated(cgrp))
818 break;
820 cgroup1_check_for_release(cgrp);
821 TRACE_CGROUP_PATH(notify_populated, cgrp,
822 cgroup_is_populated(cgrp));
823 cgroup_file_notify(&cgrp->events_file);
825 child = cgrp;
826 cgrp = cgroup_parent(cgrp);
827 } while (cgrp);
831 * css_set_update_populated - update populated state of a css_set
832 * @cset: target css_set
833 * @populated: whether @cset is populated or depopulated
835 * @cset is either getting the first task or losing the last. Update the
836 * populated counters of all associated cgroups accordingly.
838 static void css_set_update_populated(struct css_set *cset, bool populated)
840 struct cgrp_cset_link *link;
842 lockdep_assert_held(&css_set_lock);
844 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
845 cgroup_update_populated(link->cgrp, populated);
849 * @task is leaving, advance task iterators which are pointing to it so
850 * that they can resume at the next position. Advancing an iterator might
851 * remove it from the list, use safe walk. See css_task_iter_skip() for
852 * details.
854 static void css_set_skip_task_iters(struct css_set *cset,
855 struct task_struct *task)
857 struct css_task_iter *it, *pos;
859 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
860 css_task_iter_skip(it, task);
864 * css_set_move_task - move a task from one css_set to another
865 * @task: task being moved
866 * @from_cset: css_set @task currently belongs to (may be NULL)
867 * @to_cset: new css_set @task is being moved to (may be NULL)
868 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
870 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
871 * css_set, @from_cset can be NULL. If @task is being disassociated
872 * instead of moved, @to_cset can be NULL.
874 * This function automatically handles populated counter updates and
875 * css_task_iter adjustments but the caller is responsible for managing
876 * @from_cset and @to_cset's reference counts.
878 static void css_set_move_task(struct task_struct *task,
879 struct css_set *from_cset, struct css_set *to_cset,
880 bool use_mg_tasks)
882 lockdep_assert_held(&css_set_lock);
884 if (to_cset && !css_set_populated(to_cset))
885 css_set_update_populated(to_cset, true);
887 if (from_cset) {
888 WARN_ON_ONCE(list_empty(&task->cg_list));
890 css_set_skip_task_iters(from_cset, task);
891 list_del_init(&task->cg_list);
892 if (!css_set_populated(from_cset))
893 css_set_update_populated(from_cset, false);
894 } else {
895 WARN_ON_ONCE(!list_empty(&task->cg_list));
898 if (to_cset) {
900 * We are synchronized through cgroup_threadgroup_rwsem
901 * against PF_EXITING setting such that we can't race
902 * against cgroup_exit()/cgroup_free() dropping the css_set.
904 WARN_ON_ONCE(task->flags & PF_EXITING);
906 cgroup_move_task(task, to_cset);
907 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
908 &to_cset->tasks);
913 * hash table for cgroup groups. This improves the performance to find
914 * an existing css_set. This hash doesn't (currently) take into
915 * account cgroups in empty hierarchies.
917 #define CSS_SET_HASH_BITS 7
918 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
920 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
922 unsigned long key = 0UL;
923 struct cgroup_subsys *ss;
924 int i;
926 for_each_subsys(ss, i)
927 key += (unsigned long)css[i];
928 key = (key >> 16) ^ key;
930 return key;
933 void put_css_set_locked(struct css_set *cset)
935 struct cgrp_cset_link *link, *tmp_link;
936 struct cgroup_subsys *ss;
937 int ssid;
939 lockdep_assert_held(&css_set_lock);
941 if (!refcount_dec_and_test(&cset->refcount))
942 return;
944 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
946 /* This css_set is dead. unlink it and release cgroup and css refs */
947 for_each_subsys(ss, ssid) {
948 list_del(&cset->e_cset_node[ssid]);
949 css_put(cset->subsys[ssid]);
951 hash_del(&cset->hlist);
952 css_set_count--;
954 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
955 list_del(&link->cset_link);
956 list_del(&link->cgrp_link);
957 if (cgroup_parent(link->cgrp))
958 cgroup_put(link->cgrp);
959 kfree(link);
962 if (css_set_threaded(cset)) {
963 list_del(&cset->threaded_csets_node);
964 put_css_set_locked(cset->dom_cset);
967 kfree_rcu(cset, rcu_head);
971 * compare_css_sets - helper function for find_existing_css_set().
972 * @cset: candidate css_set being tested
973 * @old_cset: existing css_set for a task
974 * @new_cgrp: cgroup that's being entered by the task
975 * @template: desired set of css pointers in css_set (pre-calculated)
977 * Returns true if "cset" matches "old_cset" except for the hierarchy
978 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
980 static bool compare_css_sets(struct css_set *cset,
981 struct css_set *old_cset,
982 struct cgroup *new_cgrp,
983 struct cgroup_subsys_state *template[])
985 struct cgroup *new_dfl_cgrp;
986 struct list_head *l1, *l2;
989 * On the default hierarchy, there can be csets which are
990 * associated with the same set of cgroups but different csses.
991 * Let's first ensure that csses match.
993 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
994 return false;
997 /* @cset's domain should match the default cgroup's */
998 if (cgroup_on_dfl(new_cgrp))
999 new_dfl_cgrp = new_cgrp;
1000 else
1001 new_dfl_cgrp = old_cset->dfl_cgrp;
1003 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1004 return false;
1007 * Compare cgroup pointers in order to distinguish between
1008 * different cgroups in hierarchies. As different cgroups may
1009 * share the same effective css, this comparison is always
1010 * necessary.
1012 l1 = &cset->cgrp_links;
1013 l2 = &old_cset->cgrp_links;
1014 while (1) {
1015 struct cgrp_cset_link *link1, *link2;
1016 struct cgroup *cgrp1, *cgrp2;
1018 l1 = l1->next;
1019 l2 = l2->next;
1020 /* See if we reached the end - both lists are equal length. */
1021 if (l1 == &cset->cgrp_links) {
1022 BUG_ON(l2 != &old_cset->cgrp_links);
1023 break;
1024 } else {
1025 BUG_ON(l2 == &old_cset->cgrp_links);
1027 /* Locate the cgroups associated with these links. */
1028 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1029 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1030 cgrp1 = link1->cgrp;
1031 cgrp2 = link2->cgrp;
1032 /* Hierarchies should be linked in the same order. */
1033 BUG_ON(cgrp1->root != cgrp2->root);
1036 * If this hierarchy is the hierarchy of the cgroup
1037 * that's changing, then we need to check that this
1038 * css_set points to the new cgroup; if it's any other
1039 * hierarchy, then this css_set should point to the
1040 * same cgroup as the old css_set.
1042 if (cgrp1->root == new_cgrp->root) {
1043 if (cgrp1 != new_cgrp)
1044 return false;
1045 } else {
1046 if (cgrp1 != cgrp2)
1047 return false;
1050 return true;
1054 * find_existing_css_set - init css array and find the matching css_set
1055 * @old_cset: the css_set that we're using before the cgroup transition
1056 * @cgrp: the cgroup that we're moving into
1057 * @template: out param for the new set of csses, should be clear on entry
1059 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1060 struct cgroup *cgrp,
1061 struct cgroup_subsys_state *template[])
1063 struct cgroup_root *root = cgrp->root;
1064 struct cgroup_subsys *ss;
1065 struct css_set *cset;
1066 unsigned long key;
1067 int i;
1070 * Build the set of subsystem state objects that we want to see in the
1071 * new css_set. while subsystems can change globally, the entries here
1072 * won't change, so no need for locking.
1074 for_each_subsys(ss, i) {
1075 if (root->subsys_mask & (1UL << i)) {
1077 * @ss is in this hierarchy, so we want the
1078 * effective css from @cgrp.
1080 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1081 } else {
1083 * @ss is not in this hierarchy, so we don't want
1084 * to change the css.
1086 template[i] = old_cset->subsys[i];
1090 key = css_set_hash(template);
1091 hash_for_each_possible(css_set_table, cset, hlist, key) {
1092 if (!compare_css_sets(cset, old_cset, cgrp, template))
1093 continue;
1095 /* This css_set matches what we need */
1096 return cset;
1099 /* No existing cgroup group matched */
1100 return NULL;
1103 static void free_cgrp_cset_links(struct list_head *links_to_free)
1105 struct cgrp_cset_link *link, *tmp_link;
1107 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1108 list_del(&link->cset_link);
1109 kfree(link);
1114 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1115 * @count: the number of links to allocate
1116 * @tmp_links: list_head the allocated links are put on
1118 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1119 * through ->cset_link. Returns 0 on success or -errno.
1121 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1123 struct cgrp_cset_link *link;
1124 int i;
1126 INIT_LIST_HEAD(tmp_links);
1128 for (i = 0; i < count; i++) {
1129 link = kzalloc(sizeof(*link), GFP_KERNEL);
1130 if (!link) {
1131 free_cgrp_cset_links(tmp_links);
1132 return -ENOMEM;
1134 list_add(&link->cset_link, tmp_links);
1136 return 0;
1140 * link_css_set - a helper function to link a css_set to a cgroup
1141 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1142 * @cset: the css_set to be linked
1143 * @cgrp: the destination cgroup
1145 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1146 struct cgroup *cgrp)
1148 struct cgrp_cset_link *link;
1150 BUG_ON(list_empty(tmp_links));
1152 if (cgroup_on_dfl(cgrp))
1153 cset->dfl_cgrp = cgrp;
1155 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1156 link->cset = cset;
1157 link->cgrp = cgrp;
1160 * Always add links to the tail of the lists so that the lists are
1161 * in choronological order.
1163 list_move_tail(&link->cset_link, &cgrp->cset_links);
1164 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1166 if (cgroup_parent(cgrp))
1167 cgroup_get_live(cgrp);
1171 * find_css_set - return a new css_set with one cgroup updated
1172 * @old_cset: the baseline css_set
1173 * @cgrp: the cgroup to be updated
1175 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1176 * substituted into the appropriate hierarchy.
1178 static struct css_set *find_css_set(struct css_set *old_cset,
1179 struct cgroup *cgrp)
1181 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1182 struct css_set *cset;
1183 struct list_head tmp_links;
1184 struct cgrp_cset_link *link;
1185 struct cgroup_subsys *ss;
1186 unsigned long key;
1187 int ssid;
1189 lockdep_assert_held(&cgroup_mutex);
1191 /* First see if we already have a cgroup group that matches
1192 * the desired set */
1193 spin_lock_irq(&css_set_lock);
1194 cset = find_existing_css_set(old_cset, cgrp, template);
1195 if (cset)
1196 get_css_set(cset);
1197 spin_unlock_irq(&css_set_lock);
1199 if (cset)
1200 return cset;
1202 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1203 if (!cset)
1204 return NULL;
1206 /* Allocate all the cgrp_cset_link objects that we'll need */
1207 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1208 kfree(cset);
1209 return NULL;
1212 refcount_set(&cset->refcount, 1);
1213 cset->dom_cset = cset;
1214 INIT_LIST_HEAD(&cset->tasks);
1215 INIT_LIST_HEAD(&cset->mg_tasks);
1216 INIT_LIST_HEAD(&cset->dying_tasks);
1217 INIT_LIST_HEAD(&cset->task_iters);
1218 INIT_LIST_HEAD(&cset->threaded_csets);
1219 INIT_HLIST_NODE(&cset->hlist);
1220 INIT_LIST_HEAD(&cset->cgrp_links);
1221 INIT_LIST_HEAD(&cset->mg_preload_node);
1222 INIT_LIST_HEAD(&cset->mg_node);
1224 /* Copy the set of subsystem state objects generated in
1225 * find_existing_css_set() */
1226 memcpy(cset->subsys, template, sizeof(cset->subsys));
1228 spin_lock_irq(&css_set_lock);
1229 /* Add reference counts and links from the new css_set. */
1230 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1231 struct cgroup *c = link->cgrp;
1233 if (c->root == cgrp->root)
1234 c = cgrp;
1235 link_css_set(&tmp_links, cset, c);
1238 BUG_ON(!list_empty(&tmp_links));
1240 css_set_count++;
1242 /* Add @cset to the hash table */
1243 key = css_set_hash(cset->subsys);
1244 hash_add(css_set_table, &cset->hlist, key);
1246 for_each_subsys(ss, ssid) {
1247 struct cgroup_subsys_state *css = cset->subsys[ssid];
1249 list_add_tail(&cset->e_cset_node[ssid],
1250 &css->cgroup->e_csets[ssid]);
1251 css_get(css);
1254 spin_unlock_irq(&css_set_lock);
1257 * If @cset should be threaded, look up the matching dom_cset and
1258 * link them up. We first fully initialize @cset then look for the
1259 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1260 * to stay empty until we return.
1262 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1263 struct css_set *dcset;
1265 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1266 if (!dcset) {
1267 put_css_set(cset);
1268 return NULL;
1271 spin_lock_irq(&css_set_lock);
1272 cset->dom_cset = dcset;
1273 list_add_tail(&cset->threaded_csets_node,
1274 &dcset->threaded_csets);
1275 spin_unlock_irq(&css_set_lock);
1278 return cset;
1281 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1283 struct cgroup *root_cgrp = kf_root->kn->priv;
1285 return root_cgrp->root;
1288 static int cgroup_init_root_id(struct cgroup_root *root)
1290 int id;
1292 lockdep_assert_held(&cgroup_mutex);
1294 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1295 if (id < 0)
1296 return id;
1298 root->hierarchy_id = id;
1299 return 0;
1302 static void cgroup_exit_root_id(struct cgroup_root *root)
1304 lockdep_assert_held(&cgroup_mutex);
1306 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1309 void cgroup_free_root(struct cgroup_root *root)
1311 kfree(root);
1314 static void cgroup_destroy_root(struct cgroup_root *root)
1316 struct cgroup *cgrp = &root->cgrp;
1317 struct cgrp_cset_link *link, *tmp_link;
1319 trace_cgroup_destroy_root(root);
1321 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1323 BUG_ON(atomic_read(&root->nr_cgrps));
1324 BUG_ON(!list_empty(&cgrp->self.children));
1326 /* Rebind all subsystems back to the default hierarchy */
1327 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1330 * Release all the links from cset_links to this hierarchy's
1331 * root cgroup
1333 spin_lock_irq(&css_set_lock);
1335 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1336 list_del(&link->cset_link);
1337 list_del(&link->cgrp_link);
1338 kfree(link);
1341 spin_unlock_irq(&css_set_lock);
1343 if (!list_empty(&root->root_list)) {
1344 list_del(&root->root_list);
1345 cgroup_root_count--;
1348 cgroup_exit_root_id(root);
1350 mutex_unlock(&cgroup_mutex);
1352 kernfs_destroy_root(root->kf_root);
1353 cgroup_free_root(root);
1357 * look up cgroup associated with current task's cgroup namespace on the
1358 * specified hierarchy
1360 static struct cgroup *
1361 current_cgns_cgroup_from_root(struct cgroup_root *root)
1363 struct cgroup *res = NULL;
1364 struct css_set *cset;
1366 lockdep_assert_held(&css_set_lock);
1368 rcu_read_lock();
1370 cset = current->nsproxy->cgroup_ns->root_cset;
1371 if (cset == &init_css_set) {
1372 res = &root->cgrp;
1373 } else if (root == &cgrp_dfl_root) {
1374 res = cset->dfl_cgrp;
1375 } else {
1376 struct cgrp_cset_link *link;
1378 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1379 struct cgroup *c = link->cgrp;
1381 if (c->root == root) {
1382 res = c;
1383 break;
1387 rcu_read_unlock();
1389 BUG_ON(!res);
1390 return res;
1393 /* look up cgroup associated with given css_set on the specified hierarchy */
1394 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1395 struct cgroup_root *root)
1397 struct cgroup *res = NULL;
1399 lockdep_assert_held(&cgroup_mutex);
1400 lockdep_assert_held(&css_set_lock);
1402 if (cset == &init_css_set) {
1403 res = &root->cgrp;
1404 } else if (root == &cgrp_dfl_root) {
1405 res = cset->dfl_cgrp;
1406 } else {
1407 struct cgrp_cset_link *link;
1409 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1410 struct cgroup *c = link->cgrp;
1412 if (c->root == root) {
1413 res = c;
1414 break;
1419 BUG_ON(!res);
1420 return res;
1424 * Return the cgroup for "task" from the given hierarchy. Must be
1425 * called with cgroup_mutex and css_set_lock held.
1427 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1428 struct cgroup_root *root)
1431 * No need to lock the task - since we hold css_set_lock the
1432 * task can't change groups.
1434 return cset_cgroup_from_root(task_css_set(task), root);
1438 * A task must hold cgroup_mutex to modify cgroups.
1440 * Any task can increment and decrement the count field without lock.
1441 * So in general, code holding cgroup_mutex can't rely on the count
1442 * field not changing. However, if the count goes to zero, then only
1443 * cgroup_attach_task() can increment it again. Because a count of zero
1444 * means that no tasks are currently attached, therefore there is no
1445 * way a task attached to that cgroup can fork (the other way to
1446 * increment the count). So code holding cgroup_mutex can safely
1447 * assume that if the count is zero, it will stay zero. Similarly, if
1448 * a task holds cgroup_mutex on a cgroup with zero count, it
1449 * knows that the cgroup won't be removed, as cgroup_rmdir()
1450 * needs that mutex.
1452 * A cgroup can only be deleted if both its 'count' of using tasks
1453 * is zero, and its list of 'children' cgroups is empty. Since all
1454 * tasks in the system use _some_ cgroup, and since there is always at
1455 * least one task in the system (init, pid == 1), therefore, root cgroup
1456 * always has either children cgroups and/or using tasks. So we don't
1457 * need a special hack to ensure that root cgroup cannot be deleted.
1459 * P.S. One more locking exception. RCU is used to guard the
1460 * update of a tasks cgroup pointer by cgroup_attach_task()
1463 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1465 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1466 char *buf)
1468 struct cgroup_subsys *ss = cft->ss;
1470 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1471 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1472 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1474 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1475 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1476 cft->name);
1477 } else {
1478 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1480 return buf;
1484 * cgroup_file_mode - deduce file mode of a control file
1485 * @cft: the control file in question
1487 * S_IRUGO for read, S_IWUSR for write.
1489 static umode_t cgroup_file_mode(const struct cftype *cft)
1491 umode_t mode = 0;
1493 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1494 mode |= S_IRUGO;
1496 if (cft->write_u64 || cft->write_s64 || cft->write) {
1497 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1498 mode |= S_IWUGO;
1499 else
1500 mode |= S_IWUSR;
1503 return mode;
1507 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1508 * @subtree_control: the new subtree_control mask to consider
1509 * @this_ss_mask: available subsystems
1511 * On the default hierarchy, a subsystem may request other subsystems to be
1512 * enabled together through its ->depends_on mask. In such cases, more
1513 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1515 * This function calculates which subsystems need to be enabled if
1516 * @subtree_control is to be applied while restricted to @this_ss_mask.
1518 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1520 u16 cur_ss_mask = subtree_control;
1521 struct cgroup_subsys *ss;
1522 int ssid;
1524 lockdep_assert_held(&cgroup_mutex);
1526 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1528 while (true) {
1529 u16 new_ss_mask = cur_ss_mask;
1531 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1532 new_ss_mask |= ss->depends_on;
1533 } while_each_subsys_mask();
1536 * Mask out subsystems which aren't available. This can
1537 * happen only if some depended-upon subsystems were bound
1538 * to non-default hierarchies.
