1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * Copyright (C) 2018-2020 Intel Corporation
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bitops.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
35 static inline void ieee80211_rx_stats(struct net_device
*dev
, u32 len
)
37 struct pcpu_sw_netstats
*tstats
= this_cpu_ptr(dev
->tstats
);
39 u64_stats_update_begin(&tstats
->syncp
);
41 tstats
->rx_bytes
+= len
;
42 u64_stats_update_end(&tstats
->syncp
);
45 static u8
*ieee80211_get_bssid(struct ieee80211_hdr
*hdr
, size_t len
,
46 enum nl80211_iftype type
)
48 __le16 fc
= hdr
->frame_control
;
50 if (ieee80211_is_data(fc
)) {
51 if (len
< 24) /* drop incorrect hdr len (data) */
54 if (ieee80211_has_a4(fc
))
56 if (ieee80211_has_tods(fc
))
58 if (ieee80211_has_fromds(fc
))
64 if (ieee80211_is_mgmt(fc
)) {
65 if (len
< 24) /* drop incorrect hdr len (mgmt) */
70 if (ieee80211_is_ctl(fc
)) {
71 if (ieee80211_is_pspoll(fc
))
74 if (ieee80211_is_back_req(fc
)) {
76 case NL80211_IFTYPE_STATION
:
78 case NL80211_IFTYPE_AP
:
79 case NL80211_IFTYPE_AP_VLAN
:
82 break; /* fall through to the return */
91 * monitor mode reception
93 * This function cleans up the SKB, i.e. it removes all the stuff
94 * only useful for monitoring.
96 static void remove_monitor_info(struct sk_buff
*skb
,
97 unsigned int present_fcs_len
,
98 unsigned int rtap_space
)
101 __pskb_trim(skb
, skb
->len
- present_fcs_len
);
102 __pskb_pull(skb
, rtap_space
);
105 static inline bool should_drop_frame(struct sk_buff
*skb
, int present_fcs_len
,
106 unsigned int rtap_space
)
108 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
109 struct ieee80211_hdr
*hdr
;
111 hdr
= (void *)(skb
->data
+ rtap_space
);
113 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
|
114 RX_FLAG_FAILED_PLCP_CRC
|
115 RX_FLAG_ONLY_MONITOR
|
119 if (unlikely(skb
->len
< 16 + present_fcs_len
+ rtap_space
))
122 if (ieee80211_is_ctl(hdr
->frame_control
) &&
123 !ieee80211_is_pspoll(hdr
->frame_control
) &&
124 !ieee80211_is_back_req(hdr
->frame_control
))
131 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local
*local
,
132 struct ieee80211_rx_status
*status
,
137 /* always present fields */
138 len
= sizeof(struct ieee80211_radiotap_header
) + 8;
140 /* allocate extra bitmaps */
142 len
+= 4 * hweight8(status
->chains
);
143 /* vendor presence bitmap */
144 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
)
147 if (ieee80211_have_rx_timestamp(status
)) {
151 if (ieee80211_hw_check(&local
->hw
, SIGNAL_DBM
))
154 /* antenna field, if we don't have per-chain info */
158 /* padding for RX_FLAGS if necessary */
161 if (status
->encoding
== RX_ENC_HT
) /* HT info */
164 if (status
->flag
& RX_FLAG_AMPDU_DETAILS
) {
169 if (status
->encoding
== RX_ENC_VHT
) {
174 if (local
->hw
.radiotap_timestamp
.units_pos
>= 0) {
179 if (status
->encoding
== RX_ENC_HE
&&
180 status
->flag
& RX_FLAG_RADIOTAP_HE
) {
183 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he
) != 12);
186 if (status
->encoding
== RX_ENC_HE
&&
187 status
->flag
& RX_FLAG_RADIOTAP_HE_MU
) {
190 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu
) != 12);
193 if (status
->flag
& RX_FLAG_NO_PSDU
)
196 if (status
->flag
& RX_FLAG_RADIOTAP_LSIG
) {
199 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig
) != 4);
202 if (status
->chains
) {
203 /* antenna and antenna signal fields */
204 len
+= 2 * hweight8(status
->chains
);
207 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
208 struct ieee80211_vendor_radiotap
*rtap
;
209 int vendor_data_offset
= 0;
212 * The position to look at depends on the existence (or non-
213 * existence) of other elements, so take that into account...
215 if (status
->flag
& RX_FLAG_RADIOTAP_HE
)
216 vendor_data_offset
+=
217 sizeof(struct ieee80211_radiotap_he
);
218 if (status
->flag
& RX_FLAG_RADIOTAP_HE_MU
)
219 vendor_data_offset
+=
220 sizeof(struct ieee80211_radiotap_he_mu
);
221 if (status
->flag
& RX_FLAG_RADIOTAP_LSIG
)
222 vendor_data_offset
+=
223 sizeof(struct ieee80211_radiotap_lsig
);
225 rtap
= (void *)&skb
->data
[vendor_data_offset
];
227 /* alignment for fixed 6-byte vendor data header */
229 /* vendor data header */
231 if (WARN_ON(rtap
->align
== 0))
233 len
= ALIGN(len
, rtap
->align
);
234 len
+= rtap
->len
+ rtap
->pad
;
240 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data
*sdata
,
245 struct ieee80211_hdr_3addr hdr
;
248 } __packed
__aligned(2) action
;
253 BUILD_BUG_ON(sizeof(action
) != IEEE80211_MIN_ACTION_SIZE
+ 1);
255 if (skb
->len
< rtap_space
+ sizeof(action
) +
256 VHT_MUMIMO_GROUPS_DATA_LEN
)
259 if (!is_valid_ether_addr(sdata
->u
.mntr
.mu_follow_addr
))
262 skb_copy_bits(skb
, rtap_space
, &action
, sizeof(action
));
264 if (!ieee80211_is_action(action
.hdr
.frame_control
))
267 if (action
.category
!= WLAN_CATEGORY_VHT
)
270 if (action
.action_code
!= WLAN_VHT_ACTION_GROUPID_MGMT
)
273 if (!ether_addr_equal(action
.hdr
.addr1
, sdata
->u
.mntr
.mu_follow_addr
))
276 skb
= skb_copy(skb
, GFP_ATOMIC
);
280 skb_queue_tail(&sdata
->skb_queue
, skb
);
281 ieee80211_queue_work(&sdata
->local
->hw
, &sdata
->work
);
285 * ieee80211_add_rx_radiotap_header - add radiotap header
287 * add a radiotap header containing all the fields which the hardware provided.
