octeontx2-pf: Fix error return code in otx2_probe()
[linux/fpc-iii.git] / kernel / kprobes.c
blob2625c241ac00f81d5385be6024b9b3062c05ecfd
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
6 * Copyright (C) IBM Corporation, 2002, 2004
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48 static int kprobes_initialized;
49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
52 /* NOTE: change this value only with kprobe_mutex held */
53 static bool kprobes_all_disarmed;
55 /* This protects kprobe_table and optimizing_list */
56 static DEFINE_MUTEX(kprobe_mutex);
57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58 static struct {
59 raw_spinlock_t lock ____cacheline_aligned_in_smp;
60 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63 unsigned int __unused)
65 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
70 return &(kretprobe_table_locks[hash].lock);
73 /* Blacklist -- list of struct kprobe_blacklist_entry */
74 static LIST_HEAD(kprobe_blacklist);
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
78 * kprobe->ainsn.insn points to the copy of the instruction to be
79 * single-stepped. x86_64, POWER4 and above have no-exec support and
80 * stepping on the instruction on a vmalloced/kmalloced/data page
81 * is a recipe for disaster
83 struct kprobe_insn_page {
84 struct list_head list;
85 kprobe_opcode_t *insns; /* Page of instruction slots */
86 struct kprobe_insn_cache *cache;
87 int nused;
88 int ngarbage;
89 char slot_used[];
92 #define KPROBE_INSN_PAGE_SIZE(slots) \
93 (offsetof(struct kprobe_insn_page, slot_used) + \
94 (sizeof(char) * (slots)))
96 static int slots_per_page(struct kprobe_insn_cache *c)
98 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
101 enum kprobe_slot_state {
102 SLOT_CLEAN = 0,
103 SLOT_DIRTY = 1,
104 SLOT_USED = 2,
107 void __weak *alloc_insn_page(void)
109 return module_alloc(PAGE_SIZE);
112 void __weak free_insn_page(void *page)
114 module_memfree(page);
117 struct kprobe_insn_cache kprobe_insn_slots = {
118 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119 .alloc = alloc_insn_page,
120 .free = free_insn_page,
121 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122 .insn_size = MAX_INSN_SIZE,
123 .nr_garbage = 0,
125 static int collect_garbage_slots(struct kprobe_insn_cache *c);
128 * __get_insn_slot() - Find a slot on an executable page for an instruction.
129 * We allocate an executable page if there's no room on existing ones.
131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
133 struct kprobe_insn_page *kip;
134 kprobe_opcode_t *slot = NULL;
136 /* Since the slot array is not protected by rcu, we need a mutex */
137 mutex_lock(&c->mutex);
138 retry:
139 rcu_read_lock();
140 list_for_each_entry_rcu(kip, &c->pages, list) {
141 if (kip->nused < slots_per_page(c)) {
142 int i;
143 for (i = 0; i < slots_per_page(c); i++) {
144 if (kip->slot_used[i] == SLOT_CLEAN) {
145 kip->slot_used[i] = SLOT_USED;
146 kip->nused++;
147 slot = kip->insns + (i * c->insn_size);
148 rcu_read_unlock();
149 goto out;
152 /* kip->nused is broken. Fix it. */
153 kip->nused = slots_per_page(c);
154 WARN_ON(1);
157 rcu_read_unlock();
159 /* If there are any garbage slots, collect it and try again. */
160 if (c->nr_garbage && collect_garbage_slots(c) == 0)
161 goto retry;
163 /* All out of space. Need to allocate a new page. */
164 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165 if (!kip)
166 goto out;
169 * Use module_alloc so this page is within +/- 2GB of where the
170 * kernel image and loaded module images reside. This is required
171 * so x86_64 can correctly handle the %rip-relative fixups.
173 kip->insns = c->alloc();
174 if (!kip->insns) {
175 kfree(kip);
176 goto out;
178 INIT_LIST_HEAD(&kip->list);
179 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180 kip->slot_used[0] = SLOT_USED;
181 kip->nused = 1;
182 kip->ngarbage = 0;
183 kip->cache = c;
184 list_add_rcu(&kip->list, &c->pages);
185 slot = kip->insns;
186 out:
187 mutex_unlock(&c->mutex);
188 return slot;
191 /* Return 1 if all garbages are collected, otherwise 0. */
192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
194 kip->slot_used[idx] = SLOT_CLEAN;
195 kip->nused--;
196 if (kip->nused == 0) {
198 * Page is no longer in use. Free it unless
199 * it's the last one. We keep the last one
200 * so as not to have to set it up again the
201 * next time somebody inserts a probe.
203 if (!list_is_singular(&kip->list)) {
204 list_del_rcu(&kip->list);
205 synchronize_rcu();
206 kip->cache->free(kip->insns);
207 kfree(kip);
209 return 1;
211 return 0;
214 static int collect_garbage_slots(struct kprobe_insn_cache *c)
216 struct kprobe_insn_page *kip, *next;
218 /* Ensure no-one is interrupted on the garbages */
219 synchronize_rcu();
221 list_for_each_entry_safe(kip, next, &c->pages, list) {
222 int i;
223 if (kip->ngarbage == 0)
224 continue;
225 kip->ngarbage = 0; /* we will collect all garbages */
226 for (i = 0; i < slots_per_page(c); i++) {
227 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228 break;
231 c->nr_garbage = 0;
232 return 0;
235 void __free_insn_slot(struct kprobe_insn_cache *c,
236 kprobe_opcode_t *slot, int dirty)
238 struct kprobe_insn_page *kip;
239 long idx;
241 mutex_lock(&c->mutex);
242 rcu_read_lock();
243 list_for_each_entry_rcu(kip, &c->pages, list) {
244 idx = ((long)slot - (long)kip->insns) /
245 (c->insn_size * sizeof(kprobe_opcode_t));
246 if (idx >= 0 && idx < slots_per_page(c))
247 goto out;
249 /* Could not find this slot. */
250 WARN_ON(1);
251 kip = NULL;
252 out:
253 rcu_read_unlock();
254 /* Mark and sweep: this may sleep */
255 if (kip) {
256 /* Check double free */
257 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 if (dirty) {
259 kip->slot_used[idx] = SLOT_DIRTY;
260 kip->ngarbage++;
261 if (++c->nr_garbage > slots_per_page(c))
262 collect_garbage_slots(c);
263 } else {
264 collect_one_slot(kip, idx);
267 mutex_unlock(&c->mutex);
271 * Check given address is on the page of kprobe instruction slots.
272 * This will be used for checking whether the address on a stack
273 * is on a text area or not.
275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
277 struct kprobe_insn_page *kip;
278 bool ret = false;
280 rcu_read_lock();
281 list_for_each_entry_rcu(kip, &c->pages, list) {
282 if (addr >= (unsigned long)kip->insns &&
283 addr < (unsigned long)kip->insns + PAGE_SIZE) {
284 ret = true;
285 break;
288 rcu_read_unlock();
290 return ret;
293 #ifdef CONFIG_OPTPROBES
294 /* For optimized_kprobe buffer */
295 struct kprobe_insn_cache kprobe_optinsn_slots = {
296 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297 .alloc = alloc_insn_page,
298 .free = free_insn_page,
299 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300 /* .insn_size is initialized later */
301 .nr_garbage = 0,
303 #endif
304 #endif
306 /* We have preemption disabled.. so it is safe to use __ versions */
307 static inline void set_kprobe_instance(struct kprobe *kp)
309 __this_cpu_write(kprobe_instance, kp);
312 static inline void reset_kprobe_instance(void)
314 __this_cpu_write(kprobe_instance, NULL);
318 * This routine is called either:
319 * - under the kprobe_mutex - during kprobe_[un]register()
320 * OR
321 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
323 struct kprobe *get_kprobe(void *addr)
325 struct hlist_head *head;
326 struct kprobe *p;
328 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329 hlist_for_each_entry_rcu(p, head, hlist) {
330 if (p->addr == addr)
331 return p;
334 return NULL;
336 NOKPROBE_SYMBOL(get_kprobe);
338 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
340 /* Return true if the kprobe is an aggregator */
341 static inline int kprobe_aggrprobe(struct kprobe *p)
343 return p->pre_handler == aggr_pre_handler;
346 /* Return true(!0) if the kprobe is unused */
347 static inline int kprobe_unused(struct kprobe *p)
349 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
350 list_empty(&p->list);
354 * Keep all fields in the kprobe consistent
356 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
358 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
359 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
362 #ifdef CONFIG_OPTPROBES
363 /* NOTE: change this value only with kprobe_mutex held */
364 static bool kprobes_allow_optimization;
367 * Call all pre_handler on the list, but ignores its return value.
368 * This must be called from arch-dep optimized caller.