1540 new_ss_mask &= this_ss_mask;
1542 if (new_ss_mask == cur_ss_mask)
1543 break;
1544 cur_ss_mask = new_ss_mask;
1547 return cur_ss_mask;
1551 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1552 * @kn: the kernfs_node being serviced
1554 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1555 * the method finishes if locking succeeded. Note that once this function
1556 * returns the cgroup returned by cgroup_kn_lock_live() may become
1557 * inaccessible any time. If the caller intends to continue to access the
1558 * cgroup, it should pin it before invoking this function.
1560 void cgroup_kn_unlock(struct kernfs_node *kn)
1562 struct cgroup *cgrp;
1564 if (kernfs_type(kn) == KERNFS_DIR)
1565 cgrp = kn->priv;
1566 else
1567 cgrp = kn->parent->priv;
1569 mutex_unlock(&cgroup_mutex);
1571 kernfs_unbreak_active_protection(kn);
1572 cgroup_put(cgrp);
1576 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1577 * @kn: the kernfs_node being serviced
1578 * @drain_offline: perform offline draining on the cgroup
1580 * This helper is to be used by a cgroup kernfs method currently servicing
1581 * @kn. It breaks the active protection, performs cgroup locking and
1582 * verifies that the associated cgroup is alive. Returns the cgroup if
1583 * alive; otherwise, %NULL. A successful return should be undone by a
1584 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1585 * cgroup is drained of offlining csses before return.
1587 * Any cgroup kernfs method implementation which requires locking the
1588 * associated cgroup should use this helper. It avoids nesting cgroup
1589 * locking under kernfs active protection and allows all kernfs operations
1590 * including self-removal.
1592 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1594 struct cgroup *cgrp;
1596 if (kernfs_type(kn) == KERNFS_DIR)
1597 cgrp = kn->priv;
1598 else
1599 cgrp = kn->parent->priv;
1602 * We're gonna grab cgroup_mutex which nests outside kernfs
1603 * active_ref. cgroup liveliness check alone provides enough
1604 * protection against removal. Ensure @cgrp stays accessible and
1605 * break the active_ref protection.
1607 if (!cgroup_tryget(cgrp))
1608 return NULL;
1609 kernfs_break_active_protection(kn);
1611 if (drain_offline)
1612 cgroup_lock_and_drain_offline(cgrp);
1613 else
1614 mutex_lock(&cgroup_mutex);
1616 if (!cgroup_is_dead(cgrp))
1617 return cgrp;
1619 cgroup_kn_unlock(kn);
1620 return NULL;
1623 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1625 char name[CGROUP_FILE_NAME_MAX];
1627 lockdep_assert_held(&cgroup_mutex);
1629 if (cft->file_offset) {
1630 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1631 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1633 spin_lock_irq(&cgroup_file_kn_lock);
1634 cfile->kn = NULL;
1635 spin_unlock_irq(&cgroup_file_kn_lock);
1637 del_timer_sync(&cfile->notify_timer);
1640 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1644 * css_clear_dir - remove subsys files in a cgroup directory
1645 * @css: taget css
1647 static void css_clear_dir(struct cgroup_subsys_state *css)
1649 struct cgroup *cgrp = css->cgroup;
1650 struct cftype *cfts;
1652 if (!(css->flags & CSS_VISIBLE))
1653 return;
1655 css->flags &= ~CSS_VISIBLE;
1657 if (!css->ss) {
1658 if (cgroup_on_dfl(cgrp))
1659 cfts = cgroup_base_files;
1660 else
1661 cfts = cgroup1_base_files;
1663 cgroup_addrm_files(css, cgrp, cfts, false);
1664 } else {
1665 list_for_each_entry(cfts, &css->ss->cfts, node)
1666 cgroup_addrm_files(css, cgrp, cfts, false);
1671 * css_populate_dir - create subsys files in a cgroup directory
1672 * @css: target css
1674 * On failure, no file is added.
1676 static int css_populate_dir(struct cgroup_subsys_state *css)
1678 struct cgroup *cgrp = css->cgroup;
1679 struct cftype *cfts, *failed_cfts;
1680 int ret;
1682 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1683 return 0;
1685 if (!css->ss) {
1686 if (cgroup_on_dfl(cgrp))
1687 cfts = cgroup_base_files;
1688 else
1689 cfts = cgroup1_base_files;
1691 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1692 if (ret < 0)
1693 return ret;
1694 } else {
1695 list_for_each_entry(cfts, &css->ss->cfts, node) {
1696 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1697 if (ret < 0) {
1698 failed_cfts = cfts;
1699 goto err;
1704 css->flags |= CSS_VISIBLE;
1706 return 0;
1707 err:
1708 list_for_each_entry(cfts, &css->ss->cfts, node) {
1709 if (cfts == failed_cfts)
1710 break;
1711 cgroup_addrm_files(css, cgrp, cfts, false);
1713 return ret;
1716 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1718 struct cgroup *dcgrp = &dst_root->cgrp;
1719 struct cgroup_subsys *ss;
1720 int ssid, i, ret;
1722 lockdep_assert_held(&cgroup_mutex);
1724 do_each_subsys_mask(ss, ssid, ss_mask) {
1726 * If @ss has non-root csses attached to it, can't move.
1727 * If @ss is an implicit controller, it is exempt from this
1728 * rule and can be stolen.
1730 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1731 !ss->implicit_on_dfl)
1732 return -EBUSY;
1734 /* can't move between two non-dummy roots either */
1735 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1736 return -EBUSY;
1737 } while_each_subsys_mask();
1739 do_each_subsys_mask(ss, ssid, ss_mask) {
1740 struct cgroup_root *src_root = ss->root;
1741 struct cgroup *scgrp = &src_root->cgrp;
1742 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1743 struct css_set *cset;
1745 WARN_ON(!css || cgroup_css(dcgrp, ss));
1747 /* disable from the source */
1748 src_root->subsys_mask &= ~(1 << ssid);
1749 WARN_ON(cgroup_apply_control(scgrp));
1750 cgroup_finalize_control(scgrp, 0);
1752 /* rebind */
1753 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1754 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1755 ss->root = dst_root;
1756 css->cgroup = dcgrp;
1758 spin_lock_irq(&css_set_lock);
1759 hash_for_each(css_set_table, i, cset, hlist)
1760 list_move_tail(&cset->e_cset_node[ss->id],
1761 &dcgrp->e_csets[ss->id]);
1762 spin_unlock_irq(&css_set_lock);
1764 /* default hierarchy doesn't enable controllers by default */
1765 dst_root->subsys_mask |= 1 << ssid;
1766 if (dst_root == &cgrp_dfl_root) {
1767 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1768 } else {
1769 dcgrp->subtree_control |= 1 << ssid;
1770 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1773 ret = cgroup_apply_control(dcgrp);
1774 if (ret)
1775 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1776 ss->name, ret);
1778 if (ss->bind)
1779 ss->bind(css);
1780 } while_each_subsys_mask();
1782 kernfs_activate(dcgrp->kn);
1783 return 0;
1786 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1787 struct kernfs_root *kf_root)
1789 int len = 0;
1790 char *buf = NULL;
1791 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1792 struct cgroup *ns_cgroup;
1794 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1795 if (!buf)
1796 return -ENOMEM;
1798 spin_lock_irq(&css_set_lock);
1799 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1800 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1801 spin_unlock_irq(&css_set_lock);
1803 if (len >= PATH_MAX)
1804 len = -ERANGE;
1805 else if (len > 0) {
1806 seq_escape(sf, buf, " \t\n\\");
1807 len = 0;
1809 kfree(buf);
1810 return len;
1813 enum cgroup2_param {
1814 Opt_nsdelegate,
1815 Opt_memory_localevents,
1816 Opt_memory_recursiveprot,
1817 nr__cgroup2_params
1820 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1821 fsparam_flag("nsdelegate", Opt_nsdelegate),
1822 fsparam_flag("memory_localevents", Opt_memory_localevents),
1823 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1827 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1829 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1830 struct fs_parse_result result;
1831 int opt;
1833 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1834 if (opt < 0)
1835 return opt;
1837 switch (opt) {
1838 case Opt_nsdelegate:
1839 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1840 return 0;
1841 case Opt_memory_localevents:
1842 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1843 return 0;
1844 case Opt_memory_recursiveprot:
1845 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1846 return 0;
1848 return -EINVAL;
1851 static void apply_cgroup_root_flags(unsigned int root_flags)
1853 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1854 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1855 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1856 else
1857 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1859 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1860 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1861 else
1862 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1864 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1865 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1866 else
1867 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1871 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1873 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1874 seq_puts(seq, ",nsdelegate");
1875 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1876 seq_puts(seq, ",memory_localevents");
1877 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1878 seq_puts(seq, ",memory_recursiveprot");
1879 return 0;
1882 static int cgroup_reconfigure(struct fs_context *fc)
1884 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1886 apply_cgroup_root_flags(ctx->flags);
1887 return 0;
1890 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1892 struct cgroup_subsys *ss;
1893 int ssid;
1895 INIT_LIST_HEAD(&cgrp->self.sibling);
1896 INIT_LIST_HEAD(&cgrp->self.children);
1897 INIT_LIST_HEAD(&cgrp->cset_links);
1898 INIT_LIST_HEAD(&cgrp->pidlists);
1899 mutex_init(&cgrp->pidlist_mutex);
1900 cgrp->self.cgroup = cgrp;
1901 cgrp->self.flags |= CSS_ONLINE;
1902 cgrp->dom_cgrp = cgrp;
1903 cgrp->max_descendants = INT_MAX;
1904 cgrp->max_depth = INT_MAX;
1905 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1906 prev_cputime_init(&cgrp->prev_cputime);
1908 for_each_subsys(ss, ssid)
1909 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1911 init_waitqueue_head(&cgrp->offline_waitq);
1912 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1915 void init_cgroup_root(struct cgroup_fs_context *ctx)
1917 struct cgroup_root *root = ctx->root;
1918 struct cgroup *cgrp = &root->cgrp;
1920 INIT_LIST_HEAD(&root->root_list);
1921 atomic_set(&root->nr_cgrps, 1);
1922 cgrp->root = root;
1923 init_cgroup_housekeeping(cgrp);
1925 root->flags = ctx->flags;
1926 if (ctx->release_agent)
1927 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1928 if (ctx->name)
1929 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1930 if (ctx->cpuset_clone_children)
1931 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1934 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1936 LIST_HEAD(tmp_links);
1937 struct cgroup *root_cgrp = &root->cgrp;
1938 struct kernfs_syscall_ops *kf_sops;
1939 struct css_set *cset;
1940 int i, ret;
1942 lockdep_assert_held(&cgroup_mutex);
1944 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1945 0, GFP_KERNEL);
1946 if (ret)
1947 goto out;
1950 * We're accessing css_set_count without locking css_set_lock here,
1951 * but that's OK - it can only be increased by someone holding
1952 * cgroup_lock, and that's us. Later rebinding may disable
1953 * controllers on the default hierarchy and thus create new csets,
1954 * which can't be more than the existing ones. Allocate 2x.
1956 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1957 if (ret)
1958 goto cancel_ref;
1960 ret = cgroup_init_root_id(root);
1961 if (ret)
1962 goto cancel_ref;
1964 kf_sops = root == &cgrp_dfl_root ?
1965 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1967 root->kf_root = kernfs_create_root(kf_sops,
1968 KERNFS_ROOT_CREATE_DEACTIVATED |
1969 KERNFS_ROOT_SUPPORT_EXPORTOP |
1970 KERNFS_ROOT_SUPPORT_USER_XATTR,
1971 root_cgrp);
1972 if (IS_ERR(root->kf_root)) {
1973 ret = PTR_ERR(root->kf_root);
1974 goto exit_root_id;
1976 root_cgrp->kn = root->kf_root->kn;
1977 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1978 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1980 ret = css_populate_dir(&root_cgrp->self);
1981 if (ret)
1982 goto destroy_root;
1984 ret = rebind_subsystems(root, ss_mask);
1985 if (ret)
1986 goto destroy_root;
1988 ret = cgroup_bpf_inherit(root_cgrp);
1989 WARN_ON_ONCE(ret);
1991 trace_cgroup_setup_root(root);
1994 * There must be no failure case after here, since rebinding takes
1995 * care of subsystems' refcounts, which are explicitly dropped in
1996 * the failure exit path.
1998 list_add(&root->root_list, &cgroup_roots);
1999 cgroup_root_count++;
2002 * Link the root cgroup in this hierarchy into all the css_set
2003 * objects.
2005 spin_lock_irq(&css_set_lock);
2006 hash_for_each(css_set_table, i, cset, hlist) {
2007 link_css_set(&tmp_links, cset, root_cgrp);
2008 if (css_set_populated(cset))
2009 cgroup_update_populated(root_cgrp, true);
2011 spin_unlock_irq(&css_set_lock);
2013 BUG_ON(!list_empty(&root_cgrp->self.children));
2014 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2016 kernfs_activate(root_cgrp->kn);
2017 ret = 0;
2018 goto out;
2020 destroy_root:
2021 kernfs_destroy_root(root->kf_root);
2022 root->kf_root = NULL;
2023 exit_root_id:
2024 cgroup_exit_root_id(root);
2025 cancel_ref:
2026 percpu_ref_exit(&root_cgrp->self.refcnt);
2027 out:
2028 free_cgrp_cset_links(&tmp_links);
2029 return ret;
2032 int cgroup_do_get_tree(struct fs_context *fc)
2034 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2035 int ret;
2037 ctx->kfc.root = ctx->root->kf_root;
2038 if (fc->fs_type == &cgroup2_fs_type)
2039 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2040 else
2041 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2042 ret = kernfs_get_tree(fc);
2045 * In non-init cgroup namespace, instead of root cgroup's dentry,
2046 * we return the dentry corresponding to the cgroupns->root_cgrp.
2048 if (!ret && ctx->ns != &init_cgroup_ns) {
2049 struct dentry *nsdentry;
2050 struct super_block *sb = fc->root->d_sb;
2051 struct cgroup *cgrp;
2053 mutex_lock(&cgroup_mutex);
2054 spin_lock_irq(&css_set_lock);
2056 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2058 spin_unlock_irq(&css_set_lock);
2059 mutex_unlock(&cgroup_mutex);
2061 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2062 dput(fc->root);
2063 if (IS_ERR(nsdentry)) {
2064 deactivate_locked_super(sb);
2065 ret = PTR_ERR(nsdentry);
2066 nsdentry = NULL;
2068 fc->root = nsdentry;
2071 if (!ctx->kfc.new_sb_created)
2072 cgroup_put(&ctx->root->cgrp);
2074 return ret;
2078 * Destroy a cgroup filesystem context.
2080 static void cgroup_fs_context_free(struct fs_context *fc)
2082 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2084 kfree(ctx->name);
2085 kfree(ctx->release_agent);
2086 put_cgroup_ns(ctx->ns);
2087 kernfs_free_fs_context(fc);
2088 kfree(ctx);
2091 static int cgroup_get_tree(struct fs_context *fc)
2093 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2094 int ret;
2096 cgrp_dfl_visible = true;
2097 cgroup_get_live(&cgrp_dfl_root.cgrp);
2098 ctx->root = &cgrp_dfl_root;
2100 ret = cgroup_do_get_tree(fc);
2101 if (!ret)
2102 apply_cgroup_root_flags(ctx->flags);
2103 return ret;
2106 static const struct fs_context_operations cgroup_fs_context_ops = {
2107 .free = cgroup_fs_context_free,
2108 .parse_param = cgroup2_parse_param,
2109 .get_tree = cgroup_get_tree,
2110 .reconfigure = cgroup_reconfigure,
2113 static const struct fs_context_operations cgroup1_fs_context_ops = {
2114 .free = cgroup_fs_context_free,
2115 .parse_param = cgroup1_parse_param,
2116 .get_tree = cgroup1_get_tree,
2117 .reconfigure = cgroup1_reconfigure,
2121 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2122 * we select the namespace we're going to use.
2124 static int cgroup_init_fs_context(struct fs_context *fc)
2126 struct cgroup_fs_context *ctx;
2128 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2129 if (!ctx)
2130 return -ENOMEM;
2132 ctx->ns = current->nsproxy->cgroup_ns;
2133 get_cgroup_ns(ctx->ns);
2134 fc->fs_private = &ctx->kfc;
2135 if (fc->fs_type == &cgroup2_fs_type)
2136 fc->ops = &cgroup_fs_context_ops;
2137 else
2138 fc->ops = &cgroup1_fs_context_ops;
2139 put_user_ns(fc->user_ns);
2140 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2141 fc->global = true;
2142 return 0;
2145 static void cgroup_kill_sb(struct super_block *sb)
2147 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2148 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2151 * If @root doesn't have any children, start killing it.
2152 * This prevents new mounts by disabling percpu_ref_tryget_live().
2153 * cgroup_mount() may wait for @root's release.
2155 * And don't kill the default root.
2157 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2158 !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2159 percpu_ref_kill(&root->cgrp.self.refcnt);
2160 cgroup_put(&root->cgrp);
2161 kernfs_kill_sb(sb);
2164 struct file_system_type cgroup_fs_type = {
2165 .name = "cgroup",
2166 .init_fs_context = cgroup_init_fs_context,
2167 .parameters = cgroup1_fs_parameters,
2168 .kill_sb = cgroup_kill_sb,
2169 .fs_flags = FS_USERNS_MOUNT,
2172 static struct file_system_type cgroup2_fs_type = {
2173 .name = "cgroup2",
2174 .init_fs_context = cgroup_init_fs_context,
2175 .parameters = cgroup2_fs_parameters,
2176 .kill_sb = cgroup_kill_sb,
2177 .fs_flags = FS_USERNS_MOUNT,
2180 #ifdef CONFIG_CPUSETS
2181 static const struct fs_context_operations cpuset_fs_context_ops = {
2182 .get_tree = cgroup1_get_tree,
2183 .free = cgroup_fs_context_free,
2187 * This is ugly, but preserves the userspace API for existing cpuset
2188 * users. If someone tries to mount the "cpuset" filesystem, we
2189 * silently switch it to mount "cgroup" instead
2191 static int cpuset_init_fs_context(struct fs_context *fc)
2193 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2194 struct cgroup_fs_context *ctx;
2195 int err;
2197 err = cgroup_init_fs_context(fc);
2198 if (err) {
2199 kfree(agent);
2200 return err;
2203 fc->ops = &cpuset_fs_context_ops;
2205 ctx = cgroup_fc2context(fc);
2206 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2207 ctx->flags |= CGRP_ROOT_NOPREFIX;
2208 ctx->release_agent = agent;
2210 get_filesystem(&cgroup_fs_type);
2211 put_filesystem(fc->fs_type);
2212 fc->fs_type = &cgroup_fs_type;
2214 return 0;
2217 static struct file_system_type cpuset_fs_type = {
2218 .name = "cpuset",
2219 .init_fs_context = cpuset_init_fs_context,
2220 .fs_flags = FS_USERNS_MOUNT,
2222 #endif
2224 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2225 struct cgroup_namespace *ns)
2227 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2229 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2232 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2233 struct cgroup_namespace *ns)
2235 int ret;
2237 mutex_lock(&cgroup_mutex);
2238 spin_lock_irq(&css_set_lock);
2240 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2242 spin_unlock_irq(&css_set_lock);
2243 mutex_unlock(&cgroup_mutex);
2245 return ret;
2247 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2250 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2251 * @task: target task
2252 * @buf: the buffer to write the path into
2253 * @buflen: the length of the buffer
2255 * Determine @task's cgroup on the first (the one with the lowest non-zero
2256 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2257 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2258 * cgroup controller callbacks.
