octeontx2-pf: Fix error return code in otx2_probe()
[linux/fpc-iii.git] / net / ipv4 / tcp.c
blob6d87de434377e3741314772e5fd866de1c599108
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
209 * Description of States:
211 * TCP_SYN_SENT sent a connection request, waiting for ack
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
216 * TCP_ESTABLISHED connection established
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
241 * TCP_CLOSE socket is finished
244 #define pr_fmt(fmt) "TCP: " fmt
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
283 struct percpu_counter tcp_orphan_count;
284 EXPORT_SYMBOL_GPL(tcp_orphan_count);
286 long sysctl_tcp_mem[3] __read_mostly;
287 EXPORT_SYMBOL(sysctl_tcp_mem);
289 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
292 #if IS_ENABLED(CONFIG_SMC)
293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
294 EXPORT_SYMBOL(tcp_have_smc);
295 #endif
298 * Current number of TCP sockets.
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
304 * TCP splice context
306 struct tcp_splice_state {
307 struct pipe_inode_info *pipe;
308 size_t len;
309 unsigned int flags;
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
318 unsigned long tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
322 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
326 void tcp_enter_memory_pressure(struct sock *sk)
328 unsigned long val;
330 if (READ_ONCE(tcp_memory_pressure))
331 return;
332 val = jiffies;
334 if (!val)
335 val--;
336 if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
341 void tcp_leave_memory_pressure(struct sock *sk)
343 unsigned long val;
345 if (!READ_ONCE(tcp_memory_pressure))
346 return;
347 val = xchg(&tcp_memory_pressure, 0);
348 if (val)
349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 jiffies_to_msecs(jiffies - val));
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
354 /* Convert seconds to retransmits based on initial and max timeout */
355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
357 u8 res = 0;
359 if (seconds > 0) {
360 int period = timeout;
362 res = 1;
363 while (seconds > period && res < 255) {
364 res++;
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
371 return res;
374 /* Convert retransmits to seconds based on initial and max timeout */
375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
377 int period = 0;
379 if (retrans > 0) {
380 period = timeout;
381 while (--retrans) {
382 timeout <<= 1;
383 if (timeout > rto_max)
384 timeout = rto_max;
385 period += timeout;
388 return period;
391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
393 u32 rate = READ_ONCE(tp->rate_delivered);
394 u32 intv = READ_ONCE(tp->rate_interval_us);
395 u64 rate64 = 0;
397 if (rate && intv) {
398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 do_div(rate64, intv);
401 return rate64;
404 /* Address-family independent initialization for a tcp_sock.
406 * NOTE: A lot of things set to zero explicitly by call to
407 * sk_alloc() so need not be done here.
409 void tcp_init_sock(struct sock *sk)
411 struct inet_connection_sock *icsk = inet_csk(sk);
412 struct tcp_sock *tp = tcp_sk(sk);
414 tp->out_of_order_queue = RB_ROOT;
415 sk->tcp_rtx_queue = RB_ROOT;
416 tcp_init_xmit_timers(sk);
417 INIT_LIST_HEAD(&tp->tsq_node);
418 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
420 icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
422 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
424 /* So many TCP implementations out there (incorrectly) count the
425 * initial SYN frame in their delayed-ACK and congestion control
426 * algorithms that we must have the following bandaid to talk
427 * efficiently to them. -DaveM
429 tp->snd_cwnd = TCP_INIT_CWND;
431 /* There's a bubble in the pipe until at least the first ACK. */
432 tp->app_limited = ~0U;
434 /* See draft-stevens-tcpca-spec-01 for discussion of the
435 * initialization of these values.
437 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
438 tp->snd_cwnd_clamp = ~0;
439 tp->mss_cache = TCP_MSS_DEFAULT;
441 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
442 tcp_assign_congestion_control(sk);
444 tp->tsoffset = 0;
445 tp->rack.reo_wnd_steps = 1;
447 sk->sk_write_space = sk_stream_write_space;
448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
450 icsk->icsk_sync_mss = tcp_sync_mss;
452 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
453 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
455 sk_sockets_allocated_inc(sk);
456 sk->sk_route_forced_caps = NETIF_F_GSO;
458 EXPORT_SYMBOL(tcp_init_sock);
460 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
462 struct sk_buff *skb = tcp_write_queue_tail(sk);
464 if (tsflags && skb) {
465 struct skb_shared_info *shinfo = skb_shinfo(skb);
466 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
468 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
469 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
470 tcb->txstamp_ack = 1;
471 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
472 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
476 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
477 int target, struct sock *sk)
479 return (READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq) >= target) ||
480 (sk->sk_prot->stream_memory_read ?
481 sk->sk_prot->stream_memory_read(sk) : false);
485 * Wait for a TCP event.
487 * Note that we don't need to lock the socket, as the upper poll layers
488 * take care of normal races (between the test and the event) and we don't
489 * go look at any of the socket buffers directly.
491 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
493 __poll_t mask;
494 struct sock *sk = sock->sk;
495 const struct tcp_sock *tp = tcp_sk(sk);
496 int state;
498 sock_poll_wait(file, sock, wait);
500 state = inet_sk_state_load(sk);
501 if (state == TCP_LISTEN)
502 return inet_csk_listen_poll(sk);
504 /* Socket is not locked. We are protected from async events
505 * by poll logic and correct handling of state changes
506 * made by other threads is impossible in any case.
509 mask = 0;
512 * EPOLLHUP is certainly not done right. But poll() doesn't
513 * have a notion of HUP in just one direction, and for a
514 * socket the read side is more interesting.
516 * Some poll() documentation says that EPOLLHUP is incompatible
517 * with the EPOLLOUT/POLLWR flags, so somebody should check this
518 * all. But careful, it tends to be safer to return too many
519 * bits than too few, and you can easily break real applications
520 * if you don't tell them that something has hung up!
522 * Check-me.
524 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
525 * our fs/select.c). It means that after we received EOF,
526 * poll always returns immediately, making impossible poll() on write()
527 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
528 * if and only if shutdown has been made in both directions.
529 * Actually, it is interesting to look how Solaris and DUX
530 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
531 * then we could set it on SND_SHUTDOWN. BTW examples given
532 * in Stevens' books assume exactly this behaviour, it explains
533 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
535 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
536 * blocking on fresh not-connected or disconnected socket. --ANK
538 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
539 mask |= EPOLLHUP;
540 if (sk->sk_shutdown & RCV_SHUTDOWN)
541 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
543 /* Connected or passive Fast Open socket? */
544 if (state != TCP_SYN_SENT &&
545 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
546 int target = sock_rcvlowat(sk, 0, INT_MAX);
548 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
549 !sock_flag(sk, SOCK_URGINLINE) &&
550 tp->urg_data)
551 target++;
553 if (tcp_stream_is_readable(tp, target, sk))
554 mask |= EPOLLIN | EPOLLRDNORM;
556 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
557 if (sk_stream_is_writeable(sk)) {
558 mask |= EPOLLOUT | EPOLLWRNORM;
559 } else { /* send SIGIO later */
560 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
561 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
563 /* Race breaker. If space is freed after
564 * wspace test but before the flags are set,
565 * IO signal will be lost. Memory barrier
566 * pairs with the input side.
568 smp_mb__after_atomic();
569 if (sk_stream_is_writeable(sk))
570 mask |= EPOLLOUT | EPOLLWRNORM;
572 } else
573 mask |= EPOLLOUT | EPOLLWRNORM;
575 if (tp->urg_data & TCP_URG_VALID)
576 mask |= EPOLLPRI;
577 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
578 /* Active TCP fastopen socket with defer_connect
579 * Return EPOLLOUT so application can call write()
580 * in order for kernel to generate SYN+data
582 mask |= EPOLLOUT | EPOLLWRNORM;
584 /* This barrier is coupled with smp_wmb() in tcp_reset() */
585 smp_rmb();
586 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
587 mask |= EPOLLERR;
589 return mask;
591 EXPORT_SYMBOL(tcp_poll);
593 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
595 struct tcp_sock *tp = tcp_sk(sk);
596 int answ;
597 bool slow;
599 switch (cmd) {
600 case SIOCINQ:
601 if (sk->sk_state == TCP_LISTEN)
602 return -EINVAL;
604 slow = lock_sock_fast(sk);
605 answ = tcp_inq(sk);
606 unlock_sock_fast(sk, slow);
607 break;
608 case SIOCATMARK:
609 answ = tp->urg_data &&
610 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
611 break;
612 case SIOCOUTQ:
613 if (sk->sk_state == TCP_LISTEN)
614 return -EINVAL;
616 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
617 answ = 0;
618 else
619 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
620 break;
621 case SIOCOUTQNSD:
622 if (sk->sk_state == TCP_LISTEN)
623 return -EINVAL;
625 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
626 answ = 0;
627 else
628 answ = READ_ONCE(tp->write_seq) -
629 READ_ONCE(tp->snd_nxt);
630 break;
631 default:
632 return -ENOIOCTLCMD;
635 return put_user(answ, (int __user *)arg);
637 EXPORT_SYMBOL(tcp_ioctl);
639 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
641 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
642 tp->pushed_seq = tp->write_seq;
645 static inline bool forced_push(const struct tcp_sock *tp)
647 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
650 static void skb_entail(struct sock *sk, struct sk_buff *skb)
652 struct tcp_sock *tp = tcp_sk(sk);
653 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
655 skb->csum = 0;
656 tcb->seq = tcb->end_seq = tp->write_seq;
657 tcb->tcp_flags = TCPHDR_ACK;
658 tcb->sacked = 0;
659 __skb_header_release(skb);
660 tcp_add_write_queue_tail(sk, skb);
661 sk_wmem_queued_add(sk, skb->truesize);
662 sk_mem_charge(sk, skb->truesize);
663 if (tp->nonagle & TCP_NAGLE_PUSH)
664 tp->nonagle &= ~TCP_NAGLE_PUSH;
666 tcp_slow_start_after_idle_check(sk);
669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
671 if (flags & MSG_OOB)
672 tp->snd_up = tp->write_seq;
675 /* If a not yet filled skb is pushed, do not send it if
676 * we have data packets in Qdisc or NIC queues :
677 * Because TX completion will happen shortly, it gives a chance
678 * to coalesce future sendmsg() payload into this skb, without
679 * need for a timer, and with no latency trade off.
680 * As packets containing data payload have a bigger truesize
681 * than pure acks (dataless) packets, the last checks prevent
682 * autocorking if we only have an ACK in Qdisc/NIC queues,
683 * or if TX completion was delayed after we processed ACK packet.
685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
686 int size_goal)
688 return skb->len < size_goal &&
689 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
690 !tcp_rtx_queue_empty(sk) &&
691 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
694 void tcp_push(struct sock *sk, int flags, int mss_now,
695 int nonagle, int size_goal)
697 struct tcp_sock *tp = tcp_sk(sk);
698 struct sk_buff *skb;
700 skb = tcp_write_queue_tail(sk);
701 if (!skb)
702 return;
703 if (!(flags & MSG_MORE) || forced_push(tp))
704 tcp_mark_push(tp, skb);
706 tcp_mark_urg(tp, flags);
708 if (tcp_should_autocork(sk, skb, size_goal)) {
710 /* avoid atomic op if TSQ_THROTTLED bit is already set */
711 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
713 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
715 /* It is possible TX completion already happened
716 * before we set TSQ_THROTTLED.
718 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
719 return;
722 if (flags & MSG_MORE)
723 nonagle = TCP_NAGLE_CORK;
725 __tcp_push_pending_frames(sk, mss_now, nonagle);
728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
729 unsigned int offset, size_t len)
731 struct tcp_splice_state *tss = rd_desc->arg.data;
732 int ret;
734 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
735 min(rd_desc->count, len), tss->flags);
736 if (ret > 0)
737 rd_desc->count -= ret;
738 return ret;
741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
743 /* Store TCP splice context information in read_descriptor_t. */
744 read_descriptor_t rd_desc = {
745 .arg.data = tss,
746 .count = tss->len,
749 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
753 * tcp_splice_read - splice data from TCP socket to a pipe
754 * @sock: socket to splice from
755 * @ppos: position (not valid)
756 * @pipe: pipe to splice to
757 * @len: number of bytes to splice
758 * @flags: splice modifier flags
760 * Description:
761 * Will read pages from given socket and fill them into a pipe.
764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
765 struct pipe_inode_info *pipe, size_t len,
766 unsigned int flags)
768 struct sock *sk = sock->sk;
769 struct tcp_splice_state tss = {
770 .pipe = pipe,
771 .len = len,
772 .flags = flags,
774 long timeo;
775 ssize_t spliced;
776 int ret;
778 sock_rps_record_flow(sk);
780 * We can't seek on a socket input
782 if (unlikely(*ppos))
783 return -ESPIPE;
785 ret = spliced = 0;
787 lock_sock(sk);
789 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
790 while (tss.len) {
791 ret = __tcp_splice_read(sk, &tss);
792 if (ret < 0)
793 break;
794 else if (!ret) {
795 if (spliced)
796 break;
797 if (sock_flag(sk, SOCK_DONE))
798 break;
799 if (sk->sk_err) {
800 ret = sock_error(sk);
801 break;
803 if (sk->sk_shutdown & RCV_SHUTDOWN)
804 break;
805 if (sk->sk_state == TCP_CLOSE) {
807 * This occurs when user tries to read
808 * from never connected socket.