290 ieee80211_add_rx_radiotap_header(struct ieee80211_local
*local
,
292 struct ieee80211_rate
*rate
,
293 int rtap_len
, bool has_fcs
)
295 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
296 struct ieee80211_radiotap_header
*rthdr
;
301 u16 channel_flags
= 0;
303 unsigned long chains
= status
->chains
;
304 struct ieee80211_vendor_radiotap rtap
= {};
305 struct ieee80211_radiotap_he he
= {};
306 struct ieee80211_radiotap_he_mu he_mu
= {};
307 struct ieee80211_radiotap_lsig lsig
= {};
309 if (status
->flag
& RX_FLAG_RADIOTAP_HE
) {
310 he
= *(struct ieee80211_radiotap_he
*)skb
->data
;
311 skb_pull(skb
, sizeof(he
));
312 WARN_ON_ONCE(status
->encoding
!= RX_ENC_HE
);
315 if (status
->flag
& RX_FLAG_RADIOTAP_HE_MU
) {
316 he_mu
= *(struct ieee80211_radiotap_he_mu
*)skb
->data
;
317 skb_pull(skb
, sizeof(he_mu
));
320 if (status
->flag
& RX_FLAG_RADIOTAP_LSIG
) {
321 lsig
= *(struct ieee80211_radiotap_lsig
*)skb
->data
;
322 skb_pull(skb
, sizeof(lsig
));
325 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
326 rtap
= *(struct ieee80211_vendor_radiotap
*)skb
->data
;
327 /* rtap.len and rtap.pad are undone immediately */
328 skb_pull(skb
, sizeof(rtap
) + rtap
.len
+ rtap
.pad
);
332 if (!(has_fcs
&& ieee80211_hw_check(&local
->hw
, RX_INCLUDES_FCS
)))
335 rthdr
= skb_push(skb
, rtap_len
);
336 memset(rthdr
, 0, rtap_len
- rtap
.len
- rtap
.pad
);
337 it_present
= &rthdr
->it_present
;
339 /* radiotap header, set always present flags */
340 rthdr
->it_len
= cpu_to_le16(rtap_len
);
341 it_present_val
= BIT(IEEE80211_RADIOTAP_FLAGS
) |
342 BIT(IEEE80211_RADIOTAP_CHANNEL
) |
343 BIT(IEEE80211_RADIOTAP_RX_FLAGS
);
346 it_present_val
|= BIT(IEEE80211_RADIOTAP_ANTENNA
);
348 for_each_set_bit(chain
, &chains
, IEEE80211_MAX_CHAINS
) {
350 BIT(IEEE80211_RADIOTAP_EXT
) |
351 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE
);
352 put_unaligned_le32(it_present_val
, it_present
);
354 it_present_val
= BIT(IEEE80211_RADIOTAP_ANTENNA
) |
355 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
358 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
359 it_present_val
|= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE
) |
360 BIT(IEEE80211_RADIOTAP_EXT
);
361 put_unaligned_le32(it_present_val
, it_present
);
363 it_present_val
= rtap
.present
;
366 put_unaligned_le32(it_present_val
, it_present
);
368 pos
= (void *)(it_present
+ 1);
370 /* the order of the following fields is important */
372 /* IEEE80211_RADIOTAP_TSFT */
373 if (ieee80211_have_rx_timestamp(status
)) {
375 while ((pos
- (u8
*)rthdr
) & 7)
378 ieee80211_calculate_rx_timestamp(local
, status
,
381 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT
);
385 /* IEEE80211_RADIOTAP_FLAGS */
386 if (has_fcs
&& ieee80211_hw_check(&local
->hw
, RX_INCLUDES_FCS
))
387 *pos
|= IEEE80211_RADIOTAP_F_FCS
;
388 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
389 *pos
|= IEEE80211_RADIOTAP_F_BADFCS
;
390 if (status
->enc_flags
& RX_ENC_FLAG_SHORTPRE
)
391 *pos
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
394 /* IEEE80211_RADIOTAP_RATE */
395 if (!rate
|| status
->encoding
!= RX_ENC_LEGACY
) {
397 * Without rate information don't add it. If we have,
398 * MCS information is a separate field in radiotap,
399 * added below. The byte here is needed as padding
400 * for the channel though, so initialise it to 0.
405 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
406 if (status
->bw
== RATE_INFO_BW_10
)
408 else if (status
->bw
== RATE_INFO_BW_5
)
410 *pos
= DIV_ROUND_UP(rate
->bitrate
, 5 * (1 << shift
));
414 /* IEEE80211_RADIOTAP_CHANNEL */
415 put_unaligned_le16(status
->freq
, pos
);
417 if (status
->bw
== RATE_INFO_BW_10
)
418 channel_flags
|= IEEE80211_CHAN_HALF
;
419 else if (status
->bw
== RATE_INFO_BW_5
)
420 channel_flags
|= IEEE80211_CHAN_QUARTER
;
422 if (status
->band
== NL80211_BAND_5GHZ
)
423 channel_flags
|= IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
;
424 else if (status
->encoding
!= RX_ENC_LEGACY
)
425 channel_flags
|= IEEE80211_CHAN_DYN
| IEEE80211_CHAN_2GHZ
;
426 else if (rate
&& rate
->flags
& IEEE80211_RATE_ERP_G
)
427 channel_flags
|= IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
;
429 channel_flags
|= IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
;
431 channel_flags
|= IEEE80211_CHAN_2GHZ
;
432 put_unaligned_le16(channel_flags
, pos
);
435 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
436 if (ieee80211_hw_check(&local
->hw
, SIGNAL_DBM
) &&
437 !(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
)) {
438 *pos
= status
->signal
;
440 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
444 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
446 if (!status
->chains
) {
447 /* IEEE80211_RADIOTAP_ANTENNA */
448 *pos
= status
->antenna
;
452 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
454 /* IEEE80211_RADIOTAP_RX_FLAGS */
455 /* ensure 2 byte alignment for the 2 byte field as required */
456 if ((pos
- (u8
*)rthdr
) & 1)
458 if (status
->flag
& RX_FLAG_FAILED_PLCP_CRC
)
459 rx_flags
|= IEEE80211_RADIOTAP_F_RX_BADPLCP
;
460 put_unaligned_le16(rx_flags
, pos
);
463 if (status
->encoding
== RX_ENC_HT
) {
466 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS
);
467 *pos
++ = local
->hw
.radiotap_mcs_details
;
469 if (status
->enc_flags
& RX_ENC_FLAG_SHORT_GI
)
470 *pos
|= IEEE80211_RADIOTAP_MCS_SGI
;
471 if (status
->bw
== RATE_INFO_BW_40
)
472 *pos
|= IEEE80211_RADIOTAP_MCS_BW_40
;
473 if (status
->enc_flags
& RX_ENC_FLAG_HT_GF
)
474 *pos
|= IEEE80211_RADIOTAP_MCS_FMT_GF
;
475 if (status
->enc_flags
& RX_ENC_FLAG_LDPC
)
476 *pos
|= IEEE80211_RADIOTAP_MCS_FEC_LDPC
;
477 stbc
= (status
->enc_flags
& RX_ENC_FLAG_STBC_MASK
) >> RX_ENC_FLAG_STBC_SHIFT
;
478 *pos
|= stbc
<< IEEE80211_RADIOTAP_MCS_STBC_SHIFT
;
480 *pos
++ = status
->rate_idx
;
483 if (status
->flag
& RX_FLAG_AMPDU_DETAILS
) {
486 /* ensure 4 byte alignment */
487 while ((pos
- (u8
*)rthdr
) & 3)
490 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS
);
491 put_unaligned_le32(status
->ampdu_reference
, pos
);
493 if (status
->flag
& RX_FLAG_AMPDU_LAST_KNOWN
)
494 flags
|= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN
;
495 if (status
->flag
& RX_FLAG_AMPDU_IS_LAST
)
496 flags
|= IEEE80211_RADIOTAP_AMPDU_IS_LAST
;
497 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_ERROR
)
498 flags
|= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR
;
499 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_KNOWN
)
500 flags
|= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN
;
501 if (status
->flag
& RX_FLAG_AMPDU_EOF_BIT_KNOWN
)
502 flags
|= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN
;
503 if (status
->flag
& RX_FLAG_AMPDU_EOF_BIT
)
504 flags
|= IEEE80211_RADIOTAP_AMPDU_EOF
;
505 put_unaligned_le16(flags
, pos
);
507 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_KNOWN
)
508 *pos
++ = status
->ampdu_delimiter_crc
;
514 if (status
->encoding
== RX_ENC_VHT
) {
515 u16 known
= local
->hw
.radiotap_vht_details
;
517 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT
);
518 put_unaligned_le16(known
, pos
);
521 if (status
->enc_flags
& RX_ENC_FLAG_SHORT_GI
)
522 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_SGI