370 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
372 struct kprobe *kp;
374 list_for_each_entry_rcu(kp, &p->list, list) {
375 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
376 set_kprobe_instance(kp);
377 kp->pre_handler(kp, regs);
379 reset_kprobe_instance();
382 NOKPROBE_SYMBOL(opt_pre_handler);
384 /* Free optimized instructions and optimized_kprobe */
385 static void free_aggr_kprobe(struct kprobe *p)
387 struct optimized_kprobe *op;
389 op = container_of(p, struct optimized_kprobe, kp);
390 arch_remove_optimized_kprobe(op);
391 arch_remove_kprobe(p);
392 kfree(op);
395 /* Return true(!0) if the kprobe is ready for optimization. */
396 static inline int kprobe_optready(struct kprobe *p)
398 struct optimized_kprobe *op;
400 if (kprobe_aggrprobe(p)) {
401 op = container_of(p, struct optimized_kprobe, kp);
402 return arch_prepared_optinsn(&op->optinsn);
405 return 0;
408 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
409 static inline int kprobe_disarmed(struct kprobe *p)
411 struct optimized_kprobe *op;
413 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
414 if (!kprobe_aggrprobe(p))
415 return kprobe_disabled(p);
417 op = container_of(p, struct optimized_kprobe, kp);
419 return kprobe_disabled(p) && list_empty(&op->list);
422 /* Return true(!0) if the probe is queued on (un)optimizing lists */
423 static int kprobe_queued(struct kprobe *p)
425 struct optimized_kprobe *op;
427 if (kprobe_aggrprobe(p)) {
428 op = container_of(p, struct optimized_kprobe, kp);
429 if (!list_empty(&op->list))
430 return 1;
432 return 0;
436 * Return an optimized kprobe whose optimizing code replaces
437 * instructions including addr (exclude breakpoint).
439 static struct kprobe *get_optimized_kprobe(unsigned long addr)
441 int i;
442 struct kprobe *p = NULL;
443 struct optimized_kprobe *op;
445 /* Don't check i == 0, since that is a breakpoint case. */
446 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
447 p = get_kprobe((void *)(addr - i));
449 if (p && kprobe_optready(p)) {
450 op = container_of(p, struct optimized_kprobe, kp);
451 if (arch_within_optimized_kprobe(op, addr))
452 return p;
455 return NULL;
458 /* Optimization staging list, protected by kprobe_mutex */
459 static LIST_HEAD(optimizing_list);
460 static LIST_HEAD(unoptimizing_list);
461 static LIST_HEAD(freeing_list);
463 static void kprobe_optimizer(struct work_struct *work);
464 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
465 #define OPTIMIZE_DELAY 5
468 * Optimize (replace a breakpoint with a jump) kprobes listed on
469 * optimizing_list.
471 static void do_optimize_kprobes(void)
473 lockdep_assert_held(&text_mutex);
475 * The optimization/unoptimization refers online_cpus via
476 * stop_machine() and cpu-hotplug modifies online_cpus.
477 * And same time, text_mutex will be held in cpu-hotplug and here.
478 * This combination can cause a deadlock (cpu-hotplug try to lock
479 * text_mutex but stop_machine can not be done because online_cpus
480 * has been changed)
481 * To avoid this deadlock, caller must have locked cpu hotplug
482 * for preventing cpu-hotplug outside of text_mutex locking.
484 lockdep_assert_cpus_held();
486 /* Optimization never be done when disarmed */
487 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
488 list_empty(&optimizing_list))
489 return;
491 arch_optimize_kprobes(&optimizing_list);
495 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
496 * if need) kprobes listed on unoptimizing_list.
498 static void do_unoptimize_kprobes(void)
500 struct optimized_kprobe *op, *tmp;
502 lockdep_assert_held(&text_mutex);
503 /* See comment in do_optimize_kprobes() */
504 lockdep_assert_cpus_held();
506 /* Unoptimization must be done anytime */
507 if (list_empty(&unoptimizing_list))
508 return;
510 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
511 /* Loop free_list for disarming */
512 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
513 /* Switching from detour code to origin */
514 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
515 /* Disarm probes if marked disabled */
516 if (kprobe_disabled(&op->kp))
517 arch_disarm_kprobe(&op->kp);
518 if (kprobe_unused(&op->kp)) {
520 * Remove unused probes from hash list. After waiting
521 * for synchronization, these probes are reclaimed.
522 * (reclaiming is done by do_free_cleaned_kprobes.)
524 hlist_del_rcu(&op->kp.hlist);
525 } else
526 list_del_init(&op->list);
530 /* Reclaim all kprobes on the free_list */
531 static void do_free_cleaned_kprobes(void)
533 struct optimized_kprobe *op, *tmp;
535 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
536 list_del_init(&op->list);
537 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
539 * This must not happen, but if there is a kprobe
540 * still in use, keep it on kprobes hash list.
542 continue;
544 free_aggr_kprobe(&op->kp);
548 /* Start optimizer after OPTIMIZE_DELAY passed */
549 static void kick_kprobe_optimizer(void)
551 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
554 /* Kprobe jump optimizer */
555 static void kprobe_optimizer(struct work_struct *work)
557 mutex_lock(&kprobe_mutex);
558 cpus_read_lock();
559 mutex_lock(&text_mutex);
560 /* Lock modules while optimizing kprobes */
561 mutex_lock(&module_mutex);
564 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
565 * kprobes before waiting for quiesence period.
567 do_unoptimize_kprobes();
570 * Step 2: Wait for quiesence period to ensure all potentially
571 * preempted tasks to have normally scheduled. Because optprobe
572 * may modify multiple instructions, there is a chance that Nth
573 * instruction is preempted. In that case, such tasks can return
574 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
575 * Note that on non-preemptive kernel, this is transparently converted
576 * to synchronoze_sched() to wait for all interrupts to have completed.
578 synchronize_rcu_tasks();
580 /* Step 3: Optimize kprobes after quiesence period */
581 do_optimize_kprobes();
583 /* Step 4: Free cleaned kprobes after quiesence period */
584 do_free_cleaned_kprobes();
586 mutex_unlock(&module_mutex);
587 mutex_unlock(&text_mutex);
588 cpus_read_unlock();
589 mutex_unlock(&kprobe_mutex);
591 /* Step 5: Kick optimizer again if needed */
592 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
593 kick_kprobe_optimizer();
596 /* Wait for completing optimization and unoptimization */
597 void wait_for_kprobe_optimizer(void)
599 mutex_lock(&kprobe_mutex);
601 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
602 mutex_unlock(&kprobe_mutex);
604 /* this will also make optimizing_work execute immmediately */
605 flush_delayed_work(&optimizing_work);
606 /* @optimizing_work might not have been queued yet, relax */
607 cpu_relax();
609 mutex_lock(&kprobe_mutex);
612 mutex_unlock(&kprobe_mutex);
615 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
617 struct optimized_kprobe *_op;
619 list_for_each_entry(_op, &unoptimizing_list, list) {
620 if (op == _op)
621 return true;
624 return false;
627 /* Optimize kprobe if p is ready to be optimized */
628 static void optimize_kprobe(struct kprobe *p)
630 struct optimized_kprobe *op;
632 /* Check if the kprobe is disabled or not ready for optimization. */
633 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
634 (kprobe_disabled(p) || kprobes_all_disarmed))
635 return;
637 /* kprobes with post_handler can not be optimized */
638 if (p->post_handler)
639 return;
641 op = container_of(p, struct optimized_kprobe, kp);
643 /* Check there is no other kprobes at the optimized instructions */
644 if (arch_check_optimized_kprobe(op) < 0)
645 return;
647 /* Check if it is already optimized. */
648 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
649 if (optprobe_queued_unopt(op)) {
650 /* This is under unoptimizing. Just dequeue the probe */
651 list_del_init(&op->list);
653 return;
655 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
657 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
658 if (WARN_ON_ONCE(!list_empty(&op->list)))
659 return;
661 list_add(&op->list, &optimizing_list);
662 kick_kprobe_optimizer();
665 /* Short cut to direct unoptimizing */
666 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
668 lockdep_assert_cpus_held();
669 arch_unoptimize_kprobe(op);
670 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
671 if (kprobe_disabled(&op->kp))
672 arch_disarm_kprobe(&op->kp);
675 /* Unoptimize a kprobe if p is optimized */
676 static void unoptimize_kprobe(struct kprobe *p, bool force)
678 struct optimized_kprobe *op;
680 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
681 return; /* This is not an optprobe nor optimized */
683 op = container_of(p, struct optimized_kprobe, kp);
684 if (!kprobe_optimized(p))
685 return;
687 if (!list_empty(&op->list)) {
688 if (optprobe_queued_unopt(op)) {
689 /* Queued in unoptimizing queue */
690 if (force) {
692 * Forcibly unoptimize the kprobe here, and queue it
693 * in the freeing list for release afterwards.