810 ret = -ENOTCONN;
811 break;
813 if (!timeo) {
814 ret = -EAGAIN;
815 break;
817 /* if __tcp_splice_read() got nothing while we have
818 * an skb in receive queue, we do not want to loop.
819 * This might happen with URG data.
821 if (!skb_queue_empty(&sk->sk_receive_queue))
822 break;
823 sk_wait_data(sk, &timeo, NULL);
824 if (signal_pending(current)) {
825 ret = sock_intr_errno(timeo);
826 break;
828 continue;
830 tss.len -= ret;
831 spliced += ret;
833 if (!timeo)
834 break;
835 release_sock(sk);
836 lock_sock(sk);
838 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
839 (sk->sk_shutdown & RCV_SHUTDOWN) ||
840 signal_pending(current))
841 break;
844 release_sock(sk);
846 if (spliced)
847 return spliced;
849 return ret;
851 EXPORT_SYMBOL(tcp_splice_read);
853 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
854 bool force_schedule)
856 struct sk_buff *skb;
858 if (likely(!size)) {
859 skb = sk->sk_tx_skb_cache;
860 if (skb) {
861 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
862 sk->sk_tx_skb_cache = NULL;
863 pskb_trim(skb, 0);
864 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
865 skb_shinfo(skb)->tx_flags = 0;
866 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
867 return skb;
870 /* The TCP header must be at least 32-bit aligned. */
871 size = ALIGN(size, 4);
873 if (unlikely(tcp_under_memory_pressure(sk)))
874 sk_mem_reclaim_partial(sk);
876 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
877 if (likely(skb)) {
878 bool mem_scheduled;
880 if (force_schedule) {
881 mem_scheduled = true;
882 sk_forced_mem_schedule(sk, skb->truesize);
883 } else {
884 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
886 if (likely(mem_scheduled)) {
887 skb_reserve(skb, sk->sk_prot->max_header);
889 * Make sure that we have exactly size bytes
890 * available to the caller, no more, no less.
892 skb->reserved_tailroom = skb->end - skb->tail - size;
893 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
894 return skb;
896 __kfree_skb(skb);
897 } else {
898 sk->sk_prot->enter_memory_pressure(sk);
899 sk_stream_moderate_sndbuf(sk);
901 return NULL;
904 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
905 int large_allowed)
907 struct tcp_sock *tp = tcp_sk(sk);
908 u32 new_size_goal, size_goal;
910 if (!large_allowed)
911 return mss_now;
913 /* Note : tcp_tso_autosize() will eventually split this later */
914 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
915 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
917 /* We try hard to avoid divides here */
918 size_goal = tp->gso_segs * mss_now;
919 if (unlikely(new_size_goal < size_goal ||
920 new_size_goal >= size_goal + mss_now)) {
921 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
922 sk->sk_gso_max_segs);
923 size_goal = tp->gso_segs * mss_now;
926 return max(size_goal, mss_now);
929 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
931 int mss_now;
933 mss_now = tcp_current_mss(sk);
934 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
936 return mss_now;
939 /* In some cases, both sendpage() and sendmsg() could have added
940 * an skb to the write queue, but failed adding payload on it.
941 * We need to remove it to consume less memory, but more
942 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
943 * users.
945 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
947 if (skb && !skb->len) {
948 tcp_unlink_write_queue(skb, sk);
949 if (tcp_write_queue_empty(sk))
950 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
951 sk_wmem_free_skb(sk, skb);
955 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
956 size_t size, int flags)
958 struct tcp_sock *tp = tcp_sk(sk);
959 int mss_now, size_goal;
960 int err;
961 ssize_t copied;
962 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
964 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
965 WARN_ONCE(PageSlab(page), "page must not be a Slab one"))
966 return -EINVAL;
968 /* Wait for a connection to finish. One exception is TCP Fast Open
969 * (passive side) where data is allowed to be sent before a connection
970 * is fully established.
972 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
973 !tcp_passive_fastopen(sk)) {
974 err = sk_stream_wait_connect(sk, &timeo);
975 if (err != 0)
976 goto out_err;
979 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
981 mss_now = tcp_send_mss(sk, &size_goal, flags);
982 copied = 0;
984 err = -EPIPE;
985 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
986 goto out_err;
988 while (size > 0) {
989 struct sk_buff *skb = tcp_write_queue_tail(sk);
990 int copy, i;
991 bool can_coalesce;
993 if (!skb || (copy = size_goal - skb->len) <= 0 ||
994 !tcp_skb_can_collapse_to(skb)) {
995 new_segment:
996 if (!sk_stream_memory_free(sk))
997 goto wait_for_sndbuf;
999 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1000 tcp_rtx_and_write_queues_empty(sk));
1001 if (!skb)
1002 goto wait_for_memory;
1004 #ifdef CONFIG_TLS_DEVICE
1005 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1006 #endif
1007 skb_entail(sk, skb);
1008 copy = size_goal;
1011 if (copy > size)
1012 copy = size;
1014 i = skb_shinfo(skb)->nr_frags;
1015 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1016 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1017 tcp_mark_push(tp, skb);
1018 goto new_segment;
1020 if (!sk_wmem_schedule(sk, copy))
1021 goto wait_for_memory;
1023 if (can_coalesce) {
1024 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1025 } else {
1026 get_page(page);
1027 skb_fill_page_desc(skb, i, page, offset, copy);
1030 if (!(flags & MSG_NO_SHARED_FRAGS))
1031 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1033 skb->len += copy;
1034 skb->data_len += copy;
1035 skb->truesize += copy;
1036 sk_wmem_queued_add(sk, copy);
1037 sk_mem_charge(sk, copy);
1038 skb->ip_summed = CHECKSUM_PARTIAL;
1039 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1040 TCP_SKB_CB(skb)->end_seq += copy;
1041 tcp_skb_pcount_set(skb, 0);
1043 if (!copied)
1044 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1046 copied += copy;
1047 offset += copy;
1048 size -= copy;
1049 if (!size)
1050 goto out;
1052 if (skb->len < size_goal || (flags & MSG_OOB))
1053 continue;
1055 if (forced_push(tp)) {
1056 tcp_mark_push(tp, skb);
1057 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1058 } else if (skb == tcp_send_head(sk))
1059 tcp_push_one(sk, mss_now);
1060 continue;
1062 wait_for_sndbuf:
1063 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1064 wait_for_memory:
1065 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1066 TCP_NAGLE_PUSH, size_goal);
1068 err = sk_stream_wait_memory(sk, &timeo);
1069 if (err != 0)
1070 goto do_error;
1072 mss_now = tcp_send_mss(sk, &size_goal, flags);
1075 out:
1076 if (copied) {
1077 tcp_tx_timestamp(sk, sk->sk_tsflags);
1078 if (!(flags & MSG_SENDPAGE_NOTLAST))
1079 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1081 return copied;
1083 do_error:
1084 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1085 if (copied)
1086 goto out;
1087 out_err:
1088 /* make sure we wake any epoll edge trigger waiter */
1089 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1090 sk->sk_write_space(sk);
1091 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1093 return sk_stream_error(sk, flags, err);
1095 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1097 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1098 size_t size, int flags)
1100 if (!(sk->sk_route_caps & NETIF_F_SG))
1101 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1103 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1105 return do_tcp_sendpages(sk, page, offset, size, flags);
1107 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1109 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1110 size_t size, int flags)
1112 int ret;
1114 lock_sock(sk);
1115 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1116 release_sock(sk);
1118 return ret;
1120 EXPORT_SYMBOL(tcp_sendpage);
1122 void tcp_free_fastopen_req(struct tcp_sock *tp)
1124 if (tp->fastopen_req) {
1125 kfree(tp->fastopen_req);
1126 tp->fastopen_req = NULL;
1130 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1131 int *copied, size_t size,
1132 struct ubuf_info *uarg)
1134 struct tcp_sock *tp = tcp_sk(sk);
1135 struct inet_sock *inet = inet_sk(sk);
1136 struct sockaddr *uaddr = msg->msg_name;
1137 int err, flags;
1139 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1140 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1141 uaddr->sa_family == AF_UNSPEC))
1142 return -EOPNOTSUPP;
1143 if (tp->fastopen_req)
1144 return -EALREADY; /* Another Fast Open is in progress */
1146 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1147 sk->sk_allocation);
1148 if (unlikely(!tp->fastopen_req))
1149 return -ENOBUFS;
1150 tp->fastopen_req->data = msg;
1151 tp->fastopen_req->size = size;
1152 tp->fastopen_req->uarg = uarg;
1154 if (inet->defer_connect) {
1155 err = tcp_connect(sk);
1156 /* Same failure procedure as in tcp_v4/6_connect */
1157 if (err) {
1158 tcp_set_state(sk, TCP_CLOSE);
1159 inet->inet_dport = 0;
1160 sk->sk_route_caps = 0;
1163 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1164 err = __inet_stream_connect(sk->sk_socket, uaddr,
1165 msg->msg_namelen, flags, 1);
1166 /* fastopen_req could already be freed in __inet_stream_connect
1167 * if the connection times out or gets rst
1169 if (tp->fastopen_req) {
1170 *copied = tp->fastopen_req->copied;
1171 tcp_free_fastopen_req(tp);
1172 inet->defer_connect = 0;
1174 return err;
1177 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1179 struct tcp_sock *tp = tcp_sk(sk);
1180 struct ubuf_info *uarg = NULL;
1181 struct sk_buff *skb;
1182 struct sockcm_cookie sockc;
1183 int flags, err, copied = 0;
1184 int mss_now = 0, size_goal, copied_syn = 0;
1185 int process_backlog = 0;
1186 bool zc = false;
1187 long timeo;
1189 flags = msg->msg_flags;
1191 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1192 skb = tcp_write_queue_tail(sk);
1193 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1194 if (!uarg) {
1195 err = -ENOBUFS;
1196 goto out_err;
1199 zc = sk->sk_route_caps & NETIF_F_SG;
1200 if (!zc)
1201 uarg->zerocopy = 0;
1204 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1205 !tp->repair) {
1206 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1207 if (err == -EINPROGRESS && copied_syn > 0)
1208 goto out;
1209 else if (err)
1210 goto out_err;
1213 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1215 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1217 /* Wait for a connection to finish. One exception is TCP Fast Open
1218 * (passive side) where data is allowed to be sent before a connection
1219 * is fully established.
1221 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1222 !tcp_passive_fastopen(sk)) {
1223 err = sk_stream_wait_connect(sk, &timeo);
1224 if (err != 0)
1225 goto do_error;
1228 if (unlikely(tp->repair)) {
1229 if (tp->repair_queue == TCP_RECV_QUEUE) {
1230 copied = tcp_send_rcvq(sk, msg, size);
1231 goto out_nopush;
1234 err = -EINVAL;
1235 if (tp->repair_queue == TCP_NO_QUEUE)
1236 goto out_err;
1238 /* 'common' sending to sendq */
1241 sockcm_init(&sockc, sk);
1242 if (msg->msg_controllen) {
1243 err = sock_cmsg_send(sk, msg, &sockc);
1244 if (unlikely(err)) {
1245 err = -EINVAL;
1246 goto out_err;
1250 /* This should be in poll */
1251 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1253 /* Ok commence sending. */
1254 copied = 0;
1256 restart:
1257 mss_now = tcp_send_mss(sk, &size_goal, flags);
1259 err = -EPIPE;
1260 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1261 goto do_error;
1263 while (msg_data_left(msg)) {
1264 int copy = 0;
1266 skb = tcp_write_queue_tail(sk);
1267 if (skb)
1268 copy = size_goal - skb->len;
1270 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1271 bool first_skb;
1273 new_segment:
1274 if (!sk_stream_memory_free(sk))
1275 goto wait_for_sndbuf;
1277 if (unlikely(process_backlog >= 16)) {
1278 process_backlog = 0;
1279 if (sk_flush_backlog(sk))
1280 goto restart;
1282 first_skb = tcp_rtx_and_write_queues_empty(sk);
1283 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1284 first_skb);
1285 if (!skb)
1286 goto wait_for_memory;
1288 process_backlog++;
1289 skb->ip_summed = CHECKSUM_PARTIAL;
1291 skb_entail(sk, skb);
1292 copy = size_goal;
1294 /* All packets are restored as if they have
1295 * already been sent. skb_mstamp_ns isn't set to
1296 * avoid wrong rtt estimation.