;
523 /* in VHT, STBC is binary */
524 if (status
->enc_flags
& RX_ENC_FLAG_STBC_MASK
)
525 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_STBC
;
526 if (status
->enc_flags
& RX_ENC_FLAG_BF
)
527 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED
;
530 switch (status
->bw
) {
531 case RATE_INFO_BW_80
:
534 case RATE_INFO_BW_160
:
537 case RATE_INFO_BW_40
:
544 *pos
= (status
->rate_idx
<< 4) | status
->nss
;
547 if (status
->enc_flags
& RX_ENC_FLAG_LDPC
)
548 *pos
|= IEEE80211_RADIOTAP_CODING_LDPC_USER0
;
556 if (local
->hw
.radiotap_timestamp
.units_pos
>= 0) {
558 u8 flags
= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT
;
561 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP
);
563 /* ensure 8 byte alignment */
564 while ((pos
- (u8
*)rthdr
) & 7)
567 put_unaligned_le64(status
->device_timestamp
, pos
);
570 if (local
->hw
.radiotap_timestamp
.accuracy
>= 0) {
571 accuracy
= local
->hw
.radiotap_timestamp
.accuracy
;
572 flags
|= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY
;
574 put_unaligned_le16(accuracy
, pos
);
577 *pos
++ = local
->hw
.radiotap_timestamp
.units_pos
;
581 if (status
->encoding
== RX_ENC_HE
&&
582 status
->flag
& RX_FLAG_RADIOTAP_HE
) {
583 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
585 if (status
->enc_flags
& RX_ENC_FLAG_STBC_MASK
) {
586 he
.data6
|= HE_PREP(DATA6_NSTS
,
587 FIELD_GET(RX_ENC_FLAG_STBC_MASK
,
589 he
.data3
|= HE_PREP(DATA3_STBC
, 1);
591 he
.data6
|= HE_PREP(DATA6_NSTS
, status
->nss
);
594 #define CHECK_GI(s) \
595 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
596 (int)NL80211_RATE_INFO_HE_GI_##s)
602 he
.data3
|= HE_PREP(DATA3_DATA_MCS
, status
->rate_idx
);
603 he
.data3
|= HE_PREP(DATA3_DATA_DCM
, status
->he_dcm
);
604 he
.data3
|= HE_PREP(DATA3_CODING
,
605 !!(status
->enc_flags
& RX_ENC_FLAG_LDPC
));
607 he
.data5
|= HE_PREP(DATA5_GI
, status
->he_gi
);
609 switch (status
->bw
) {
610 case RATE_INFO_BW_20
:
611 he
.data5
|= HE_PREP(DATA5_DATA_BW_RU_ALLOC
,
612 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ
);
614 case RATE_INFO_BW_40
:
615 he
.data5
|= HE_PREP(DATA5_DATA_BW_RU_ALLOC
,
616 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ
);
618 case RATE_INFO_BW_80
:
619 he
.data5
|= HE_PREP(DATA5_DATA_BW_RU_ALLOC
,
620 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ
);
622 case RATE_INFO_BW_160
:
623 he
.data5
|= HE_PREP(DATA5_DATA_BW_RU_ALLOC
,
624 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ
);
626 case RATE_INFO_BW_HE_RU
:
627 #define CHECK_RU_ALLOC(s) \
628 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
629 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
637 CHECK_RU_ALLOC(2x996
);
639 he
.data5
|= HE_PREP(DATA5_DATA_BW_RU_ALLOC
,
643 WARN_ONCE(1, "Invalid SU BW %d\n", status
->bw
);
646 /* ensure 2 byte alignment */
647 while ((pos
- (u8
*)rthdr
) & 1)
649 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE
);
650 memcpy(pos
, &he
, sizeof(he
));
654 if (status
->encoding
== RX_ENC_HE
&&
655 status
->flag
& RX_FLAG_RADIOTAP_HE_MU
) {
656 /* ensure 2 byte alignment */
657 while ((pos
- (u8
*)rthdr
) & 1)
659 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU
);
660 memcpy(pos
, &he_mu
, sizeof(he_mu
));
661 pos
+= sizeof(he_mu
);
664 if (status
->flag
& RX_FLAG_NO_PSDU
) {
666 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU
);
667 *pos
++ = status
->zero_length_psdu_type
;
670 if (status
->flag
& RX_FLAG_RADIOTAP_LSIG
) {
671 /* ensure 2 byte alignment */
672 while ((pos
- (u8
*)rthdr
) & 1)
674 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG
);
675 memcpy(pos
, &lsig
, sizeof(lsig
));
679 for_each_set_bit(chain
, &chains
, IEEE80211_MAX_CHAINS
) {
680 *pos
++ = status
->chain_signal
[chain
];
684 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
685 /* ensure 2 byte alignment for the vendor field as required */
686 if ((pos
- (u8
*)rthdr
) & 1)
688 *pos
++ = rtap
.oui
[0];
689 *pos
++ = rtap
.oui
[1];
690 *pos
++ = rtap
.oui
[2];
692 put_unaligned_le16(rtap
.len
, pos
);
694 /* align the actual payload as requested */
695 while ((pos
- (u8
*)rthdr
) & (rtap
.align
- 1))
697 /* data (and possible padding) already follows */
701 static struct sk_buff
*
702 ieee80211_make_monitor_skb(struct ieee80211_local
*local
,
703 struct sk_buff
**origskb
,
704 struct ieee80211_rate
*rate
,
705 int rtap_space
, bool use_origskb
)
707 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(*origskb
);
708 int rt_hdrlen
, needed_headroom
;
711 /* room for the radiotap header based on driver features */
712 rt_hdrlen
= ieee80211_rx_radiotap_hdrlen(local
, status
, *origskb
);
713 needed_headroom
= rt_hdrlen
- rtap_space
;
716 /* only need to expand headroom if necessary */
721 * This shouldn't trigger often because most devices have an
722 * RX header they pull before we get here, and that should
723 * be big enough for our radiotap information. We should
724 * probably export the length to drivers so that we can have
725 * them allocate enough headroom to start with.
727 if (skb_headroom(skb
) < needed_headroom
&&
728 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
)) {
734 * Need to make a copy and possibly remove radiotap header
735 * and FCS from the original.
737 skb
= skb_copy_expand(*origskb
, needed_headroom
, 0, GFP_ATOMIC
);
743 /* prepend radiotap information */
744 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, rt_hdrlen
, true);
746 skb_reset_mac_header(skb
);
747 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
748 skb
->pkt_type
= PACKET_OTHERHOST
;
749 skb
->protocol
= htons(ETH_P_802_2
);
755 * This function copies a received frame to all monitor interfaces and
756 * returns a cleaned-up SKB that no longer includes the FCS nor the
757 * radiotap header the driver might have added.
759 static struct sk_buff
*
760 ieee80211_rx_monitor(struct ieee80211_local
*local
, struct sk_buff
*origskb
,
761 struct ieee80211_rate
*rate
)
763 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(origskb
);
764 struct ieee80211_sub_if_data
*sdata
;
765 struct sk_buff
*monskb
= NULL
;
766 int present_fcs_len
= 0;
767 unsigned int rtap_space
= 0;
768 struct ieee80211_sub_if_data
*monitor_sdata
=
769 rcu_dereference(local
->monitor_sdata
);
770 bool only_monitor
= false;
771 unsigned int min_head_len
;
773 if (status
->flag
& RX_FLAG_RADIOTAP_HE
)
774 rtap_space
+= sizeof(struct ieee80211_radiotap_he
);
776 if (status
->flag
& RX_FLAG_RADIOTAP_HE_MU
)
777 rtap_space
+= sizeof(struct ieee80211_radiotap_he_mu
);
779 if (status
->flag
& RX_FLAG_RADIOTAP_LSIG
)
780 rtap_space
+= sizeof(struct ieee80211_radiotap_lsig
);
782 if (unlikely(status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
)) {
783 struct ieee80211_vendor_radiotap
*rtap
=
784 (void *)(origskb
->data
+ rtap_space
);
786 rtap_space
+= sizeof(*rtap
) + rtap
->len
+ rtap
->pad
;
789 min_head_len
= rtap_space
;
792 * First, we may need to make a copy of the skb because
793 * (1) we need to modify it for radiotap (if not present), and
794 * (2) the other RX handlers will modify the skb we got.
796 * We don't need to, of course, if we aren't going to return
797 * the SKB because it has a bad FCS/PLCP checksum.