695 force_unoptimize_kprobe(op);
696 list_move(&op->list, &freeing_list);
698 } else {
699 /* Dequeue from the optimizing queue */
700 list_del_init(&op->list);
701 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
703 return;
706 /* Optimized kprobe case */
707 if (force) {
708 /* Forcibly update the code: this is a special case */
709 force_unoptimize_kprobe(op);
710 } else {
711 list_add(&op->list, &unoptimizing_list);
712 kick_kprobe_optimizer();
716 /* Cancel unoptimizing for reusing */
717 static int reuse_unused_kprobe(struct kprobe *ap)
719 struct optimized_kprobe *op;
722 * Unused kprobe MUST be on the way of delayed unoptimizing (means
723 * there is still a relative jump) and disabled.
725 op = container_of(ap, struct optimized_kprobe, kp);
726 WARN_ON_ONCE(list_empty(&op->list));
727 /* Enable the probe again */
728 ap->flags &= ~KPROBE_FLAG_DISABLED;
729 /* Optimize it again (remove from op->list) */
730 if (!kprobe_optready(ap))
731 return -EINVAL;
733 optimize_kprobe(ap);
734 return 0;
737 /* Remove optimized instructions */
738 static void kill_optimized_kprobe(struct kprobe *p)
740 struct optimized_kprobe *op;
742 op = container_of(p, struct optimized_kprobe, kp);
743 if (!list_empty(&op->list))
744 /* Dequeue from the (un)optimization queue */
745 list_del_init(&op->list);
746 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
748 if (kprobe_unused(p)) {
749 /* Enqueue if it is unused */
750 list_add(&op->list, &freeing_list);
752 * Remove unused probes from the hash list. After waiting
753 * for synchronization, this probe is reclaimed.
754 * (reclaiming is done by do_free_cleaned_kprobes().)
756 hlist_del_rcu(&op->kp.hlist);
759 /* Don't touch the code, because it is already freed. */
760 arch_remove_optimized_kprobe(op);
763 static inline
764 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
766 if (!kprobe_ftrace(p))
767 arch_prepare_optimized_kprobe(op, p);
770 /* Try to prepare optimized instructions */
771 static void prepare_optimized_kprobe(struct kprobe *p)
773 struct optimized_kprobe *op;
775 op = container_of(p, struct optimized_kprobe, kp);
776 __prepare_optimized_kprobe(op, p);
779 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
780 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
782 struct optimized_kprobe *op;
784 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
785 if (!op)
786 return NULL;
788 INIT_LIST_HEAD(&op->list);
789 op->kp.addr = p->addr;
790 __prepare_optimized_kprobe(op, p);
792 return &op->kp;
795 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
798 * Prepare an optimized_kprobe and optimize it
799 * NOTE: p must be a normal registered kprobe
801 static void try_to_optimize_kprobe(struct kprobe *p)
803 struct kprobe *ap;
804 struct optimized_kprobe *op;
806 /* Impossible to optimize ftrace-based kprobe */
807 if (kprobe_ftrace(p))
808 return;
810 /* For preparing optimization, jump_label_text_reserved() is called */
811 cpus_read_lock();
812 jump_label_lock();
813 mutex_lock(&text_mutex);
815 ap = alloc_aggr_kprobe(p);
816 if (!ap)
817 goto out;
819 op = container_of(ap, struct optimized_kprobe, kp);
820 if (!arch_prepared_optinsn(&op->optinsn)) {
821 /* If failed to setup optimizing, fallback to kprobe */
822 arch_remove_optimized_kprobe(op);
823 kfree(op);
824 goto out;
827 init_aggr_kprobe(ap, p);
828 optimize_kprobe(ap); /* This just kicks optimizer thread */
830 out:
831 mutex_unlock(&text_mutex);
832 jump_label_unlock();
833 cpus_read_unlock();
836 #ifdef CONFIG_SYSCTL
837 static void optimize_all_kprobes(void)
839 struct hlist_head *head;
840 struct kprobe *p;
841 unsigned int i;
843 mutex_lock(&kprobe_mutex);
844 /* If optimization is already allowed, just return */
845 if (kprobes_allow_optimization)
846 goto out;
848 cpus_read_lock();
849 kprobes_allow_optimization = true;
850 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
851 head = &kprobe_table[i];
852 hlist_for_each_entry_rcu(p, head, hlist)
853 if (!kprobe_disabled(p))
854 optimize_kprobe(p);
856 cpus_read_unlock();
857 printk(KERN_INFO "Kprobes globally optimized\n");
858 out:
859 mutex_unlock(&kprobe_mutex);
862 static void unoptimize_all_kprobes(void)
864 struct hlist_head *head;
865 struct kprobe *p;
866 unsigned int i;
868 mutex_lock(&kprobe_mutex);
869 /* If optimization is already prohibited, just return */
870 if (!kprobes_allow_optimization) {
871 mutex_unlock(&kprobe_mutex);
872 return;
875 cpus_read_lock();
876 kprobes_allow_optimization = false;
877 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
878 head = &kprobe_table[i];
879 hlist_for_each_entry_rcu(p, head, hlist) {
880 if (!kprobe_disabled(p))
881 unoptimize_kprobe(p, false);
884 cpus_read_unlock();
885 mutex_unlock(&kprobe_mutex);
887 /* Wait for unoptimizing completion */
888 wait_for_kprobe_optimizer();
889 printk(KERN_INFO "Kprobes globally unoptimized\n");
892 static DEFINE_MUTEX(kprobe_sysctl_mutex);
893 int sysctl_kprobes_optimization;
894 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
895 void __user *buffer, size_t *length,
896 loff_t *ppos)
898 int ret;
900 mutex_lock(&kprobe_sysctl_mutex);
901 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
902 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
904 if (sysctl_kprobes_optimization)
905 optimize_all_kprobes();
906 else
907 unoptimize_all_kprobes();
908 mutex_unlock(&kprobe_sysctl_mutex);
910 return ret;
912 #endif /* CONFIG_SYSCTL */
914 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
915 static void __arm_kprobe(struct kprobe *p)
917 struct kprobe *_p;
919 /* Check collision with other optimized kprobes */
920 _p = get_optimized_kprobe((unsigned long)p->addr);
921 if (unlikely(_p))
922 /* Fallback to unoptimized kprobe */
923 unoptimize_kprobe(_p, true);
925 arch_arm_kprobe(p);
926 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
929 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
930 static void __disarm_kprobe(struct kprobe *p, bool reopt)
932 struct kprobe *_p;
934 /* Try to unoptimize */
935 unoptimize_kprobe(p, kprobes_all_disarmed);
937 if (!kprobe_queued(p)) {
938 arch_disarm_kprobe(p);
939 /* If another kprobe was blocked, optimize it. */
940 _p = get_optimized_kprobe((unsigned long)p->addr);
941 if (unlikely(_p) && reopt)
942 optimize_kprobe(_p);
944 /* TODO: reoptimize others after unoptimized this probe */
947 #else /* !CONFIG_OPTPROBES */
949 #define optimize_kprobe(p) do {} while (0)
950 #define unoptimize_kprobe(p, f) do {} while (0)
951 #define kill_optimized_kprobe(p) do {} while (0)
952 #define prepare_optimized_kprobe(p) do {} while (0)
953 #define try_to_optimize_kprobe(p) do {} while (0)
954 #define __arm_kprobe(p) arch_arm_kprobe(p)
955 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
956 #define kprobe_disarmed(p) kprobe_disabled(p)
957 #define wait_for_kprobe_optimizer() do {} while (0)
959 static int reuse_unused_kprobe(struct kprobe *ap)
962 * If the optimized kprobe is NOT supported, the aggr kprobe is
963 * released at the same time that the last aggregated kprobe is
964 * unregistered.
965 * Thus there should be no chance to reuse unused kprobe.
967 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
968 return -EINVAL;
971 static void free_aggr_kprobe(struct kprobe *p)
973 arch_remove_kprobe(p);
974 kfree(p);
977 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
979 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
981 #endif /* CONFIG_OPTPROBES */
983 #ifdef CONFIG_KPROBES_ON_FTRACE
984 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
985 .func = kprobe_ftrace_handler,
986 .flags = FTRACE_OPS_FL_SAVE_REGS,
989 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
990 .func = kprobe_ftrace_handler,
991 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
994 static int kprobe_ipmodify_enabled;
995 static int kprobe_ftrace_enabled;
997 /* Must ensure p->addr is really on ftrace */
998 static int prepare_kprobe(struct kprobe *p)
1000 if (!kprobe_ftrace(p))
1001 return arch_prepare_kprobe(p);
1003 return arch_prepare_kprobe_ftrace(p);
1006 /* Caller must lock kprobe_mutex */
1007 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1008 int *cnt)
1010 int ret = 0;
1012 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1013 if (ret) {
1014 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1015 p->addr, ret);
1016 return ret;
1019 if (*cnt == 0) {
1020 ret = register_ftrace_function(ops);
1021 if (ret) {
1022 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1023 goto err_ftrace;
1027 (*cnt)++;
1028 return ret;
1030 err_ftrace:
1032 * At this point, sinec ops is not registered, we should be sefe from
1033 * registering empty filter.