1298 if (tp->repair)
1299 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1302 /* Try to append data to the end of skb. */
1303 if (copy > msg_data_left(msg))
1304 copy = msg_data_left(msg);
1306 /* Where to copy to? */
1307 if (skb_availroom(skb) > 0 && !zc) {
1308 /* We have some space in skb head. Superb! */
1309 copy = min_t(int, copy, skb_availroom(skb));
1310 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1311 if (err)
1312 goto do_fault;
1313 } else if (!zc) {
1314 bool merge = true;
1315 int i = skb_shinfo(skb)->nr_frags;
1316 struct page_frag *pfrag = sk_page_frag(sk);
1318 if (!sk_page_frag_refill(sk, pfrag))
1319 goto wait_for_memory;
1321 if (!skb_can_coalesce(skb, i, pfrag->page,
1322 pfrag->offset)) {
1323 if (i >= sysctl_max_skb_frags) {
1324 tcp_mark_push(tp, skb);
1325 goto new_segment;
1327 merge = false;
1330 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1332 if (!sk_wmem_schedule(sk, copy))
1333 goto wait_for_memory;
1335 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1336 pfrag->page,
1337 pfrag->offset,
1338 copy);
1339 if (err)
1340 goto do_error;
1342 /* Update the skb. */
1343 if (merge) {
1344 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1345 } else {
1346 skb_fill_page_desc(skb, i, pfrag->page,
1347 pfrag->offset, copy);
1348 page_ref_inc(pfrag->page);
1350 pfrag->offset += copy;
1351 } else {
1352 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1353 if (err == -EMSGSIZE || err == -EEXIST) {
1354 tcp_mark_push(tp, skb);
1355 goto new_segment;
1357 if (err < 0)
1358 goto do_error;
1359 copy = err;
1362 if (!copied)
1363 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1365 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1366 TCP_SKB_CB(skb)->end_seq += copy;
1367 tcp_skb_pcount_set(skb, 0);
1369 copied += copy;
1370 if (!msg_data_left(msg)) {
1371 if (unlikely(flags & MSG_EOR))
1372 TCP_SKB_CB(skb)->eor = 1;
1373 goto out;
1376 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1377 continue;
1379 if (forced_push(tp)) {
1380 tcp_mark_push(tp, skb);
1381 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1382 } else if (skb == tcp_send_head(sk))
1383 tcp_push_one(sk, mss_now);
1384 continue;
1386 wait_for_sndbuf:
1387 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1388 wait_for_memory:
1389 if (copied)
1390 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1391 TCP_NAGLE_PUSH, size_goal);
1393 err = sk_stream_wait_memory(sk, &timeo);
1394 if (err != 0)
1395 goto do_error;
1397 mss_now = tcp_send_mss(sk, &size_goal, flags);
1400 out:
1401 if (copied) {
1402 tcp_tx_timestamp(sk, sockc.tsflags);
1403 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1405 out_nopush:
1406 sock_zerocopy_put(uarg);
1407 return copied + copied_syn;
1409 do_error:
1410 skb = tcp_write_queue_tail(sk);
1411 do_fault:
1412 tcp_remove_empty_skb(sk, skb);
1414 if (copied + copied_syn)
1415 goto out;
1416 out_err:
1417 sock_zerocopy_put_abort(uarg, true);
1418 err = sk_stream_error(sk, flags, err);
1419 /* make sure we wake any epoll edge trigger waiter */
1420 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1421 sk->sk_write_space(sk);
1422 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1424 return err;
1426 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1428 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1430 int ret;
1432 lock_sock(sk);
1433 ret = tcp_sendmsg_locked(sk, msg, size);
1434 release_sock(sk);
1436 return ret;
1438 EXPORT_SYMBOL(tcp_sendmsg);
1441 * Handle reading urgent data. BSD has very simple semantics for
1442 * this, no blocking and very strange errors 8)
1445 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1447 struct tcp_sock *tp = tcp_sk(sk);
1449 /* No URG data to read. */
1450 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1451 tp->urg_data == TCP_URG_READ)
1452 return -EINVAL; /* Yes this is right ! */
1454 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1455 return -ENOTCONN;
1457 if (tp->urg_data & TCP_URG_VALID) {
1458 int err = 0;
1459 char c = tp->urg_data;
1461 if (!(flags & MSG_PEEK))
1462 tp->urg_data = TCP_URG_READ;
1464 /* Read urgent data. */
1465 msg->msg_flags |= MSG_OOB;
1467 if (len > 0) {
1468 if (!(flags & MSG_TRUNC))
1469 err = memcpy_to_msg(msg, &c, 1);
1470 len = 1;
1471 } else
1472 msg->msg_flags |= MSG_TRUNC;
1474 return err ? -EFAULT : len;
1477 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1478 return 0;
1480 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1481 * the available implementations agree in this case:
1482 * this call should never block, independent of the
1483 * blocking state of the socket.
1484 * Mike <pall@rz.uni-karlsruhe.de>
1486 return -EAGAIN;
1489 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1491 struct sk_buff *skb;
1492 int copied = 0, err = 0;
1494 /* XXX -- need to support SO_PEEK_OFF */
1496 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1497 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1498 if (err)
1499 return err;
1500 copied += skb->len;
1503 skb_queue_walk(&sk->sk_write_queue, skb) {
1504 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1505 if (err)
1506 break;
1508 copied += skb->len;
1511 return err ?: copied;
1514 /* Clean up the receive buffer for full frames taken by the user,
1515 * then send an ACK if necessary. COPIED is the number of bytes
1516 * tcp_recvmsg has given to the user so far, it speeds up the
1517 * calculation of whether or not we must ACK for the sake of
1518 * a window update.
1520 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1522 struct tcp_sock *tp = tcp_sk(sk);
1523 bool time_to_ack = false;
1525 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1527 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1528 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1529 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1531 if (inet_csk_ack_scheduled(sk)) {
1532 const struct inet_connection_sock *icsk = inet_csk(sk);
1533 /* Delayed ACKs frequently hit locked sockets during bulk
1534 * receive. */
1535 if (icsk->icsk_ack.blocked ||
1536 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1537 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1539 * If this read emptied read buffer, we send ACK, if
1540 * connection is not bidirectional, user drained
1541 * receive buffer and there was a small segment
1542 * in queue.
1544 (copied > 0 &&
1545 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1546 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1547 !inet_csk_in_pingpong_mode(sk))) &&
1548 !atomic_read(&sk->sk_rmem_alloc)))
1549 time_to_ack = true;
1552 /* We send an ACK if we can now advertise a non-zero window
1553 * which has been raised "significantly".
1555 * Even if window raised up to infinity, do not send window open ACK
1556 * in states, where we will not receive more. It is useless.
1558 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1559 __u32 rcv_window_now = tcp_receive_window(tp);
1561 /* Optimize, __tcp_select_window() is not cheap. */
1562 if (2*rcv_window_now <= tp->window_clamp) {
1563 __u32 new_window = __tcp_select_window(sk);
1565 /* Send ACK now, if this read freed lots of space
1566 * in our buffer. Certainly, new_window is new window.
1567 * We can advertise it now, if it is not less than current one.
1568 * "Lots" means "at least twice" here.
1570 if (new_window && new_window >= 2 * rcv_window_now)
1571 time_to_ack = true;
1574 if (time_to_ack)
1575 tcp_send_ack(sk);
1578 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1580 struct sk_buff *skb;
1581 u32 offset;
1583 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1584 offset = seq - TCP_SKB_CB(skb)->seq;
1585 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1586 pr_err_once("%s: found a SYN, please report !\n", __func__);
1587 offset--;
1589 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1590 *off = offset;
1591 return skb;
1593 /* This looks weird, but this can happen if TCP collapsing
1594 * splitted a fat GRO packet, while we released socket lock
1595 * in skb_splice_bits()
1597 sk_eat_skb(sk, skb);
1599 return NULL;
1603 * This routine provides an alternative to tcp_recvmsg() for routines
1604 * that would like to handle copying from skbuffs directly in 'sendfile'
1605 * fashion.
1606 * Note:
1607 * - It is assumed that the socket was locked by the caller.
1608 * - The routine does not block.
1609 * - At present, there is no support for reading OOB data
1610 * or for 'peeking' the socket using this routine
1611 * (although both would be easy to implement).
1613 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1614 sk_read_actor_t recv_actor)
1616 struct sk_buff *skb;
1617 struct tcp_sock *tp = tcp_sk(sk);
1618 u32 seq = tp->copied_seq;
1619 u32 offset;
1620 int copied = 0;
1622 if (sk->sk_state == TCP_LISTEN)
1623 return -ENOTCONN;
1624 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1625 if (offset < skb->len) {
1626 int used;
1627 size_t len;
1629 len = skb->len - offset;
1630 /* Stop reading if we hit a patch of urgent data */
1631 if (tp->urg_data) {
1632 u32 urg_offset = tp->urg_seq - seq;
1633 if (urg_offset < len)
1634 len = urg_offset;
1635 if (!len)
1636 break;
1638 used = recv_actor(desc, skb, offset, len);
1639 if (used <= 0) {
1640 if (!copied)
1641 copied = used;
1642 break;
1643 } else if (used <= len) {
1644 seq += used;
1645 copied += used;
1646 offset += used;
1648 /* If recv_actor drops the lock (e.g. TCP splice
1649 * receive) the skb pointer might be invalid when
1650 * getting here: tcp_collapse might have deleted it
1651 * while aggregating skbs from the socket queue.
1653 skb = tcp_recv_skb(sk, seq - 1, &offset);
1654 if (!skb)
1655 break;
1656 /* TCP coalescing might have appended data to the skb.