800 if (!(status
->flag
& RX_FLAG_NO_PSDU
)) {
801 if (ieee80211_hw_check(&local
->hw
, RX_INCLUDES_FCS
)) {
802 if (unlikely(origskb
->len
<= FCS_LEN
+ rtap_space
)) {
805 dev_kfree_skb(origskb
);
808 present_fcs_len
= FCS_LEN
;
811 /* also consider the hdr->frame_control */
815 /* ensure that the expected data elements are in skb head */
816 if (!pskb_may_pull(origskb
, min_head_len
)) {
817 dev_kfree_skb(origskb
);
821 only_monitor
= should_drop_frame(origskb
, present_fcs_len
, rtap_space
);
823 if (!local
->monitors
|| (status
->flag
& RX_FLAG_SKIP_MONITOR
)) {
825 dev_kfree_skb(origskb
);
829 remove_monitor_info(origskb
, present_fcs_len
, rtap_space
);
833 ieee80211_handle_mu_mimo_mon(monitor_sdata
, origskb
, rtap_space
);
835 list_for_each_entry_rcu(sdata
, &local
->mon_list
, u
.mntr
.list
) {
836 bool last_monitor
= list_is_last(&sdata
->u
.mntr
.list
,
840 monskb
= ieee80211_make_monitor_skb(local
, &origskb
,
852 skb
= skb_clone(monskb
, GFP_ATOMIC
);
856 skb
->dev
= sdata
->dev
;
857 ieee80211_rx_stats(skb
->dev
, skb
->len
);
858 netif_receive_skb(skb
);
866 /* this happens if last_monitor was erroneously false */
867 dev_kfree_skb(monskb
);
873 remove_monitor_info(origskb
, present_fcs_len
, rtap_space
);
877 static void ieee80211_parse_qos(struct ieee80211_rx_data
*rx
)
879 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
880 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
881 int tid
, seqno_idx
, security_idx
;
883 /* does the frame have a qos control field? */
884 if (ieee80211_is_data_qos(hdr
->frame_control
)) {
885 u8
*qc
= ieee80211_get_qos_ctl(hdr
);
886 /* frame has qos control */
887 tid
= *qc
& IEEE80211_QOS_CTL_TID_MASK
;
888 if (*qc
& IEEE80211_QOS_CTL_A_MSDU_PRESENT
)
889 status
->rx_flags
|= IEEE80211_RX_AMSDU
;
895 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
897 * Sequence numbers for management frames, QoS data
898 * frames with a broadcast/multicast address in the
899 * Address 1 field, and all non-QoS data frames sent
900 * by QoS STAs are assigned using an additional single
901 * modulo-4096 counter, [...]
903 * We also use that counter for non-QoS STAs.
905 seqno_idx
= IEEE80211_NUM_TIDS
;
907 if (ieee80211_is_mgmt(hdr
->frame_control
))
908 security_idx
= IEEE80211_NUM_TIDS
;
912 rx
->seqno_idx
= seqno_idx
;
913 rx
->security_idx
= security_idx
;
914 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
915 * For now, set skb->priority to 0 for other cases. */
916 rx
->skb
->priority
= (tid
> 7) ? 0 : tid
;
920 * DOC: Packet alignment
922 * Drivers always need to pass packets that are aligned to two-byte boundaries
925 * Additionally, should, if possible, align the payload data in a way that
926 * guarantees that the contained IP header is aligned to a four-byte
927 * boundary. In the case of regular frames, this simply means aligning the
928 * payload to a four-byte boundary (because either the IP header is directly
929 * contained, or IV/RFC1042 headers that have a length divisible by four are
930 * in front of it). If the payload data is not properly aligned and the
931 * architecture doesn't support efficient unaligned operations, mac80211
932 * will align the data.
934 * With A-MSDU frames, however, the payload data address must yield two modulo
935 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
936 * push the IP header further back to a multiple of four again. Thankfully, the
937 * specs were sane enough this time around to require padding each A-MSDU
938 * subframe to a length that is a multiple of four.
940 * Padding like Atheros hardware adds which is between the 802.11 header and
941 * the payload is not supported, the driver is required to move the 802.11
942 * header to be directly in front of the payload in that case.
944 static void ieee80211_verify_alignment(struct ieee80211_rx_data
*rx
)
946 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
947 WARN_ON_ONCE((unsigned long)rx
->skb
->data
& 1);
954 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff
*skb
)
956 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
958 if (is_multicast_ether_addr(hdr
->addr1
))
961 return ieee80211_is_robust_mgmt_frame(skb
);
965 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff
*skb
)
967 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
969 if (!is_multicast_ether_addr(hdr
->addr1
))
972 return ieee80211_is_robust_mgmt_frame(skb
);
976 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
977 static int ieee80211_get_mmie_keyidx(struct sk_buff
*skb
)
979 struct ieee80211_mgmt
*hdr
= (struct ieee80211_mgmt
*) skb
->data
;
980 struct ieee80211_mmie
*mmie
;
981 struct ieee80211_mmie_16
*mmie16
;
983 if (skb
->len
< 24 + sizeof(*mmie
) || !is_multicast_ether_addr(hdr
->da
))
986 if (!ieee80211_is_robust_mgmt_frame(skb
) &&
987 !ieee80211_is_beacon(hdr
->frame_control
))
988 return -1; /* not a robust management frame */
990 mmie
= (struct ieee80211_mmie
*)
991 (skb
->data
+ skb
->len
- sizeof(*mmie
));
992 if (mmie
->element_id
== WLAN_EID_MMIE
&&
993 mmie
->length
== sizeof(*mmie
) - 2)
994 return le16_to_cpu(mmie
->key_id
);
996 mmie16
= (struct ieee80211_mmie_16
*)
997 (skb
->data
+ skb
->len
- sizeof(*mmie16
));
998 if (skb
->len
>= 24 + sizeof(*mmie16
) &&
999 mmie16
->element_id
== WLAN_EID_MMIE
&&
1000 mmie16
->length
== sizeof(*mmie16
) - 2)
1001 return le16_to_cpu(mmie16
->key_id
);
1006 static int ieee80211_get_keyid(struct sk_buff
*skb
,
1007 const struct ieee80211_cipher_scheme
*cs
)
1009 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1017 fc
= hdr
->frame_control
;
1018 hdrlen
= ieee80211_hdrlen(fc
);
1021 minlen
= hdrlen
+ cs
->hdr_len
;
1022 key_idx_off
= hdrlen
+ cs
->key_idx_off
;
1023 key_idx_shift
= cs
->key_idx_shift
;
1025 /* WEP, TKIP, CCMP and GCMP */
1026 minlen
= hdrlen
+ IEEE80211_WEP_IV_LEN
;
1027 key_idx_off
= hdrlen
+ 3;
1031 if (unlikely(skb
->len
< minlen
))
1034 skb_copy_bits(skb
, key_idx_off
, &keyid
, 1);
1037 keyid
&= cs
->key_idx_mask
;
1038 keyid
>>= key_idx_shift
;
1040 /* cs could use more than the usual two bits for the keyid */
1041 if (unlikely(keyid
>= NUM_DEFAULT_KEYS
))
1047 static ieee80211_rx_result
ieee80211_rx_mesh_check(struct ieee80211_rx_data
*rx
)
1049 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1050 char *dev_addr
= rx
->sdata
->vif
.addr
;
1052 if (ieee80211_is_data(hdr
->frame_control
)) {
1053 if (is_multicast_ether_addr(hdr
->addr1
)) {
1054 if (ieee80211_has_tods(hdr
->frame_control
) ||
1055 !ieee80211_has_fromds(hdr
->frame_control
))
1056 return RX_DROP_MONITOR
;
1057 if (ether_addr_equal(hdr
->addr3
, dev_addr
))
1058 return RX_DROP_MONITOR
;
1060 if (!ieee80211_has_a4(hdr
->frame_control
))
1061 return RX_DROP_MONITOR
;
1062 if (ether_addr_equal(hdr
->addr4
, dev_addr
))
1063 return RX_DROP_MONITOR
;
1067 /* If there is not an established peer link and this is not a peer link
1068 * establisment frame, beacon or probe, drop the frame.