2260 * Return value is the same as kernfs_path().
2262 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2264 struct cgroup_root *root;
2265 struct cgroup *cgrp;
2266 int hierarchy_id = 1;
2267 int ret;
2269 mutex_lock(&cgroup_mutex);
2270 spin_lock_irq(&css_set_lock);
2272 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2274 if (root) {
2275 cgrp = task_cgroup_from_root(task, root);
2276 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2277 } else {
2278 /* if no hierarchy exists, everyone is in "/" */
2279 ret = strlcpy(buf, "/", buflen);
2282 spin_unlock_irq(&css_set_lock);
2283 mutex_unlock(&cgroup_mutex);
2284 return ret;
2286 EXPORT_SYMBOL_GPL(task_cgroup_path);
2289 * cgroup_migrate_add_task - add a migration target task to a migration context
2290 * @task: target task
2291 * @mgctx: target migration context
2293 * Add @task, which is a migration target, to @mgctx->tset. This function
2294 * becomes noop if @task doesn't need to be migrated. @task's css_set
2295 * should have been added as a migration source and @task->cg_list will be
2296 * moved from the css_set's tasks list to mg_tasks one.
2298 static void cgroup_migrate_add_task(struct task_struct *task,
2299 struct cgroup_mgctx *mgctx)
2301 struct css_set *cset;
2303 lockdep_assert_held(&css_set_lock);
2305 /* @task either already exited or can't exit until the end */
2306 if (task->flags & PF_EXITING)
2307 return;
2309 /* cgroup_threadgroup_rwsem protects racing against forks */
2310 WARN_ON_ONCE(list_empty(&task->cg_list));
2312 cset = task_css_set(task);
2313 if (!cset->mg_src_cgrp)
2314 return;
2316 mgctx->tset.nr_tasks++;
2318 list_move_tail(&task->cg_list, &cset->mg_tasks);
2319 if (list_empty(&cset->mg_node))
2320 list_add_tail(&cset->mg_node,
2321 &mgctx->tset.src_csets);
2322 if (list_empty(&cset->mg_dst_cset->mg_node))
2323 list_add_tail(&cset->mg_dst_cset->mg_node,
2324 &mgctx->tset.dst_csets);
2328 * cgroup_taskset_first - reset taskset and return the first task
2329 * @tset: taskset of interest
2330 * @dst_cssp: output variable for the destination css
2332 * @tset iteration is initialized and the first task is returned.
2334 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2335 struct cgroup_subsys_state **dst_cssp)
2337 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2338 tset->cur_task = NULL;
2340 return cgroup_taskset_next(tset, dst_cssp);
2344 * cgroup_taskset_next - iterate to the next task in taskset
2345 * @tset: taskset of interest
2346 * @dst_cssp: output variable for the destination css
2348 * Return the next task in @tset. Iteration must have been initialized
2349 * with cgroup_taskset_first().
2351 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2352 struct cgroup_subsys_state **dst_cssp)
2354 struct css_set *cset = tset->cur_cset;
2355 struct task_struct *task = tset->cur_task;
2357 while (&cset->mg_node != tset->csets) {
2358 if (!task)
2359 task = list_first_entry(&cset->mg_tasks,
2360 struct task_struct, cg_list);
2361 else
2362 task = list_next_entry(task, cg_list);
2364 if (&task->cg_list != &cset->mg_tasks) {
2365 tset->cur_cset = cset;
2366 tset->cur_task = task;
2369 * This function may be called both before and
2370 * after cgroup_taskset_migrate(). The two cases
2371 * can be distinguished by looking at whether @cset
2372 * has its ->mg_dst_cset set.
2374 if (cset->mg_dst_cset)
2375 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2376 else
2377 *dst_cssp = cset->subsys[tset->ssid];
2379 return task;
2382 cset = list_next_entry(cset, mg_node);
2383 task = NULL;
2386 return NULL;
2390 * cgroup_taskset_migrate - migrate a taskset
2391 * @mgctx: migration context
2393 * Migrate tasks in @mgctx as setup by migration preparation functions.
2394 * This function fails iff one of the ->can_attach callbacks fails and
2395 * guarantees that either all or none of the tasks in @mgctx are migrated.
2396 * @mgctx is consumed regardless of success.
2398 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2400 struct cgroup_taskset *tset = &mgctx->tset;
2401 struct cgroup_subsys *ss;
2402 struct task_struct *task, *tmp_task;
2403 struct css_set *cset, *tmp_cset;
2404 int ssid, failed_ssid, ret;
2406 /* check that we can legitimately attach to the cgroup */
2407 if (tset->nr_tasks) {
2408 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2409 if (ss->can_attach) {
2410 tset->ssid = ssid;
2411 ret = ss->can_attach(tset);
2412 if (ret) {
2413 failed_ssid = ssid;
2414 goto out_cancel_attach;
2417 } while_each_subsys_mask();
2421 * Now that we're guaranteed success, proceed to move all tasks to
2422 * the new cgroup. There are no failure cases after here, so this
2423 * is the commit point.
2425 spin_lock_irq(&css_set_lock);
2426 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2427 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2428 struct css_set *from_cset = task_css_set(task);
2429 struct css_set *to_cset = cset->mg_dst_cset;
2431 get_css_set(to_cset);
2432 to_cset->nr_tasks++;
2433 css_set_move_task(task, from_cset, to_cset, true);
2434 from_cset->nr_tasks--;
2436 * If the source or destination cgroup is frozen,
2437 * the task might require to change its state.
2439 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2440 to_cset->dfl_cgrp);
2441 put_css_set_locked(from_cset);
2445 spin_unlock_irq(&css_set_lock);
2448 * Migration is committed, all target tasks are now on dst_csets.
2449 * Nothing is sensitive to fork() after this point. Notify
2450 * controllers that migration is complete.
2452 tset->csets = &tset->dst_csets;
2454 if (tset->nr_tasks) {
2455 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2456 if (ss->attach) {
2457 tset->ssid = ssid;
2458 ss->attach(tset);
2460 } while_each_subsys_mask();
2463 ret = 0;
2464 goto out_release_tset;
2466 out_cancel_attach:
2467 if (tset->nr_tasks) {
2468 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2469 if (ssid == failed_ssid)
2470 break;
2471 if (ss->cancel_attach) {
2472 tset->ssid = ssid;
2473 ss->cancel_attach(tset);
2475 } while_each_subsys_mask();
2477 out_release_tset:
2478 spin_lock_irq(&css_set_lock);
2479 list_splice_init(&tset->dst_csets, &tset->src_csets);
2480 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2481 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2482 list_del_init(&cset->mg_node);
2484 spin_unlock_irq(&css_set_lock);
2487 * Re-initialize the cgroup_taskset structure in case it is reused
2488 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2489 * iteration.
2491 tset->nr_tasks = 0;
2492 tset->csets = &tset->src_csets;
2493 return ret;
2497 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2498 * @dst_cgrp: destination cgroup to test
2500 * On the default hierarchy, except for the mixable, (possible) thread root
2501 * and threaded cgroups, subtree_control must be zero for migration
2502 * destination cgroups with tasks so that child cgroups don't compete
2503 * against tasks.
2505 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2507 /* v1 doesn't have any restriction */
2508 if (!cgroup_on_dfl(dst_cgrp))
2509 return 0;
2511 /* verify @dst_cgrp can host resources */
2512 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2513 return -EOPNOTSUPP;
2515 /* mixables don't care */
2516 if (cgroup_is_mixable(dst_cgrp))
2517 return 0;
2520 * If @dst_cgrp is already or can become a thread root or is
2521 * threaded, it doesn't matter.
2523 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2524 return 0;
2526 /* apply no-internal-process constraint */
2527 if (dst_cgrp->subtree_control)
2528 return -EBUSY;
2530 return 0;
2534 * cgroup_migrate_finish - cleanup after attach
2535 * @mgctx: migration context
2537 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2538 * those functions for details.
2540 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2542 LIST_HEAD(preloaded);
2543 struct css_set *cset, *tmp_cset;
2545 lockdep_assert_held(&cgroup_mutex);
2547 spin_lock_irq(&css_set_lock);
2549 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2550 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2552 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2553 cset->mg_src_cgrp = NULL;
2554 cset->mg_dst_cgrp = NULL;
2555 cset->mg_dst_cset = NULL;
2556 list_del_init(&cset->mg_preload_node);
2557 put_css_set_locked(cset);
2560 spin_unlock_irq(&css_set_lock);
2564 * cgroup_migrate_add_src - add a migration source css_set
2565 * @src_cset: the source css_set to add
2566 * @dst_cgrp: the destination cgroup
2567 * @mgctx: migration context
2569 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2570 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2571 * up by cgroup_migrate_finish().
2573 * This function may be called without holding cgroup_threadgroup_rwsem
2574 * even if the target is a process. Threads may be created and destroyed
2575 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2576 * into play and the preloaded css_sets are guaranteed to cover all
2577 * migrations.
2579 void cgroup_migrate_add_src(struct css_set *src_cset,
2580 struct cgroup *dst_cgrp,
2581 struct cgroup_mgctx *mgctx)
2583 struct cgroup *src_cgrp;
2585 lockdep_assert_held(&cgroup_mutex);
2586 lockdep_assert_held(&css_set_lock);
2589 * If ->dead, @src_set is associated with one or more dead cgroups
2590 * and doesn't contain any migratable tasks. Ignore it early so
2591 * that the rest of migration path doesn't get confused by it.
2593 if (src_cset->dead)
2594 return;
2596 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2598 if (!list_empty(&src_cset->mg_preload_node))
2599 return;
2601 WARN_ON(src_cset->mg_src_cgrp);
2602 WARN_ON(src_cset->mg_dst_cgrp);
2603 WARN_ON(!list_empty(&src_cset->mg_tasks));
2604 WARN_ON(!list_empty(&src_cset->mg_node));
2606 src_cset->mg_src_cgrp = src_cgrp;
2607 src_cset->mg_dst_cgrp = dst_cgrp;
2608 get_css_set(src_cset);
2609 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2613 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2614 * @mgctx: migration context
2616 * Tasks are about to be moved and all the source css_sets have been
2617 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2618 * pins all destination css_sets, links each to its source, and append them
2619 * to @mgctx->preloaded_dst_csets.
2621 * This function must be called after cgroup_migrate_add_src() has been
2622 * called on each migration source css_set. After migration is performed
2623 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2624 * @mgctx.
2626 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2628 struct css_set *src_cset, *tmp_cset;
2630 lockdep_assert_held(&cgroup_mutex);
2632 /* look up the dst cset for each src cset and link it to src */
2633 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2634 mg_preload_node) {
2635 struct css_set *dst_cset;
2636 struct cgroup_subsys *ss;
2637 int ssid;
2639 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2640 if (!dst_cset)
2641 return -ENOMEM;
2643 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2646 * If src cset equals dst, it's noop. Drop the src.
2647 * cgroup_migrate() will skip the cset too. Note that we
2648 * can't handle src == dst as some nodes are used by both.
2650 if (src_cset == dst_cset) {
2651 src_cset->mg_src_cgrp = NULL;
2652 src_cset->mg_dst_cgrp = NULL;
2653 list_del_init(&src_cset->mg_preload_node);
2654 put_css_set(src_cset);
2655 put_css_set(dst_cset);
2656 continue;
2659 src_cset->mg_dst_cset = dst_cset;
2661 if (list_empty(&dst_cset->mg_preload_node))
2662 list_add_tail(&dst_cset->mg_preload_node,
2663 &mgctx->preloaded_dst_csets);
2664 else
2665 put_css_set(dst_cset);
2667 for_each_subsys(ss, ssid)
2668 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2669 mgctx->ss_mask |= 1 << ssid;
2672 return 0;
2676 * cgroup_migrate - migrate a process or task to a cgroup
2677 * @leader: the leader of the process or the task to migrate
2678 * @threadgroup: whether @leader points to the whole process or a single task
2679 * @mgctx: migration context
2681 * Migrate a process or task denoted by @leader. If migrating a process,
2682 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2683 * responsible for invoking cgroup_migrate_add_src() and
2684 * cgroup_migrate_prepare_dst() on the targets before invoking this
2685 * function and following up with cgroup_migrate_finish().
2687 * As long as a controller's ->can_attach() doesn't fail, this function is
2688 * guaranteed to succeed. This means that, excluding ->can_attach()
2689 * failure, when migrating multiple targets, the success or failure can be
2690 * decided for all targets by invoking group_migrate_prepare_dst() before
2691 * actually starting migrating.
2693 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2694 struct cgroup_mgctx *mgctx)
2696 struct task_struct *task;
2699 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2700 * already PF_EXITING could be freed from underneath us unless we
2701 * take an rcu_read_lock.
2703 spin_lock_irq(&css_set_lock);
2704 rcu_read_lock();
2705 task = leader;
2706 do {
2707 cgroup_migrate_add_task(task, mgctx);
2708 if (!threadgroup)
2709 break;
2710 } while_each_thread(leader, task);
2711 rcu_read_unlock();
2712 spin_unlock_irq(&css_set_lock);
2714 return cgroup_migrate_execute(mgctx);
2718 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2719 * @dst_cgrp: the cgroup to attach to
2720 * @leader: the task or the leader of the threadgroup to be attached
2721 * @threadgroup: attach the whole threadgroup?
2723 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2725 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2726 bool threadgroup)
2728 DEFINE_CGROUP_MGCTX(mgctx);
2729 struct task_struct *task;
2730 int ret = 0;
2732 /* look up all src csets */
2733 spin_lock_irq(&css_set_lock);
2734 rcu_read_lock();
2735 task = leader;
2736 do {
2737 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2738 if (!threadgroup)
2739 break;
2740 } while_each_thread(leader, task);
2741 rcu_read_unlock();
2742 spin_unlock_irq(&css_set_lock);
2744 /* prepare dst csets and commit */
2745 ret = cgroup_migrate_prepare_dst(&mgctx);
2746 if (!ret)
2747 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2749 cgroup_migrate_finish(&mgctx);
2751 if (!ret)
2752 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2754 return ret;
2757 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2758 bool *locked)
2759 __acquires(&cgroup_threadgroup_rwsem)
2761 struct task_struct *tsk;
2762 pid_t pid;
2764 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2765 return ERR_PTR(-EINVAL);
2768 * If we migrate a single thread, we don't care about threadgroup
2769 * stability. If the thread is `current`, it won't exit(2) under our
2770 * hands or change PID through exec(2). We exclude
2771 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2772 * callers by cgroup_mutex.
2773 * Therefore, we can skip the global lock.
2775 lockdep_assert_held(&cgroup_mutex);
2776 if (pid || threadgroup) {
2777 percpu_down_write(&cgroup_threadgroup_rwsem);
2778 *locked = true;
2779 } else {
2780 *locked = false;
2783 rcu_read_lock();
2784 if (pid) {
2785 tsk = find_task_by_vpid(pid);
2786 if (!tsk) {
2787 tsk = ERR_PTR(-ESRCH);
2788 goto out_unlock_threadgroup;
2790 } else {
2791 tsk = current;
2794 if (threadgroup)
2795 tsk = tsk->group_leader;
2798 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2799 * If userland migrates such a kthread to a non-root cgroup, it can
2800 * become trapped in a cpuset, or RT kthread may be born in a
2801 * cgroup with no rt_runtime allocated. Just say no.
2803 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2804 tsk = ERR_PTR(-EINVAL);
2805 goto out_unlock_threadgroup;
2808 get_task_struct(tsk);
2809 goto out_unlock_rcu;
2811 out_unlock_threadgroup:
2812 if (*locked) {
2813 percpu_up_write(&cgroup_threadgroup_rwsem);
2814 *locked = false;
2816 out_unlock_rcu:
2817 rcu_read_unlock();
2818 return tsk;
2821 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2822 __releases(&cgroup_threadgroup_rwsem)
2824 struct cgroup_subsys *ss;
2825 int ssid;
2827 /* release reference from cgroup_procs_write_start() */
2828 put_task_struct(task);
2830 if (locked)
2831 percpu_up_write(&cgroup_threadgroup_rwsem);
2832 for_each_subsys(ss, ssid)
2833 if (ss->post_attach)
2834 ss->post_attach();
2837 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2839 struct cgroup_subsys *ss;
2840 bool printed = false;
2841 int ssid;
2843 do_each_subsys_mask(ss, ssid, ss_mask) {
2844 if (printed)
2845 seq_putc(seq, ' ');
2846 seq_puts(seq, ss->name);
2847 printed = true;
2848 } while_each_subsys_mask();
2849 if (printed)
2850 seq_putc(seq, '\n');
2853 /* show controllers which are enabled from the parent */
2854 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2856 struct cgroup *cgrp = seq_css(seq)->cgroup;
2858 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2859 return 0;
2862 /* show controllers which are enabled for a given cgroup's children */
2863 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2865 struct cgroup *cgrp = seq_css(seq)->cgroup;
2867 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2868 return 0;
2872 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2873 * @cgrp: root of the subtree to update csses for
2875 * @cgrp's control masks have changed and its subtree's css associations
2876 * need to be updated accordingly. This function looks up all css_sets
2877 * which are attached to the subtree, creates the matching updated css_sets
2878 * and migrates the tasks to the new ones.
2880 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2882 DEFINE_CGROUP_MGCTX(mgctx);
2883 struct cgroup_subsys_state *d_css;
2884 struct cgroup *dsct;
2885 struct css_set *src_cset;
2886 int ret;
2888 lockdep_assert_held(&cgroup_mutex);
2890 percpu_down_write(&cgroup_threadgroup_rwsem);
2892 /* look up all csses currently attached to @cgrp's subtree */
2893 spin_lock_irq(&css_set_lock);
2894 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2895 struct cgrp_cset_link *link;
2897 list_for_each_entry(link, &dsct->cset_links, cset_link)
2898 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2900 spin_unlock_irq(&css_set_lock);
2902 /* NULL dst indicates self on default hierarchy */
2903 ret = cgroup_migrate_prepare_dst(&mgctx);
2904 if (ret)
2905 goto out_finish;
2907 spin_lock_irq(&css_set_lock);
2908 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2909 struct task_struct *task, *ntask;
2911 /* all tasks in src_csets need to be migrated */
2912 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2913 cgroup_migrate_add_task(task, &mgctx);
2915 spin_unlock_irq(&css_set_lock);
2917 ret = cgroup_migrate_execute(&mgctx);
2918 out_finish:
2919 cgroup_migrate_finish(&mgctx);
2920 percpu_up_write(&cgroup_threadgroup_rwsem);
2921 return ret;
2925 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2926 * @cgrp: root of the target subtree
2928 * Because css offlining is asynchronous, userland may try to re-enable a
2929 * controller while the previous css is still around. This function grabs
2930 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2932 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2933 __acquires(&cgroup_mutex)
2935 struct cgroup *dsct;
2936 struct cgroup_subsys_state *d_css;
2937 struct cgroup_subsys *ss;
2938 int ssid;
2940 restart:
2941 mutex_lock(&cgroup_mutex);
2943 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2944 for_each_subsys(ss, ssid) {
2945 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2946 DEFINE_WAIT(wait);
2948 if (!css || !percpu_ref_is_dying(&css->refcnt))
2949 continue;
2951 cgroup_get_live(dsct);
2952 prepare_to_wait(&dsct->offline_waitq, &wait,
2953 TASK_UNINTERRUPTIBLE);
2955 mutex_unlock(&cgroup_mutex);
2956 schedule();
2957 finish_wait(&dsct->offline_waitq, &wait);
2959 cgroup_put(dsct);
2960 goto restart;
2966 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2967 * @cgrp: root of the target subtree
2969 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2970 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2971 * itself.