1657 * Try to splice more frags
1659 if (offset + 1 != skb->len)
1660 continue;
1662 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1663 sk_eat_skb(sk, skb);
1664 ++seq;
1665 break;
1667 sk_eat_skb(sk, skb);
1668 if (!desc->count)
1669 break;
1670 WRITE_ONCE(tp->copied_seq, seq);
1672 WRITE_ONCE(tp->copied_seq, seq);
1674 tcp_rcv_space_adjust(sk);
1676 /* Clean up data we have read: This will do ACK frames. */
1677 if (copied > 0) {
1678 tcp_recv_skb(sk, seq, &offset);
1679 tcp_cleanup_rbuf(sk, copied);
1681 return copied;
1683 EXPORT_SYMBOL(tcp_read_sock);
1685 int tcp_peek_len(struct socket *sock)
1687 return tcp_inq(sock->sk);
1689 EXPORT_SYMBOL(tcp_peek_len);
1691 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1692 int tcp_set_rcvlowat(struct sock *sk, int val)
1694 int cap;
1696 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1697 cap = sk->sk_rcvbuf >> 1;
1698 else
1699 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1700 val = min(val, cap);
1701 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1703 /* Check if we need to signal EPOLLIN right now */
1704 tcp_data_ready(sk);
1706 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1707 return 0;
1709 val <<= 1;
1710 if (val > sk->sk_rcvbuf) {
1711 WRITE_ONCE(sk->sk_rcvbuf, val);
1712 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1714 return 0;
1716 EXPORT_SYMBOL(tcp_set_rcvlowat);
1718 #ifdef CONFIG_MMU
1719 static const struct vm_operations_struct tcp_vm_ops = {
1722 int tcp_mmap(struct file *file, struct socket *sock,
1723 struct vm_area_struct *vma)
1725 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1726 return -EPERM;
1727 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1729 /* Instruct vm_insert_page() to not down_read(mmap_sem) */
1730 vma->vm_flags |= VM_MIXEDMAP;
1732 vma->vm_ops = &tcp_vm_ops;
1733 return 0;
1735 EXPORT_SYMBOL(tcp_mmap);
1737 static int tcp_zerocopy_receive(struct sock *sk,
1738 struct tcp_zerocopy_receive *zc)
1740 unsigned long address = (unsigned long)zc->address;
1741 u32 length = 0, seq, offset, zap_len;
1742 const skb_frag_t *frags = NULL;
1743 struct vm_area_struct *vma;
1744 struct sk_buff *skb = NULL;
1745 struct tcp_sock *tp;
1746 int inq;
1747 int ret;
1749 if (address & (PAGE_SIZE - 1) || address != zc->address)
1750 return -EINVAL;
1752 if (sk->sk_state == TCP_LISTEN)
1753 return -ENOTCONN;
1755 sock_rps_record_flow(sk);
1757 down_read(&current->mm->mmap_sem);
1759 ret = -EINVAL;
1760 vma = find_vma(current->mm, address);
1761 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1762 goto out;
1763 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1765 tp = tcp_sk(sk);
1766 seq = tp->copied_seq;
1767 inq = tcp_inq(sk);
1768 zc->length = min_t(u32, zc->length, inq);
1769 zap_len = zc->length & ~(PAGE_SIZE - 1);
1770 if (zap_len) {
1771 zap_page_range(vma, address, zap_len);
1772 zc->recv_skip_hint = 0;
1773 } else {
1774 zc->recv_skip_hint = zc->length;
1776 ret = 0;
1777 while (length + PAGE_SIZE <= zc->length) {
1778 if (zc->recv_skip_hint < PAGE_SIZE) {
1779 if (skb) {
1780 if (zc->recv_skip_hint > 0)
1781 break;
1782 skb = skb->next;
1783 offset = seq - TCP_SKB_CB(skb)->seq;
1784 } else {
1785 skb = tcp_recv_skb(sk, seq, &offset);
1788 zc->recv_skip_hint = skb->len - offset;
1789 offset -= skb_headlen(skb);
1790 if ((int)offset < 0 || skb_has_frag_list(skb))
1791 break;
1792 frags = skb_shinfo(skb)->frags;
1793 while (offset) {
1794 if (skb_frag_size(frags) > offset)
1795 goto out;
1796 offset -= skb_frag_size(frags);
1797 frags++;
1800 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1801 int remaining = zc->recv_skip_hint;
1803 while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1804 skb_frag_off(frags))) {
1805 remaining -= skb_frag_size(frags);
1806 frags++;
1808 zc->recv_skip_hint -= remaining;
1809 break;
1811 ret = vm_insert_page(vma, address + length,
1812 skb_frag_page(frags));
1813 if (ret)
1814 break;
1815 length += PAGE_SIZE;
1816 seq += PAGE_SIZE;
1817 zc->recv_skip_hint -= PAGE_SIZE;
1818 frags++;
1820 out:
1821 up_read(&current->mm->mmap_sem);
1822 if (length) {
1823 WRITE_ONCE(tp->copied_seq, seq);
1824 tcp_rcv_space_adjust(sk);
1826 /* Clean up data we have read: This will do ACK frames. */
1827 tcp_recv_skb(sk, seq, &offset);
1828 tcp_cleanup_rbuf(sk, length);
1829 ret = 0;
1830 if (length == zc->length)
1831 zc->recv_skip_hint = 0;
1832 } else {
1833 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1834 ret = -EIO;
1836 zc->length = length;
1837 return ret;
1839 #endif
1841 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1842 struct scm_timestamping_internal *tss)
1844 if (skb->tstamp)
1845 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1846 else
1847 tss->ts[0] = (struct timespec64) {0};
1849 if (skb_hwtstamps(skb)->hwtstamp)
1850 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1851 else
1852 tss->ts[2] = (struct timespec64) {0};
1855 /* Similar to __sock_recv_timestamp, but does not require an skb */
1856 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1857 struct scm_timestamping_internal *tss)
1859 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1860 bool has_timestamping = false;
1862 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1863 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1864 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1865 if (new_tstamp) {
1866 struct __kernel_timespec kts = {
1867 .tv_sec = tss->ts[0].tv_sec,
1868 .tv_nsec = tss->ts[0].tv_nsec,
1870 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1871 sizeof(kts), &kts);
1872 } else {
1873 struct __kernel_old_timespec ts_old = {
1874 .tv_sec = tss->ts[0].tv_sec,
1875 .tv_nsec = tss->ts[0].tv_nsec,
1877 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1878 sizeof(ts_old), &ts_old);
1880 } else {
1881 if (new_tstamp) {
1882 struct __kernel_sock_timeval stv = {
1883 .tv_sec = tss->ts[0].tv_sec,
1884 .tv_usec = tss->ts[0].tv_nsec / 1000,
1886 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1887 sizeof(stv), &stv);
1888 } else {
1889 struct __kernel_old_timeval tv = {
1890 .tv_sec = tss->ts[0].tv_sec,
1891 .tv_usec = tss->ts[0].tv_nsec / 1000,
1893 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1894 sizeof(tv), &tv);
1899 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1900 has_timestamping = true;
1901 else
1902 tss->ts[0] = (struct timespec64) {0};
1905 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1906 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1907 has_timestamping = true;
1908 else
1909 tss->ts[2] = (struct timespec64) {0};
1912 if (has_timestamping) {
1913 tss->ts[1] = (struct timespec64) {0};
1914 if (sock_flag(sk, SOCK_TSTAMP_NEW))
1915 put_cmsg_scm_timestamping64(msg, tss);
1916 else
1917 put_cmsg_scm_timestamping(msg, tss);
1921 static int tcp_inq_hint(struct sock *sk)
1923 const struct tcp_sock *tp = tcp_sk(sk);
1924 u32 copied_seq = READ_ONCE(tp->copied_seq);
1925 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1926 int inq;
1928 inq = rcv_nxt - copied_seq;
1929 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1930 lock_sock(sk);
1931 inq = tp->rcv_nxt - tp->copied_seq;
1932 release_sock(sk);
1934 /* After receiving a FIN, tell the user-space to continue reading
1935 * by returning a non-zero inq.
1937 if (inq == 0 && sock_flag(sk, SOCK_DONE))
1938 inq = 1;
1939 return inq;
1943 * This routine copies from a sock struct into the user buffer.
1945 * Technical note: in 2.3 we work on _locked_ socket, so that
1946 * tricks with *seq access order and skb->users are not required.
1947 * Probably, code can be easily improved even more.
1950 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1951 int flags, int *addr_len)
1953 struct tcp_sock *tp = tcp_sk(sk);
1954 int copied = 0;
1955 u32 peek_seq;
1956 u32 *seq;
1957 unsigned long used;
1958 int err, inq;
1959 int target; /* Read at least this many bytes */
1960 long timeo;
1961 struct sk_buff *skb, *last;
1962 u32 urg_hole = 0;
1963 struct scm_timestamping_internal tss;
1964 int cmsg_flags;
1966 if (unlikely(flags & MSG_ERRQUEUE))
1967 return inet_recv_error(sk, msg, len, addr_len);
1969 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
1970 (sk->sk_state == TCP_ESTABLISHED))
1971 sk_busy_loop(sk, nonblock);
1973 lock_sock(sk);
1975 err = -ENOTCONN;
1976 if (sk->sk_state == TCP_LISTEN)
1977 goto out;
1979 cmsg_flags = tp->recvmsg_inq ? 1 : 0;
1980 timeo = sock_rcvtimeo(sk, nonblock);
1982 /* Urgent data needs to be handled specially. */
1983 if (flags & MSG_OOB)
1984 goto recv_urg;
1986 if (unlikely(tp->repair)) {
1987 err = -EPERM;
1988 if (!(flags & MSG_PEEK))
1989 goto out;
1991 if (tp->repair_queue == TCP_SEND_QUEUE)
1992 goto recv_sndq;
1994 err = -EINVAL;
1995 if (tp->repair_queue == TCP_NO_QUEUE)
1996 goto out;
1998 /* 'common' recv queue MSG_PEEK-ing */
2001 seq = &tp->copied_seq;
2002 if (flags & MSG_PEEK) {
2003 peek_seq = tp->copied_seq;
2004 seq = &peek_seq;
2007 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2009 do {
2010 u32 offset;
2012 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2013 if (tp->urg_data && tp->urg_seq == *seq) {
2014 if (copied)
2015 break;
2016 if (signal_pending(current)) {
2017 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2018 break;
2022 /* Next get a buffer. */
2024 last = skb_peek_tail(&sk->sk_receive_queue);
2025 skb_queue_walk(&sk->sk_receive_queue, skb) {
2026 last = skb;
2027 /* Now that we have two receive queues this
2028 * shouldn't happen.
2030 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2031 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2032 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2033 flags))
2034 break;
2036 offset = *seq - TCP_SKB_CB(skb)->seq;
2037 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2038 pr_err_once("%s: found a SYN, please report !\n", __func__);
2039 offset--;
2041 if (offset < skb->len)
2042 goto found_ok_skb;
2043 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2044 goto found_fin_ok;
2045 WARN(!(flags & MSG_PEEK),
2046 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2047 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2050 /* Well, if we have backlog, try to process it now yet. */
2052 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2053 break;
2055 if (copied) {
2056 if (sk->sk_err ||
2057 sk->sk_state == TCP_CLOSE ||
2058 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2059 !timeo ||
2060 signal_pending(current))
2061 break;
2062 } else {
2063 if (sock_flag(sk, SOCK_DONE))
2064 break;
2066 if (sk->sk_err) {
2067 copied = sock_error(sk);
2068 break;
2071 if (sk->sk_shutdown & RCV_SHUTDOWN)
2072 break;
2074 if (sk->sk_state == TCP_CLOSE) {
2075 /* This occurs when user tries to read
2076 * from never connected socket.
2078 copied = -ENOTCONN;
2079 break;
2082 if (!timeo) {
2083 copied = -EAGAIN;
2084 break;
2087 if (signal_pending(current)) {
2088 copied = sock_intr_errno(timeo);
2089 break;
2093 tcp_cleanup_rbuf(sk, copied);
2095 if (copied >= target) {
2096 /* Do not sleep, just process backlog. */
2097 release_sock(sk);
2098 lock_sock(sk);
2099 } else {
2100 sk_wait_data(sk, &timeo, last);
2103 if ((flags & MSG_PEEK) &&
2104 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2105 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2106 current->comm,
2107 task_pid_nr(current));
2108 peek_seq = tp->copied_seq;
2110 continue;
2112 found_ok_skb:
2113 /* Ok so how much can we use? */
2114 used = skb->len - offset;
2115 if (len < used)
2116 used = len;
2118 /* Do we have urgent data here? */
2119 if (tp->urg_data) {
2120 u32 urg_offset = tp->urg_seq - *seq;
2121 if (urg_offset < used) {
2122 if (!urg_offset) {
2123 if (!sock_flag(sk, SOCK_URGINLINE)) {
2124 WRITE_ONCE(*seq, *seq + 1);
2125 urg_hole++;
2126 offset++;
2127 used--;
2128 if (!used)
2129 goto skip_copy;
2131 } else
2132 used = urg_offset;
2136 if (!(flags & MSG_TRUNC)) {
2137 err = skb_copy_datagram_msg(skb, offset, msg, used);
2138 if (err) {
2139 /* Exception. Bailout! */
2140 if (!copied)
2141 copied = -EFAULT;
2142 break;
2146 WRITE_ONCE(*seq, *seq + used);
2147 copied += used;
2148 len -= used;
2150 tcp_rcv_space_adjust(sk);
2152 skip_copy:
2153 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2154 tp->urg_data = 0;
2155 tcp_fast_path_check(sk);
2157 if (used + offset < skb->len)
2158 continue;
2160 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2161 tcp_update_recv_tstamps(skb, &tss);
2162 cmsg_flags |= 2;
2164 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2165 goto found_fin_ok;
2166 if (!(flags & MSG_PEEK))
2167 sk_eat_skb(sk, skb);
2168 continue;
2170 found_fin_ok:
2171 /* Process the FIN. */
2172 WRITE_ONCE(*seq, *seq + 1);
2173 if (!(flags & MSG_PEEK))
2174 sk_eat_skb(sk, skb);
2175 break;
2176 } while (len > 0);
2178 /* According to UNIX98, msg_name/msg_namelen are ignored
2179 * on connected socket. I was just happy when found this 8) --ANK
2182 /* Clean up data we have read: This will do ACK frames. */
2183 tcp_cleanup_rbuf(sk, copied);
2185 release_sock(sk);
2187 if (cmsg_flags) {
2188 if (cmsg_flags & 2)
2189 tcp_recv_timestamp(msg, sk, &tss);
2190 if (cmsg_flags & 1) {
2191 inq = tcp_inq_hint(sk);
2192 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2196 return copied;
2198 out:
2199 release_sock(sk);
2200 return err;
2202 recv_urg:
2203 err = tcp_recv_urg(sk, msg, len, flags);
2204 goto out;
2206 recv_sndq:
2207 err = tcp_peek_sndq(sk, msg, len);
2208 goto out;
2210 EXPORT_SYMBOL(tcp_recvmsg);
2212 void tcp_set_state(struct sock *sk, int state)
2214 int oldstate = sk->sk_state;
2216 /* We defined a new enum for TCP states that are exported in BPF
2217 * so as not force the internal TCP states to be frozen. The
2218 * following checks will detect if an internal state value ever
2219 * differs from the BPF value. If this ever happens, then we will
2220 * need to remap the internal value to the BPF value before calling
2221 * tcp_call_bpf_2arg.
2223 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2224 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2225 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2226 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2227 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2228 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2229 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2230 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2231 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2232 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2233 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2234 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2235 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2237 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2238 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2240 switch (state) {
2241 case TCP_ESTABLISHED:
2242 if (oldstate != TCP_ESTABLISHED)
2243 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2244 break;
2246 case TCP_CLOSE:
2247 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2248 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2250 sk->sk_prot->unhash(sk);
2251 if (inet_csk(sk)->icsk_bind_hash &&
2252 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2253 inet_put_port(sk);
2254 fallthrough;
2255 default:
2256 if (oldstate == TCP_ESTABLISHED)
2257 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2260 /* Change state AFTER socket is unhashed to avoid closed
2261 * socket sitting in hash tables.
2263 inet_sk_state_store(sk, state);
2265 EXPORT_SYMBOL_GPL(tcp_set_state);
2268 * State processing on a close. This implements the state shift for
2269 * sending our FIN frame. Note that we only send a FIN for some
2270 * states. A shutdown() may have already sent the FIN, or we may be
2271 * closed.