1071 if (!rx
->sta
|| sta_plink_state(rx
->sta
) != NL80211_PLINK_ESTAB
) {
1072 struct ieee80211_mgmt
*mgmt
;
1074 if (!ieee80211_is_mgmt(hdr
->frame_control
))
1075 return RX_DROP_MONITOR
;
1077 if (ieee80211_is_action(hdr
->frame_control
)) {
1080 /* make sure category field is present */
1081 if (rx
->skb
->len
< IEEE80211_MIN_ACTION_SIZE
)
1082 return RX_DROP_MONITOR
;
1084 mgmt
= (struct ieee80211_mgmt
*)hdr
;
1085 category
= mgmt
->u
.action
.category
;
1086 if (category
!= WLAN_CATEGORY_MESH_ACTION
&&
1087 category
!= WLAN_CATEGORY_SELF_PROTECTED
)
1088 return RX_DROP_MONITOR
;
1092 if (ieee80211_is_probe_req(hdr
->frame_control
) ||
1093 ieee80211_is_probe_resp(hdr
->frame_control
) ||
1094 ieee80211_is_beacon(hdr
->frame_control
) ||
1095 ieee80211_is_auth(hdr
->frame_control
))
1098 return RX_DROP_MONITOR
;
1104 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx
*tid_agg_rx
,
1107 struct sk_buff_head
*frames
= &tid_agg_rx
->reorder_buf
[index
];
1108 struct sk_buff
*tail
= skb_peek_tail(frames
);
1109 struct ieee80211_rx_status
*status
;
1111 if (tid_agg_rx
->reorder_buf_filtered
& BIT_ULL(index
))
1117 status
= IEEE80211_SKB_RXCB(tail
);
1118 if (status
->flag
& RX_FLAG_AMSDU_MORE
)
1124 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data
*sdata
,
1125 struct tid_ampdu_rx
*tid_agg_rx
,
1127 struct sk_buff_head
*frames
)
1129 struct sk_buff_head
*skb_list
= &tid_agg_rx
->reorder_buf
[index
];
1130 struct sk_buff
*skb
;
1131 struct ieee80211_rx_status
*status
;
1133 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
1135 if (skb_queue_empty(skb_list
))
1138 if (!ieee80211_rx_reorder_ready(tid_agg_rx
, index
)) {
1139 __skb_queue_purge(skb_list
);
1143 /* release frames from the reorder ring buffer */
1144 tid_agg_rx
->stored_mpdu_num
--;
1145 while ((skb
= __skb_dequeue(skb_list
))) {
1146 status
= IEEE80211_SKB_RXCB(skb
);
1147 status
->rx_flags
|= IEEE80211_RX_DEFERRED_RELEASE
;
1148 __skb_queue_tail(frames
, skb
);
1152 tid_agg_rx
->reorder_buf_filtered
&= ~BIT_ULL(index
);
1153 tid_agg_rx
->head_seq_num
= ieee80211_sn_inc(tid_agg_rx
->head_seq_num
);
1156 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data
*sdata
,
1157 struct tid_ampdu_rx
*tid_agg_rx
,
1159 struct sk_buff_head
*frames
)
1163 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
1165 while (ieee80211_sn_less(tid_agg_rx
->head_seq_num
, head_seq_num
)) {
1166 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
1167 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, index
,
1173 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1174 * the skb was added to the buffer longer than this time ago, the earlier
1175 * frames that have not yet been received are assumed to be lost and the skb
1176 * can be released for processing. This may also release other skb's from the
1177 * reorder buffer if there are no additional gaps between the frames.
1179 * Callers must hold tid_agg_rx->reorder_lock.
1181 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1183 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data
*sdata
,
1184 struct tid_ampdu_rx
*tid_agg_rx
,
1185 struct sk_buff_head
*frames
)
1189 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
1191 /* release the buffer until next missing frame */
1192 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
1193 if (!ieee80211_rx_reorder_ready(tid_agg_rx
, index
) &&
1194 tid_agg_rx
->stored_mpdu_num
) {
1196 * No buffers ready to be released, but check whether any
1197 * frames in the reorder buffer have timed out.
1200 for (j
= (index
+ 1) % tid_agg_rx
->buf_size
; j
!= index
;
1201 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
1202 if (!ieee80211_rx_reorder_ready(tid_agg_rx
, j
)) {
1207 !time_after(jiffies
, tid_agg_rx
->reorder_time
[j
] +
1208 HT_RX_REORDER_BUF_TIMEOUT
))
1209 goto set_release_timer
;
1211 /* don't leave incomplete A-MSDUs around */
1212 for (i
= (index
+ 1) % tid_agg_rx
->buf_size
; i
!= j
;
1213 i
= (i
+ 1) % tid_agg_rx
->buf_size
)
1214 __skb_queue_purge(&tid_agg_rx
->reorder_buf
[i
]);
1216 ht_dbg_ratelimited(sdata
,
1217 "release an RX reorder frame due to timeout on earlier frames\n");
1218 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, j
,
1222 * Increment the head seq# also for the skipped slots.
1224 tid_agg_rx
->head_seq_num
=
1225 (tid_agg_rx
->head_seq_num
+
1226 skipped
) & IEEE80211_SN_MASK
;
1229 } else while (ieee80211_rx_reorder_ready(tid_agg_rx
, index
)) {
1230 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, index
,
1232 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
1235 if (tid_agg_rx
->stored_mpdu_num
) {
1236 j
= index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
1238 for (; j
!= (index
- 1) % tid_agg_rx
->buf_size
;
1239 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
1240 if (ieee80211_rx_reorder_ready(tid_agg_rx
, j
))
1246 if (!tid_agg_rx
->removed
)
1247 mod_timer(&tid_agg_rx
->reorder_timer
,
1248 tid_agg_rx
->reorder_time
[j
] + 1 +
1249 HT_RX_REORDER_BUF_TIMEOUT
);
1251 del_timer(&tid_agg_rx
->reorder_timer
);
1256 * As this function belongs to the RX path it must be under
1257 * rcu_read_lock protection. It returns false if the frame
1258 * can be processed immediately, true if it was consumed.
1260 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data
*sdata
,
1261 struct tid_ampdu_rx
*tid_agg_rx
,
1262 struct sk_buff
*skb
,
1263 struct sk_buff_head
*frames
)
1265 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
1266 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1267 u16 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1268 u16 mpdu_seq_num
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
1269 u16 head_seq_num
, buf_size
;
1273 spin_lock(&tid_agg_rx
->reorder_lock
);
1276 * Offloaded BA sessions have no known starting sequence number so pick
1277 * one from first Rxed frame for this tid after BA was started.
1279 if (unlikely(tid_agg_rx
->auto_seq
)) {
1280 tid_agg_rx
->auto_seq
= false;
1281 tid_agg_rx
->ssn
= mpdu_seq_num
;
1282 tid_agg_rx
->head_seq_num
= mpdu_seq_num
;
1285 buf_size
= tid_agg_rx
->buf_size
;
1286 head_seq_num
= tid_agg_rx
->head_seq_num
;
1289 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1292 if (unlikely(!tid_agg_rx
->started
)) {
1293 if (ieee80211_sn_less(mpdu_seq_num
, head_seq_num
)) {
1297 tid_agg_rx
->started
= true;
1300 /* frame with out of date sequence number */
1301 if (ieee80211_sn_less(mpdu_seq_num
, head_seq_num
)) {
1307 * If frame the sequence number exceeds our buffering window
1308 * size release some previous frames to make room for this one.
1310 if (!ieee80211_sn_less(mpdu_seq_num
, head_seq_num
+ buf_size
)) {
1311 head_seq_num
= ieee80211_sn_inc(
1312 ieee80211_sn_sub(mpdu_seq_num
, buf_size
));
1313 /* release stored frames up to new head to stack */
1314 ieee80211_release_reorder_frames(sdata
, tid_agg_rx
,
1315 head_seq_num
, frames
);
1318 /* Now the new frame is always in the range of the reordering buffer */
1320 index
= mpdu_seq_num
% tid_agg_rx
->buf_size
;
1322 /* check if we already stored this frame */
1323 if (ieee80211_rx_reorder_ready(tid_agg_rx
, index
)) {
1329 * If the current MPDU is in the right order and nothing else
1330 * is stored we can process it directly, no need to buffer it.
1331 * If it is first but there's something stored, we may be able
1332 * to release frames after this one.
1334 if (mpdu_seq_num
== tid_agg_rx
->head_seq_num
&&
1335 tid_agg_rx
->stored_mpdu_num
== 0) {
1336 if (!(status
->flag
& RX_FLAG_AMSDU_MORE
))
1337 tid_agg_rx
->head_seq_num
=
1338 ieee80211_sn_inc(tid_agg_rx
->head_seq_num
);
1343 /* put the frame in the reordering buffer */
1344 __skb_queue_tail(&tid_agg_rx
->reorder_buf
[index
], skb
);
1345 if (!(status
->flag
& RX_FLAG_AMSDU_MORE
)) {
1346 tid_agg_rx
->reorder_time
[index
] = jiffies
;
1347 tid_agg_rx
->stored_mpdu_num
++;
1348 ieee80211_sta_reorder_release(sdata
, tid_agg_rx
, frames
);
1352 spin_unlock(&tid_agg_rx
->reorder_lock
);
1357 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1358 * true if the MPDU was buffered, false if it should be processed.