1035 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1036 return ret;
1039 static int arm_kprobe_ftrace(struct kprobe *p)
1041 bool ipmodify = (p->post_handler != NULL);
1043 return __arm_kprobe_ftrace(p,
1044 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1045 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1048 /* Caller must lock kprobe_mutex */
1049 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1050 int *cnt)
1052 int ret = 0;
1054 if (*cnt == 1) {
1055 ret = unregister_ftrace_function(ops);
1056 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1057 return ret;
1060 (*cnt)--;
1062 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1063 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1064 p->addr, ret);
1065 return ret;
1068 static int disarm_kprobe_ftrace(struct kprobe *p)
1070 bool ipmodify = (p->post_handler != NULL);
1072 return __disarm_kprobe_ftrace(p,
1073 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1074 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1076 #else /* !CONFIG_KPROBES_ON_FTRACE */
1077 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1078 #define arm_kprobe_ftrace(p) (-ENODEV)
1079 #define disarm_kprobe_ftrace(p) (-ENODEV)
1080 #endif
1082 /* Arm a kprobe with text_mutex */
1083 static int arm_kprobe(struct kprobe *kp)
1085 if (unlikely(kprobe_ftrace(kp)))
1086 return arm_kprobe_ftrace(kp);
1088 cpus_read_lock();
1089 mutex_lock(&text_mutex);
1090 __arm_kprobe(kp);
1091 mutex_unlock(&text_mutex);
1092 cpus_read_unlock();
1094 return 0;
1097 /* Disarm a kprobe with text_mutex */
1098 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1100 if (unlikely(kprobe_ftrace(kp)))
1101 return disarm_kprobe_ftrace(kp);
1103 cpus_read_lock();
1104 mutex_lock(&text_mutex);
1105 __disarm_kprobe(kp, reopt);
1106 mutex_unlock(&text_mutex);
1107 cpus_read_unlock();
1109 return 0;
1113 * Aggregate handlers for multiple kprobes support - these handlers
1114 * take care of invoking the individual kprobe handlers on p->list
1116 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1118 struct kprobe *kp;
1120 list_for_each_entry_rcu(kp, &p->list, list) {
1121 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1122 set_kprobe_instance(kp);
1123 if (kp->pre_handler(kp, regs))
1124 return 1;
1126 reset_kprobe_instance();
1128 return 0;
1130 NOKPROBE_SYMBOL(aggr_pre_handler);
1132 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1133 unsigned long flags)
1135 struct kprobe *kp;
1137 list_for_each_entry_rcu(kp, &p->list, list) {
1138 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1139 set_kprobe_instance(kp);
1140 kp->post_handler(kp, regs, flags);
1141 reset_kprobe_instance();
1145 NOKPROBE_SYMBOL(aggr_post_handler);
1147 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1148 int trapnr)
1150 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1153 * if we faulted "during" the execution of a user specified
1154 * probe handler, invoke just that probe's fault handler
1156 if (cur && cur->fault_handler) {
1157 if (cur->fault_handler(cur, regs, trapnr))
1158 return 1;
1160 return 0;
1162 NOKPROBE_SYMBOL(aggr_fault_handler);
1164 /* Walks the list and increments nmissed count for multiprobe case */
1165 void kprobes_inc_nmissed_count(struct kprobe *p)
1167 struct kprobe *kp;
1168 if (!kprobe_aggrprobe(p)) {
1169 p->nmissed++;
1170 } else {
1171 list_for_each_entry_rcu(kp, &p->list, list)
1172 kp->nmissed++;
1174 return;
1176 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1178 void recycle_rp_inst(struct kretprobe_instance *ri,
1179 struct hlist_head *head)
1181 struct kretprobe *rp = ri->rp;
1183 /* remove rp inst off the rprobe_inst_table */
1184 hlist_del(&ri->hlist);
1185 INIT_HLIST_NODE(&ri->hlist);
1186 if (likely(rp)) {
1187 raw_spin_lock(&rp->lock);
1188 hlist_add_head(&ri->hlist, &rp->free_instances);
1189 raw_spin_unlock(&rp->lock);
1190 } else
1191 /* Unregistering */
1192 hlist_add_head(&ri->hlist, head);
1194 NOKPROBE_SYMBOL(recycle_rp_inst);
1196 void kretprobe_hash_lock(struct task_struct *tsk,
1197 struct hlist_head **head, unsigned long *flags)
1198 __acquires(hlist_lock)
1200 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1201 raw_spinlock_t *hlist_lock;
1203 *head = &kretprobe_inst_table[hash];
1204 hlist_lock = kretprobe_table_lock_ptr(hash);
1205 raw_spin_lock_irqsave(hlist_lock, *flags);
1207 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1209 static void kretprobe_table_lock(unsigned long hash,
1210 unsigned long *flags)
1211 __acquires(hlist_lock)
1213 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1214 raw_spin_lock_irqsave(hlist_lock, *flags);
1216 NOKPROBE_SYMBOL(kretprobe_table_lock);
1218 void kretprobe_hash_unlock(struct task_struct *tsk,
1219 unsigned long *flags)
1220 __releases(hlist_lock)
1222 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1223 raw_spinlock_t *hlist_lock;
1225 hlist_lock = kretprobe_table_lock_ptr(hash);
1226 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1228 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1230 static void kretprobe_table_unlock(unsigned long hash,
1231 unsigned long *flags)
1232 __releases(hlist_lock)
1234 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1235 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1237 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1240 * This function is called from finish_task_switch when task tk becomes dead,
1241 * so that we can recycle any function-return probe instances associated
1242 * with this task. These left over instances represent probed functions
1243 * that have been called but will never return.
1245 void kprobe_flush_task(struct task_struct *tk)
1247 struct kretprobe_instance *ri;
1248 struct hlist_head *head, empty_rp;
1249 struct hlist_node *tmp;
1250 unsigned long hash, flags = 0;
1252 if (unlikely(!kprobes_initialized))
1253 /* Early boot. kretprobe_table_locks not yet initialized. */
1254 return;
1256 INIT_HLIST_HEAD(&empty_rp);
1257 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1258 head = &kretprobe_inst_table[hash];
1259 kretprobe_table_lock(hash, &flags);
1260 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1261 if (ri->task == tk)
1262 recycle_rp_inst(ri, &empty_rp);
1264 kretprobe_table_unlock(hash, &flags);
1265 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1266 hlist_del(&ri->hlist);
1267 kfree(ri);
1270 NOKPROBE_SYMBOL(kprobe_flush_task);
1272 static inline void free_rp_inst(struct kretprobe *rp)
1274 struct kretprobe_instance *ri;
1275 struct hlist_node *next;
1277 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1278 hlist_del(&ri->hlist);
1279 kfree(ri);
1283 static void cleanup_rp_inst(struct kretprobe *rp)
1285 unsigned long flags, hash;
1286 struct kretprobe_instance *ri;
1287 struct hlist_node *next;
1288 struct hlist_head *head;
1290 /* No race here */
1291 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1292 kretprobe_table_lock(hash, &flags);
1293 head = &kretprobe_inst_table[hash];
1294 hlist_for_each_entry_safe(ri, next, head, hlist) {
1295 if (ri->rp == rp)
1296 ri->rp = NULL;
1298 kretprobe_table_unlock(hash, &flags);
1300 free_rp_inst(rp);
1302 NOKPROBE_SYMBOL(cleanup_rp_inst);
1304 /* Add the new probe to ap->list */
1305 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1307 if (p->post_handler)
1308 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1310 list_add_rcu(&p->list, &ap->list);
1311 if (p->post_handler && !ap->post_handler)
1312 ap->post_handler = aggr_post_handler;
1314 return 0;
1318 * Fill in the required fields of the "manager kprobe". Replace the
1319 * earlier kprobe in the hlist with the manager kprobe
1321 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1323 /* Copy p's insn slot to ap */
1324 copy_kprobe(p, ap);
1325 flush_insn_slot(ap);
1326 ap->addr = p->addr;
1327 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1328 ap->pre_handler = aggr_pre_handler;
1329 ap->fault_handler = aggr_fault_handler;
1330 /* We don't care the kprobe which has gone. */
1331 if (p->post_handler && !kprobe_gone(p))
1332 ap->post_handler = aggr_post_handler;
1334 INIT_LIST_HEAD(&ap->list);
1335 INIT_HLIST_NODE(&ap->hlist);
1337 list_add_rcu(&p->list, &ap->list);
1338 hlist_replace_rcu(&p->hlist, &ap->hlist);
1342 * This is the second or subsequent kprobe at the address - handle
1343 * the intricacies
1345 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1347 int ret = 0;
1348 struct kprobe *ap = orig_p;
1350 cpus_read_lock();
1352 /* For preparing optimization, jump_label_text_reserved() is called */
1353 jump_label_lock();
1354 mutex_lock(&text_mutex);
1356 if (!kprobe_aggrprobe(orig_p)) {
1357 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1358 ap = alloc_aggr_kprobe(orig_p);
1359 if (!ap) {
1360 ret = -ENOMEM;
1361 goto out;
1363 init_aggr_kprobe(ap, orig_p);
1364 } else if (kprobe_unused(ap)) {
1365 /* This probe is going to die. Rescue it */
1366 ret = reuse_unused_kprobe(ap);
1367 if (ret)
1368 goto out;
1371 if (kprobe_gone(ap)) {
1373 * Attempting to insert new probe at the same location that
1374 * had a probe in the module vaddr area which already
1375 * freed. So, the instruction slot has already been
1376 * released. We need a new slot for the new probe.