2274 static const unsigned char new_state[16] = {
2275 /* current state: new state: action: */
2276 [0 /* (Invalid) */] = TCP_CLOSE,
2277 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2278 [TCP_SYN_SENT] = TCP_CLOSE,
2279 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2280 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2281 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2282 [TCP_TIME_WAIT] = TCP_CLOSE,
2283 [TCP_CLOSE] = TCP_CLOSE,
2284 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2285 [TCP_LAST_ACK] = TCP_LAST_ACK,
2286 [TCP_LISTEN] = TCP_CLOSE,
2287 [TCP_CLOSING] = TCP_CLOSING,
2288 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2291 static int tcp_close_state(struct sock *sk)
2293 int next = (int)new_state[sk->sk_state];
2294 int ns = next & TCP_STATE_MASK;
2296 tcp_set_state(sk, ns);
2298 return next & TCP_ACTION_FIN;
2302 * Shutdown the sending side of a connection. Much like close except
2303 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2306 void tcp_shutdown(struct sock *sk, int how)
2308 /* We need to grab some memory, and put together a FIN,
2309 * and then put it into the queue to be sent.
2310 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2312 if (!(how & SEND_SHUTDOWN))
2313 return;
2315 /* If we've already sent a FIN, or it's a closed state, skip this. */
2316 if ((1 << sk->sk_state) &
2317 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2318 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2319 /* Clear out any half completed packets. FIN if needed. */
2320 if (tcp_close_state(sk))
2321 tcp_send_fin(sk);
2324 EXPORT_SYMBOL(tcp_shutdown);
2326 bool tcp_check_oom(struct sock *sk, int shift)
2328 bool too_many_orphans, out_of_socket_memory;
2330 too_many_orphans = tcp_too_many_orphans(sk, shift);
2331 out_of_socket_memory = tcp_out_of_memory(sk);
2333 if (too_many_orphans)
2334 net_info_ratelimited("too many orphaned sockets\n");
2335 if (out_of_socket_memory)
2336 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2337 return too_many_orphans || out_of_socket_memory;
2340 void tcp_close(struct sock *sk, long timeout)
2342 struct sk_buff *skb;
2343 int data_was_unread = 0;
2344 int state;
2346 lock_sock(sk);
2347 sk->sk_shutdown = SHUTDOWN_MASK;
2349 if (sk->sk_state == TCP_LISTEN) {
2350 tcp_set_state(sk, TCP_CLOSE);
2352 /* Special case. */
2353 inet_csk_listen_stop(sk);
2355 goto adjudge_to_death;
2358 /* We need to flush the recv. buffs. We do this only on the
2359 * descriptor close, not protocol-sourced closes, because the
2360 * reader process may not have drained the data yet!
2362 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2363 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2365 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2366 len--;
2367 data_was_unread += len;
2368 __kfree_skb(skb);
2371 sk_mem_reclaim(sk);
2373 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2374 if (sk->sk_state == TCP_CLOSE)
2375 goto adjudge_to_death;
2377 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2378 * data was lost. To witness the awful effects of the old behavior of
2379 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2380 * GET in an FTP client, suspend the process, wait for the client to
2381 * advertise a zero window, then kill -9 the FTP client, wheee...
2382 * Note: timeout is always zero in such a case.
2384 if (unlikely(tcp_sk(sk)->repair)) {
2385 sk->sk_prot->disconnect(sk, 0);
2386 } else if (data_was_unread) {
2387 /* Unread data was tossed, zap the connection. */
2388 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2389 tcp_set_state(sk, TCP_CLOSE);
2390 tcp_send_active_reset(sk, sk->sk_allocation);
2391 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2392 /* Check zero linger _after_ checking for unread data. */
2393 sk->sk_prot->disconnect(sk, 0);
2394 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2395 } else if (tcp_close_state(sk)) {
2396 /* We FIN if the application ate all the data before
2397 * zapping the connection.
2400 /* RED-PEN. Formally speaking, we have broken TCP state
2401 * machine. State transitions:
2403 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2404 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2405 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2407 * are legal only when FIN has been sent (i.e. in window),
2408 * rather than queued out of window. Purists blame.
2410 * F.e. "RFC state" is ESTABLISHED,
2411 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2413 * The visible declinations are that sometimes
2414 * we enter time-wait state, when it is not required really
2415 * (harmless), do not send active resets, when they are
2416 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2417 * they look as CLOSING or LAST_ACK for Linux)
2418 * Probably, I missed some more holelets.
2419 * --ANK
2420 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2421 * in a single packet! (May consider it later but will
2422 * probably need API support or TCP_CORK SYN-ACK until
2423 * data is written and socket is closed.)
2425 tcp_send_fin(sk);
2428 sk_stream_wait_close(sk, timeout);
2430 adjudge_to_death:
2431 state = sk->sk_state;
2432 sock_hold(sk);
2433 sock_orphan(sk);
2435 local_bh_disable();
2436 bh_lock_sock(sk);
2437 /* remove backlog if any, without releasing ownership. */
2438 __release_sock(sk);
2440 percpu_counter_inc(sk->sk_prot->orphan_count);
2442 /* Have we already been destroyed by a softirq or backlog? */
2443 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2444 goto out;
2446 /* This is a (useful) BSD violating of the RFC. There is a
2447 * problem with TCP as specified in that the other end could
2448 * keep a socket open forever with no application left this end.
2449 * We use a 1 minute timeout (about the same as BSD) then kill
2450 * our end. If they send after that then tough - BUT: long enough
2451 * that we won't make the old 4*rto = almost no time - whoops
2452 * reset mistake.
2454 * Nope, it was not mistake. It is really desired behaviour
2455 * f.e. on http servers, when such sockets are useless, but
2456 * consume significant resources. Let's do it with special
2457 * linger2 option. --ANK
2460 if (sk->sk_state == TCP_FIN_WAIT2) {
2461 struct tcp_sock *tp = tcp_sk(sk);
2462 if (tp->linger2 < 0) {
2463 tcp_set_state(sk, TCP_CLOSE);
2464 tcp_send_active_reset(sk, GFP_ATOMIC);
2465 __NET_INC_STATS(sock_net(sk),
2466 LINUX_MIB_TCPABORTONLINGER);
2467 } else {
2468 const int tmo = tcp_fin_time(sk);
2470 if (tmo > TCP_TIMEWAIT_LEN) {
2471 inet_csk_reset_keepalive_timer(sk,
2472 tmo - TCP_TIMEWAIT_LEN);
2473 } else {
2474 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2475 goto out;
2479 if (sk->sk_state != TCP_CLOSE) {
2480 sk_mem_reclaim(sk);
2481 if (tcp_check_oom(sk, 0)) {
2482 tcp_set_state(sk, TCP_CLOSE);
2483 tcp_send_active_reset(sk, GFP_ATOMIC);
2484 __NET_INC_STATS(sock_net(sk),
2485 LINUX_MIB_TCPABORTONMEMORY);
2486 } else if (!check_net(sock_net(sk))) {
2487 /* Not possible to send reset; just close */
2488 tcp_set_state(sk, TCP_CLOSE);
2492 if (sk->sk_state == TCP_CLOSE) {
2493 struct request_sock *req;
2495 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2496 lockdep_sock_is_held(sk));
2497 /* We could get here with a non-NULL req if the socket is
2498 * aborted (e.g., closed with unread data) before 3WHS
2499 * finishes.
2501 if (req)
2502 reqsk_fastopen_remove(sk, req, false);
2503 inet_csk_destroy_sock(sk);
2505 /* Otherwise, socket is reprieved until protocol close. */
2507 out:
2508 bh_unlock_sock(sk);
2509 local_bh_enable();
2510 release_sock(sk);
2511 sock_put(sk);
2513 EXPORT_SYMBOL(tcp_close);
2515 /* These states need RST on ABORT according to RFC793 */
2517 static inline bool tcp_need_reset(int state)
2519 return (1 << state) &
2520 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2521 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2524 static void tcp_rtx_queue_purge(struct sock *sk)
2526 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2528 tcp_sk(sk)->highest_sack = NULL;
2529 while (p) {
2530 struct sk_buff *skb = rb_to_skb(p);
2532 p = rb_next(p);
2533 /* Since we are deleting whole queue, no need to
2534 * list_del(&skb->tcp_tsorted_anchor)
2536 tcp_rtx_queue_unlink(skb, sk);
2537 sk_wmem_free_skb(sk, skb);
2541 void tcp_write_queue_purge(struct sock *sk)
2543 struct sk_buff *skb;
2545 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2546 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2547 tcp_skb_tsorted_anchor_cleanup(skb);
2548 sk_wmem_free_skb(sk, skb);
2550 tcp_rtx_queue_purge(sk);
2551 skb = sk->sk_tx_skb_cache;
2552 if (skb) {
2553 __kfree_skb(skb);
2554 sk->sk_tx_skb_cache = NULL;
2556 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2557 sk_mem_reclaim(sk);
2558 tcp_clear_all_retrans_hints(tcp_sk(sk));
2559 tcp_sk(sk)->packets_out = 0;
2560 inet_csk(sk)->icsk_backoff = 0;
2563 int tcp_disconnect(struct sock *sk, int flags)
2565 struct inet_sock *inet = inet_sk(sk);
2566 struct inet_connection_sock *icsk = inet_csk(sk);
2567 struct tcp_sock *tp = tcp_sk(sk);
2568 int old_state = sk->sk_state;
2569 u32 seq;
2571 if (old_state != TCP_CLOSE)
2572 tcp_set_state(sk, TCP_CLOSE);
2574 /* ABORT function of RFC793 */
2575 if (old_state == TCP_LISTEN) {
2576 inet_csk_listen_stop(sk);
2577 } else if (unlikely(tp->repair)) {
2578 sk->sk_err = ECONNABORTED;
2579 } else if (tcp_need_reset(old_state) ||
2580 (tp->snd_nxt != tp->write_seq &&
2581 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2582 /* The last check adjusts for discrepancy of Linux wrt. RFC
2583 * states
2585 tcp_send_active_reset(sk, gfp_any());
2586 sk->sk_err = ECONNRESET;
2587 } else if (old_state == TCP_SYN_SENT)
2588 sk->sk_err = ECONNRESET;
2590 tcp_clear_xmit_timers(sk);
2591 __skb_queue_purge(&sk->sk_receive_queue);
2592 if (sk->sk_rx_skb_cache) {
2593 __kfree_skb(sk->sk_rx_skb_cache);
2594 sk->sk_rx_skb_cache = NULL;
2596 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2597 tp->urg_data = 0;
2598 tcp_write_queue_purge(sk);
2599 tcp_fastopen_active_disable_ofo_check(sk);
2600 skb_rbtree_purge(&tp->out_of_order_queue);
2602 inet->inet_dport = 0;
2604 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2605 inet_reset_saddr(sk);
2607 sk->sk_shutdown = 0;
2608 sock_reset_flag(sk, SOCK_DONE);
2609 tp->srtt_us = 0;
2610 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2611 tp->rcv_rtt_last_tsecr = 0;
2613 seq = tp->write_seq + tp->max_window + 2;
2614 if (!seq)
2615 seq = 1;
2616 WRITE_ONCE(tp->write_seq, seq);
2618 icsk->icsk_backoff = 0;
2619 icsk->icsk_probes_out = 0;
2620 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2621 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2622 tp->snd_cwnd = TCP_INIT_CWND;
2623 tp->snd_cwnd_cnt = 0;
2624 tp->window_clamp = 0;
2625 tp->delivered = 0;
2626 tp->delivered_ce = 0;
2627 tcp_set_ca_state(sk, TCP_CA_Open);
2628 tp->is_sack_reneg = 0;
2629 tcp_clear_retrans(tp);
2630 tp->total_retrans = 0;
2631 inet_csk_delack_init(sk);
2632 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2633 * issue in __tcp_select_window()
2635 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2636 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2637 __sk_dst_reset(sk);
2638 dst_release(sk->sk_rx_dst);
2639 sk->sk_rx_dst = NULL;
2640 tcp_saved_syn_free(tp);
2641 tp->compressed_ack = 0;
2642 tp->segs_in = 0;
2643 tp->segs_out = 0;
2644 tp->bytes_sent = 0;
2645 tp->bytes_acked = 0;
2646 tp->bytes_received = 0;
2647 tp->bytes_retrans = 0;
2648 tp->data_segs_in = 0;
2649 tp->data_segs_out = 0;
2650 tp->duplicate_sack[0].start_seq = 0;
2651 tp->duplicate_sack[0].end_seq = 0;
2652 tp->dsack_dups = 0;
2653 tp->reord_seen = 0;
2654 tp->retrans_out = 0;
2655 tp->sacked_out = 0;
2656 tp->tlp_high_seq = 0;
2657 tp->last_oow_ack_time = 0;
2658 /* There's a bubble in the pipe until at least the first ACK. */
2659 tp->app_limited = ~0U;
2660 tp->rack.mstamp = 0;
2661 tp->rack.advanced = 0;
2662 tp->rack.reo_wnd_steps = 1;
2663 tp->rack.last_delivered = 0;
2664 tp->rack.reo_wnd_persist = 0;
2665 tp->rack.dsack_seen = 0;
2666 tp->syn_data_acked = 0;
2667 tp->rx_opt.saw_tstamp = 0;
2668 tp->rx_opt.dsack = 0;
2669 tp->rx_opt.num_sacks = 0;
2670 tp->rcv_ooopack = 0;
2673 /* Clean up fastopen related fields */
2674 tcp_free_fastopen_req(tp);
2675 inet->defer_connect = 0;
2676 tp->fastopen_client_fail = 0;
2678 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2680 if (sk->sk_frag.page) {
2681 put_page(sk->sk_frag.page);
2682 sk->sk_frag.page = NULL;
2683 sk->sk_frag.offset = 0;
2686 sk->sk_error_report(sk);
2687 return 0;
2689 EXPORT_SYMBOL(tcp_disconnect);
2691 static inline bool tcp_can_repair_sock(const struct sock *sk)
2693 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2694 (sk->sk_state != TCP_LISTEN);
2697 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2699 struct tcp_repair_window opt;
2701 if (!tp->repair)
2702 return -EPERM;
2704 if (len != sizeof(opt))
2705 return -EINVAL;
2707 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2708 return -EFAULT;
2710 if (opt.max_window < opt.snd_wnd)
2711 return -EINVAL;
2713 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2714 return -EINVAL;
2716 if (after(opt.rcv_wup, tp->rcv_nxt))
2717 return -EINVAL;
2719 tp->snd_wl1 = opt.snd_wl1;
2720 tp->snd_wnd = opt.snd_wnd;
2721 tp->max_window = opt.max_window;
2723 tp->rcv_wnd = opt.rcv_wnd;
2724 tp->rcv_wup = opt.rcv_wup;
2726 return 0;
2729 static int tcp_repair_options_est(struct sock *sk,
2730 struct tcp_repair_opt __user *optbuf, unsigned int len)
2732 struct tcp_sock *tp = tcp_sk(sk);
2733 struct tcp_repair_opt opt;
2735 while (len >= sizeof(opt)) {
2736 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2737 return -EFAULT;
2739 optbuf++;
2740 len -= sizeof(opt);
2742 switch (opt.opt_code) {
2743 case TCPOPT_MSS:
2744 tp->rx_opt.mss_clamp = opt.opt_val;
2745 tcp_mtup_init(sk);
2746 break;
2747 case TCPOPT_WINDOW:
2749 u16 snd_wscale = opt.opt_val & 0xFFFF;
2750 u16 rcv_wscale = opt.opt_val >> 16;
2752 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2753 return -EFBIG;
2755 tp->rx_opt.snd_wscale = snd_wscale;
2756 tp->rx_opt.rcv_wscale = rcv_wscale;
2757 tp->rx_opt.wscale_ok = 1;
2759 break;
2760 case TCPOPT_SACK_PERM:
2761 if (opt.opt_val != 0)
2762 return -EINVAL;
2764 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2765 break;
2766 case TCPOPT_TIMESTAMP:
2767 if (opt.opt_val != 0)
2768 return -EINVAL;
2770 tp->rx_opt.tstamp_ok = 1;
2771 break;
2775 return 0;
2778 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2779 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2781 static void tcp_enable_tx_delay(void)
2783 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2784 static int __tcp_tx_delay_enabled = 0;
2786 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2787 static_branch_enable(&tcp_tx_delay_enabled);
2788 pr_info("TCP_TX_DELAY enabled\n");
2794 * Socket option code for TCP.