1360 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data
*rx
,
1361 struct sk_buff_head
*frames
)
1363 struct sk_buff
*skb
= rx
->skb
;
1364 struct ieee80211_local
*local
= rx
->local
;
1365 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
1366 struct sta_info
*sta
= rx
->sta
;
1367 struct tid_ampdu_rx
*tid_agg_rx
;
1371 if (!ieee80211_is_data_qos(hdr
->frame_control
) ||
1372 is_multicast_ether_addr(hdr
->addr1
))
1376 * filter the QoS data rx stream according to
1377 * STA/TID and check if this STA/TID is on aggregation
1383 ack_policy
= *ieee80211_get_qos_ctl(hdr
) &
1384 IEEE80211_QOS_CTL_ACK_POLICY_MASK
;
1385 tid
= ieee80211_get_tid(hdr
);
1387 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
1389 if (ack_policy
== IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK
&&
1390 !test_bit(tid
, rx
->sta
->ampdu_mlme
.agg_session_valid
) &&
1391 !test_and_set_bit(tid
, rx
->sta
->ampdu_mlme
.unexpected_agg
))
1392 ieee80211_send_delba(rx
->sdata
, rx
->sta
->sta
.addr
, tid
,
1393 WLAN_BACK_RECIPIENT
,
1394 WLAN_REASON_QSTA_REQUIRE_SETUP
);
1398 /* qos null data frames are excluded */
1399 if (unlikely(hdr
->frame_control
& cpu_to_le16(IEEE80211_STYPE_NULLFUNC
)))
1402 /* not part of a BA session */
1403 if (ack_policy
!= IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK
&&
1404 ack_policy
!= IEEE80211_QOS_CTL_ACK_POLICY_NORMAL
)
1407 /* new, potentially un-ordered, ampdu frame - process it */
1409 /* reset session timer */
1410 if (tid_agg_rx
->timeout
)
1411 tid_agg_rx
->last_rx
= jiffies
;
1413 /* if this mpdu is fragmented - terminate rx aggregation session */
1414 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1415 if (sc
& IEEE80211_SCTL_FRAG
) {
1416 skb_queue_tail(&rx
->sdata
->skb_queue
, skb
);
1417 ieee80211_queue_work(&local
->hw
, &rx
->sdata
->work
);
1422 * No locking needed -- we will only ever process one
1423 * RX packet at a time, and thus own tid_agg_rx. All
1424 * other code manipulating it needs to (and does) make
1425 * sure that we cannot get to it any more before doing
1428 if (ieee80211_sta_manage_reorder_buf(rx
->sdata
, tid_agg_rx
, skb
,
1433 __skb_queue_tail(frames
, skb
);
1436 static ieee80211_rx_result debug_noinline
1437 ieee80211_rx_h_check_dup(struct ieee80211_rx_data
*rx
)
1439 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1440 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1442 if (status
->flag
& RX_FLAG_DUP_VALIDATED
)
1446 * Drop duplicate 802.11 retransmissions
1447 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1450 if (rx
->skb
->len
< 24)
1453 if (ieee80211_is_ctl(hdr
->frame_control
) ||
1454 ieee80211_is_any_nullfunc(hdr
->frame_control
) ||
1455 is_multicast_ether_addr(hdr
->addr1
))
1461 if (unlikely(ieee80211_has_retry(hdr
->frame_control
) &&
1462 rx
->sta
->last_seq_ctrl
[rx
->seqno_idx
] == hdr
->seq_ctrl
)) {
1463 I802_DEBUG_INC(rx
->local
->dot11FrameDuplicateCount
);
1464 rx
->sta
->rx_stats
.num_duplicates
++;
1465 return RX_DROP_UNUSABLE
;
1466 } else if (!(status
->flag
& RX_FLAG_AMSDU_MORE
)) {
1467 rx
->sta
->last_seq_ctrl
[rx
->seqno_idx
] = hdr
->seq_ctrl
;
1473 static ieee80211_rx_result debug_noinline
1474 ieee80211_rx_h_check(struct ieee80211_rx_data
*rx
)
1476 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1478 /* Drop disallowed frame classes based on STA auth/assoc state;
1479 * IEEE 802.11, Chap 5.5.
1481 * mac80211 filters only based on association state, i.e. it drops
1482 * Class 3 frames from not associated stations. hostapd sends
1483 * deauth/disassoc frames when needed. In addition, hostapd is
1484 * responsible for filtering on both auth and assoc states.
1487 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
1488 return ieee80211_rx_mesh_check(rx
);
1490 if (unlikely((ieee80211_is_data(hdr
->frame_control
) ||
1491 ieee80211_is_pspoll(hdr
->frame_control
)) &&
1492 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
1493 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_WDS
&&
1494 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_OCB
&&
1495 (!rx
->sta
|| !test_sta_flag(rx
->sta
, WLAN_STA_ASSOC
)))) {
1497 * accept port control frames from the AP even when it's not
1498 * yet marked ASSOC to prevent a race where we don't set the
1499 * assoc bit quickly enough before it sends the first frame
1501 if (rx
->sta
&& rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1502 ieee80211_is_data_present(hdr
->frame_control
)) {
1503 unsigned int hdrlen
;
1506 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
1508 if (rx
->skb
->len
< hdrlen
+ 8)
1509 return RX_DROP_MONITOR
;
1511 skb_copy_bits(rx
->skb
, hdrlen
+ 6, ðertype
, 2);
1512 if (ethertype
== rx
->sdata
->control_port_protocol
)
1516 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
&&
1517 cfg80211_rx_spurious_frame(rx
->sdata
->dev
,
1520 return RX_DROP_UNUSABLE
;
1522 return RX_DROP_MONITOR
;
1529 static ieee80211_rx_result debug_noinline
1530 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data
*rx
)
1532 struct ieee80211_local
*local
;
1533 struct ieee80211_hdr
*hdr
;
1534 struct sk_buff
*skb
;
1538 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1540 if (!local
->pspolling
)
1543 if (!ieee80211_has_fromds(hdr
->frame_control
))
1544 /* this is not from AP */
1547 if (!ieee80211_is_data(hdr
->frame_control
))
1550 if (!ieee80211_has_moredata(hdr
->frame_control
)) {
1551 /* AP has no more frames buffered for us */
1552 local
->pspolling
= false;
1556 /* more data bit is set, let's request a new frame from the AP */
1557 ieee80211_send_pspoll(local
, rx
->sdata
);
1562 static void sta_ps_start(struct sta_info
*sta
)
1564 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
1565 struct ieee80211_local
*local
= sdata
->local
;
1569 if (sta
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1570 sta
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
1571 ps
= &sdata
->bss
->ps
;
1575 atomic_inc(&ps
->num_sta_ps
);
1576 set_sta_flag(sta
, WLAN_STA_PS_STA
);
1577 if (!ieee80211_hw_check(&local
->hw
, AP_LINK_PS
))
1578 drv_sta_notify(local
, sdata
, STA_NOTIFY_SLEEP
, &sta
->sta
);
1579 ps_dbg(sdata
, "STA %pM aid %d enters power save mode\n",
1580 sta
->sta
.addr
, sta
->sta
.aid
);
1582 ieee80211_clear_fast_xmit(sta
);
1584 if (!sta
->sta
.txq
[0])
1587 for (tid
= 0; tid
< IEEE80211_NUM_TIDS
; tid
++) {
1588 struct ieee80211_txq
*txq
= sta
->sta
.txq
[tid
];
1589 struct txq_info
*txqi
= to_txq_info(txq
);
1591 spin_lock(&local
->active_txq_lock
[txq
->ac
]);
1592 if (!list_empty(&txqi
->schedule_order
))
1593 list_del_init(&txqi
->schedule_order
);
1594 spin_unlock(&local
->active_txq_lock
[txq
->ac
]);
1596 if (txq_has_queue(txq
))
1597 set_bit(tid
, &sta
->txq_buffered_tids
);
1599 clear_bit(tid
, &sta
->txq_buffered_tids
);
1603 static void sta_ps_end(struct sta_info
*sta
)
1605 ps_dbg(sta
->sdata
, "STA %pM aid %d exits power save mode\n",
1606 sta
->sta
.addr
, sta
->sta
.aid
);
1608 if (test_sta_flag(sta
, WLAN_STA_PS_DRIVER
)) {
1610 * Clear the flag only if the other one is still set
1611 * so that the TX path won't start TX'ing new frames
1612 * directly ... In the case that the driver flag isn't
1613 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1615 clear_sta_flag(sta
, WLAN_STA_PS_STA
);
1616 ps_dbg(sta
->sdata
, "STA %pM aid %d driver-ps-blocked\n",
1617 sta
->sta
.addr
, sta
->sta
.aid
);
1621 set_sta_flag(sta
, WLAN_STA_PS_DELIVER
);
1622 clear_sta_flag(sta
, WLAN_STA_PS_STA
);
1623 ieee80211_sta_ps_deliver_wakeup(sta
);
1626 int ieee80211_sta_ps_transition(struct ieee80211_sta
*pubsta
, bool start
)
1628 struct sta_info
*sta
= container_of(pubsta
, struct sta_info
, sta
);
1631 WARN_ON(!ieee80211_hw_check(&sta
->local
->hw
, AP_LINK_PS
));
1633 /* Don't let the same PS state be set twice */
1634 in_ps
= test_sta_flag(sta
, WLAN_STA_PS_STA
);
1635 if ((start
&& in_ps
) || (!start
&& !in_ps
))
1645 EXPORT_SYMBOL(ieee80211_sta_ps_transition
);
1647 void ieee80211_sta_pspoll(struct ieee80211_sta
*pubsta
)
1649 struct sta_info
*sta
= container_of(pubsta
, struct sta_info
, sta
);
1651 if (test_sta_flag(sta
, WLAN_STA_SP
))
1654 if (!test_sta_flag(sta
, WLAN_STA_PS_DRIVER
))
1655 ieee80211_sta_ps_deliver_poll_response(sta
);
1657 set_sta_flag(sta
, WLAN_STA_PSPOLL
);
1659 EXPORT_SYMBOL(ieee80211_sta_pspoll
);
1661 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta
*pubsta
, u8 tid
)
1663 struct sta_info
*sta
= container_of(pubsta
, struct sta_info
, sta
);
1664 int ac
= ieee80211_ac_from_tid(tid
);
1667 * If this AC is not trigger-enabled do nothing unless the
1668 * driver is calling us after it already checked.