2973 static void cgroup_save_control(struct cgroup *cgrp)
2975 struct cgroup *dsct;
2976 struct cgroup_subsys_state *d_css;
2978 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2979 dsct->old_subtree_control = dsct->subtree_control;
2980 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2981 dsct->old_dom_cgrp = dsct->dom_cgrp;
2986 * cgroup_propagate_control - refresh control masks of a subtree
2987 * @cgrp: root of the target subtree
2989 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2990 * ->subtree_control and propagate controller availability through the
2991 * subtree so that descendants don't have unavailable controllers enabled.
2993 static void cgroup_propagate_control(struct cgroup *cgrp)
2995 struct cgroup *dsct;
2996 struct cgroup_subsys_state *d_css;
2998 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2999 dsct->subtree_control &= cgroup_control(dsct);
3000 dsct->subtree_ss_mask =
3001 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3002 cgroup_ss_mask(dsct));
3007 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3008 * @cgrp: root of the target subtree
3010 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3011 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3012 * itself.
3014 static void cgroup_restore_control(struct cgroup *cgrp)
3016 struct cgroup *dsct;
3017 struct cgroup_subsys_state *d_css;
3019 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3020 dsct->subtree_control = dsct->old_subtree_control;
3021 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3022 dsct->dom_cgrp = dsct->old_dom_cgrp;
3026 static bool css_visible(struct cgroup_subsys_state *css)
3028 struct cgroup_subsys *ss = css->ss;
3029 struct cgroup *cgrp = css->cgroup;
3031 if (cgroup_control(cgrp) & (1 << ss->id))
3032 return true;
3033 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3034 return false;
3035 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3039 * cgroup_apply_control_enable - enable or show csses according to control
3040 * @cgrp: root of the target subtree
3042 * Walk @cgrp's subtree and create new csses or make the existing ones
3043 * visible. A css is created invisible if it's being implicitly enabled
3044 * through dependency. An invisible css is made visible when the userland
3045 * explicitly enables it.
3047 * Returns 0 on success, -errno on failure. On failure, csses which have
3048 * been processed already aren't cleaned up. The caller is responsible for
3049 * cleaning up with cgroup_apply_control_disable().
3051 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3053 struct cgroup *dsct;
3054 struct cgroup_subsys_state *d_css;
3055 struct cgroup_subsys *ss;
3056 int ssid, ret;
3058 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3059 for_each_subsys(ss, ssid) {
3060 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3062 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3063 continue;
3065 if (!css) {
3066 css = css_create(dsct, ss);
3067 if (IS_ERR(css))
3068 return PTR_ERR(css);
3071 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3073 if (css_visible(css)) {
3074 ret = css_populate_dir(css);
3075 if (ret)
3076 return ret;
3081 return 0;
3085 * cgroup_apply_control_disable - kill or hide csses according to control
3086 * @cgrp: root of the target subtree
3088 * Walk @cgrp's subtree and kill and hide csses so that they match
3089 * cgroup_ss_mask() and cgroup_visible_mask().
3091 * A css is hidden when the userland requests it to be disabled while other
3092 * subsystems are still depending on it. The css must not actively control
3093 * resources and be in the vanilla state if it's made visible again later.
3094 * Controllers which may be depended upon should provide ->css_reset() for
3095 * this purpose.
3097 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3099 struct cgroup *dsct;
3100 struct cgroup_subsys_state *d_css;
3101 struct cgroup_subsys *ss;
3102 int ssid;
3104 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3105 for_each_subsys(ss, ssid) {
3106 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3108 if (!css)
3109 continue;
3111 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3113 if (css->parent &&
3114 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3115 kill_css(css);
3116 } else if (!css_visible(css)) {
3117 css_clear_dir(css);
3118 if (ss->css_reset)
3119 ss->css_reset(css);
3126 * cgroup_apply_control - apply control mask updates to the subtree
3127 * @cgrp: root of the target subtree
3129 * subsystems can be enabled and disabled in a subtree using the following
3130 * steps.
3132 * 1. Call cgroup_save_control() to stash the current state.
3133 * 2. Update ->subtree_control masks in the subtree as desired.
3134 * 3. Call cgroup_apply_control() to apply the changes.
3135 * 4. Optionally perform other related operations.
3136 * 5. Call cgroup_finalize_control() to finish up.
3138 * This function implements step 3 and propagates the mask changes
3139 * throughout @cgrp's subtree, updates csses accordingly and perform
3140 * process migrations.
3142 static int cgroup_apply_control(struct cgroup *cgrp)
3144 int ret;
3146 cgroup_propagate_control(cgrp);
3148 ret = cgroup_apply_control_enable(cgrp);
3149 if (ret)
3150 return ret;
3153 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3154 * making the following cgroup_update_dfl_csses() properly update
3155 * css associations of all tasks in the subtree.
3157 ret = cgroup_update_dfl_csses(cgrp);
3158 if (ret)
3159 return ret;
3161 return 0;
3165 * cgroup_finalize_control - finalize control mask update
3166 * @cgrp: root of the target subtree
3167 * @ret: the result of the update
3169 * Finalize control mask update. See cgroup_apply_control() for more info.
3171 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3173 if (ret) {
3174 cgroup_restore_control(cgrp);
3175 cgroup_propagate_control(cgrp);
3178 cgroup_apply_control_disable(cgrp);
3181 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3183 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3185 /* if nothing is getting enabled, nothing to worry about */
3186 if (!enable)
3187 return 0;
3189 /* can @cgrp host any resources? */
3190 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3191 return -EOPNOTSUPP;
3193 /* mixables don't care */
3194 if (cgroup_is_mixable(cgrp))
3195 return 0;
3197 if (domain_enable) {
3198 /* can't enable domain controllers inside a thread subtree */
3199 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3200 return -EOPNOTSUPP;
3201 } else {
3203 * Threaded controllers can handle internal competitions
3204 * and are always allowed inside a (prospective) thread
3205 * subtree.
3207 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3208 return 0;
3212 * Controllers can't be enabled for a cgroup with tasks to avoid
3213 * child cgroups competing against tasks.
3215 if (cgroup_has_tasks(cgrp))
3216 return -EBUSY;
3218 return 0;
3221 /* change the enabled child controllers for a cgroup in the default hierarchy */
3222 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3223 char *buf, size_t nbytes,
3224 loff_t off)
3226 u16 enable = 0, disable = 0;
3227 struct cgroup *cgrp, *child;
3228 struct cgroup_subsys *ss;
3229 char *tok;
3230 int ssid, ret;
3233 * Parse input - space separated list of subsystem names prefixed
3234 * with either + or -.
3236 buf = strstrip(buf);
3237 while ((tok = strsep(&buf, " "))) {
3238 if (tok[0] == '\0')
3239 continue;
3240 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3241 if (!cgroup_ssid_enabled(ssid) ||
3242 strcmp(tok + 1, ss->name))
3243 continue;
3245 if (*tok == '+') {
3246 enable |= 1 << ssid;
3247 disable &= ~(1 << ssid);
3248 } else if (*tok == '-') {
3249 disable |= 1 << ssid;
3250 enable &= ~(1 << ssid);
3251 } else {
3252 return -EINVAL;
3254 break;
3255 } while_each_subsys_mask();
3256 if (ssid == CGROUP_SUBSYS_COUNT)
3257 return -EINVAL;
3260 cgrp = cgroup_kn_lock_live(of->kn, true);
3261 if (!cgrp)
3262 return -ENODEV;
3264 for_each_subsys(ss, ssid) {
3265 if (enable & (1 << ssid)) {
3266 if (cgrp->subtree_control & (1 << ssid)) {
3267 enable &= ~(1 << ssid);
3268 continue;
3271 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3272 ret = -ENOENT;
3273 goto out_unlock;
3275 } else if (disable & (1 << ssid)) {
3276 if (!(cgrp->subtree_control & (1 << ssid))) {
3277 disable &= ~(1 << ssid);
3278 continue;
3281 /* a child has it enabled? */
3282 cgroup_for_each_live_child(child, cgrp) {
3283 if (child->subtree_control & (1 << ssid)) {
3284 ret = -EBUSY;
3285 goto out_unlock;
3291 if (!enable && !disable) {
3292 ret = 0;
3293 goto out_unlock;
3296 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3297 if (ret)
3298 goto out_unlock;
3300 /* save and update control masks and prepare csses */
3301 cgroup_save_control(cgrp);
3303 cgrp->subtree_control |= enable;
3304 cgrp->subtree_control &= ~disable;
3306 ret = cgroup_apply_control(cgrp);
3307 cgroup_finalize_control(cgrp, ret);
3308 if (ret)
3309 goto out_unlock;
3311 kernfs_activate(cgrp->kn);
3312 out_unlock:
3313 cgroup_kn_unlock(of->kn);
3314 return ret ?: nbytes;
3318 * cgroup_enable_threaded - make @cgrp threaded
3319 * @cgrp: the target cgroup
3321 * Called when "threaded" is written to the cgroup.type interface file and
3322 * tries to make @cgrp threaded and join the parent's resource domain.
3323 * This function is never called on the root cgroup as cgroup.type doesn't
3324 * exist on it.
3326 static int cgroup_enable_threaded(struct cgroup *cgrp)
3328 struct cgroup *parent = cgroup_parent(cgrp);
3329 struct cgroup *dom_cgrp = parent->dom_cgrp;
3330 struct cgroup *dsct;
3331 struct cgroup_subsys_state *d_css;
3332 int ret;
3334 lockdep_assert_held(&cgroup_mutex);
3336 /* noop if already threaded */
3337 if (cgroup_is_threaded(cgrp))
3338 return 0;
3341 * If @cgroup is populated or has domain controllers enabled, it
3342 * can't be switched. While the below cgroup_can_be_thread_root()
3343 * test can catch the same conditions, that's only when @parent is
3344 * not mixable, so let's check it explicitly.
3346 if (cgroup_is_populated(cgrp) ||
3347 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3348 return -EOPNOTSUPP;
3350 /* we're joining the parent's domain, ensure its validity */
3351 if (!cgroup_is_valid_domain(dom_cgrp) ||
3352 !cgroup_can_be_thread_root(dom_cgrp))
3353 return -EOPNOTSUPP;
3356 * The following shouldn't cause actual migrations and should
3357 * always succeed.
3359 cgroup_save_control(cgrp);
3361 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3362 if (dsct == cgrp || cgroup_is_threaded(dsct))
3363 dsct->dom_cgrp = dom_cgrp;
3365 ret = cgroup_apply_control(cgrp);
3366 if (!ret)
3367 parent->nr_threaded_children++;
3369 cgroup_finalize_control(cgrp, ret);
3370 return ret;
3373 static int cgroup_type_show(struct seq_file *seq, void *v)
3375 struct cgroup *cgrp = seq_css(seq)->cgroup;
3377 if (cgroup_is_threaded(cgrp))
3378 seq_puts(seq, "threaded\n");
3379 else if (!cgroup_is_valid_domain(cgrp))
3380 seq_puts(seq, "domain invalid\n");
3381 else if (cgroup_is_thread_root(cgrp))
3382 seq_puts(seq, "domain threaded\n");
3383 else
3384 seq_puts(seq, "domain\n");
3386 return 0;
3389 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3390 size_t nbytes, loff_t off)
3392 struct cgroup *cgrp;
3393 int ret;
3395 /* only switching to threaded mode is supported */
3396 if (strcmp(strstrip(buf), "threaded"))
3397 return -EINVAL;
3399 /* drain dying csses before we re-apply (threaded) subtree control */
3400 cgrp = cgroup_kn_lock_live(of->kn, true);
3401 if (!cgrp)
3402 return -ENOENT;
3404 /* threaded can only be enabled */
3405 ret = cgroup_enable_threaded(cgrp);
3407 cgroup_kn_unlock(of->kn);
3408 return ret ?: nbytes;
3411 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3413 struct cgroup *cgrp = seq_css(seq)->cgroup;
3414 int descendants = READ_ONCE(cgrp->max_descendants);
3416 if (descendants == INT_MAX)
3417 seq_puts(seq, "max\n");
3418 else
3419 seq_printf(seq, "%d\n", descendants);
3421 return 0;
3424 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3425 char *buf, size_t nbytes, loff_t off)
3427 struct cgroup *cgrp;
3428 int descendants;
3429 ssize_t ret;
3431 buf = strstrip(buf);
3432 if (!strcmp(buf, "max")) {
3433 descendants = INT_MAX;
3434 } else {
3435 ret = kstrtoint(buf, 0, &descendants);
3436 if (ret)
3437 return ret;
3440 if (descendants < 0)
3441 return -ERANGE;
3443 cgrp = cgroup_kn_lock_live(of->kn, false);
3444 if (!cgrp)
3445 return -ENOENT;
3447 cgrp->max_descendants = descendants;
3449 cgroup_kn_unlock(of->kn);
3451 return nbytes;
3454 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3456 struct cgroup *cgrp = seq_css(seq)->cgroup;
3457 int depth = READ_ONCE(cgrp->max_depth);
3459 if (depth == INT_MAX)
3460 seq_puts(seq, "max\n");
3461 else
3462 seq_printf(seq, "%d\n", depth);
3464 return 0;
3467 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3468 char *buf, size_t nbytes, loff_t off)
3470 struct cgroup *cgrp;
3471 ssize_t ret;
3472 int depth;
3474 buf = strstrip(buf);
3475 if (!strcmp(buf, "max")) {
3476 depth = INT_MAX;
3477 } else {
3478 ret = kstrtoint(buf, 0, &depth);
3479 if (ret)
3480 return ret;
3483 if (depth < 0)
3484 return -ERANGE;
3486 cgrp = cgroup_kn_lock_live(of->kn, false);
3487 if (!cgrp)
3488 return -ENOENT;
3490 cgrp->max_depth = depth;
3492 cgroup_kn_unlock(of->kn);
3494 return nbytes;
3497 static int cgroup_events_show(struct seq_file *seq, void *v)
3499 struct cgroup *cgrp = seq_css(seq)->cgroup;
3501 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3502 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3504 return 0;
3507 static int cgroup_stat_show(struct seq_file *seq, void *v)
3509 struct cgroup *cgroup = seq_css(seq)->cgroup;
3511 seq_printf(seq, "nr_descendants %d\n",
3512 cgroup->nr_descendants);
3513 seq_printf(seq, "nr_dying_descendants %d\n",
3514 cgroup->nr_dying_descendants);
3516 return 0;
3519 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3520 struct cgroup *cgrp, int ssid)
3522 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3523 struct cgroup_subsys_state *css;
3524 int ret;
3526 if (!ss->css_extra_stat_show)
3527 return 0;
3529 css = cgroup_tryget_css(cgrp, ss);
3530 if (!css)
3531 return 0;
3533 ret = ss->css_extra_stat_show(seq, css);
3534 css_put(css);
3535 return ret;
3538 static int cpu_stat_show(struct seq_file *seq, void *v)
3540 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3541 int ret = 0;
3543 cgroup_base_stat_cputime_show(seq);
3544 #ifdef CONFIG_CGROUP_SCHED
3545 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3546 #endif
3547 return ret;
3550 #ifdef CONFIG_PSI
3551 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3553 struct cgroup *cgrp = seq_css(seq)->cgroup;
3554 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3556 return psi_show(seq, psi, PSI_IO);
3558 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3560 struct cgroup *cgrp = seq_css(seq)->cgroup;
3561 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3563 return psi_show(seq, psi, PSI_MEM);
3565 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3567 struct cgroup *cgrp = seq_css(seq)->cgroup;
3568 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3570 return psi_show(seq, psi, PSI_CPU);
3573 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3574 size_t nbytes, enum psi_res res)
3576 struct psi_trigger *new;
3577 struct cgroup *cgrp;
3579 cgrp = cgroup_kn_lock_live(of->kn, false);
3580 if (!cgrp)
3581 return -ENODEV;
3583 cgroup_get(cgrp);
3584 cgroup_kn_unlock(of->kn);
3586 new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3587 if (IS_ERR(new)) {
3588 cgroup_put(cgrp);
3589 return PTR_ERR(new);
3592 psi_trigger_replace(&of->priv, new);
3594 cgroup_put(cgrp);
3596 return nbytes;
3599 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3600 char *buf, size_t nbytes,
3601 loff_t off)
3603 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3606 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3607 char *buf, size_t nbytes,
3608 loff_t off)
3610 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3613 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3614 char *buf, size_t nbytes,
3615 loff_t off)
3617 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3620 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3621 poll_table *pt)
3623 return psi_trigger_poll(&of->priv, of->file, pt);
3626 static void cgroup_pressure_release(struct kernfs_open_file *of)
3628 psi_trigger_replace(&of->priv, NULL);
3630 #endif /* CONFIG_PSI */
3632 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3634 struct cgroup *cgrp = seq_css(seq)->cgroup;
3636 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3638 return 0;
3641 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3642 char *buf, size_t nbytes, loff_t off)
3644 struct cgroup *cgrp;
3645 ssize_t ret;
3646 int freeze;
3648 ret = kstrtoint(strstrip(buf), 0, &freeze);
3649 if (ret)
3650 return ret;
3652 if (freeze < 0 || freeze > 1)
3653 return -ERANGE;
3655 cgrp = cgroup_kn_lock_live(of->kn, false);
3656 if (!cgrp)
3657 return -ENOENT;
3659 cgroup_freeze(cgrp, freeze);
3661 cgroup_kn_unlock(of->kn);
3663 return nbytes;
3666 static int cgroup_file_open(struct kernfs_open_file *of)
3668 struct cftype *cft = of->kn->priv;
3670 if (cft->open)
3671 return cft->open(of);
3672 return 0;
3675 static void cgroup_file_release(struct kernfs_open_file *of)
3677 struct cftype *cft = of->kn->priv;
3679 if (cft->release)
3680 cft->release(of);
3683 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3684 size_t nbytes, loff_t off)
3686 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3687 struct cgroup *cgrp = of->kn->parent->priv;
3688 struct cftype *cft = of->kn->priv;
3689 struct cgroup_subsys_state *css;
3690 int ret;
3693 * If namespaces are delegation boundaries, disallow writes to
3694 * files in an non-init namespace root from inside the namespace
3695 * except for the files explicitly marked delegatable -
3696 * cgroup.procs and cgroup.subtree_control.
3698 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3699 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3700 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3701 return -EPERM;
3703 if (cft->write)
3704 return cft->write(of, buf, nbytes, off);
3707 * kernfs guarantees that a file isn't deleted with operations in
3708 * flight, which means that the matching css is and stays alive and
3709 * doesn't need to be pinned. The RCU locking is not necessary
3710 * either. It's just for the convenience of using cgroup_css().