2796 static int do_tcp_setsockopt(struct sock *sk, int level,
2797 int optname, char __user *optval, unsigned int optlen)
2799 struct tcp_sock *tp = tcp_sk(sk);
2800 struct inet_connection_sock *icsk = inet_csk(sk);
2801 struct net *net = sock_net(sk);
2802 int val;
2803 int err = 0;
2805 /* These are data/string values, all the others are ints */
2806 switch (optname) {
2807 case TCP_CONGESTION: {
2808 char name[TCP_CA_NAME_MAX];
2810 if (optlen < 1)
2811 return -EINVAL;
2813 val = strncpy_from_user(name, optval,
2814 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2815 if (val < 0)
2816 return -EFAULT;
2817 name[val] = 0;
2819 lock_sock(sk);
2820 err = tcp_set_congestion_control(sk, name, true, true,
2821 ns_capable(sock_net(sk)->user_ns,
2822 CAP_NET_ADMIN));
2823 release_sock(sk);
2824 return err;
2826 case TCP_ULP: {
2827 char name[TCP_ULP_NAME_MAX];
2829 if (optlen < 1)
2830 return -EINVAL;
2832 val = strncpy_from_user(name, optval,
2833 min_t(long, TCP_ULP_NAME_MAX - 1,
2834 optlen));
2835 if (val < 0)
2836 return -EFAULT;
2837 name[val] = 0;
2839 lock_sock(sk);
2840 err = tcp_set_ulp(sk, name);
2841 release_sock(sk);
2842 return err;
2844 case TCP_FASTOPEN_KEY: {
2845 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
2846 __u8 *backup_key = NULL;
2848 /* Allow a backup key as well to facilitate key rotation
2849 * First key is the active one.
2851 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
2852 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
2853 return -EINVAL;
2855 if (copy_from_user(key, optval, optlen))
2856 return -EFAULT;
2858 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
2859 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
2861 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
2863 default:
2864 /* fallthru */
2865 break;
2868 if (optlen < sizeof(int))
2869 return -EINVAL;
2871 if (get_user(val, (int __user *)optval))
2872 return -EFAULT;
2874 lock_sock(sk);
2876 switch (optname) {
2877 case TCP_MAXSEG:
2878 /* Values greater than interface MTU won't take effect. However
2879 * at the point when this call is done we typically don't yet
2880 * know which interface is going to be used
2882 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2883 err = -EINVAL;
2884 break;
2886 tp->rx_opt.user_mss = val;
2887 break;
2889 case TCP_NODELAY:
2890 if (val) {
2891 /* TCP_NODELAY is weaker than TCP_CORK, so that
2892 * this option on corked socket is remembered, but
2893 * it is not activated until cork is cleared.
2895 * However, when TCP_NODELAY is set we make
2896 * an explicit push, which overrides even TCP_CORK
2897 * for currently queued segments.
2899 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2900 tcp_push_pending_frames(sk);
2901 } else {
2902 tp->nonagle &= ~TCP_NAGLE_OFF;
2904 break;
2906 case TCP_THIN_LINEAR_TIMEOUTS:
2907 if (val < 0 || val > 1)
2908 err = -EINVAL;
2909 else
2910 tp->thin_lto = val;
2911 break;
2913 case TCP_THIN_DUPACK:
2914 if (val < 0 || val > 1)
2915 err = -EINVAL;
2916 break;
2918 case TCP_REPAIR:
2919 if (!tcp_can_repair_sock(sk))
2920 err = -EPERM;
2921 else if (val == TCP_REPAIR_ON) {
2922 tp->repair = 1;
2923 sk->sk_reuse = SK_FORCE_REUSE;
2924 tp->repair_queue = TCP_NO_QUEUE;
2925 } else if (val == TCP_REPAIR_OFF) {
2926 tp->repair = 0;
2927 sk->sk_reuse = SK_NO_REUSE;
2928 tcp_send_window_probe(sk);
2929 } else if (val == TCP_REPAIR_OFF_NO_WP) {
2930 tp->repair = 0;
2931 sk->sk_reuse = SK_NO_REUSE;
2932 } else
2933 err = -EINVAL;
2935 break;
2937 case TCP_REPAIR_QUEUE:
2938 if (!tp->repair)
2939 err = -EPERM;
2940 else if ((unsigned int)val < TCP_QUEUES_NR)
2941 tp->repair_queue = val;
2942 else
2943 err = -EINVAL;
2944 break;
2946 case TCP_QUEUE_SEQ:
2947 if (sk->sk_state != TCP_CLOSE)
2948 err = -EPERM;
2949 else if (tp->repair_queue == TCP_SEND_QUEUE)
2950 WRITE_ONCE(tp->write_seq, val);
2951 else if (tp->repair_queue == TCP_RECV_QUEUE) {
2952 WRITE_ONCE(tp->rcv_nxt, val);
2953 WRITE_ONCE(tp->copied_seq, val);
2955 else
2956 err = -EINVAL;
2957 break;
2959 case TCP_REPAIR_OPTIONS:
2960 if (!tp->repair)
2961 err = -EINVAL;
2962 else if (sk->sk_state == TCP_ESTABLISHED)
2963 err = tcp_repair_options_est(sk,
2964 (struct tcp_repair_opt __user *)optval,
2965 optlen);
2966 else
2967 err = -EPERM;
2968 break;
2970 case TCP_CORK:
2971 /* When set indicates to always queue non-full frames.
2972 * Later the user clears this option and we transmit
2973 * any pending partial frames in the queue. This is
2974 * meant to be used alongside sendfile() to get properly
2975 * filled frames when the user (for example) must write
2976 * out headers with a write() call first and then use
2977 * sendfile to send out the data parts.
2979 * TCP_CORK can be set together with TCP_NODELAY and it is
2980 * stronger than TCP_NODELAY.
2982 if (val) {
2983 tp->nonagle |= TCP_NAGLE_CORK;
2984 } else {
2985 tp->nonagle &= ~TCP_NAGLE_CORK;
2986 if (tp->nonagle&TCP_NAGLE_OFF)
2987 tp->nonagle |= TCP_NAGLE_PUSH;
2988 tcp_push_pending_frames(sk);
2990 break;
2992 case TCP_KEEPIDLE:
2993 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2994 err = -EINVAL;
2995 else {
2996 tp->keepalive_time = val * HZ;
2997 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2998 !((1 << sk->sk_state) &
2999 (TCPF_CLOSE | TCPF_LISTEN))) {
3000 u32 elapsed = keepalive_time_elapsed(tp);
3001 if (tp->keepalive_time > elapsed)
3002 elapsed = tp->keepalive_time - elapsed;
3003 else
3004 elapsed = 0;
3005 inet_csk_reset_keepalive_timer(sk, elapsed);
3008 break;
3009 case TCP_KEEPINTVL:
3010 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3011 err = -EINVAL;
3012 else
3013 tp->keepalive_intvl = val * HZ;
3014 break;
3015 case TCP_KEEPCNT:
3016 if (val < 1 || val > MAX_TCP_KEEPCNT)
3017 err = -EINVAL;
3018 else
3019 tp->keepalive_probes = val;
3020 break;
3021 case TCP_SYNCNT:
3022 if (val < 1 || val > MAX_TCP_SYNCNT)
3023 err = -EINVAL;
3024 else
3025 icsk->icsk_syn_retries = val;
3026 break;
3028 case TCP_SAVE_SYN:
3029 if (val < 0 || val > 1)
3030 err = -EINVAL;
3031 else
3032 tp->save_syn = val;
3033 break;
3035 case TCP_LINGER2:
3036 if (val < 0)
3037 tp->linger2 = -1;
3038 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
3039 tp->linger2 = 0;
3040 else
3041 tp->linger2 = val * HZ;
3042 break;
3044 case TCP_DEFER_ACCEPT:
3045 /* Translate value in seconds to number of retransmits */
3046 icsk->icsk_accept_queue.rskq_defer_accept =
3047 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3048 TCP_RTO_MAX / HZ);
3049 break;
3051 case TCP_WINDOW_CLAMP:
3052 if (!val) {
3053 if (sk->sk_state != TCP_CLOSE) {
3054 err = -EINVAL;
3055 break;
3057 tp->window_clamp = 0;
3058 } else
3059 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3060 SOCK_MIN_RCVBUF / 2 : val;
3061 break;
3063 case TCP_QUICKACK:
3064 if (!val) {
3065 inet_csk_enter_pingpong_mode(sk);
3066 } else {
3067 inet_csk_exit_pingpong_mode(sk);
3068 if ((1 << sk->sk_state) &
3069 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3070 inet_csk_ack_scheduled(sk)) {
3071 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
3072 tcp_cleanup_rbuf(sk, 1);
3073 if (!(val & 1))
3074 inet_csk_enter_pingpong_mode(sk);
3077 break;
3079 #ifdef CONFIG_TCP_MD5SIG
3080 case TCP_MD5SIG:
3081 case TCP_MD5SIG_EXT:
3082 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
3083 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3084 else
3085 err = -EINVAL;
3086 break;
3087 #endif
3088 case TCP_USER_TIMEOUT:
3089 /* Cap the max time in ms TCP will retry or probe the window
3090 * before giving up and aborting (ETIMEDOUT) a connection.