1670 * NB: This could/should check a separate bitmap of trigger-
1671 * enabled queues, but for now we only implement uAPSD w/o
1672 * TSPEC changes to the ACs, so they're always the same.
1674 if (!(sta
->sta
.uapsd_queues
& ieee80211_ac_to_qos_mask
[ac
]) &&
1675 tid
!= IEEE80211_NUM_TIDS
)
1678 /* if we are in a service period, do nothing */
1679 if (test_sta_flag(sta
, WLAN_STA_SP
))
1682 if (!test_sta_flag(sta
, WLAN_STA_PS_DRIVER
))
1683 ieee80211_sta_ps_deliver_uapsd(sta
);
1685 set_sta_flag(sta
, WLAN_STA_UAPSD
);
1687 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger
);
1689 static ieee80211_rx_result debug_noinline
1690 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data
*rx
)
1692 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1693 struct ieee80211_hdr
*hdr
= (void *)rx
->skb
->data
;
1694 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1699 if (sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
1700 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
)
1704 * The device handles station powersave, so don't do anything about
1705 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1706 * it to mac80211 since they're handled.)
1708 if (ieee80211_hw_check(&sdata
->local
->hw
, AP_LINK_PS
))
1712 * Don't do anything if the station isn't already asleep. In
1713 * the uAPSD case, the station will probably be marked asleep,
1714 * in the PS-Poll case the station must be confused ...
1716 if (!test_sta_flag(rx
->sta
, WLAN_STA_PS_STA
))
1719 if (unlikely(ieee80211_is_pspoll(hdr
->frame_control
))) {
1720 ieee80211_sta_pspoll(&rx
->sta
->sta
);
1722 /* Free PS Poll skb here instead of returning RX_DROP that would
1723 * count as an dropped frame. */
1724 dev_kfree_skb(rx
->skb
);
1727 } else if (!ieee80211_has_morefrags(hdr
->frame_control
) &&
1728 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1729 ieee80211_has_pm(hdr
->frame_control
) &&
1730 (ieee80211_is_data_qos(hdr
->frame_control
) ||
1731 ieee80211_is_qos_nullfunc(hdr
->frame_control
))) {
1732 u8 tid
= ieee80211_get_tid(hdr
);
1734 ieee80211_sta_uapsd_trigger(&rx
->sta
->sta
, tid
);
1740 static ieee80211_rx_result debug_noinline
1741 ieee80211_rx_h_sta_process(struct ieee80211_rx_data
*rx
)
1743 struct sta_info
*sta
= rx
->sta
;
1744 struct sk_buff
*skb
= rx
->skb
;
1745 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1746 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1753 * Update last_rx only for IBSS packets which are for the current
1754 * BSSID and for station already AUTHORIZED to avoid keeping the
1755 * current IBSS network alive in cases where other STAs start
1756 * using different BSSID. This will also give the station another
1757 * chance to restart the authentication/authorization in case
1758 * something went wrong the first time.
1760 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
) {
1761 u8
*bssid
= ieee80211_get_bssid(hdr
, rx
->skb
->len
,
1762 NL80211_IFTYPE_ADHOC
);
1763 if (ether_addr_equal(bssid
, rx
->sdata
->u
.ibss
.bssid
) &&
1764 test_sta_flag(sta
, WLAN_STA_AUTHORIZED
)) {
1765 sta
->rx_stats
.last_rx
= jiffies
;
1766 if (ieee80211_is_data(hdr
->frame_control
) &&
1767 !is_multicast_ether_addr(hdr
->addr1
))
1768 sta
->rx_stats
.last_rate
=
1769 sta_stats_encode_rate(status
);
1771 } else if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_OCB
) {
1772 sta
->rx_stats
.last_rx
= jiffies
;
1773 } else if (!is_multicast_ether_addr(hdr
->addr1
)) {
1775 * Mesh beacons will update last_rx when if they are found to
1776 * match the current local configuration when processed.
1778 sta
->rx_stats
.last_rx
= jiffies
;
1779 if (ieee80211_is_data(hdr
->frame_control
))
1780 sta
->rx_stats
.last_rate
= sta_stats_encode_rate(status
);
1783 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
1784 ieee80211_sta_rx_notify(rx
->sdata
, hdr
);
1786 sta
->rx_stats
.fragments
++;
1788 u64_stats_update_begin(&rx
->sta
->rx_stats
.syncp
);
1789 sta
->rx_stats
.bytes
+= rx
->skb
->len
;
1790 u64_stats_update_end(&rx
->sta
->rx_stats
.syncp
);
1792 if (!(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
)) {
1793 sta
->rx_stats
.last_signal
= status
->signal
;
1794 ewma_signal_add(&sta
->rx_stats_avg
.signal
, -status
->signal
);
1797 if (status
->chains
) {
1798 sta
->rx_stats
.chains
= status
->chains
;
1799 for (i
= 0; i
< ARRAY_SIZE(status
->chain_signal
); i
++) {
1800 int signal
= status
->chain_signal
[i
];
1802 if (!(status
->chains
& BIT(i
)))
1805 sta
->rx_stats
.chain_signal_last
[i
] = signal
;
1806 ewma_signal_add(&sta
->rx_stats_avg
.chain_signal
[i
],
1812 * Change STA power saving mode only at the end of a frame
1813 * exchange sequence, and only for a data or management
1814 * frame as specified in IEEE 802.11-2016 11.2.3.2
1816 if (!ieee80211_hw_check(&sta
->local
->hw
, AP_LINK_PS
) &&
1817 !ieee80211_has_morefrags(hdr
->frame_control
) &&
1818 !is_multicast_ether_addr(hdr
->addr1
) &&
1819 (ieee80211_is_mgmt(hdr
->frame_control
) ||
1820 ieee80211_is_data(hdr
->frame_control
)) &&
1821 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1822 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1823 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)) {
1824 if (test_sta_flag(sta
, WLAN_STA_PS_STA
)) {
1825 if (!ieee80211_has_pm(hdr
->frame_control
))
1828 if (ieee80211_has_pm(hdr
->frame_control
))
1833 /* mesh power save support */
1834 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
1835 ieee80211_mps_rx_h_sta_process(sta
, hdr
);
1838 * Drop (qos-)data::nullfunc frames silently, since they
1839 * are used only to control station power saving mode.