3712 rcu_read_lock();
3713 css = cgroup_css(cgrp, cft->ss);
3714 rcu_read_unlock();
3716 if (cft->write_u64) {
3717 unsigned long long v;
3718 ret = kstrtoull(buf, 0, &v);
3719 if (!ret)
3720 ret = cft->write_u64(css, cft, v);
3721 } else if (cft->write_s64) {
3722 long long v;
3723 ret = kstrtoll(buf, 0, &v);
3724 if (!ret)
3725 ret = cft->write_s64(css, cft, v);
3726 } else {
3727 ret = -EINVAL;
3730 return ret ?: nbytes;
3733 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3735 struct cftype *cft = of->kn->priv;
3737 if (cft->poll)
3738 return cft->poll(of, pt);
3740 return kernfs_generic_poll(of, pt);
3743 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3745 return seq_cft(seq)->seq_start(seq, ppos);
3748 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3750 return seq_cft(seq)->seq_next(seq, v, ppos);
3753 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3755 if (seq_cft(seq)->seq_stop)
3756 seq_cft(seq)->seq_stop(seq, v);
3759 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3761 struct cftype *cft = seq_cft(m);
3762 struct cgroup_subsys_state *css = seq_css(m);
3764 if (cft->seq_show)
3765 return cft->seq_show(m, arg);
3767 if (cft->read_u64)
3768 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3769 else if (cft->read_s64)
3770 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3771 else
3772 return -EINVAL;
3773 return 0;
3776 static struct kernfs_ops cgroup_kf_single_ops = {
3777 .atomic_write_len = PAGE_SIZE,
3778 .open = cgroup_file_open,
3779 .release = cgroup_file_release,
3780 .write = cgroup_file_write,
3781 .poll = cgroup_file_poll,
3782 .seq_show = cgroup_seqfile_show,
3785 static struct kernfs_ops cgroup_kf_ops = {
3786 .atomic_write_len = PAGE_SIZE,
3787 .open = cgroup_file_open,
3788 .release = cgroup_file_release,
3789 .write = cgroup_file_write,
3790 .poll = cgroup_file_poll,
3791 .seq_start = cgroup_seqfile_start,
3792 .seq_next = cgroup_seqfile_next,
3793 .seq_stop = cgroup_seqfile_stop,
3794 .seq_show = cgroup_seqfile_show,
3797 /* set uid and gid of cgroup dirs and files to that of the creator */
3798 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3800 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3801 .ia_uid = current_fsuid(),
3802 .ia_gid = current_fsgid(), };
3804 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3805 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3806 return 0;
3808 return kernfs_setattr(kn, &iattr);
3811 static void cgroup_file_notify_timer(struct timer_list *timer)
3813 cgroup_file_notify(container_of(timer, struct cgroup_file,
3814 notify_timer));
3817 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3818 struct cftype *cft)
3820 char name[CGROUP_FILE_NAME_MAX];
3821 struct kernfs_node *kn;
3822 struct lock_class_key *key = NULL;
3823 int ret;
3825 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3826 key = &cft->lockdep_key;
3827 #endif
3828 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3829 cgroup_file_mode(cft),
3830 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3831 0, cft->kf_ops, cft,
3832 NULL, key);
3833 if (IS_ERR(kn))
3834 return PTR_ERR(kn);
3836 ret = cgroup_kn_set_ugid(kn);
3837 if (ret) {
3838 kernfs_remove(kn);
3839 return ret;
3842 if (cft->file_offset) {
3843 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3845 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3847 spin_lock_irq(&cgroup_file_kn_lock);
3848 cfile->kn = kn;
3849 spin_unlock_irq(&cgroup_file_kn_lock);
3852 return 0;
3856 * cgroup_addrm_files - add or remove files to a cgroup directory
3857 * @css: the target css
3858 * @cgrp: the target cgroup (usually css->cgroup)
3859 * @cfts: array of cftypes to be added
3860 * @is_add: whether to add or remove
3862 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3863 * For removals, this function never fails.
3865 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3866 struct cgroup *cgrp, struct cftype cfts[],
3867 bool is_add)
3869 struct cftype *cft, *cft_end = NULL;
3870 int ret = 0;
3872 lockdep_assert_held(&cgroup_mutex);
3874 restart:
3875 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3876 /* does cft->flags tell us to skip this file on @cgrp? */
3877 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3878 continue;
3879 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3880 continue;
3881 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3882 continue;
3883 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3884 continue;
3885 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3886 continue;
3887 if (is_add) {
3888 ret = cgroup_add_file(css, cgrp, cft);
3889 if (ret) {
3890 pr_warn("%s: failed to add %s, err=%d\n",
3891 __func__, cft->name, ret);
3892 cft_end = cft;
3893 is_add = false;
3894 goto restart;
3896 } else {
3897 cgroup_rm_file(cgrp, cft);
3900 return ret;
3903 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3905 struct cgroup_subsys *ss = cfts[0].ss;
3906 struct cgroup *root = &ss->root->cgrp;
3907 struct cgroup_subsys_state *css;
3908 int ret = 0;
3910 lockdep_assert_held(&cgroup_mutex);
3912 /* add/rm files for all cgroups created before */
3913 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3914 struct cgroup *cgrp = css->cgroup;
3916 if (!(css->flags & CSS_VISIBLE))
3917 continue;
3919 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3920 if (ret)
3921 break;
3924 if (is_add && !ret)
3925 kernfs_activate(root->kn);
3926 return ret;
3929 static void cgroup_exit_cftypes(struct cftype *cfts)
3931 struct cftype *cft;
3933 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3934 /* free copy for custom atomic_write_len, see init_cftypes() */
3935 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3936 kfree(cft->kf_ops);
3937 cft->kf_ops = NULL;
3938 cft->ss = NULL;
3940 /* revert flags set by cgroup core while adding @cfts */
3941 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3945 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3947 struct cftype *cft;
3949 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3950 struct kernfs_ops *kf_ops;
3952 WARN_ON(cft->ss || cft->kf_ops);
3954 if (cft->seq_start)
3955 kf_ops = &cgroup_kf_ops;
3956 else
3957 kf_ops = &cgroup_kf_single_ops;
3960 * Ugh... if @cft wants a custom max_write_len, we need to
3961 * make a copy of kf_ops to set its atomic_write_len.
3963 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3964 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3965 if (!kf_ops) {
3966 cgroup_exit_cftypes(cfts);
3967 return -ENOMEM;
3969 kf_ops->atomic_write_len = cft->max_write_len;
3972 cft->kf_ops = kf_ops;
3973 cft->ss = ss;
3976 return 0;
3979 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3981 lockdep_assert_held(&cgroup_mutex);
3983 if (!cfts || !cfts[0].ss)
3984 return -ENOENT;
3986 list_del(&cfts->node);
3987 cgroup_apply_cftypes(cfts, false);
3988 cgroup_exit_cftypes(cfts);
3989 return 0;
3993 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3994 * @cfts: zero-length name terminated array of cftypes
3996 * Unregister @cfts. Files described by @cfts are removed from all
3997 * existing cgroups and all future cgroups won't have them either. This
3998 * function can be called anytime whether @cfts' subsys is attached or not.
4000 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4001 * registered.
4003 int cgroup_rm_cftypes(struct cftype *cfts)
4005 int ret;
4007 mutex_lock(&cgroup_mutex);
4008 ret = cgroup_rm_cftypes_locked(cfts);
4009 mutex_unlock(&cgroup_mutex);
4010 return ret;
4014 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4015 * @ss: target cgroup subsystem
4016 * @cfts: zero-length name terminated array of cftypes
4018 * Register @cfts to @ss. Files described by @cfts are created for all
4019 * existing cgroups to which @ss is attached and all future cgroups will
4020 * have them too. This function can be called anytime whether @ss is
4021 * attached or not.
4023 * Returns 0 on successful registration, -errno on failure. Note that this
4024 * function currently returns 0 as long as @cfts registration is successful
4025 * even if some file creation attempts on existing cgroups fail.
4027 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4029 int ret;
4031 if (!cgroup_ssid_enabled(ss->id))
4032 return 0;
4034 if (!cfts || cfts[0].name[0] == '\0')
4035 return 0;
4037 ret = cgroup_init_cftypes(ss, cfts);
4038 if (ret)
4039 return ret;
4041 mutex_lock(&cgroup_mutex);
4043 list_add_tail(&cfts->node, &ss->cfts);
4044 ret = cgroup_apply_cftypes(cfts, true);
4045 if (ret)
4046 cgroup_rm_cftypes_locked(cfts);
4048 mutex_unlock(&cgroup_mutex);
4049 return ret;
4053 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4054 * @ss: target cgroup subsystem
4055 * @cfts: zero-length name terminated array of cftypes
4057 * Similar to cgroup_add_cftypes() but the added files are only used for
4058 * the default hierarchy.
4060 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4062 struct cftype *cft;
4064 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4065 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4066 return cgroup_add_cftypes(ss, cfts);
4070 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4071 * @ss: target cgroup subsystem
4072 * @cfts: zero-length name terminated array of cftypes
4074 * Similar to cgroup_add_cftypes() but the added files are only used for
4075 * the legacy hierarchies.
4077 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4079 struct cftype *cft;
4081 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4082 cft->flags |= __CFTYPE_NOT_ON_DFL;
4083 return cgroup_add_cftypes(ss, cfts);
4087 * cgroup_file_notify - generate a file modified event for a cgroup_file
4088 * @cfile: target cgroup_file
4090 * @cfile must have been obtained by setting cftype->file_offset.
4092 void cgroup_file_notify(struct cgroup_file *cfile)
4094 unsigned long flags;
4096 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4097 if (cfile->kn) {
4098 unsigned long last = cfile->notified_at;
4099 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4101 if (time_in_range(jiffies, last, next)) {
4102 timer_reduce(&cfile->notify_timer, next);
4103 } else {
4104 kernfs_notify(cfile->kn);
4105 cfile->notified_at = jiffies;
4108 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4112 * css_next_child - find the next child of a given css
4113 * @pos: the current position (%NULL to initiate traversal)
4114 * @parent: css whose children to walk
4116 * This function returns the next child of @parent and should be called
4117 * under either cgroup_mutex or RCU read lock. The only requirement is
4118 * that @parent and @pos are accessible. The next sibling is guaranteed to
4119 * be returned regardless of their states.
4121 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4122 * css which finished ->css_online() is guaranteed to be visible in the
4123 * future iterations and will stay visible until the last reference is put.
4124 * A css which hasn't finished ->css_online() or already finished
4125 * ->css_offline() may show up during traversal. It's each subsystem's
4126 * responsibility to synchronize against on/offlining.
4128 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4129 struct cgroup_subsys_state *parent)
4131 struct cgroup_subsys_state *next;
4133 cgroup_assert_mutex_or_rcu_locked();
4136 * @pos could already have been unlinked from the sibling list.
4137 * Once a cgroup is removed, its ->sibling.next is no longer
4138 * updated when its next sibling changes. CSS_RELEASED is set when
4139 * @pos is taken off list, at which time its next pointer is valid,
4140 * and, as releases are serialized, the one pointed to by the next
4141 * pointer is guaranteed to not have started release yet. This
4142 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4143 * critical section, the one pointed to by its next pointer is
4144 * guaranteed to not have finished its RCU grace period even if we
4145 * have dropped rcu_read_lock() inbetween iterations.
4147 * If @pos has CSS_RELEASED set, its next pointer can't be
4148 * dereferenced; however, as each css is given a monotonically
4149 * increasing unique serial number and always appended to the
4150 * sibling list, the next one can be found by walking the parent's
4151 * children until the first css with higher serial number than
4152 * @pos's. While this path can be slower, it happens iff iteration
4153 * races against release and the race window is very small.
4155 if (!pos) {
4156 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4157 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4158 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4159 } else {
4160 list_for_each_entry_rcu(next, &parent->children, sibling,
4161 lockdep_is_held(&cgroup_mutex))
4162 if (next->serial_nr > pos->serial_nr)
4163 break;
4167 * @next, if not pointing to the head, can be dereferenced and is
4168 * the next sibling.
4170 if (&next->sibling != &parent->children)
4171 return next;
4172 return NULL;
4176 * css_next_descendant_pre - find the next descendant for pre-order walk
4177 * @pos: the current position (%NULL to initiate traversal)
4178 * @root: css whose descendants to walk
4180 * To be used by css_for_each_descendant_pre(). Find the next descendant
4181 * to visit for pre-order traversal of @root's descendants. @root is
4182 * included in the iteration and the first node to be visited.
4184 * While this function requires cgroup_mutex or RCU read locking, it
4185 * doesn't require the whole traversal to be contained in a single critical
4186 * section. This function will return the correct next descendant as long
4187 * as both @pos and @root are accessible and @pos is a descendant of @root.
4189 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4190 * css which finished ->css_online() is guaranteed to be visible in the
4191 * future iterations and will stay visible until the last reference is put.
4192 * A css which hasn't finished ->css_online() or already finished
4193 * ->css_offline() may show up during traversal. It's each subsystem's
4194 * responsibility to synchronize against on/offlining.
4196 struct cgroup_subsys_state *
4197 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4198 struct cgroup_subsys_state *root)
4200 struct cgroup_subsys_state *next;
4202 cgroup_assert_mutex_or_rcu_locked();
4204 /* if first iteration, visit @root */
4205 if (!pos)
4206 return root;
4208 /* visit the first child if exists */
4209 next = css_next_child(NULL, pos);
4210 if (next)
4211 return next;
4213 /* no child, visit my or the closest ancestor's next sibling */
4214 while (pos != root) {
4215 next = css_next_child(pos, pos->parent);
4216 if (next)
4217 return next;
4218 pos = pos->parent;
4221 return NULL;
4223 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4226 * css_rightmost_descendant - return the rightmost descendant of a css
4227 * @pos: css of interest
4229 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4230 * is returned. This can be used during pre-order traversal to skip
4231 * subtree of @pos.
4233 * While this function requires cgroup_mutex or RCU read locking, it
4234 * doesn't require the whole traversal to be contained in a single critical
4235 * section. This function will return the correct rightmost descendant as
4236 * long as @pos is accessible.
4238 struct cgroup_subsys_state *
4239 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4241 struct cgroup_subsys_state *last, *tmp;
4243 cgroup_assert_mutex_or_rcu_locked();
4245 do {
4246 last = pos;
4247 /* ->prev isn't RCU safe, walk ->next till the end */
4248 pos = NULL;
4249 css_for_each_child(tmp, last)
4250 pos = tmp;
4251 } while (pos);
4253 return last;
4256 static struct cgroup_subsys_state *
4257 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4259 struct cgroup_subsys_state *last;
4261 do {
4262 last = pos;
4263 pos = css_next_child(NULL, pos);
4264 } while (pos);
4266 return last;
4270 * css_next_descendant_post - find the next descendant for post-order walk
4271 * @pos: the current position (%NULL to initiate traversal)
4272 * @root: css whose descendants to walk
4274 * To be used by css_for_each_descendant_post(). Find the next descendant
4275 * to visit for post-order traversal of @root's descendants. @root is
4276 * included in the iteration and the last node to be visited.
4278 * While this function requires cgroup_mutex or RCU read locking, it
4279 * doesn't require the whole traversal to be contained in a single critical
4280 * section. This function will return the correct next descendant as long
4281 * as both @pos and @cgroup are accessible and @pos is a descendant of
4282 * @cgroup.
4284 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4285 * css which finished ->css_online() is guaranteed to be visible in the
4286 * future iterations and will stay visible until the last reference is put.
4287 * A css which hasn't finished ->css_online() or already finished
4288 * ->css_offline() may show up during traversal. It's each subsystem's
4289 * responsibility to synchronize against on/offlining.
4291 struct cgroup_subsys_state *
4292 css_next_descendant_post(struct cgroup_subsys_state *pos,
4293 struct cgroup_subsys_state *root)
4295 struct cgroup_subsys_state *next;
4297 cgroup_assert_mutex_or_rcu_locked();
4299 /* if first iteration, visit leftmost descendant which may be @root */
4300 if (!pos)
4301 return css_leftmost_descendant(root);
4303 /* if we visited @root, we're done */
4304 if (pos == root)
4305 return NULL;
4307 /* if there's an unvisited sibling, visit its leftmost descendant */
4308 next = css_next_child(pos, pos->parent);
4309 if (next)
4310 return css_leftmost_descendant(next);
4312 /* no sibling left, visit parent */
4313 return pos->parent;
4317 * css_has_online_children - does a css have online children
4318 * @css: the target css
4320 * Returns %true if @css has any online children; otherwise, %false. This
4321 * function can be called from any context but the caller is responsible
4322 * for synchronizing against on/offlining as necessary.
4324 bool css_has_online_children(struct cgroup_subsys_state *css)
4326 struct cgroup_subsys_state *child;
4327 bool ret = false;
4329 rcu_read_lock();
4330 css_for_each_child(child, css) {
4331 if (child->flags & CSS_ONLINE) {
4332 ret = true;
4333 break;
4336 rcu_read_unlock();
4337 return ret;
4340 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4342 struct list_head *l;
4343 struct cgrp_cset_link *link;
4344 struct css_set *cset;
4346 lockdep_assert_held(&css_set_lock);
4348 /* find the next threaded cset */
4349 if (it->tcset_pos) {
4350 l = it->tcset_pos->next;
4352 if (l != it->tcset_head) {
4353 it->tcset_pos = l;
4354 return container_of(l, struct css_set,
4355 threaded_csets_node);
4358 it->tcset_pos = NULL;
4361 /* find the next cset */
4362 l = it->cset_pos;
4363 l = l->next;
4364 if (l == it->cset_head) {
4365 it->cset_pos = NULL;
4366 return NULL;
4369 if (it->ss) {
4370 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4371 } else {
4372 link = list_entry(l, struct cgrp_cset_link, cset_link);
4373 cset = link->cset;
4376 it->cset_pos = l;
4378 /* initialize threaded css_set walking */
4379 if (it->flags & CSS_TASK_ITER_THREADED) {
4380 if (it->cur_dcset)
4381 put_css_set_locked(it->cur_dcset);
4382 it->cur_dcset = cset;
4383 get_css_set(cset);
4385 it->tcset_head = &cset->threaded_csets;
4386 it->tcset_pos = &cset->threaded_csets;
4389 return cset;
4393 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4394 * @it: the iterator to advance
4396 * Advance @it to the next css_set to walk.
4398 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4400 struct css_set *cset;
4402 lockdep_assert_held(&css_set_lock);
4404 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4405 while ((cset = css_task_iter_next_css_set(it))) {
4406 if (!list_empty(&cset->tasks)) {
4407 it->cur_tasks_head = &cset->tasks;
4408 break;
4409 } else if (!list_empty(&cset->mg_tasks)) {
4410 it->cur_tasks_head = &cset->mg_tasks;
4411 break;
4412 } else if (!list_empty(&cset->dying_tasks)) {
4413 it->cur_tasks_head = &cset->dying_tasks;
4414 break;
4417 if (!cset) {
4418 it->task_pos = NULL;
4419 return;
4421 it->task_pos = it->cur_tasks_head->next;
4424 * We don't keep css_sets locked across iteration steps and thus
4425 * need to take steps to ensure that iteration can be resumed after
4426 * the lock is re-acquired. Iteration is performed at two levels -
4427 * css_sets and tasks in them.
4429 * Once created, a css_set never leaves its cgroup lists, so a
4430 * pinned css_set is guaranteed to stay put and we can resume
4431 * iteration afterwards.
4433 * Tasks may leave @cset across iteration steps. This is resolved
4434 * by registering each iterator with the css_set currently being
4435 * walked and making css_set_move_task() advance iterators whose
4436 * next task is leaving.
4438 if (it->cur_cset) {
4439 list_del(&it->iters_node);
4440 put_css_set_locked(it->cur_cset);
4442 get_css_set(cset);
4443 it->cur_cset = cset;
4444 list_add(&it->iters_node, &cset->task_iters);
4447 static void css_task_iter_skip(struct css_task_iter *it,
4448 struct task_struct *task)
4450 lockdep_assert_held(&css_set_lock);
4452 if (it->task_pos == &task->cg_list) {
4453 it->task_pos = it->task_pos->next;
4454 it->flags |= CSS_TASK_ITER_SKIPPED;
4458 static void css_task_iter_advance(struct css_task_iter *it)
4460 struct task_struct *task;
4462 lockdep_assert_held(&css_set_lock);
4463 repeat:
4464 if (it->task_pos) {
4466 * Advance iterator to find next entry. We go through cset
4467 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4468 * the next cset.