3092 if (val < 0)
3093 err = -EINVAL;
3094 else
3095 icsk->icsk_user_timeout = val;
3096 break;
3098 case TCP_FASTOPEN:
3099 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3100 TCPF_LISTEN))) {
3101 tcp_fastopen_init_key_once(net);
3103 fastopen_queue_tune(sk, val);
3104 } else {
3105 err = -EINVAL;
3107 break;
3108 case TCP_FASTOPEN_CONNECT:
3109 if (val > 1 || val < 0) {
3110 err = -EINVAL;
3111 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3112 if (sk->sk_state == TCP_CLOSE)
3113 tp->fastopen_connect = val;
3114 else
3115 err = -EINVAL;
3116 } else {
3117 err = -EOPNOTSUPP;
3119 break;
3120 case TCP_FASTOPEN_NO_COOKIE:
3121 if (val > 1 || val < 0)
3122 err = -EINVAL;
3123 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3124 err = -EINVAL;
3125 else
3126 tp->fastopen_no_cookie = val;
3127 break;
3128 case TCP_TIMESTAMP:
3129 if (!tp->repair)
3130 err = -EPERM;
3131 else
3132 tp->tsoffset = val - tcp_time_stamp_raw();
3133 break;
3134 case TCP_REPAIR_WINDOW:
3135 err = tcp_repair_set_window(tp, optval, optlen);
3136 break;
3137 case TCP_NOTSENT_LOWAT:
3138 tp->notsent_lowat = val;
3139 sk->sk_write_space(sk);
3140 break;
3141 case TCP_INQ:
3142 if (val > 1 || val < 0)
3143 err = -EINVAL;
3144 else
3145 tp->recvmsg_inq = val;
3146 break;
3147 case TCP_TX_DELAY:
3148 if (val)
3149 tcp_enable_tx_delay();
3150 tp->tcp_tx_delay = val;
3151 break;
3152 default:
3153 err = -ENOPROTOOPT;
3154 break;
3157 release_sock(sk);
3158 return err;
3161 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3162 unsigned int optlen)
3164 const struct inet_connection_sock *icsk = inet_csk(sk);
3166 if (level != SOL_TCP)
3167 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3168 optval, optlen);
3169 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3171 EXPORT_SYMBOL(tcp_setsockopt);
3173 #ifdef CONFIG_COMPAT
3174 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3175 char __user *optval, unsigned int optlen)
3177 if (level != SOL_TCP)
3178 return inet_csk_compat_setsockopt(sk, level, optname,
3179 optval, optlen);
3180 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3182 EXPORT_SYMBOL(compat_tcp_setsockopt);
3183 #endif
3185 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3186 struct tcp_info *info)
3188 u64 stats[__TCP_CHRONO_MAX], total = 0;
3189 enum tcp_chrono i;
3191 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3192 stats[i] = tp->chrono_stat[i - 1];
3193 if (i == tp->chrono_type)
3194 stats[i] += tcp_jiffies32 - tp->chrono_start;
3195 stats[i] *= USEC_PER_SEC / HZ;
3196 total += stats[i];
3199 info->tcpi_busy_time = total;
3200 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3201 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3204 /* Return information about state of tcp endpoint in API format. */
3205 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3207 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3208 const struct inet_connection_sock *icsk = inet_csk(sk);
3209 unsigned long rate;
3210 u32 now;
3211 u64 rate64;
3212 bool slow;
3214 memset(info, 0, sizeof(*info));
3215 if (sk->sk_type != SOCK_STREAM)
3216 return;
3218 info->tcpi_state = inet_sk_state_load(sk);
3220 /* Report meaningful fields for all TCP states, including listeners */
3221 rate = READ_ONCE(sk->sk_pacing_rate);
3222 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3223 info->tcpi_pacing_rate = rate64;
3225 rate = READ_ONCE(sk->sk_max_pacing_rate);
3226 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3227 info->tcpi_max_pacing_rate = rate64;
3229 info->tcpi_reordering = tp->reordering;
3230 info->tcpi_snd_cwnd = tp->snd_cwnd;
3232 if (info->tcpi_state == TCP_LISTEN) {
3233 /* listeners aliased fields :
3234 * tcpi_unacked -> Number of children ready for accept()
3235 * tcpi_sacked -> max backlog
3237 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3238 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3239 return;
3242 slow = lock_sock_fast(sk);
3244 info->tcpi_ca_state = icsk->icsk_ca_state;
3245 info->tcpi_retransmits = icsk->icsk_retransmits;
3246 info->tcpi_probes = icsk->icsk_probes_out;
3247 info->tcpi_backoff = icsk->icsk_backoff;
3249 if (tp->rx_opt.tstamp_ok)
3250 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3251 if (tcp_is_sack(tp))
3252 info->tcpi_options |= TCPI_OPT_SACK;
3253 if (tp->rx_opt.wscale_ok) {
3254 info->tcpi_options |= TCPI_OPT_WSCALE;
3255 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3256 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3259 if (tp->ecn_flags & TCP_ECN_OK)
3260 info->tcpi_options |= TCPI_OPT_ECN;
3261 if (tp->ecn_flags & TCP_ECN_SEEN)
3262 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3263 if (tp->syn_data_acked)
3264 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3266 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3267 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3268 info->tcpi_snd_mss = tp->mss_cache;
3269 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3271 info->tcpi_unacked = tp->packets_out;
3272 info->tcpi_sacked = tp->sacked_out;
3274 info->tcpi_lost = tp->lost_out;
3275 info->tcpi_retrans = tp->retrans_out;
3277 now = tcp_jiffies32;
3278 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3279 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3280 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3282 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3283 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3284 info->tcpi_rtt = tp->srtt_us >> 3;
3285 info->tcpi_rttvar = tp->mdev_us >> 2;
3286 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3287 info->tcpi_advmss = tp->advmss;
3289 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3290 info->tcpi_rcv_space = tp->rcvq_space.space;
3292 info->tcpi_total_retrans = tp->total_retrans;
3294 info->tcpi_bytes_acked = tp->bytes_acked;
3295 info->tcpi_bytes_received = tp->bytes_received;
3296 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3297 tcp_get_info_chrono_stats(tp, info);
3299 info->tcpi_segs_out = tp->segs_out;
3300 info->tcpi_segs_in = tp->segs_in;
3302 info->tcpi_min_rtt = tcp_min_rtt(tp);
3303 info->tcpi_data_segs_in = tp->data_segs_in;
3304 info->tcpi_data_segs_out = tp->data_segs_out;
3306 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3307 rate64 = tcp_compute_delivery_rate(tp);
3308 if (rate64)
3309 info->tcpi_delivery_rate = rate64;
3310 info->tcpi_delivered = tp->delivered;
3311 info->tcpi_delivered_ce = tp->delivered_ce;
3312 info->tcpi_bytes_sent = tp->bytes_sent;
3313 info->tcpi_bytes_retrans = tp->bytes_retrans;
3314 info->tcpi_dsack_dups = tp->dsack_dups;
3315 info->tcpi_reord_seen = tp->reord_seen;
3316 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3317 info->tcpi_snd_wnd = tp->snd_wnd;
3318 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3319 unlock_sock_fast(sk, slow);
3321 EXPORT_SYMBOL_GPL(tcp_get_info);
3323 static size_t tcp_opt_stats_get_size(void)
3325 return
3326 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3327 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3328 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3329 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3330 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3331 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3332 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3333 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3334 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3335 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3336 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3337 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3338 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3339 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3340 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3341 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3342 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3343 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3344 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3345 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3346 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3347 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3348 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3349 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3353 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3355 const struct tcp_sock *tp = tcp_sk(sk);
3356 struct sk_buff *stats;
3357 struct tcp_info info;
3358 unsigned long rate;
3359 u64 rate64;
3361 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3362 if (!stats)
3363 return NULL;
3365 tcp_get_info_chrono_stats(tp, &info);
3366 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3367 info.tcpi_busy_time, TCP_NLA_PAD);
3368 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3369 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3370 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3371 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3372 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3373 tp->data_segs_out, TCP_NLA_PAD);
3374 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3375 tp->total_retrans, TCP_NLA_PAD);
3377 rate = READ_ONCE(sk->sk_pacing_rate);
3378 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3379 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3381 rate64 = tcp_compute_delivery_rate(tp);
3382 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3384 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3385 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3386 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3388 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3389 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3390 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3391 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3392 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3394 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3395 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3397 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3398 TCP_NLA_PAD);
3399 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3400 TCP_NLA_PAD);
3401 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3402 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3403 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3404 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3405 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3406 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3408 return stats;
3411 static int do_tcp_getsockopt(struct sock *sk, int level,
3412 int optname, char __user *optval, int __user *optlen)
3414 struct inet_connection_sock *icsk = inet_csk(sk);
3415 struct tcp_sock *tp = tcp_sk(sk);
3416 struct net *net = sock_net(sk);
3417 int val, len;
3419 if (get_user(len, optlen))
3420 return -EFAULT;
3422 len = min_t(unsigned int, len, sizeof(int));
3424 if (len < 0)
3425 return -EINVAL;
3427 switch (optname) {
3428 case TCP_MAXSEG:
3429 val = tp->mss_cache;
3430 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3431 val = tp->rx_opt.user_mss;
3432 if (tp->repair)
3433 val = tp->rx_opt.mss_clamp;
3434 break;
3435 case TCP_NODELAY:
3436 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3437 break;
3438 case TCP_CORK:
3439 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3440 break;
3441 case TCP_KEEPIDLE:
3442 val = keepalive_time_when(tp) / HZ;
3443 break;
3444 case TCP_KEEPINTVL:
3445 val = keepalive_intvl_when(tp) / HZ;
3446 break;
3447 case TCP_KEEPCNT:
3448 val = keepalive_probes(tp);
3449 break;
3450 case TCP_SYNCNT:
3451 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3452 break;
3453 case TCP_LINGER2:
3454 val = tp->linger2;
3455 if (val >= 0)
3456 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3457 break;
3458 case TCP_DEFER_ACCEPT:
3459 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3460 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3461 break;
3462 case TCP_WINDOW_CLAMP:
3463 val = tp->window_clamp;
3464 break;
3465 case TCP_INFO: {
3466 struct tcp_info info;
3468 if (get_user(len, optlen))
3469 return -EFAULT;
3471 tcp_get_info(sk, &info);
3473 len = min_t(unsigned int, len, sizeof(info));
3474 if (put_user(len, optlen))
3475 return -EFAULT;
3476 if (copy_to_user(optval, &info, len))
3477 return -EFAULT;
3478 return 0;
3480 case TCP_CC_INFO: {
3481 const struct tcp_congestion_ops *ca_ops;
3482 union tcp_cc_info info;
3483 size_t sz = 0;
3484 int attr;
3486 if (get_user(len, optlen))
3487 return -EFAULT;
3489 ca_ops = icsk->icsk_ca_ops;
3490 if (ca_ops && ca_ops->get_info)
3491 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3493 len = min_t(unsigned int, len, sz);
3494 if (put_user(len, optlen))
3495 return -EFAULT;
3496 if (copy_to_user(optval, &info, len))
3497 return -EFAULT;
3498 return 0;
3500 case TCP_QUICKACK:
3501 val = !inet_csk_in_pingpong_mode(sk);
3502 break;
3504 case TCP_CONGESTION:
3505 if (get_user(len, optlen))
3506 return -EFAULT;
3507 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3508 if (put_user(len, optlen))
3509 return -EFAULT;
3510 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3511 return -EFAULT;
3512 return 0;
3514 case TCP_ULP:
3515 if (get_user(len, optlen))
3516 return -EFAULT;
3517 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3518 if (!icsk->icsk_ulp_ops) {
3519 if (put_user(0, optlen))
3520 return -EFAULT;
3521 return 0;
3523 if (put_user(len, optlen))
3524 return -EFAULT;
3525 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3526 return -EFAULT;
3527 return 0;
3529 case TCP_FASTOPEN_KEY: {