1378 ret = arch_prepare_kprobe(ap);
1379 if (ret)
1381 * Even if fail to allocate new slot, don't need to
1382 * free aggr_probe. It will be used next time, or
1383 * freed by unregister_kprobe.
1385 goto out;
1387 /* Prepare optimized instructions if possible. */
1388 prepare_optimized_kprobe(ap);
1391 * Clear gone flag to prevent allocating new slot again, and
1392 * set disabled flag because it is not armed yet.
1394 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1395 | KPROBE_FLAG_DISABLED;
1398 /* Copy ap's insn slot to p */
1399 copy_kprobe(ap, p);
1400 ret = add_new_kprobe(ap, p);
1402 out:
1403 mutex_unlock(&text_mutex);
1404 jump_label_unlock();
1405 cpus_read_unlock();
1407 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1408 ap->flags &= ~KPROBE_FLAG_DISABLED;
1409 if (!kprobes_all_disarmed) {
1410 /* Arm the breakpoint again. */
1411 ret = arm_kprobe(ap);
1412 if (ret) {
1413 ap->flags |= KPROBE_FLAG_DISABLED;
1414 list_del_rcu(&p->list);
1415 synchronize_rcu();
1419 return ret;
1422 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1424 /* The __kprobes marked functions and entry code must not be probed */
1425 return addr >= (unsigned long)__kprobes_text_start &&
1426 addr < (unsigned long)__kprobes_text_end;
1429 static bool __within_kprobe_blacklist(unsigned long addr)
1431 struct kprobe_blacklist_entry *ent;
1433 if (arch_within_kprobe_blacklist(addr))
1434 return true;
1436 * If there exists a kprobe_blacklist, verify and
1437 * fail any probe registration in the prohibited area
1439 list_for_each_entry(ent, &kprobe_blacklist, list) {
1440 if (addr >= ent->start_addr && addr < ent->end_addr)
1441 return true;
1443 return false;
1446 bool within_kprobe_blacklist(unsigned long addr)
1448 char symname[KSYM_NAME_LEN], *p;
1450 if (__within_kprobe_blacklist(addr))
1451 return true;
1453 /* Check if the address is on a suffixed-symbol */
1454 if (!lookup_symbol_name(addr, symname)) {
1455 p = strchr(symname, '.');
1456 if (!p)
1457 return false;
1458 *p = '\0';
1459 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1460 if (addr)
1461 return __within_kprobe_blacklist(addr);
1463 return false;
1467 * If we have a symbol_name argument, look it up and add the offset field
1468 * to it. This way, we can specify a relative address to a symbol.
1469 * This returns encoded errors if it fails to look up symbol or invalid
1470 * combination of parameters.
1472 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1473 const char *symbol_name, unsigned int offset)
1475 if ((symbol_name && addr) || (!symbol_name && !addr))
1476 goto invalid;
1478 if (symbol_name) {
1479 addr = kprobe_lookup_name(symbol_name, offset);
1480 if (!addr)
1481 return ERR_PTR(-ENOENT);
1484 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1485 if (addr)
1486 return addr;
1488 invalid:
1489 return ERR_PTR(-EINVAL);
1492 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1494 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1497 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1498 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1500 struct kprobe *ap, *list_p;
1502 ap = get_kprobe(p->addr);
1503 if (unlikely(!ap))
1504 return NULL;
1506 if (p != ap) {
1507 list_for_each_entry_rcu(list_p, &ap->list, list)
1508 if (list_p == p)
1509 /* kprobe p is a valid probe */
1510 goto valid;
1511 return NULL;
1513 valid:
1514 return ap;
1517 /* Return error if the kprobe is being re-registered */
1518 static inline int check_kprobe_rereg(struct kprobe *p)
1520 int ret = 0;
1522 mutex_lock(&kprobe_mutex);
1523 if (__get_valid_kprobe(p))
1524 ret = -EINVAL;
1525 mutex_unlock(&kprobe_mutex);
1527 return ret;
1530 int __weak arch_check_ftrace_location(struct kprobe *p)
1532 unsigned long ftrace_addr;
1534 ftrace_addr = ftrace_location((unsigned long)p->addr);
1535 if (ftrace_addr) {
1536 #ifdef CONFIG_KPROBES_ON_FTRACE
1537 /* Given address is not on the instruction boundary */
1538 if ((unsigned long)p->addr != ftrace_addr)
1539 return -EILSEQ;
1540 p->flags |= KPROBE_FLAG_FTRACE;
1541 #else /* !CONFIG_KPROBES_ON_FTRACE */
1542 return -EINVAL;
1543 #endif
1545 return 0;
1548 static int check_kprobe_address_safe(struct kprobe *p,
1549 struct module **probed_mod)
1551 int ret;
1553 ret = arch_check_ftrace_location(p);
1554 if (ret)
1555 return ret;
1556 jump_label_lock();
1557 preempt_disable();
1559 /* Ensure it is not in reserved area nor out of text */
1560 if (!kernel_text_address((unsigned long) p->addr) ||
1561 within_kprobe_blacklist((unsigned long) p->addr) ||
1562 jump_label_text_reserved(p->addr, p->addr) ||
1563 find_bug((unsigned long)p->addr)) {
1564 ret = -EINVAL;
1565 goto out;
1568 /* Check if are we probing a module */
1569 *probed_mod = __module_text_address((unsigned long) p->addr);
1570 if (*probed_mod) {
1572 * We must hold a refcount of the probed module while updating
1573 * its code to prohibit unexpected unloading.
1575 if (unlikely(!try_module_get(*probed_mod))) {
1576 ret = -ENOENT;
1577 goto out;
1581 * If the module freed .init.text, we couldn't insert
1582 * kprobes in there.
1584 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1585 (*probed_mod)->state != MODULE_STATE_COMING) {
1586 module_put(*probed_mod);
1587 *probed_mod = NULL;
1588 ret = -ENOENT;
1591 out:
1592 preempt_enable();
1593 jump_label_unlock();
1595 return ret;
1598 int register_kprobe(struct kprobe *p)
1600 int ret;
1601 struct kprobe *old_p;
1602 struct module *probed_mod;
1603 kprobe_opcode_t *addr;
1605 /* Adjust probe address from symbol */
1606 addr = kprobe_addr(p);
1607 if (IS_ERR(addr))
1608 return PTR_ERR(addr);
1609 p->addr = addr;
1611 ret = check_kprobe_rereg(p);
1612 if (ret)
1613 return ret;
1615 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1616 p->flags &= KPROBE_FLAG_DISABLED;
1617 p->nmissed = 0;
1618 INIT_LIST_HEAD(&p->list);
1620 ret = check_kprobe_address_safe(p, &probed_mod);
1621 if (ret)
1622 return ret;
1624 mutex_lock(&kprobe_mutex);
1626 old_p = get_kprobe(p->addr);
1627 if (old_p) {
1628 /* Since this may unoptimize old_p, locking text_mutex. */
1629 ret = register_aggr_kprobe(old_p, p);
1630 goto out;
1633 cpus_read_lock();
1634 /* Prevent text modification */
1635 mutex_lock(&text_mutex);
1636 ret = prepare_kprobe(p);
1637 mutex_unlock(&text_mutex);
1638 cpus_read_unlock();
1639 if (ret)
1640 goto out;
1642 INIT_HLIST_NODE(&p->hlist);
1643 hlist_add_head_rcu(&p->hlist,
1644 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1646 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1647 ret = arm_kprobe(p);
1648 if (ret) {
1649 hlist_del_rcu(&p->hlist);
1650 synchronize_rcu();
1651 goto out;
1655 /* Try to optimize kprobe */
1656 try_to_optimize_kprobe(p);
1657 out:
1658 mutex_unlock(&kprobe_mutex);
1660 if (probed_mod)
1661 module_put(probed_mod);
1663 return ret;
1665 EXPORT_SYMBOL_GPL(register_kprobe);
1667 /* Check if all probes on the aggrprobe are disabled */
1668 static int aggr_kprobe_disabled(struct kprobe *ap)
1670 struct kprobe *kp;
1672 list_for_each_entry_rcu(kp, &ap->list, list)
1673 if (!kprobe_disabled(kp))
1675 * There is an active probe on the list.