4470 if (it->flags & CSS_TASK_ITER_SKIPPED)
4471 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4472 else
4473 it->task_pos = it->task_pos->next;
4475 if (it->task_pos == &it->cur_cset->tasks) {
4476 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4477 it->task_pos = it->cur_tasks_head->next;
4479 if (it->task_pos == &it->cur_cset->mg_tasks) {
4480 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4481 it->task_pos = it->cur_tasks_head->next;
4483 if (it->task_pos == &it->cur_cset->dying_tasks)
4484 css_task_iter_advance_css_set(it);
4485 } else {
4486 /* called from start, proceed to the first cset */
4487 css_task_iter_advance_css_set(it);
4490 if (!it->task_pos)
4491 return;
4493 task = list_entry(it->task_pos, struct task_struct, cg_list);
4495 if (it->flags & CSS_TASK_ITER_PROCS) {
4496 /* if PROCS, skip over tasks which aren't group leaders */
4497 if (!thread_group_leader(task))
4498 goto repeat;
4500 /* and dying leaders w/o live member threads */
4501 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4502 !atomic_read(&task->signal->live))
4503 goto repeat;
4504 } else {
4505 /* skip all dying ones */
4506 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4507 goto repeat;
4512 * css_task_iter_start - initiate task iteration
4513 * @css: the css to walk tasks of
4514 * @flags: CSS_TASK_ITER_* flags
4515 * @it: the task iterator to use
4517 * Initiate iteration through the tasks of @css. The caller can call
4518 * css_task_iter_next() to walk through the tasks until the function
4519 * returns NULL. On completion of iteration, css_task_iter_end() must be
4520 * called.
4522 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4523 struct css_task_iter *it)
4525 memset(it, 0, sizeof(*it));
4527 spin_lock_irq(&css_set_lock);
4529 it->ss = css->ss;
4530 it->flags = flags;
4532 if (it->ss)
4533 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4534 else
4535 it->cset_pos = &css->cgroup->cset_links;
4537 it->cset_head = it->cset_pos;
4539 css_task_iter_advance(it);
4541 spin_unlock_irq(&css_set_lock);
4545 * css_task_iter_next - return the next task for the iterator
4546 * @it: the task iterator being iterated
4548 * The "next" function for task iteration. @it should have been
4549 * initialized via css_task_iter_start(). Returns NULL when the iteration
4550 * reaches the end.
4552 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4554 if (it->cur_task) {
4555 put_task_struct(it->cur_task);
4556 it->cur_task = NULL;
4559 spin_lock_irq(&css_set_lock);
4561 /* @it may be half-advanced by skips, finish advancing */
4562 if (it->flags & CSS_TASK_ITER_SKIPPED)
4563 css_task_iter_advance(it);
4565 if (it->task_pos) {
4566 it->cur_task = list_entry(it->task_pos, struct task_struct,
4567 cg_list);
4568 get_task_struct(it->cur_task);
4569 css_task_iter_advance(it);
4572 spin_unlock_irq(&css_set_lock);
4574 return it->cur_task;
4578 * css_task_iter_end - finish task iteration
4579 * @it: the task iterator to finish
4581 * Finish task iteration started by css_task_iter_start().
4583 void css_task_iter_end(struct css_task_iter *it)
4585 if (it->cur_cset) {
4586 spin_lock_irq(&css_set_lock);
4587 list_del(&it->iters_node);
4588 put_css_set_locked(it->cur_cset);
4589 spin_unlock_irq(&css_set_lock);
4592 if (it->cur_dcset)
4593 put_css_set(it->cur_dcset);
4595 if (it->cur_task)
4596 put_task_struct(it->cur_task);
4599 static void cgroup_procs_release(struct kernfs_open_file *of)
4601 if (of->priv) {
4602 css_task_iter_end(of->priv);
4603 kfree(of->priv);
4607 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4609 struct kernfs_open_file *of = s->private;
4610 struct css_task_iter *it = of->priv;
4612 if (pos)
4613 (*pos)++;
4615 return css_task_iter_next(it);
4618 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4619 unsigned int iter_flags)
4621 struct kernfs_open_file *of = s->private;
4622 struct cgroup *cgrp = seq_css(s)->cgroup;
4623 struct css_task_iter *it = of->priv;
4626 * When a seq_file is seeked, it's always traversed sequentially
4627 * from position 0, so we can simply keep iterating on !0 *pos.
4629 if (!it) {
4630 if (WARN_ON_ONCE((*pos)))
4631 return ERR_PTR(-EINVAL);
4633 it = kzalloc(sizeof(*it), GFP_KERNEL);
4634 if (!it)
4635 return ERR_PTR(-ENOMEM);
4636 of->priv = it;
4637 css_task_iter_start(&cgrp->self, iter_flags, it);
4638 } else if (!(*pos)) {
4639 css_task_iter_end(it);
4640 css_task_iter_start(&cgrp->self, iter_flags, it);
4641 } else
4642 return it->cur_task;
4644 return cgroup_procs_next(s, NULL, NULL);
4647 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4649 struct cgroup *cgrp = seq_css(s)->cgroup;
4652 * All processes of a threaded subtree belong to the domain cgroup
4653 * of the subtree. Only threads can be distributed across the
4654 * subtree. Reject reads on cgroup.procs in the subtree proper.
4655 * They're always empty anyway.
4657 if (cgroup_is_threaded(cgrp))
4658 return ERR_PTR(-EOPNOTSUPP);
4660 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4661 CSS_TASK_ITER_THREADED);
4664 static int cgroup_procs_show(struct seq_file *s, void *v)
4666 seq_printf(s, "%d\n", task_pid_vnr(v));
4667 return 0;
4670 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4672 int ret;
4673 struct inode *inode;
4675 lockdep_assert_held(&cgroup_mutex);
4677 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4678 if (!inode)
4679 return -ENOMEM;
4681 ret = inode_permission(inode, MAY_WRITE);
4682 iput(inode);
4683 return ret;
4686 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4687 struct cgroup *dst_cgrp,
4688 struct super_block *sb)
4690 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4691 struct cgroup *com_cgrp = src_cgrp;
4692 int ret;
4694 lockdep_assert_held(&cgroup_mutex);
4696 /* find the common ancestor */
4697 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4698 com_cgrp = cgroup_parent(com_cgrp);
4700 /* %current should be authorized to migrate to the common ancestor */
4701 ret = cgroup_may_write(com_cgrp, sb);
4702 if (ret)
4703 return ret;
4706 * If namespaces are delegation boundaries, %current must be able
4707 * to see both source and destination cgroups from its namespace.
4709 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4710 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4711 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4712 return -ENOENT;
4714 return 0;
4717 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4718 struct cgroup *dst_cgrp,
4719 struct super_block *sb, bool threadgroup)
4721 int ret = 0;
4723 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4724 if (ret)
4725 return ret;
4727 ret = cgroup_migrate_vet_dst(dst_cgrp);
4728 if (ret)
4729 return ret;
4731 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4732 ret = -EOPNOTSUPP;
4734 return ret;
4737 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4738 char *buf, size_t nbytes, loff_t off)
4740 struct cgroup *src_cgrp, *dst_cgrp;
4741 struct task_struct *task;
4742 ssize_t ret;
4743 bool locked;
4745 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4746 if (!dst_cgrp)
4747 return -ENODEV;
4749 task = cgroup_procs_write_start(buf, true, &locked);
4750 ret = PTR_ERR_OR_ZERO(task);
4751 if (ret)
4752 goto out_unlock;
4754 /* find the source cgroup */
4755 spin_lock_irq(&css_set_lock);
4756 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4757 spin_unlock_irq(&css_set_lock);
4759 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4760 of->file->f_path.dentry->d_sb, true);
4761 if (ret)
4762 goto out_finish;
4764 ret = cgroup_attach_task(dst_cgrp, task, true);
4766 out_finish:
4767 cgroup_procs_write_finish(task, locked);
4768 out_unlock:
4769 cgroup_kn_unlock(of->kn);
4771 return ret ?: nbytes;
4774 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4776 return __cgroup_procs_start(s, pos, 0);
4779 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4780 char *buf, size_t nbytes, loff_t off)
4782 struct cgroup *src_cgrp, *dst_cgrp;
4783 struct task_struct *task;
4784 ssize_t ret;
4785 bool locked;
4787 buf = strstrip(buf);
4789 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4790 if (!dst_cgrp)
4791 return -ENODEV;
4793 task = cgroup_procs_write_start(buf, false, &locked);
4794 ret = PTR_ERR_OR_ZERO(task);
4795 if (ret)
4796 goto out_unlock;
4798 /* find the source cgroup */
4799 spin_lock_irq(&css_set_lock);
4800 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4801 spin_unlock_irq(&css_set_lock);
4803 /* thread migrations follow the cgroup.procs delegation rule */
4804 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4805 of->file->f_path.dentry->d_sb, false);
4806 if (ret)
4807 goto out_finish;
4809 ret = cgroup_attach_task(dst_cgrp, task, false);
4811 out_finish:
4812 cgroup_procs_write_finish(task, locked);
4813 out_unlock:
4814 cgroup_kn_unlock(of->kn);
4816 return ret ?: nbytes;
4819 /* cgroup core interface files for the default hierarchy */
4820 static struct cftype cgroup_base_files[] = {
4822 .name = "cgroup.type",
4823 .flags = CFTYPE_NOT_ON_ROOT,
4824 .seq_show = cgroup_type_show,
4825 .write = cgroup_type_write,
4828 .name = "cgroup.procs",
4829 .flags = CFTYPE_NS_DELEGATABLE,
4830 .file_offset = offsetof(struct cgroup, procs_file),
4831 .release = cgroup_procs_release,
4832 .seq_start = cgroup_procs_start,
4833 .seq_next = cgroup_procs_next,
4834 .seq_show = cgroup_procs_show,
4835 .write = cgroup_procs_write,
4838 .name = "cgroup.threads",
4839 .flags = CFTYPE_NS_DELEGATABLE,
4840 .release = cgroup_procs_release,
4841 .seq_start = cgroup_threads_start,
4842 .seq_next = cgroup_procs_next,
4843 .seq_show = cgroup_procs_show,
4844 .write = cgroup_threads_write,
4847 .name = "cgroup.controllers",
4848 .seq_show = cgroup_controllers_show,
4851 .name = "cgroup.subtree_control",
4852 .flags = CFTYPE_NS_DELEGATABLE,
4853 .seq_show = cgroup_subtree_control_show,
4854 .write = cgroup_subtree_control_write,
4857 .name = "cgroup.events",
4858 .flags = CFTYPE_NOT_ON_ROOT,
4859 .file_offset = offsetof(struct cgroup, events_file),
4860 .seq_show = cgroup_events_show,
4863 .name = "cgroup.max.descendants",
4864 .seq_show = cgroup_max_descendants_show,
4865 .write = cgroup_max_descendants_write,
4868 .name = "cgroup.max.depth",
4869 .seq_show = cgroup_max_depth_show,
4870 .write = cgroup_max_depth_write,
4873 .name = "cgroup.stat",
4874 .seq_show = cgroup_stat_show,
4877 .name = "cgroup.freeze",
4878 .flags = CFTYPE_NOT_ON_ROOT,
4879 .seq_show = cgroup_freeze_show,
4880 .write = cgroup_freeze_write,
4883 .name = "cpu.stat",
4884 .flags = CFTYPE_NOT_ON_ROOT,
4885 .seq_show = cpu_stat_show,
4887 #ifdef CONFIG_PSI
4889 .name = "io.pressure",
4890 .seq_show = cgroup_io_pressure_show,
4891 .write = cgroup_io_pressure_write,
4892 .poll = cgroup_pressure_poll,
4893 .release = cgroup_pressure_release,
4896 .name = "memory.pressure",
4897 .seq_show = cgroup_memory_pressure_show,
4898 .write = cgroup_memory_pressure_write,
4899 .poll = cgroup_pressure_poll,
4900 .release = cgroup_pressure_release,
4903 .name = "cpu.pressure",
4904 .seq_show = cgroup_cpu_pressure_show,
4905 .write = cgroup_cpu_pressure_write,
4906 .poll = cgroup_pressure_poll,
4907 .release = cgroup_pressure_release,
4909 #endif /* CONFIG_PSI */
4910 { } /* terminate */
4914 * css destruction is four-stage process.
4916 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4917 * Implemented in kill_css().
4919 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4920 * and thus css_tryget_online() is guaranteed to fail, the css can be
4921 * offlined by invoking offline_css(). After offlining, the base ref is
4922 * put. Implemented in css_killed_work_fn().
4924 * 3. When the percpu_ref reaches zero, the only possible remaining
4925 * accessors are inside RCU read sections. css_release() schedules the
4926 * RCU callback.
4928 * 4. After the grace period, the css can be freed. Implemented in
4929 * css_free_work_fn().
4931 * It is actually hairier because both step 2 and 4 require process context
4932 * and thus involve punting to css->destroy_work adding two additional
4933 * steps to the already complex sequence.
4935 static void css_free_rwork_fn(struct work_struct *work)
4937 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4938 struct cgroup_subsys_state, destroy_rwork);
4939 struct cgroup_subsys *ss = css->ss;
4940 struct cgroup *cgrp = css->cgroup;
4942 percpu_ref_exit(&css->refcnt);
4944 if (ss) {
4945 /* css free path */
4946 struct cgroup_subsys_state *parent = css->parent;
4947 int id = css->id;
4949 ss->css_free(css);
4950 cgroup_idr_remove(&ss->css_idr, id);
4951 cgroup_put(cgrp);
4953 if (parent)
4954 css_put(parent);
4955 } else {
4956 /* cgroup free path */
4957 atomic_dec(&cgrp->root->nr_cgrps);
4958 cgroup1_pidlist_destroy_all(cgrp);
4959 cancel_work_sync(&cgrp->release_agent_work);
4961 if (cgroup_parent(cgrp)) {
4963 * We get a ref to the parent, and put the ref when
4964 * this cgroup is being freed, so it's guaranteed
4965 * that the parent won't be destroyed before its
4966 * children.
4968 cgroup_put(cgroup_parent(cgrp));
4969 kernfs_put(cgrp->kn);
4970 psi_cgroup_free(cgrp);
4971 if (cgroup_on_dfl(cgrp))
4972 cgroup_rstat_exit(cgrp);
4973 kfree(cgrp);
4974 } else {
4976 * This is root cgroup's refcnt reaching zero,
4977 * which indicates that the root should be
4978 * released.
4980 cgroup_destroy_root(cgrp->root);
4985 static void css_release_work_fn(struct work_struct *work)
4987 struct cgroup_subsys_state *css =
4988 container_of(work, struct cgroup_subsys_state, destroy_work);
4989 struct cgroup_subsys *ss = css->ss;
4990 struct cgroup *cgrp = css->cgroup;
4992 mutex_lock(&cgroup_mutex);
4994 css->flags |= CSS_RELEASED;
4995 list_del_rcu(&css->sibling);
4997 if (ss) {
4998 /* css release path */
4999 if (!list_empty(&css->rstat_css_node)) {
5000 cgroup_rstat_flush(cgrp);
5001 list_del_rcu(&css->rstat_css_node);
5004 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5005 if (ss->css_released)
5006 ss->css_released(css);
5007 } else {
5008 struct cgroup *tcgrp;
5010 /* cgroup release path */
5011 TRACE_CGROUP_PATH(release, cgrp);
5013 if (cgroup_on_dfl(cgrp))
5014 cgroup_rstat_flush(cgrp);
5016 spin_lock_irq(&css_set_lock);
5017 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5018 tcgrp = cgroup_parent(tcgrp))
5019 tcgrp->nr_dying_descendants--;
5020 spin_unlock_irq(&css_set_lock);
5023 * There are two control paths which try to determine
5024 * cgroup from dentry without going through kernfs -
5025 * cgroupstats_build() and css_tryget_online_from_dir().
5026 * Those are supported by RCU protecting clearing of
5027 * cgrp->kn->priv backpointer.
5029 if (cgrp->kn)
5030 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5031 NULL);
5034 mutex_unlock(&cgroup_mutex);
5036 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5037 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5040 static void css_release(struct percpu_ref *ref)
5042 struct cgroup_subsys_state *css =
5043 container_of(ref, struct cgroup_subsys_state, refcnt);
5045 INIT_WORK(&css->destroy_work, css_release_work_fn);
5046 queue_work(cgroup_destroy_wq, &css->destroy_work);
5049 static void init_and_link_css(struct cgroup_subsys_state *css,
5050 struct cgroup_subsys *ss, struct cgroup *cgrp)
5052 lockdep_assert_held(&cgroup_mutex);
5054 cgroup_get_live(cgrp);
5056 memset(css, 0, sizeof(*css));
5057 css->cgroup = cgrp;
5058 css->ss = ss;
5059 css->id = -1;
5060 INIT_LIST_HEAD(&css->sibling);
5061 INIT_LIST_HEAD(&css->children);
5062 INIT_LIST_HEAD(&css->rstat_css_node);
5063 css->serial_nr = css_serial_nr_next++;
5064 atomic_set(&css->online_cnt, 0);
5066 if (cgroup_parent(cgrp)) {
5067 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5068 css_get(css->parent);
5071 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5072 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5074 BUG_ON(cgroup_css(cgrp, ss));
5077 /* invoke ->css_online() on a new CSS and mark it online if successful */
5078 static int online_css(struct cgroup_subsys_state *css)
5080 struct cgroup_subsys *ss = css->ss;
5081 int ret = 0;
5083 lockdep_assert_held(&cgroup_mutex);
5085 if (ss->css_online)
5086 ret = ss->css_online(css);
5087 if (!ret) {
5088 css->flags |= CSS_ONLINE;
5089 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5091 atomic_inc(&css->online_cnt);
5092 if (css->parent)
5093 atomic_inc(&css->parent->online_cnt);
5095 return ret;
5098 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5099 static void offline_css(struct cgroup_subsys_state *css)
5101 struct cgroup_subsys *ss = css->ss;
5103 lockdep_assert_held(&cgroup_mutex);
5105 if (!(css->flags & CSS_ONLINE))
5106 return;
5108 if (ss->css_offline)
5109 ss->css_offline(css);
5111 css->flags &= ~CSS_ONLINE;
5112 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5114 wake_up_all(&css->cgroup->offline_waitq);
5118 * css_create - create a cgroup_subsys_state
5119 * @cgrp: the cgroup new css will be associated with
5120 * @ss: the subsys of new css
5122 * Create a new css associated with @cgrp - @ss pair. On success, the new
5123 * css is online and installed in @cgrp. This function doesn't create the
5124 * interface files. Returns 0 on success, -errno on failure.