3530 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3531 struct tcp_fastopen_context *ctx;
3532 unsigned int key_len = 0;
3534 if (get_user(len, optlen))
3535 return -EFAULT;
3537 rcu_read_lock();
3538 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3539 if (ctx) {
3540 key_len = tcp_fastopen_context_len(ctx) *
3541 TCP_FASTOPEN_KEY_LENGTH;
3542 memcpy(&key[0], &ctx->key[0], key_len);
3544 rcu_read_unlock();
3546 len = min_t(unsigned int, len, key_len);
3547 if (put_user(len, optlen))
3548 return -EFAULT;
3549 if (copy_to_user(optval, key, len))
3550 return -EFAULT;
3551 return 0;
3553 case TCP_THIN_LINEAR_TIMEOUTS:
3554 val = tp->thin_lto;
3555 break;
3557 case TCP_THIN_DUPACK:
3558 val = 0;
3559 break;
3561 case TCP_REPAIR:
3562 val = tp->repair;
3563 break;
3565 case TCP_REPAIR_QUEUE:
3566 if (tp->repair)
3567 val = tp->repair_queue;
3568 else
3569 return -EINVAL;
3570 break;
3572 case TCP_REPAIR_WINDOW: {
3573 struct tcp_repair_window opt;
3575 if (get_user(len, optlen))
3576 return -EFAULT;
3578 if (len != sizeof(opt))
3579 return -EINVAL;
3581 if (!tp->repair)
3582 return -EPERM;
3584 opt.snd_wl1 = tp->snd_wl1;
3585 opt.snd_wnd = tp->snd_wnd;
3586 opt.max_window = tp->max_window;
3587 opt.rcv_wnd = tp->rcv_wnd;
3588 opt.rcv_wup = tp->rcv_wup;
3590 if (copy_to_user(optval, &opt, len))
3591 return -EFAULT;
3592 return 0;
3594 case TCP_QUEUE_SEQ:
3595 if (tp->repair_queue == TCP_SEND_QUEUE)
3596 val = tp->write_seq;
3597 else if (tp->repair_queue == TCP_RECV_QUEUE)
3598 val = tp->rcv_nxt;
3599 else
3600 return -EINVAL;
3601 break;
3603 case TCP_USER_TIMEOUT:
3604 val = icsk->icsk_user_timeout;
3605 break;
3607 case TCP_FASTOPEN:
3608 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3609 break;
3611 case TCP_FASTOPEN_CONNECT:
3612 val = tp->fastopen_connect;
3613 break;
3615 case TCP_FASTOPEN_NO_COOKIE:
3616 val = tp->fastopen_no_cookie;
3617 break;
3619 case TCP_TX_DELAY:
3620 val = tp->tcp_tx_delay;
3621 break;
3623 case TCP_TIMESTAMP:
3624 val = tcp_time_stamp_raw() + tp->tsoffset;
3625 break;
3626 case TCP_NOTSENT_LOWAT:
3627 val = tp->notsent_lowat;
3628 break;
3629 case TCP_INQ:
3630 val = tp->recvmsg_inq;
3631 break;
3632 case TCP_SAVE_SYN:
3633 val = tp->save_syn;
3634 break;
3635 case TCP_SAVED_SYN: {
3636 if (get_user(len, optlen))
3637 return -EFAULT;
3639 lock_sock(sk);
3640 if (tp->saved_syn) {
3641 if (len < tp->saved_syn[0]) {
3642 if (put_user(tp->saved_syn[0], optlen)) {
3643 release_sock(sk);
3644 return -EFAULT;
3646 release_sock(sk);
3647 return -EINVAL;
3649 len = tp->saved_syn[0];
3650 if (put_user(len, optlen)) {
3651 release_sock(sk);
3652 return -EFAULT;
3654 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3655 release_sock(sk);
3656 return -EFAULT;
3658 tcp_saved_syn_free(tp);
3659 release_sock(sk);
3660 } else {
3661 release_sock(sk);
3662 len = 0;
3663 if (put_user(len, optlen))
3664 return -EFAULT;
3666 return 0;
3668 #ifdef CONFIG_MMU
3669 case TCP_ZEROCOPY_RECEIVE: {
3670 struct tcp_zerocopy_receive zc;
3671 int err;
3673 if (get_user(len, optlen))
3674 return -EFAULT;
3675 if (len < offsetofend(struct tcp_zerocopy_receive, length))
3676 return -EINVAL;
3677 if (len > sizeof(zc)) {
3678 len = sizeof(zc);
3679 if (put_user(len, optlen))
3680 return -EFAULT;
3682 if (copy_from_user(&zc, optval, len))
3683 return -EFAULT;
3684 lock_sock(sk);
3685 err = tcp_zerocopy_receive(sk, &zc);
3686 release_sock(sk);
3687 if (len == sizeof(zc))
3688 goto zerocopy_rcv_sk_err;
3689 switch (len) {
3690 case offsetofend(struct tcp_zerocopy_receive, err):
3691 goto zerocopy_rcv_sk_err;
3692 case offsetofend(struct tcp_zerocopy_receive, inq):
3693 goto zerocopy_rcv_inq;
3694 case offsetofend(struct tcp_zerocopy_receive, length):
3695 default:
3696 goto zerocopy_rcv_out;
3698 zerocopy_rcv_sk_err:
3699 if (!err)
3700 zc.err = sock_error(sk);
3701 zerocopy_rcv_inq:
3702 zc.inq = tcp_inq_hint(sk);
3703 zerocopy_rcv_out:
3704 if (!err && copy_to_user(optval, &zc, len))
3705 err = -EFAULT;
3706 return err;
3708 #endif
3709 default:
3710 return -ENOPROTOOPT;
3713 if (put_user(len, optlen))
3714 return -EFAULT;
3715 if (copy_to_user(optval, &val, len))
3716 return -EFAULT;
3717 return 0;
3720 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3721 int __user *optlen)
3723 struct inet_connection_sock *icsk = inet_csk(sk);
3725 if (level != SOL_TCP)
3726 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3727 optval, optlen);
3728 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3730 EXPORT_SYMBOL(tcp_getsockopt);
3732 #ifdef CONFIG_COMPAT
3733 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3734 char __user *optval, int __user *optlen)
3736 if (level != SOL_TCP)
3737 return inet_csk_compat_getsockopt(sk, level, optname,
3738 optval, optlen);
3739 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3741 EXPORT_SYMBOL(compat_tcp_getsockopt);
3742 #endif
3744 #ifdef CONFIG_TCP_MD5SIG
3745 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3746 static DEFINE_MUTEX(tcp_md5sig_mutex);
3747 static bool tcp_md5sig_pool_populated = false;
3749 static void __tcp_alloc_md5sig_pool(void)
3751 struct crypto_ahash *hash;
3752 int cpu;
3754 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3755 if (IS_ERR(hash))
3756 return;
3758 for_each_possible_cpu(cpu) {
3759 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3760 struct ahash_request *req;
3762 if (!scratch) {
3763 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3764 sizeof(struct tcphdr),
3765 GFP_KERNEL,
3766 cpu_to_node(cpu));
3767 if (!scratch)
3768 return;
3769 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3771 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3772 continue;
3774 req = ahash_request_alloc(hash, GFP_KERNEL);
3775 if (!req)
3776 return;
3778 ahash_request_set_callback(req, 0, NULL, NULL);
3780 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3782 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3783 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3785 smp_wmb();
3786 tcp_md5sig_pool_populated = true;
3789 bool tcp_alloc_md5sig_pool(void)
3791 if (unlikely(!tcp_md5sig_pool_populated)) {
3792 mutex_lock(&tcp_md5sig_mutex);
3794 if (!tcp_md5sig_pool_populated) {
3795 __tcp_alloc_md5sig_pool();
3796 if (tcp_md5sig_pool_populated)
3797 static_branch_inc(&tcp_md5_needed);
3800 mutex_unlock(&tcp_md5sig_mutex);
3802 return tcp_md5sig_pool_populated;
3804 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3808 * tcp_get_md5sig_pool - get md5sig_pool for this user
3810 * We use percpu structure, so if we succeed, we exit with preemption
3811 * and BH disabled, to make sure another thread or softirq handling
3812 * wont try to get same context.
3814 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3816 local_bh_disable();
3818 if (tcp_md5sig_pool_populated) {
3819 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3820 smp_rmb();
3821 return this_cpu_ptr(&tcp_md5sig_pool);
3823 local_bh_enable();
3824 return NULL;
3826 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3828 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3829 const struct sk_buff *skb, unsigned int header_len)
3831 struct scatterlist sg;
3832 const struct tcphdr *tp = tcp_hdr(skb);
3833 struct ahash_request *req = hp->md5_req;
3834 unsigned int i;
3835 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3836 skb_headlen(skb) - header_len : 0;
3837 const struct skb_shared_info *shi = skb_shinfo(skb);
3838 struct sk_buff *frag_iter;
3840 sg_init_table(&sg, 1);
3842 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3843 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3844 if (crypto_ahash_update(req))
3845 return 1;
3847 for (i = 0; i < shi->nr_frags; ++i) {
3848 const skb_frag_t *f = &shi->frags[i];
3849 unsigned int offset = skb_frag_off(f);
3850 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3852 sg_set_page(&sg, page, skb_frag_size(f),
3853 offset_in_page(offset));
3854 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3855 if (crypto_ahash_update(req))
3856 return 1;
3859 skb_walk_frags(skb, frag_iter)
3860 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3861 return 1;
3863 return 0;
3865 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3867 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3869 struct scatterlist sg;
3871 sg_init_one(&sg, key->key, key->keylen);
3872 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3873 return crypto_ahash_update(hp->md5_req);
3875 EXPORT_SYMBOL(tcp_md5_hash_key);
3877 #endif
3879 void tcp_done(struct sock *sk)
3881 struct request_sock *req;
3883 /* We might be called with a new socket, after
3884 * inet_csk_prepare_forced_close() has been called
3885 * so we can not use lockdep_sock_is_held(sk)
3887 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
3889 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3890 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3892 tcp_set_state(sk, TCP_CLOSE);
3893 tcp_clear_xmit_timers(sk);
3894 if (req)
3895 reqsk_fastopen_remove(sk, req, false);
3897 sk->sk_shutdown = SHUTDOWN_MASK;
3899 if (!sock_flag(sk, SOCK_DEAD))
3900 sk->sk_state_change(sk);
3901 else
3902 inet_csk_destroy_sock(sk);
3904 EXPORT_SYMBOL_GPL(tcp_done);
3906 int tcp_abort(struct sock *sk, int err)
3908 if (!sk_fullsock(sk)) {
3909 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3910 struct request_sock *req = inet_reqsk(sk);
3912 local_bh_disable();
3913 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3914 local_bh_enable();
3915 return 0;
3917 return -EOPNOTSUPP;
3920 /* Don't race with userspace socket closes such as tcp_close. */
3921 lock_sock(sk);
3923 if (sk->sk_state == TCP_LISTEN) {
3924 tcp_set_state(sk, TCP_CLOSE);
3925 inet_csk_listen_stop(sk);
3928 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3929 local_bh_disable();
3930 bh_lock_sock(sk);
3932 if (!sock_flag(sk, SOCK_DEAD)) {
3933 sk->sk_err = err;
3934 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3935 smp_wmb();
3936 sk->sk_error_report(sk);
3937 if (tcp_need_reset(sk->sk_state))
3938 tcp_send_active_reset(sk, GFP_ATOMIC);
3939 tcp_done(sk);
3942 bh_unlock_sock(sk);
3943 local_bh_enable();
3944 tcp_write_queue_purge(sk);
3945 release_sock(sk);
3946 return 0;
3948 EXPORT_SYMBOL_GPL(tcp_abort);
3950 extern struct tcp_congestion_ops tcp_reno;
3952 static __initdata unsigned long thash_entries;
3953 static int __init set_thash_entries(char *str)
3955 ssize_t ret;
3957 if (!str)
3958 return 0;
3960 ret = kstrtoul(str, 0, &thash_entries);
3961 if (ret)
3962 return 0;
3964 return 1;
3966 __setup("thash_entries=", set_thash_entries);
3968 static void __init tcp_init_mem(void)
3970 unsigned long limit = nr_free_buffer_pages() / 16;
3972 limit = max(limit, 128UL);
3973 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3974 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3975 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3978 void __init tcp_init(void)
3980 int max_rshare, max_wshare, cnt;
3981 unsigned long limit;
3982 unsigned int i;
3984 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
3985 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3986 sizeof_field(struct sk_buff, cb));
3988 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3989 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3990 inet_hashinfo_init(&tcp_hashinfo);
3991 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3992 thash_entries, 21, /* one slot per 2 MB*/
3993 0, 64 * 1024);
3994 tcp_hashinfo.bind_bucket_cachep =
3995 kmem_cache_create("tcp_bind_bucket",
3996 sizeof(struct inet_bind_bucket), 0,
3997 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3999 /* Size and allocate the main established and bind bucket
4000 * hash tables.
4002 * The methodology is similar to that of the buffer cache.
4004 tcp_hashinfo.ehash =
4005 alloc_large_system_hash("TCP established",
4006 sizeof(struct inet_ehash_bucket),
4007 thash_entries,
4008 17, /* one slot per 128 KB of memory */
4010 NULL,
4011 &tcp_hashinfo.ehash_mask,
4013 thash_entries ? 0 : 512 * 1024);
4014 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4015 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4017 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4018 panic("TCP: failed to alloc ehash_locks");
4019 tcp_hashinfo.bhash =
4020 alloc_large_system_hash("TCP bind",
4021 sizeof(struct inet_bind_hashbucket),
4022 tcp_hashinfo.ehash_mask + 1,
4023 17, /* one slot per 128 KB of memory */
4025 &tcp_hashinfo.bhash_size,
4026 NULL,
4028 64 * 1024);
4029 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4030 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4031 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4032 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4036 cnt = tcp_hashinfo.ehash_mask + 1;
4037 sysctl_tcp_max_orphans = cnt / 2;
4039 tcp_init_mem();
4040 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4041 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4042 max_wshare = min(4UL*1024*1024, limit);
4043 max_rshare = min(6UL*1024*1024, limit);
4045 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4046 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4047 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4049 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4050 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4051 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4053 pr_info("Hash tables configured (established %u bind %u)\n",
4054 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4056 tcp_v4_init();
4057 tcp_metrics_init();
4058 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4059 tcp_tasklet_init();
4060 mptcp_init();