1676 * We can't disable this ap.
1678 return 0;
1680 return 1;
1683 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1684 static struct kprobe *__disable_kprobe(struct kprobe *p)
1686 struct kprobe *orig_p;
1687 int ret;
1689 /* Get an original kprobe for return */
1690 orig_p = __get_valid_kprobe(p);
1691 if (unlikely(orig_p == NULL))
1692 return ERR_PTR(-EINVAL);
1694 if (!kprobe_disabled(p)) {
1695 /* Disable probe if it is a child probe */
1696 if (p != orig_p)
1697 p->flags |= KPROBE_FLAG_DISABLED;
1699 /* Try to disarm and disable this/parent probe */
1700 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1702 * If kprobes_all_disarmed is set, orig_p
1703 * should have already been disarmed, so
1704 * skip unneed disarming process.
1706 if (!kprobes_all_disarmed) {
1707 ret = disarm_kprobe(orig_p, true);
1708 if (ret) {
1709 p->flags &= ~KPROBE_FLAG_DISABLED;
1710 return ERR_PTR(ret);
1713 orig_p->flags |= KPROBE_FLAG_DISABLED;
1717 return orig_p;
1721 * Unregister a kprobe without a scheduler synchronization.
1723 static int __unregister_kprobe_top(struct kprobe *p)
1725 struct kprobe *ap, *list_p;
1727 /* Disable kprobe. This will disarm it if needed. */
1728 ap = __disable_kprobe(p);
1729 if (IS_ERR(ap))
1730 return PTR_ERR(ap);
1732 if (ap == p)
1734 * This probe is an independent(and non-optimized) kprobe
1735 * (not an aggrprobe). Remove from the hash list.
1737 goto disarmed;
1739 /* Following process expects this probe is an aggrprobe */
1740 WARN_ON(!kprobe_aggrprobe(ap));
1742 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1744 * !disarmed could be happen if the probe is under delayed
1745 * unoptimizing.
1747 goto disarmed;
1748 else {
1749 /* If disabling probe has special handlers, update aggrprobe */
1750 if (p->post_handler && !kprobe_gone(p)) {
1751 list_for_each_entry_rcu(list_p, &ap->list, list) {
1752 if ((list_p != p) && (list_p->post_handler))
1753 goto noclean;
1755 ap->post_handler = NULL;
1757 noclean:
1759 * Remove from the aggrprobe: this path will do nothing in
1760 * __unregister_kprobe_bottom().
1762 list_del_rcu(&p->list);
1763 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1765 * Try to optimize this probe again, because post
1766 * handler may have been changed.
1768 optimize_kprobe(ap);
1770 return 0;
1772 disarmed:
1773 hlist_del_rcu(&ap->hlist);
1774 return 0;
1777 static void __unregister_kprobe_bottom(struct kprobe *p)
1779 struct kprobe *ap;
1781 if (list_empty(&p->list))
1782 /* This is an independent kprobe */
1783 arch_remove_kprobe(p);
1784 else if (list_is_singular(&p->list)) {
1785 /* This is the last child of an aggrprobe */
1786 ap = list_entry(p->list.next, struct kprobe, list);
1787 list_del(&p->list);
1788 free_aggr_kprobe(ap);
1790 /* Otherwise, do nothing. */
1793 int register_kprobes(struct kprobe **kps, int num)
1795 int i, ret = 0;
1797 if (num <= 0)
1798 return -EINVAL;
1799 for (i = 0; i < num; i++) {
1800 ret = register_kprobe(kps[i]);
1801 if (ret < 0) {
1802 if (i > 0)
1803 unregister_kprobes(kps, i);
1804 break;
1807 return ret;
1809 EXPORT_SYMBOL_GPL(register_kprobes);
1811 void unregister_kprobe(struct kprobe *p)
1813 unregister_kprobes(&p, 1);
1815 EXPORT_SYMBOL_GPL(unregister_kprobe);
1817 void unregister_kprobes(struct kprobe **kps, int num)
1819 int i;
1821 if (num <= 0)
1822 return;
1823 mutex_lock(&kprobe_mutex);
1824 for (i = 0; i < num; i++)
1825 if (__unregister_kprobe_top(kps[i]) < 0)
1826 kps[i]->addr = NULL;
1827 mutex_unlock(&kprobe_mutex);
1829 synchronize_rcu();
1830 for (i = 0; i < num; i++)
1831 if (kps[i]->addr)
1832 __unregister_kprobe_bottom(kps[i]);
1834 EXPORT_SYMBOL_GPL(unregister_kprobes);
1836 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1837 unsigned long val, void *data)
1839 return NOTIFY_DONE;
1841 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1843 static struct notifier_block kprobe_exceptions_nb = {
1844 .notifier_call = kprobe_exceptions_notify,
1845 .priority = 0x7fffffff /* we need to be notified first */
1848 unsigned long __weak arch_deref_entry_point(void *entry)
1850 return (unsigned long)entry;
1853 #ifdef CONFIG_KRETPROBES
1855 * This kprobe pre_handler is registered with every kretprobe. When probe
1856 * hits it will set up the return probe.
1858 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1860 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1861 unsigned long hash, flags = 0;
1862 struct kretprobe_instance *ri;
1865 * To avoid deadlocks, prohibit return probing in NMI contexts,
1866 * just skip the probe and increase the (inexact) 'nmissed'
1867 * statistical counter, so that the user is informed that
1868 * something happened:
1870 if (unlikely(in_nmi())) {
1871 rp->nmissed++;
1872 return 0;
1875 /* TODO: consider to only swap the RA after the last pre_handler fired */
1876 hash = hash_ptr(current, KPROBE_HASH_BITS);
1877 raw_spin_lock_irqsave(&rp->lock, flags);
1878 if (!hlist_empty(&rp->free_instances)) {
1879 ri = hlist_entry(rp->free_instances.first,
1880 struct kretprobe_instance, hlist);
1881 hlist_del(&ri->hlist);
1882 raw_spin_unlock_irqrestore(&rp->lock, flags);
1884 ri->rp = rp;
1885 ri->task = current;
1887 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1888 raw_spin_lock_irqsave(&rp->lock, flags);
1889 hlist_add_head(&ri->hlist, &rp->free_instances);
1890 raw_spin_unlock_irqrestore(&rp->lock, flags);
1891 return 0;
1894 arch_prepare_kretprobe(ri, regs);
1896 /* XXX(hch): why is there no hlist_move_head? */
1897 INIT_HLIST_NODE(&ri->hlist);
1898 kretprobe_table_lock(hash, &flags);
1899 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1900 kretprobe_table_unlock(hash, &flags);
1901 } else {
1902 rp->nmissed++;
1903 raw_spin_unlock_irqrestore(&rp->lock, flags);
1905 return 0;
1907 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1909 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1911 return !offset;
1914 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1916 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1918 if (IS_ERR(kp_addr))
1919 return false;
1921 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1922 !arch_kprobe_on_func_entry(offset))
1923 return false;
1925 return true;
1928 int register_kretprobe(struct kretprobe *rp)
1930 int ret = 0;
1931 struct kretprobe_instance *inst;
1932 int i;
1933 void *addr;
1935 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1936 return -EINVAL;
1938 if (kretprobe_blacklist_size) {
1939 addr = kprobe_addr(&rp->kp);
1940 if (IS_ERR(addr))
1941 return PTR_ERR(addr);
1943 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1944 if (kretprobe_blacklist[i].addr == addr)
1945 return -EINVAL;
1949 rp->kp.pre_handler = pre_handler_kretprobe;
1950 rp->kp.post_handler = NULL;
1951 rp->kp.fault_handler = NULL;
1953 /* Pre-allocate memory for max kretprobe instances */
1954 if (rp->maxactive <= 0) {
1955 #ifdef CONFIG_PREEMPTION
1956 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1957 #else
1958 rp->maxactive = num_possible_cpus();
1959 #endif
1961 raw_spin_lock_init(&rp->lock);
1962 INIT_HLIST_HEAD(&rp->free_instances);
1963 for (i = 0; i < rp->maxactive; i++) {
1964 inst = kmalloc(sizeof(struct kretprobe_instance) +
1965 rp->data_size, GFP_KERNEL);
1966 if (inst == NULL) {
1967 free_rp_inst(rp);
1968 return -ENOMEM;
1970 INIT_HLIST_NODE(&inst->hlist);
1971 hlist_add_head(&inst->hlist, &rp->free_instances);
1974 rp->nmissed = 0;
1975 /* Establish function entry probe point */
1976 ret = register_kprobe(&rp->kp);
1977 if (ret != 0)
1978 free_rp_inst(rp);
1979 return ret;
1981 EXPORT_SYMBOL_GPL(register_kretprobe);
1983 int register_kretprobes(struct kretprobe **rps, int num)
1985 int ret = 0, i;
1987 if (num <= 0)
1988 return -EINVAL;
1989 for (i = 0; i < num; i++) {
1990 ret = register_kretprobe(rps[i]);
1991 if (ret < 0) {
1992 if (i > 0)
1993 unregister_kretprobes(rps, i);
1994 break;
1997 return ret;
1999 EXPORT_SYMBOL_GPL(register_kretprobes);
2001 void unregister_kretprobe(struct kretprobe *rp)
2003 unregister_kretprobes(&rp, 1);
2005 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2007 void unregister_kretprobes(struct kretprobe **rps, int num)
2009 int i;
2011 if (num <= 0)
2012 return;
2013 mutex_lock(&kprobe_mutex);
2014 for (i = 0; i < num; i++)
2015 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2016 rps[i]->kp.addr = NULL;
2017 mutex_unlock(&kprobe_mutex);
2019 synchronize_rcu();
2020 for (i = 0; i < num; i++) {
2021 if (rps[i]->kp.addr) {
2022 __unregister_kprobe_bottom(&rps[i]->kp);
2023 cleanup_rp_inst(rps[i]);
2027 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2029 #else /* CONFIG_KRETPROBES */
2030 int register_kretprobe(struct kretprobe *rp)
2032 return -ENOSYS;
2034 EXPORT_SYMBOL_GPL(register_kretprobe);
2036 int register_kretprobes(struct kretprobe **rps, int num)
2038 return -ENOSYS;
2040 EXPORT_SYMBOL_GPL(register_kretprobes);
2042 void unregister_kretprobe(struct kretprobe *rp)
2045 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2047 void unregister_kretprobes(struct kretprobe **rps, int num)
2050 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2052 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2054 return 0;
2056 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2058 #endif /* CONFIG_KRETPROBES */
2060 /* Set the kprobe gone and remove its instruction buffer. */
2061 static void kill_kprobe(struct kprobe *p)
2063 struct kprobe *kp;
2065 p->flags |= KPROBE_FLAG_GONE;
2066 if (kprobe_aggrprobe(p)) {
2068 * If this is an aggr_kprobe, we have to list all the
2069 * chained probes and mark them GONE.