5126 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5127 struct cgroup_subsys *ss)
5129 struct cgroup *parent = cgroup_parent(cgrp);
5130 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5131 struct cgroup_subsys_state *css;
5132 int err;
5134 lockdep_assert_held(&cgroup_mutex);
5136 css = ss->css_alloc(parent_css);
5137 if (!css)
5138 css = ERR_PTR(-ENOMEM);
5139 if (IS_ERR(css))
5140 return css;
5142 init_and_link_css(css, ss, cgrp);
5144 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5145 if (err)
5146 goto err_free_css;
5148 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5149 if (err < 0)
5150 goto err_free_css;
5151 css->id = err;
5153 /* @css is ready to be brought online now, make it visible */
5154 list_add_tail_rcu(&css->sibling, &parent_css->children);
5155 cgroup_idr_replace(&ss->css_idr, css, css->id);
5157 err = online_css(css);
5158 if (err)
5159 goto err_list_del;
5161 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5162 cgroup_parent(parent)) {
5163 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5164 current->comm, current->pid, ss->name);
5165 if (!strcmp(ss->name, "memory"))
5166 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5167 ss->warned_broken_hierarchy = true;
5170 return css;
5172 err_list_del:
5173 list_del_rcu(&css->sibling);
5174 err_free_css:
5175 list_del_rcu(&css->rstat_css_node);
5176 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5177 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5178 return ERR_PTR(err);
5182 * The returned cgroup is fully initialized including its control mask, but
5183 * it isn't associated with its kernfs_node and doesn't have the control
5184 * mask applied.
5186 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5187 umode_t mode)
5189 struct cgroup_root *root = parent->root;
5190 struct cgroup *cgrp, *tcgrp;
5191 struct kernfs_node *kn;
5192 int level = parent->level + 1;
5193 int ret;
5195 /* allocate the cgroup and its ID, 0 is reserved for the root */
5196 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5197 GFP_KERNEL);
5198 if (!cgrp)
5199 return ERR_PTR(-ENOMEM);
5201 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5202 if (ret)
5203 goto out_free_cgrp;
5205 if (cgroup_on_dfl(parent)) {
5206 ret = cgroup_rstat_init(cgrp);
5207 if (ret)
5208 goto out_cancel_ref;
5211 /* create the directory */
5212 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5213 if (IS_ERR(kn)) {
5214 ret = PTR_ERR(kn);
5215 goto out_stat_exit;
5217 cgrp->kn = kn;
5219 init_cgroup_housekeeping(cgrp);
5221 cgrp->self.parent = &parent->self;
5222 cgrp->root = root;
5223 cgrp->level = level;
5225 ret = psi_cgroup_alloc(cgrp);
5226 if (ret)
5227 goto out_kernfs_remove;
5229 ret = cgroup_bpf_inherit(cgrp);
5230 if (ret)
5231 goto out_psi_free;
5234 * New cgroup inherits effective freeze counter, and
5235 * if the parent has to be frozen, the child has too.
5237 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5238 if (cgrp->freezer.e_freeze) {
5240 * Set the CGRP_FREEZE flag, so when a process will be
5241 * attached to the child cgroup, it will become frozen.
5242 * At this point the new cgroup is unpopulated, so we can
5243 * consider it frozen immediately.
5245 set_bit(CGRP_FREEZE, &cgrp->flags);
5246 set_bit(CGRP_FROZEN, &cgrp->flags);
5249 spin_lock_irq(&css_set_lock);
5250 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5251 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5253 if (tcgrp != cgrp) {
5254 tcgrp->nr_descendants++;
5257 * If the new cgroup is frozen, all ancestor cgroups
5258 * get a new frozen descendant, but their state can't
5259 * change because of this.
5261 if (cgrp->freezer.e_freeze)
5262 tcgrp->freezer.nr_frozen_descendants++;
5265 spin_unlock_irq(&css_set_lock);
5267 if (notify_on_release(parent))
5268 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5270 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5271 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5273 cgrp->self.serial_nr = css_serial_nr_next++;
5275 /* allocation complete, commit to creation */
5276 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5277 atomic_inc(&root->nr_cgrps);
5278 cgroup_get_live(parent);
5281 * On the default hierarchy, a child doesn't automatically inherit
5282 * subtree_control from the parent. Each is configured manually.
5284 if (!cgroup_on_dfl(cgrp))
5285 cgrp->subtree_control = cgroup_control(cgrp);
5287 cgroup_propagate_control(cgrp);
5289 return cgrp;
5291 out_psi_free:
5292 psi_cgroup_free(cgrp);
5293 out_kernfs_remove:
5294 kernfs_remove(cgrp->kn);
5295 out_stat_exit:
5296 if (cgroup_on_dfl(parent))
5297 cgroup_rstat_exit(cgrp);
5298 out_cancel_ref:
5299 percpu_ref_exit(&cgrp->self.refcnt);
5300 out_free_cgrp:
5301 kfree(cgrp);
5302 return ERR_PTR(ret);
5305 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5307 struct cgroup *cgroup;
5308 int ret = false;
5309 int level = 1;
5311 lockdep_assert_held(&cgroup_mutex);
5313 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5314 if (cgroup->nr_descendants >= cgroup->max_descendants)
5315 goto fail;
5317 if (level > cgroup->max_depth)
5318 goto fail;
5320 level++;
5323 ret = true;
5324 fail:
5325 return ret;
5328 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5330 struct cgroup *parent, *cgrp;
5331 int ret;
5333 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5334 if (strchr(name, '\n'))
5335 return -EINVAL;
5337 parent = cgroup_kn_lock_live(parent_kn, false);
5338 if (!parent)
5339 return -ENODEV;
5341 if (!cgroup_check_hierarchy_limits(parent)) {
5342 ret = -EAGAIN;
5343 goto out_unlock;
5346 cgrp = cgroup_create(parent, name, mode);
5347 if (IS_ERR(cgrp)) {
5348 ret = PTR_ERR(cgrp);
5349 goto out_unlock;
5353 * This extra ref will be put in cgroup_free_fn() and guarantees
5354 * that @cgrp->kn is always accessible.
5356 kernfs_get(cgrp->kn);
5358 ret = cgroup_kn_set_ugid(cgrp->kn);
5359 if (ret)
5360 goto out_destroy;
5362 ret = css_populate_dir(&cgrp->self);
5363 if (ret)
5364 goto out_destroy;
5366 ret = cgroup_apply_control_enable(cgrp);
5367 if (ret)
5368 goto out_destroy;
5370 TRACE_CGROUP_PATH(mkdir, cgrp);
5372 /* let's create and online css's */
5373 kernfs_activate(cgrp->kn);
5375 ret = 0;
5376 goto out_unlock;
5378 out_destroy:
5379 cgroup_destroy_locked(cgrp);
5380 out_unlock:
5381 cgroup_kn_unlock(parent_kn);
5382 return ret;
5386 * This is called when the refcnt of a css is confirmed to be killed.
5387 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5388 * initate destruction and put the css ref from kill_css().
5390 static void css_killed_work_fn(struct work_struct *work)
5392 struct cgroup_subsys_state *css =
5393 container_of(work, struct cgroup_subsys_state, destroy_work);
5395 mutex_lock(&cgroup_mutex);
5397 do {
5398 offline_css(css);
5399 css_put(css);
5400 /* @css can't go away while we're holding cgroup_mutex */
5401 css = css->parent;
5402 } while (css && atomic_dec_and_test(&css->online_cnt));
5404 mutex_unlock(&cgroup_mutex);
5407 /* css kill confirmation processing requires process context, bounce */
5408 static void css_killed_ref_fn(struct percpu_ref *ref)
5410 struct cgroup_subsys_state *css =
5411 container_of(ref, struct cgroup_subsys_state, refcnt);
5413 if (atomic_dec_and_test(&css->online_cnt)) {
5414 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5415 queue_work(cgroup_destroy_wq, &css->destroy_work);
5420 * kill_css - destroy a css
5421 * @css: css to destroy
5423 * This function initiates destruction of @css by removing cgroup interface
5424 * files and putting its base reference. ->css_offline() will be invoked
5425 * asynchronously once css_tryget_online() is guaranteed to fail and when
5426 * the reference count reaches zero, @css will be released.
5428 static void kill_css(struct cgroup_subsys_state *css)
5430 lockdep_assert_held(&cgroup_mutex);
5432 if (css->flags & CSS_DYING)
5433 return;
5435 css->flags |= CSS_DYING;
5438 * This must happen before css is disassociated with its cgroup.
5439 * See seq_css() for details.
5441 css_clear_dir(css);
5444 * Killing would put the base ref, but we need to keep it alive
5445 * until after ->css_offline().
5447 css_get(css);
5450 * cgroup core guarantees that, by the time ->css_offline() is
5451 * invoked, no new css reference will be given out via
5452 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5453 * proceed to offlining css's because percpu_ref_kill() doesn't
5454 * guarantee that the ref is seen as killed on all CPUs on return.
5456 * Use percpu_ref_kill_and_confirm() to get notifications as each
5457 * css is confirmed to be seen as killed on all CPUs.
5459 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5463 * cgroup_destroy_locked - the first stage of cgroup destruction
5464 * @cgrp: cgroup to be destroyed
5466 * css's make use of percpu refcnts whose killing latency shouldn't be
5467 * exposed to userland and are RCU protected. Also, cgroup core needs to
5468 * guarantee that css_tryget_online() won't succeed by the time
5469 * ->css_offline() is invoked. To satisfy all the requirements,
5470 * destruction is implemented in the following two steps.
5472 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5473 * userland visible parts and start killing the percpu refcnts of
5474 * css's. Set up so that the next stage will be kicked off once all
5475 * the percpu refcnts are confirmed to be killed.
5477 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5478 * rest of destruction. Once all cgroup references are gone, the
5479 * cgroup is RCU-freed.
5481 * This function implements s1. After this step, @cgrp is gone as far as
5482 * the userland is concerned and a new cgroup with the same name may be
5483 * created. As cgroup doesn't care about the names internally, this
5484 * doesn't cause any problem.
5486 static int cgroup_destroy_locked(struct cgroup *cgrp)
5487 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5489 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5490 struct cgroup_subsys_state *css;
5491 struct cgrp_cset_link *link;
5492 int ssid;
5494 lockdep_assert_held(&cgroup_mutex);
5497 * Only migration can raise populated from zero and we're already
5498 * holding cgroup_mutex.
5500 if (cgroup_is_populated(cgrp))
5501 return -EBUSY;
5504 * Make sure there's no live children. We can't test emptiness of
5505 * ->self.children as dead children linger on it while being
5506 * drained; otherwise, "rmdir parent/child parent" may fail.
5508 if (css_has_online_children(&cgrp->self))
5509 return -EBUSY;
5512 * Mark @cgrp and the associated csets dead. The former prevents
5513 * further task migration and child creation by disabling
5514 * cgroup_lock_live_group(). The latter makes the csets ignored by
5515 * the migration path.
5517 cgrp->self.flags &= ~CSS_ONLINE;
5519 spin_lock_irq(&css_set_lock);
5520 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5521 link->cset->dead = true;
5522 spin_unlock_irq(&css_set_lock);
5524 /* initiate massacre of all css's */
5525 for_each_css(css, ssid, cgrp)
5526 kill_css(css);
5528 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5529 css_clear_dir(&cgrp->self);
5530 kernfs_remove(cgrp->kn);
5532 if (parent && cgroup_is_threaded(cgrp))
5533 parent->nr_threaded_children--;
5535 spin_lock_irq(&css_set_lock);
5536 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5537 tcgrp->nr_descendants--;
5538 tcgrp->nr_dying_descendants++;
5540 * If the dying cgroup is frozen, decrease frozen descendants
5541 * counters of ancestor cgroups.
5543 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5544 tcgrp->freezer.nr_frozen_descendants--;
5546 spin_unlock_irq(&css_set_lock);
5548 cgroup1_check_for_release(parent);
5550 cgroup_bpf_offline(cgrp);
5552 /* put the base reference */
5553 percpu_ref_kill(&cgrp->self.refcnt);
5555 return 0;
5558 int cgroup_rmdir(struct kernfs_node *kn)
5560 struct cgroup *cgrp;
5561 int ret = 0;
5563 cgrp = cgroup_kn_lock_live(kn, false);
5564 if (!cgrp)
5565 return 0;
5567 ret = cgroup_destroy_locked(cgrp);
5568 if (!ret)
5569 TRACE_CGROUP_PATH(rmdir, cgrp);
5571 cgroup_kn_unlock(kn);
5572 return ret;
5575 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5576 .show_options = cgroup_show_options,
5577 .mkdir = cgroup_mkdir,
5578 .rmdir = cgroup_rmdir,
5579 .show_path = cgroup_show_path,
5582 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5584 struct cgroup_subsys_state *css;
5586 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5588 mutex_lock(&cgroup_mutex);
5590 idr_init(&ss->css_idr);
5591 INIT_LIST_HEAD(&ss->cfts);
5593 /* Create the root cgroup state for this subsystem */
5594 ss->root = &cgrp_dfl_root;
5595 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5596 /* We don't handle early failures gracefully */
5597 BUG_ON(IS_ERR(css));
5598 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5601 * Root csses are never destroyed and we can't initialize
5602 * percpu_ref during early init. Disable refcnting.
5604 css->flags |= CSS_NO_REF;
5606 if (early) {
5607 /* allocation can't be done safely during early init */
5608 css->id = 1;
5609 } else {
5610 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5611 BUG_ON(css->id < 0);
5614 /* Update the init_css_set to contain a subsys
5615 * pointer to this state - since the subsystem is
5616 * newly registered, all tasks and hence the
5617 * init_css_set is in the subsystem's root cgroup. */
5618 init_css_set.subsys[ss->id] = css;
5620 have_fork_callback |= (bool)ss->fork << ss->id;
5621 have_exit_callback |= (bool)ss->exit << ss->id;
5622 have_release_callback |= (bool)ss->release << ss->id;
5623 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5625 /* At system boot, before all subsystems have been
5626 * registered, no tasks have been forked, so we don't
5627 * need to invoke fork callbacks here. */
5628 BUG_ON(!list_empty(&init_task.tasks));
5630 BUG_ON(online_css(css));
5632 mutex_unlock(&cgroup_mutex);
5636 * cgroup_init_early - cgroup initialization at system boot
5638 * Initialize cgroups at system boot, and initialize any
5639 * subsystems that request early init.
5641 int __init cgroup_init_early(void)
5643 static struct cgroup_fs_context __initdata ctx;
5644 struct cgroup_subsys *ss;
5645 int i;
5647 ctx.root = &cgrp_dfl_root;
5648 init_cgroup_root(&ctx);
5649 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5651 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5653 for_each_subsys(ss, i) {
5654 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5655 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5656 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5657 ss->id, ss->name);
5658 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5659 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5661 ss->id = i;
5662 ss->name = cgroup_subsys_name[i];
5663 if (!ss->legacy_name)
5664 ss->legacy_name = cgroup_subsys_name[i];
5666 if (ss->early_init)
5667 cgroup_init_subsys(ss, true);
5669 return 0;
5672 static u16 cgroup_disable_mask __initdata;
5675 * cgroup_init - cgroup initialization
5677 * Register cgroup filesystem and /proc file, and initialize
5678 * any subsystems that didn't request early init.
5680 int __init cgroup_init(void)
5682 struct cgroup_subsys *ss;
5683 int ssid;
5685 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5686 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5687 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5689 cgroup_rstat_boot();
5692 * The latency of the synchronize_rcu() is too high for cgroups,
5693 * avoid it at the cost of forcing all readers into the slow path.
5695 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5697 get_user_ns(init_cgroup_ns.user_ns);
5699 mutex_lock(&cgroup_mutex);
5702 * Add init_css_set to the hash table so that dfl_root can link to
5703 * it during init.
5705 hash_add(css_set_table, &init_css_set.hlist,
5706 css_set_hash(init_css_set.subsys));
5708 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5710 mutex_unlock(&cgroup_mutex);
5712 for_each_subsys(ss, ssid) {
5713 if (ss->early_init) {
5714 struct cgroup_subsys_state *css =
5715 init_css_set.subsys[ss->id];
5717 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5718 GFP_KERNEL);
5719 BUG_ON(css->id < 0);
5720 } else {
5721 cgroup_init_subsys(ss, false);
5724 list_add_tail(&init_css_set.e_cset_node[ssid],
5725 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5728 * Setting dfl_root subsys_mask needs to consider the
5729 * disabled flag and cftype registration needs kmalloc,
5730 * both of which aren't available during early_init.
5732 if (cgroup_disable_mask & (1 << ssid)) {
5733 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5734 printk(KERN_INFO "Disabling %s control group subsystem\n",
5735 ss->name);
5736 continue;
5739 if (cgroup1_ssid_disabled(ssid))
5740 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5741 ss->name);
5743 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5745 /* implicit controllers must be threaded too */
5746 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5748 if (ss->implicit_on_dfl)
5749 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5750 else if (!ss->dfl_cftypes)
5751 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5753 if (ss->threaded)
5754 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5756 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5757 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5758 } else {
5759 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5760 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5763 if (ss->bind)
5764 ss->bind(init_css_set.subsys[ssid]);
5766 mutex_lock(&cgroup_mutex);
5767 css_populate_dir(init_css_set.subsys[ssid]);
5768 mutex_unlock(&cgroup_mutex);
5771 /* init_css_set.subsys[] has been updated, re-hash */
5772 hash_del(&init_css_set.hlist);
5773 hash_add(css_set_table, &init_css_set.hlist,
5774 css_set_hash(init_css_set.subsys));
5776 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5777 WARN_ON(register_filesystem(&cgroup_fs_type));
5778 WARN_ON(register_filesystem(&cgroup2_fs_type));
5779 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5780 #ifdef CONFIG_CPUSETS
5781 WARN_ON(register_filesystem(&cpuset_fs_type));
5782 #endif
5784 return 0;
5787 static int __init cgroup_wq_init(void)
5790 * There isn't much point in executing destruction path in
5791 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5792 * Use 1 for @max_active.
5794 * We would prefer to do this in cgroup_init() above, but that
5795 * is called before init_workqueues(): so leave this until after.
5797 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5798 BUG_ON(!cgroup_destroy_wq);
5799 return 0;
5801 core_initcall(cgroup_wq_init);
5803 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5805 struct kernfs_node *kn;
5807 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5808 if (!kn)
5809 return;
5810 kernfs_path(kn, buf, buflen);
5811 kernfs_put(kn);
5815 * proc_cgroup_show()
5816 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5817 * - Used for /proc/<pid>/cgroup.
5819 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5820 struct pid *pid, struct task_struct *tsk)
5822 char *buf;
5823 int retval;
5824 struct cgroup_root *root;
5826 retval = -ENOMEM;
5827 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5828 if (!buf)
5829 goto out;
5831 mutex_lock(&cgroup_mutex);
5832 spin_lock_irq(&css_set_lock);
5834 for_each_root(root) {
5835 struct cgroup_subsys *ss;
5836 struct cgroup *cgrp;
5837 int ssid, count = 0;
5839 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5840 continue;
5842 seq_printf(m, "%d:", root->hierarchy_id);
5843 if (root != &cgrp_dfl_root)
5844 for_each_subsys(ss, ssid)
5845 if (root->subsys_mask & (1 << ssid))
5846 seq_printf(m, "%s%s", count++ ? "," : "",
5847 ss->legacy_name);
5848 if (strlen(root->name))
5849 seq_printf(m, "%sname=%s", count ? "," : "",
5850 root->name);
5851 seq_putc(m, ':');
5853 cgrp = task_cgroup_from_root(tsk, root);
5856 * On traditional hierarchies, all zombie tasks show up as
5857 * belonging to the root cgroup. On the default hierarchy,
5858 * while a zombie doesn't show up in "cgroup.procs" and
5859 * thus can't be migrated, its /proc/PID/cgroup keeps
5860 * reporting the cgroup it belonged to before exiting. If
5861 * the cgroup is removed before the zombie is reaped,
5862 * " (deleted)" is appended to the cgroup path.
5864 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5865 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5866 current->nsproxy->cgroup_ns);
5867 if (retval >= PATH_MAX)
5868 retval = -ENAMETOOLONG;
5869 if (retval < 0)
5870 goto out_unlock;
5872 seq_puts(m, buf);
5873 } else {
5874 seq_puts(m, "/");
5877 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5878 seq_puts(m, " (deleted)\n");
5879 else
5880 seq_putc(m, '\n');
5883 retval = 0;
5884 out_unlock:
5885 spin_unlock_irq(&css_set_lock);
5886 mutex_unlock(&cgroup_mutex);
5887 kfree(buf);
5888 out:
5889 return retval;
5893 * cgroup_fork - initialize cgroup related fields during copy_process()
5894 * @child: pointer to task_struct of forking parent process.
5896 * A task is associated with the init_css_set until cgroup_post_fork()
5897 * attaches it to the target css_set.
5899 void cgroup_fork(struct task_struct *child)
5901 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5902 INIT_LIST_HEAD(&child->cg_list);
5905 static struct cgroup *cgroup_get_from_file(struct file *f)
5907 struct cgroup_subsys_state *css;
5908 struct cgroup *cgrp;
5910 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5911 if (IS_ERR(css))
5912 return ERR_CAST(css);
5914 cgrp = css->cgroup;
5915 if (!cgroup_on_dfl(cgrp)) {
5916 cgroup_put(cgrp);
5917 return ERR_PTR(-EBADF);
5920 return cgrp;
5924 * cgroup_css_set_fork - find or create a css_set for a child process
5925 * @kargs: the arguments passed to create the child process
5927 * This functions finds or creates a new css_set which the child
5928 * process will be attached to in cgroup_post_fork(). By default,
5929 * the child process will be given the same css_set as its parent.
5931 * If CLONE_INTO_CGROUP is specified this function will try to find an
5932 * existing css_set which includes the requested cgroup and if not create
5933 * a new css_set that the child will be attached to later. If this function
5934 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5935 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5936 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5937 * to the target cgroup.
5939 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5940 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5942 int ret;
5943 struct cgroup *dst_cgrp = NULL;
5944 struct css_set *cset;
5945 struct super_block *sb;
5946 struct file *f;
5948 if (kargs->flags & CLONE_INTO_CGROUP)
5949 mutex_lock(&cgroup_mutex);
5951 cgroup_threadgroup_change_begin(current);
5953 spin_lock_irq(&css_set_lock);
5954 cset = task_css_set(current);
5955 get_css_set(cset);
5956 spin_unlock_irq(&css_set_lock);
5958 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
5959 kargs->cset = cset;
5960 return 0;
5963 f = fget_raw(kargs->cgroup);
5964 if (!f) {
5965 ret = -EBADF;
5966 goto err;
5968 sb = f->f_path.dentry->d_sb;
5970 dst_cgrp = cgroup_get_from_file(f);
5971 if (IS_ERR(dst_cgrp)) {
5972 ret = PTR_ERR(dst_cgrp);
5973 dst_cgrp = NULL;
5974 goto err;
5977 if (cgroup_is_dead(dst_cgrp)) {
5978 ret = -ENODEV;
5979 goto err;
5983 * Verify that we the target cgroup is writable for us. This is
5984 * usually done by the vfs layer but since we're not going through
5985 * the vfs layer here we need to do it "manually".
5987 ret = cgroup_may_write(dst_cgrp, sb);
5988 if (ret)
5989 goto err;
5991 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
5992 !(kargs->flags & CLONE_THREAD));
5993 if (ret)
5994 goto err;
5996 kargs->cset = find_css_set(cset, dst_cgrp);
5997 if (!kargs->cset) {
5998 ret = -ENOMEM;
5999 goto err;
6002 put_css_set(cset);
6003 fput(f);
6004 kargs->cgrp = dst_cgrp;
6005 return ret;
6007 err:
6008 cgroup_threadgroup_change_end(current);
6009 mutex_unlock(&cgroup_mutex);
6010 if (f)
6011 fput(f);
6012 if (dst_cgrp)
6013 cgroup_put(dst_cgrp);
6014 put_css_set(cset);
6015 if (kargs->cset)
6016 put_css_set(kargs->cset);
6017 return ret;
6021 * cgroup_css_set_put_fork - drop references we took during fork
6022 * @kargs: the arguments passed to create the child process
6024 * Drop references to the prepared css_set and target cgroup if
6025 * CLONE_INTO_CGROUP was requested.
6027 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6028 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6030 cgroup_threadgroup_change_end(current);
6032 if (kargs->flags & CLONE_INTO_CGROUP) {
6033 struct cgroup *cgrp = kargs->cgrp;
6034 struct css_set *cset = kargs->cset;
6036 mutex_unlock(&cgroup_mutex);
6038 if (cset) {
6039 put_css_set(cset);
6040 kargs->cset = NULL;
6043 if (cgrp) {
6044 cgroup_put(cgrp);
6045 kargs->cgrp = NULL;
6051 * cgroup_can_fork - called on a new task before the process is exposed
6052 * @child: the child process
6054 * This prepares a new css_set for the child process which the child will
6055 * be attached to in cgroup_post_fork().
6056 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6057 * callback returns an error, the fork aborts with that error code. This
6058 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6060 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6062 struct cgroup_subsys *ss;
6063 int i, j, ret;
6065 ret = cgroup_css_set_fork(kargs);
6066 if (ret)
6067 return ret;
6069 do_each_subsys_mask(ss, i, have_canfork_callback) {
6070 ret = ss->can_fork(child, kargs->cset);
6071 if (ret)
6072 goto out_revert;
6073 } while_each_subsys_mask();
6075 return 0;
6077 out_revert:
6078 for_each_subsys(ss, j) {
6079 if (j >= i)
6080 break;
6081 if (ss->cancel_fork)
6082 ss->cancel_fork(child, kargs->cset);
6085 cgroup_css_set_put_fork(kargs);
6087 return ret;
6091 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6092 * @child: the child process
6093 * @kargs: the arguments passed to create the child process
6095 * This calls the cancel_fork() callbacks if a fork failed *after*
6096 * cgroup_can_fork() succeded and cleans up references we took to
6097 * prepare a new css_set for the child process in cgroup_can_fork().
6099 void cgroup_cancel_fork(struct task_struct *child,
6100 struct kernel_clone_args *kargs)
6102 struct cgroup_subsys *ss;
6103 int i;
6105 for_each_subsys(ss, i)
6106 if (ss->cancel_fork)
6107 ss->cancel_fork(child, kargs->cset);
6109 cgroup_css_set_put_fork(kargs);
6113 * cgroup_post_fork - finalize cgroup setup for the child process
6114 * @child: the child process
6116 * Attach the child process to its css_set calling the subsystem fork()
6117 * callbacks.
6119 void cgroup_post_fork(struct task_struct *child,
6120 struct kernel_clone_args *kargs)
6121 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6123 struct cgroup_subsys *ss;
6124 struct css_set *cset;
6125 int i;
6127 cset = kargs->cset;
6128 kargs->cset = NULL;
6130 spin_lock_irq(&css_set_lock);
6132 /* init tasks are special, only link regular threads */
6133 if (likely(child->pid)) {
6134 WARN_ON_ONCE(!list_empty(&child->cg_list));
6135 cset->nr_tasks++;
6136 css_set_move_task(child, NULL, cset, false);
6137 } else {
6138 put_css_set(cset);
6139 cset = NULL;
6143 * If the cgroup has to be frozen, the new task has too. Let's set
6144 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6145 * frozen state.
6147 if (unlikely(cgroup_task_freeze(child))) {
6148 spin_lock(&child->sighand->siglock);
6149 WARN_ON_ONCE(child->frozen);
6150 child->jobctl |= JOBCTL_TRAP_FREEZE;
6151 spin_unlock(&child->sighand->siglock);
6154 * Calling cgroup_update_frozen() isn't required here,
6155 * because it will be called anyway a bit later from
6156 * do_freezer_trap(). So we avoid cgroup's transient switch
6157 * from the frozen state and back.
6161 spin_unlock_irq(&css_set_lock);
6164 * Call ss->fork(). This must happen after @child is linked on
6165 * css_set; otherwise, @child might change state between ->fork()
6166 * and addition to css_set.
6168 do_each_subsys_mask(ss, i, have_fork_callback) {
6169 ss->fork(child);
6170 } while_each_subsys_mask();
6172 /* Make the new cset the root_cset of the new cgroup namespace. */
6173 if (kargs->flags & CLONE_NEWCGROUP) {
6174 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6176 get_css_set(cset);
6177 child->nsproxy->cgroup_ns->root_cset = cset;
6178 put_css_set(rcset);
6181 cgroup_css_set_put_fork(kargs);
6185 * cgroup_exit - detach cgroup from exiting task
6186 * @tsk: pointer to task_struct of exiting process
6188 * Description: Detach cgroup from @tsk.
6191 void cgroup_exit(struct task_struct *tsk)
6193 struct cgroup_subsys *ss;
6194 struct css_set *cset;
6195 int i;
6197 spin_lock_irq(&css_set_lock);
6199 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6200 cset = task_css_set(tsk);
6201 css_set_move_task(tsk, cset, NULL, false);
6202 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6203 cset->nr_tasks--;
6205 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6206 if (unlikely(cgroup_task_freeze(tsk)))
6207 cgroup_update_frozen(task_dfl_cgroup(tsk));
6209 spin_unlock_irq(&css_set_lock);
6211 /* see cgroup_post_fork() for details */
6212 do_each_subsys_mask(ss, i, have_exit_callback) {
6213 ss->exit(tsk);
6214 } while_each_subsys_mask();
6217 void cgroup_release(struct task_struct *task)
6219 struct cgroup_subsys *ss;
6220 int ssid;
6222 do_each_subsys_mask(ss, ssid, have_release_callback) {
6223 ss->release(task);
6224 } while_each_subsys_mask();
6226 spin_lock_irq(&css_set_lock);
6227 css_set_skip_task_iters(task_css_set(task), task);
6228 list_del_init(&task->cg_list);
6229 spin_unlock_irq(&css_set_lock);
6232 void cgroup_free(struct task_struct *task)
6234 struct css_set *cset = task_css_set(task);
6235 put_css_set(cset);
6238 static int __init cgroup_disable(char *str)
6240 struct cgroup_subsys *ss;
6241 char *token;
6242 int i;
6244 while ((token = strsep(&str, ",")) != NULL) {
6245 if (!*token)
6246 continue;
6248 for_each_subsys(ss, i) {
6249 if (strcmp(token, ss->name) &&
6250 strcmp(token, ss->legacy_name))
6251 continue;
6252 cgroup_disable_mask |= 1 << i;
6255 return 1;
6257 __setup("cgroup_disable=", cgroup_disable);
6259 void __init __weak enable_debug_cgroup(void) { }
6261 static int __init enable_cgroup_debug(char *str)
6263 cgroup_debug = true;
6264 enable_debug_cgroup();
6265 return 1;
6267 __setup("cgroup_debug", enable_cgroup_debug);
6270 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6271 * @dentry: directory dentry of interest
6272 * @ss: subsystem of interest
6274 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6275 * to get the corresponding css and return it. If such css doesn't exist
6276 * or can't be pinned, an ERR_PTR value is returned.
6278 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6279 struct cgroup_subsys *ss)
6281 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6282 struct file_system_type *s_type = dentry->d_sb->s_type;
6283 struct cgroup_subsys_state *css = NULL;
6284 struct cgroup *cgrp;
6286 /* is @dentry a cgroup dir? */
6287 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6288 !kn || kernfs_type(kn) != KERNFS_DIR)
6289 return ERR_PTR(-EBADF);
6291 rcu_read_lock();
6294 * This path doesn't originate from kernfs and @kn could already
6295 * have been or be removed at any point. @kn->priv is RCU
6296 * protected for this access. See css_release_work_fn() for details.
6298 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6299 if (cgrp)
6300 css = cgroup_css(cgrp, ss);
6302 if (!css || !css_tryget_online(css))
6303 css = ERR_PTR(-ENOENT);
6305 rcu_read_unlock();
6306 return css;
6310 * css_from_id - lookup css by id
6311 * @id: the cgroup id
6312 * @ss: cgroup subsys to be looked into
6314 * Returns the css if there's valid one with @id, otherwise returns NULL.
6315 * Should be called under rcu_read_lock().
6317 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6319 WARN_ON_ONCE(!rcu_read_lock_held());
6320 return idr_find(&ss->css_idr, id);
6324 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6325 * @path: path on the default hierarchy
6327 * Find the cgroup at @path on the default hierarchy, increment its
6328 * reference count and return it. Returns pointer to the found cgroup on
6329 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6330 * if @path points to a non-directory.
6332 struct cgroup *cgroup_get_from_path(const char *path)
6334 struct kernfs_node *kn;
6335 struct cgroup *cgrp;
6337 mutex_lock(&cgroup_mutex);
6339 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6340 if (kn) {
6341 if (kernfs_type(kn) == KERNFS_DIR) {
6342 cgrp = kn->priv;
6343 cgroup_get_live(cgrp);
6344 } else {
6345 cgrp = ERR_PTR(-ENOTDIR);
6347 kernfs_put(kn);
6348 } else {
6349 cgrp = ERR_PTR(-ENOENT);
6352 mutex_unlock(&cgroup_mutex);
6353 return cgrp;
6355 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6358 * cgroup_get_from_fd - get a cgroup pointer from a fd
6359 * @fd: fd obtained by open(cgroup2_dir)
6361 * Find the cgroup from a fd which should be obtained
6362 * by opening a cgroup directory. Returns a pointer to the
6363 * cgroup on success. ERR_PTR is returned if the cgroup
6364 * cannot be found.
6366 struct cgroup *cgroup_get_from_fd(int fd)
6368 struct cgroup *cgrp;
6369 struct file *f;
6371 f = fget_raw(fd);
6372 if (!f)
6373 return ERR_PTR(-EBADF);
6375 cgrp = cgroup_get_from_file(f);
6376 fput(f);
6377 return cgrp;
6379 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6381 static u64 power_of_ten(int power)
6383 u64 v = 1;
6384 while (power--)
6385 v *= 10;
6386 return v;
6390 * cgroup_parse_float - parse a floating number
6391 * @input: input string
6392 * @dec_shift: number of decimal digits to shift
6393 * @v: output
6395 * Parse a decimal floating point number in @input and store the result in
6396 * @v with decimal point right shifted @dec_shift times. For example, if
6397 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6398 * Returns 0 on success, -errno otherwise.
6400 * There's nothing cgroup specific about this function except that it's
6401 * currently the only user.
6403 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6405 s64 whole, frac = 0;
6406 int fstart = 0, fend = 0, flen;
6408 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6409 return -EINVAL;
6410 if (frac < 0)
6411 return -EINVAL;
6413 flen = fend > fstart ? fend - fstart : 0;
6414 if (flen < dec_shift)
6415 frac *= power_of_ten(dec_shift - flen);
6416 else
6417 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6419 *v = whole * power_of_ten(dec_shift) + frac;
6420 return 0;
6424 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6425 * definition in cgroup-defs.h.
6427 #ifdef CONFIG_SOCK_CGROUP_DATA
6429 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6431 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6432 static bool cgroup_sk_alloc_disabled __read_mostly;
6434 void cgroup_sk_alloc_disable(void)
6436 if (cgroup_sk_alloc_disabled)
6437 return;
6438 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6439 cgroup_sk_alloc_disabled = true;
6442 #else
6444 #define cgroup_sk_alloc_disabled false
6446 #endif
6448 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6450 if (cgroup_sk_alloc_disabled)
6451 return;
6453 /* Socket clone path */
6454 if (skcd->val) {
6456 * We might be cloning a socket which is left in an empty
6457 * cgroup and the cgroup might have already been rmdir'd.
6458 * Don't use cgroup_get_live().
6460 cgroup_get(sock_cgroup_ptr(skcd));
6461 cgroup_bpf_get(sock_cgroup_ptr(skcd));
6462 return;
6465 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6466 if (in_interrupt())
6467 return;
6469 rcu_read_lock();
6471 while (true) {
6472 struct css_set *cset;
6474 cset = task_css_set(current);
6475 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6476 skcd->val = (unsigned long)cset->dfl_cgrp;
6477 cgroup_bpf_get(cset->dfl_cgrp);
6478 break;
6480 cpu_relax();
6483 rcu_read_unlock();
6486 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6488 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6490 cgroup_bpf_put(cgrp);
6491 cgroup_put(cgrp);
6494 #endif /* CONFIG_SOCK_CGROUP_DATA */
6496 #ifdef CONFIG_CGROUP_BPF
6497 int cgroup_bpf_attach(struct cgroup *cgrp,
6498 struct bpf_prog *prog, struct bpf_prog *replace_prog,
6499 struct bpf_cgroup_link *link,
6500 enum bpf_attach_type type,
6501 u32 flags)
6503 int ret;
6505 mutex_lock(&cgroup_mutex);
6506 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6507 mutex_unlock(&cgroup_mutex);
6508 return ret;
6511 int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *old_prog,
6512 struct bpf_prog *new_prog)
6514 struct bpf_cgroup_link *cg_link;
6515 int ret;
6517 if (link->ops != &bpf_cgroup_link_lops)
6518 return -EINVAL;
6520 cg_link = container_of(link, struct bpf_cgroup_link, link);
6522 mutex_lock(&cgroup_mutex);
6523 /* link might have been auto-released by dying cgroup, so fail */
6524 if (!cg_link->cgroup) {
6525 ret = -EINVAL;
6526 goto out_unlock;
6528 if (old_prog && link->prog != old_prog) {
6529 ret = -EPERM;
6530 goto out_unlock;
6532 ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
6533 out_unlock:
6534 mutex_unlock(&cgroup_mutex);
6535 return ret;
6538 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6539 enum bpf_attach_type type)
6541 int ret;
6543 mutex_lock(&cgroup_mutex);
6544 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6545 mutex_unlock(&cgroup_mutex);
6546 return ret;
6549 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6550 union bpf_attr __user *uattr)
6552 int ret;
6554 mutex_lock(&cgroup_mutex);
6555 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6556 mutex_unlock(&cgroup_mutex);
6557 return ret;
6559 #endif /* CONFIG_CGROUP_BPF */
6561 #ifdef CONFIG_SYSFS
6562 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6563 ssize_t size, const char *prefix)
6565 struct cftype *cft;
6566 ssize_t ret = 0;
6568 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6569 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6570 continue;
6572 if (prefix)
6573 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6575 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6577 if (WARN_ON(ret >= size))
6578 break;
6581 return ret;
6584 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6585 char *buf)
6587 struct cgroup_subsys *ss;
6588 int ssid;
6589 ssize_t ret = 0;
6591 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6592 NULL);
6594 for_each_subsys(ss, ssid)
6595 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6596 PAGE_SIZE - ret,
6597 cgroup_subsys_name[ssid]);
6599 return ret;
6601 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6603 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6604 char *buf)
6606 return snprintf(buf, PAGE_SIZE,
6607 "nsdelegate\n"
6608 "memory_localevents\n"
6609 "memory_recursiveprot\n");
6611 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6613 static struct attribute *cgroup_sysfs_attrs[] = {
6614 &cgroup_delegate_attr.attr,
6615 &cgroup_features_attr.attr,
6616 NULL,
6619 static const struct attribute_group cgroup_sysfs_attr_group = {
6620 .attrs = cgroup_sysfs_attrs,
6621 .name = "cgroup",
6624 static int __init cgroup_sysfs_init(void)
6626 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6628 subsys_initcall(cgroup_sysfs_init);
6630 #endif /* CONFIG_SYSFS */