2071 list_for_each_entry_rcu(kp, &p->list, list)
2072 kp->flags |= KPROBE_FLAG_GONE;
2073 p->post_handler = NULL;
2074 kill_optimized_kprobe(p);
2077 * Here, we can remove insn_slot safely, because no thread calls
2078 * the original probed function (which will be freed soon) any more.
2080 arch_remove_kprobe(p);
2083 /* Disable one kprobe */
2084 int disable_kprobe(struct kprobe *kp)
2086 int ret = 0;
2087 struct kprobe *p;
2089 mutex_lock(&kprobe_mutex);
2091 /* Disable this kprobe */
2092 p = __disable_kprobe(kp);
2093 if (IS_ERR(p))
2094 ret = PTR_ERR(p);
2096 mutex_unlock(&kprobe_mutex);
2097 return ret;
2099 EXPORT_SYMBOL_GPL(disable_kprobe);
2101 /* Enable one kprobe */
2102 int enable_kprobe(struct kprobe *kp)
2104 int ret = 0;
2105 struct kprobe *p;
2107 mutex_lock(&kprobe_mutex);
2109 /* Check whether specified probe is valid. */
2110 p = __get_valid_kprobe(kp);
2111 if (unlikely(p == NULL)) {
2112 ret = -EINVAL;
2113 goto out;
2116 if (kprobe_gone(kp)) {
2117 /* This kprobe has gone, we couldn't enable it. */
2118 ret = -EINVAL;
2119 goto out;
2122 if (p != kp)
2123 kp->flags &= ~KPROBE_FLAG_DISABLED;
2125 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2126 p->flags &= ~KPROBE_FLAG_DISABLED;
2127 ret = arm_kprobe(p);
2128 if (ret)
2129 p->flags |= KPROBE_FLAG_DISABLED;
2131 out:
2132 mutex_unlock(&kprobe_mutex);
2133 return ret;
2135 EXPORT_SYMBOL_GPL(enable_kprobe);
2137 /* Caller must NOT call this in usual path. This is only for critical case */
2138 void dump_kprobe(struct kprobe *kp)
2140 pr_err("Dumping kprobe:\n");
2141 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2142 kp->symbol_name, kp->offset, kp->addr);
2144 NOKPROBE_SYMBOL(dump_kprobe);
2146 int kprobe_add_ksym_blacklist(unsigned long entry)
2148 struct kprobe_blacklist_entry *ent;
2149 unsigned long offset = 0, size = 0;
2151 if (!kernel_text_address(entry) ||
2152 !kallsyms_lookup_size_offset(entry, &size, &offset))
2153 return -EINVAL;
2155 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2156 if (!ent)
2157 return -ENOMEM;
2158 ent->start_addr = entry;
2159 ent->end_addr = entry + size;
2160 INIT_LIST_HEAD(&ent->list);
2161 list_add_tail(&ent->list, &kprobe_blacklist);
2163 return (int)size;
2166 /* Add all symbols in given area into kprobe blacklist */
2167 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2169 unsigned long entry;
2170 int ret = 0;
2172 for (entry = start; entry < end; entry += ret) {
2173 ret = kprobe_add_ksym_blacklist(entry);
2174 if (ret < 0)
2175 return ret;
2176 if (ret == 0) /* In case of alias symbol */
2177 ret = 1;
2179 return 0;
2182 int __init __weak arch_populate_kprobe_blacklist(void)
2184 return 0;
2188 * Lookup and populate the kprobe_blacklist.
2190 * Unlike the kretprobe blacklist, we'll need to determine
2191 * the range of addresses that belong to the said functions,
2192 * since a kprobe need not necessarily be at the beginning
2193 * of a function.
2195 static int __init populate_kprobe_blacklist(unsigned long *start,
2196 unsigned long *end)
2198 unsigned long entry;
2199 unsigned long *iter;
2200 int ret;
2202 for (iter = start; iter < end; iter++) {
2203 entry = arch_deref_entry_point((void *)*iter);
2204 ret = kprobe_add_ksym_blacklist(entry);
2205 if (ret == -EINVAL)
2206 continue;
2207 if (ret < 0)
2208 return ret;
2211 /* Symbols in __kprobes_text are blacklisted */
2212 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2213 (unsigned long)__kprobes_text_end);
2215 return ret ? : arch_populate_kprobe_blacklist();
2218 /* Module notifier call back, checking kprobes on the module */
2219 static int kprobes_module_callback(struct notifier_block *nb,
2220 unsigned long val, void *data)
2222 struct module *mod = data;
2223 struct hlist_head *head;
2224 struct kprobe *p;
2225 unsigned int i;
2226 int checkcore = (val == MODULE_STATE_GOING);
2228 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2229 return NOTIFY_DONE;
2232 * When MODULE_STATE_GOING was notified, both of module .text and
2233 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2234 * notified, only .init.text section would be freed. We need to
2235 * disable kprobes which have been inserted in the sections.
2237 mutex_lock(&kprobe_mutex);
2238 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2239 head = &kprobe_table[i];
2240 hlist_for_each_entry_rcu(p, head, hlist)
2241 if (within_module_init((unsigned long)p->addr, mod) ||
2242 (checkcore &&
2243 within_module_core((unsigned long)p->addr, mod))) {
2245 * The vaddr this probe is installed will soon
2246 * be vfreed buy not synced to disk. Hence,
2247 * disarming the breakpoint isn't needed.
2249 * Note, this will also move any optimized probes
2250 * that are pending to be removed from their
2251 * corresponding lists to the freeing_list and
2252 * will not be touched by the delayed
2253 * kprobe_optimizer work handler.
2255 kill_kprobe(p);
2258 mutex_unlock(&kprobe_mutex);
2259 return NOTIFY_DONE;
2262 static struct notifier_block kprobe_module_nb = {
2263 .notifier_call = kprobes_module_callback,
2264 .priority = 0
2267 /* Markers of _kprobe_blacklist section */
2268 extern unsigned long __start_kprobe_blacklist[];
2269 extern unsigned long __stop_kprobe_blacklist[];
2271 static int __init init_kprobes(void)
2273 int i, err = 0;
2275 /* FIXME allocate the probe table, currently defined statically */
2276 /* initialize all list heads */
2277 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2278 INIT_HLIST_HEAD(&kprobe_table[i]);
2279 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2280 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2283 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2284 __stop_kprobe_blacklist);
2285 if (err) {
2286 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2287 pr_err("Please take care of using kprobes.\n");
2290 if (kretprobe_blacklist_size) {
2291 /* lookup the function address from its name */
2292 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2293 kretprobe_blacklist[i].addr =
2294 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2295 if (!kretprobe_blacklist[i].addr)
2296 printk("kretprobe: lookup failed: %s\n",
2297 kretprobe_blacklist[i].name);
2301 #if defined(CONFIG_OPTPROBES)
2302 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2303 /* Init kprobe_optinsn_slots */
2304 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2305 #endif
2306 /* By default, kprobes can be optimized */
2307 kprobes_allow_optimization = true;
2308 #endif
2310 /* By default, kprobes are armed */
2311 kprobes_all_disarmed = false;
2313 err = arch_init_kprobes();
2314 if (!err)
2315 err = register_die_notifier(&kprobe_exceptions_nb);
2316 if (!err)
2317 err = register_module_notifier(&kprobe_module_nb);
2319 kprobes_initialized = (err == 0);
2321 if (!err)
2322 init_test_probes();
2323 return err;
2325 subsys_initcall(init_kprobes);
2327 #ifdef CONFIG_DEBUG_FS
2328 static void report_probe(struct seq_file *pi, struct kprobe *p,
2329 const char *sym, int offset, char *modname, struct kprobe *pp)
2331 char *kprobe_type;
2332 void *addr = p->addr;
2334 if (p->pre_handler == pre_handler_kretprobe)
2335 kprobe_type = "r";
2336 else
2337 kprobe_type = "k";
2339 if (!kallsyms_show_value())
2340 addr = NULL;
2342 if (sym)
2343 seq_printf(pi, "%px %s %s+0x%x %s ",
2344 addr, kprobe_type, sym, offset,
2345 (modname ? modname : " "));
2346 else /* try to use %pS */
2347 seq_printf(pi, "%px %s %pS ",
2348 addr, kprobe_type, p->addr);
2350 if (!pp)
2351 pp = p;
2352 seq_printf(pi, "%s%s%s%s\n",
2353 (kprobe_gone(p) ? "[GONE]" : ""),
2354 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2355 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2356 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2359 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2361 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2364 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2366 (*pos)++;
2367 if (*pos >= KPROBE_TABLE_SIZE)
2368 return NULL;
2369 return pos;
2372 static void kprobe_seq_stop(struct seq_file *f, void *v)
2374 /* Nothing to do */
2377 static int show_kprobe_addr(struct seq_file *pi, void *v)
2379 struct hlist_head *head;
2380 struct kprobe *p, *kp;
2381 const char *sym = NULL;
2382 unsigned int i = *(loff_t *) v;
2383 unsigned long offset = 0;
2384 char *modname, namebuf[KSYM_NAME_LEN];
2386 head = &kprobe_table[i];
2387 preempt_disable();
2388 hlist_for_each_entry_rcu(p, head, hlist) {
2389 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2390 &offset, &modname, namebuf);
2391 if (kprobe_aggrprobe(p)) {
2392 list_for_each_entry_rcu(kp, &p->list, list)
2393 report_probe(pi, kp, sym, offset, modname, p);
2394 } else
2395 report_probe(pi, p, sym, offset, modname, NULL);
2397 preempt_enable();
2398 return 0;
2401 static const struct seq_operations kprobes_seq_ops = {
2402 .start = kprobe_seq_start,
2403 .next = kprobe_seq_next,
2404 .stop = kprobe_seq_stop,
2405 .show = show_kprobe_addr
2408 static int kprobes_open(struct inode *inode, struct file *filp)
2410 return seq_open(filp, &kprobes_seq_ops);
2413 static const struct file_operations debugfs_kprobes_operations = {
2414 .open = kprobes_open,
2415 .read = seq_read,
2416 .llseek = seq_lseek,
2417 .release = seq_release,
2420 /* kprobes/blacklist -- shows which functions can not be probed */
2421 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2423 return seq_list_start(&kprobe_blacklist, *pos);
2426 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2428 return seq_list_next(v, &kprobe_blacklist, pos);
2431 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2433 struct kprobe_blacklist_entry *ent =
2434 list_entry(v, struct kprobe_blacklist_entry, list);
2437 * If /proc/kallsyms is not showing kernel address, we won't
2438 * show them here either.
2440 if (!kallsyms_show_value())
2441 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2442 (void *)ent->start_addr);
2443 else
2444 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2445 (void *)ent->end_addr, (void *)ent->start_addr);
2446 return 0;
2449 static const struct seq_operations kprobe_blacklist_seq_ops = {
2450 .start = kprobe_blacklist_seq_start,
2451 .next = kprobe_blacklist_seq_next,
2452 .stop = kprobe_seq_stop, /* Reuse void function */
2453 .show = kprobe_blacklist_seq_show,
2456 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2458 return seq_open(filp, &kprobe_blacklist_seq_ops);
2461 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2462 .open = kprobe_blacklist_open,
2463 .read = seq_read,
2464 .llseek = seq_lseek,
2465 .release = seq_release,
2468 static int arm_all_kprobes(void)
2470 struct hlist_head *head;
2471 struct kprobe *p;
2472 unsigned int i, total = 0, errors = 0;
2473 int err, ret = 0;
2475 mutex_lock(&kprobe_mutex);
2477 /* If kprobes are armed, just return */
2478 if (!kprobes_all_disarmed)
2479 goto already_enabled;
2482 * optimize_kprobe() called by arm_kprobe() checks
2483 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2484 * arm_kprobe.
2486 kprobes_all_disarmed = false;
2487 /* Arming kprobes doesn't optimize kprobe itself */
2488 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2489 head = &kprobe_table[i];
2490 /* Arm all kprobes on a best-effort basis */
2491 hlist_for_each_entry_rcu(p, head, hlist) {
2492 if (!kprobe_disabled(p)) {
2493 err = arm_kprobe(p);
2494 if (err) {
2495 errors++;
2496 ret = err;
2498 total++;
2503 if (errors)
2504 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2505 errors, total);
2506 else
2507 pr_info("Kprobes globally enabled\n");
2509 already_enabled:
2510 mutex_unlock(&kprobe_mutex);
2511 return ret;
2514 static int disarm_all_kprobes(void)
2516 struct hlist_head *head;
2517 struct kprobe *p;
2518 unsigned int i, total = 0, errors = 0;
2519 int err, ret = 0;
2521 mutex_lock(&kprobe_mutex);
2523 /* If kprobes are already disarmed, just return */
2524 if (kprobes_all_disarmed) {
2525 mutex_unlock(&kprobe_mutex);
2526 return 0;
2529 kprobes_all_disarmed = true;
2531 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2532 head = &kprobe_table[i];
2533 /* Disarm all kprobes on a best-effort basis */
2534 hlist_for_each_entry_rcu(p, head, hlist) {
2535 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2536 err = disarm_kprobe(p, false);
2537 if (err) {
2538 errors++;
2539 ret = err;
2541 total++;
2546 if (errors)
2547 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2548 errors, total);
2549 else
2550 pr_info("Kprobes globally disabled\n");
2552 mutex_unlock(&kprobe_mutex);
2554 /* Wait for disarming all kprobes by optimizer */
2555 wait_for_kprobe_optimizer();
2557 return ret;
2561 * XXX: The debugfs bool file interface doesn't allow for callbacks
2562 * when the bool state is switched. We can reuse that facility when
2563 * available
2565 static ssize_t read_enabled_file_bool(struct file *file,
2566 char __user *user_buf, size_t count, loff_t *ppos)
2568 char buf[3];
2570 if (!kprobes_all_disarmed)
2571 buf[0] = '1';
2572 else
2573 buf[0] = '0';
2574 buf[1] = '\n';
2575 buf[2] = 0x00;
2576 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2579 static ssize_t write_enabled_file_bool(struct file *file,
2580 const char __user *user_buf, size_t count, loff_t *ppos)
2582 char buf[32];
2583 size_t buf_size;
2584 int ret = 0;
2586 buf_size = min(count, (sizeof(buf)-1));
2587 if (copy_from_user(buf, user_buf, buf_size))
2588 return -EFAULT;
2590 buf[buf_size] = '\0';
2591 switch (buf[0]) {
2592 case 'y':
2593 case 'Y':
2594 case '1':
2595 ret = arm_all_kprobes();
2596 break;
2597 case 'n':
2598 case 'N':
2599 case '0':
2600 ret = disarm_all_kprobes();
2601 break;
2602 default:
2603 return -EINVAL;
2606 if (ret)
2607 return ret;
2609 return count;
2612 static const struct file_operations fops_kp = {
2613 .read = read_enabled_file_bool,
2614 .write = write_enabled_file_bool,
2615 .llseek = default_llseek,
2618 static int __init debugfs_kprobe_init(void)
2620 struct dentry *dir;
2621 unsigned int value = 1;
2623 dir = debugfs_create_dir("kprobes", NULL);
2625 debugfs_create_file("list", 0400, dir, NULL,
2626 &debugfs_kprobes_operations);
2628 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2630 debugfs_create_file("blacklist", 0400, dir, NULL,
2631 &debugfs_kprobe_blacklist_ops);
2633 return 0;
2636 late_initcall(debugfs_kprobe_init);
2637 #endif /* CONFIG_DEBUG_FS */