1841 if (ieee80211_is_any_nullfunc(hdr
->frame_control
)) {
1842 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_nullfunc
);
1845 * If we receive a 4-addr nullfunc frame from a STA
1846 * that was not moved to a 4-addr STA vlan yet send
1847 * the event to userspace and for older hostapd drop
1848 * the frame to the monitor interface.
1850 if (ieee80211_has_a4(hdr
->frame_control
) &&
1851 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1852 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1853 !rx
->sdata
->u
.vlan
.sta
))) {
1854 if (!test_and_set_sta_flag(sta
, WLAN_STA_4ADDR_EVENT
))
1855 cfg80211_rx_unexpected_4addr_frame(
1856 rx
->sdata
->dev
, sta
->sta
.addr
,
1858 return RX_DROP_MONITOR
;
1861 * Update counter and free packet here to avoid
1862 * counting this as a dropped packed.
1864 sta
->rx_stats
.packets
++;
1865 dev_kfree_skb(rx
->skb
);
1870 } /* ieee80211_rx_h_sta_process */
1872 static struct ieee80211_key
*
1873 ieee80211_rx_get_bigtk(struct ieee80211_rx_data
*rx
, int idx
)
1875 struct ieee80211_key
*key
= NULL
;
1876 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1879 /* Make sure key gets set if either BIGTK key index is set so that
1880 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1881 * Beacon frames and Beacon frames that claim to use another BIGTK key
1882 * index (i.e., a key that we do not have).
1886 idx
= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
;
1889 if (idx
== NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
1896 key
= rcu_dereference(rx
->sta
->gtk
[idx
]);
1898 key
= rcu_dereference(sdata
->keys
[idx
]);
1899 if (!key
&& rx
->sta
)
1900 key
= rcu_dereference(rx
->sta
->gtk
[idx2
]);
1902 key
= rcu_dereference(sdata
->keys
[idx2
]);
1907 static ieee80211_rx_result debug_noinline
1908 ieee80211_rx_h_decrypt(struct ieee80211_rx_data
*rx
)
1910 struct sk_buff
*skb
= rx
->skb
;
1911 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1912 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1914 ieee80211_rx_result result
= RX_DROP_UNUSABLE
;
1915 struct ieee80211_key
*sta_ptk
= NULL
;
1916 struct ieee80211_key
*ptk_idx
= NULL
;
1917 int mmie_keyidx
= -1;
1919 const struct ieee80211_cipher_scheme
*cs
= NULL
;
1924 * There are five types of keys:
1925 * - GTK (group keys)
1926 * - IGTK (group keys for management frames)
1927 * - BIGTK (group keys for Beacon frames)
1928 * - PTK (pairwise keys)
1929 * - STK (station-to-station pairwise keys)
1931 * When selecting a key, we have to distinguish between multicast
1932 * (including broadcast) and unicast frames, the latter can only
1933 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1934 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1935 * then unicast frames can also use key indices like GTKs. Hence, if we
1936 * don't have a PTK/STK we check the key index for a WEP key.
1938 * Note that in a regular BSS, multicast frames are sent by the
1939 * AP only, associated stations unicast the frame to the AP first
1940 * which then multicasts it on their behalf.
1942 * There is also a slight problem in IBSS mode: GTKs are negotiated
1943 * with each station, that is something we don't currently handle.
1944 * The spec seems to expect that one negotiates the same key with
1945 * every station but there's no such requirement; VLANs could be
1949 /* start without a key */
1951 fc
= hdr
->frame_control
;
1954 int keyid
= rx
->sta
->ptk_idx
;
1955 sta_ptk
= rcu_dereference(rx
->sta
->ptk
[keyid
]);
1957 if (ieee80211_has_protected(fc
)) {
1958 cs
= rx
->sta
->cipher_scheme
;
1959 keyid
= ieee80211_get_keyid(rx
->skb
, cs
);
1961 if (unlikely(keyid
< 0))
1962 return RX_DROP_UNUSABLE
;
1964 ptk_idx
= rcu_dereference(rx
->sta
->ptk
[keyid
]);
1968 if (!ieee80211_has_protected(fc
))
1969 mmie_keyidx
= ieee80211_get_mmie_keyidx(rx
->skb
);
1971 if (!is_multicast_ether_addr(hdr
->addr1
) && sta_ptk
) {
1972 rx
->key
= ptk_idx
? ptk_idx
: sta_ptk
;
1973 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1974 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1976 /* Skip decryption if the frame is not protected. */
1977 if (!ieee80211_has_protected(fc
))
1979 } else if (mmie_keyidx
>= 0 && ieee80211_is_beacon(fc
)) {
1980 /* Broadcast/multicast robust management frame / BIP */
1981 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1982 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1985 if (mmie_keyidx
< NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
||
1986 mmie_keyidx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
+
1987 NUM_DEFAULT_BEACON_KEYS
)
1988 return RX_DROP_MONITOR
; /* unexpected BIP keyidx */
1990 rx
->key
= ieee80211_rx_get_bigtk(rx
, mmie_keyidx
);
1992 return RX_CONTINUE
; /* Beacon protection not in use */
1993 } else if (mmie_keyidx
>= 0) {
1994 /* Broadcast/multicast robust management frame / BIP */
1995 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1996 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1999 if (mmie_keyidx
< NUM_DEFAULT_KEYS
||
2000 mmie_keyidx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
2001 return RX_DROP_MONITOR
; /* unexpected BIP keyidx */
2003 if (ieee80211_is_group_privacy_action(skb
) &&
2004 test_sta_flag(rx
->sta
, WLAN_STA_MFP
))
2005 return RX_DROP_MONITOR
;
2007 rx
->key
= rcu_dereference(rx
->sta
->gtk
[mmie_keyidx
]);
2010 rx
->key
= rcu_dereference(rx
->sdata
->keys
[mmie_keyidx
]);
2011 } else if (!ieee80211_has_protected(fc
)) {
2013 * The frame was not protected, so skip decryption. However, we
2014 * need to set rx->key if there is a key that could have been
2015 * used so that the frame may be dropped if encryption would
2016 * have been expected.
2018 struct ieee80211_key
*key
= NULL
;
2019 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2022 if (ieee80211_is_beacon(fc
)) {
2023 key
= ieee80211_rx_get_bigtk(rx
, -1);
2024 } else if (ieee80211_is_mgmt(fc
) &&
2025 is_multicast_ether_addr(hdr
->addr1
)) {
2026 key
= rcu_dereference(rx
->sdata
->default_mgmt_key
);
2029 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
2030 key
= rcu_dereference(rx
->sta
->gtk
[i
]);
2036 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
2037 key
= rcu_dereference(sdata
->keys
[i
]);
2048 * The device doesn't give us the IV so we won't be
2049 * able to look up the key. That's ok though, we
2050 * don't need to decrypt the frame, we just won't
2051 * be able to keep statistics accurate.
2052 * Except for key threshold notifications, should
2053 * we somehow allow the driver to tell us which key
2054 * the hardware used if this flag is set?
2056 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
2057 (status
->flag
& RX_FLAG_IV_STRIPPED
))
2060 keyidx
= ieee80211_get_keyid(rx
->skb
, cs
);
2062 if (unlikely(keyidx
< 0))
2063 return RX_DROP_UNUSABLE
;
2065 /* check per-station GTK first, if multicast packet */
2066 if (is_multicast_ether_addr(hdr
->addr1
) && rx
->sta
)
2067 rx
->key
= rcu_dereference(rx
->sta
->gtk
[keyidx
]);
2069 /* if not found, try default key */
2071 rx
->key
= rcu_dereference(rx
->sdata
->keys
[keyidx
]);
2074 * RSNA-protected unicast frames should always be
2075 * sent with pairwise or station-to-station keys,
2076 * but for WEP we allow using a key index as well.
2079 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP40
&&
2080 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP104
&&
2081 !is_multicast_ether_addr(hdr
->addr1
))
2087 if (unlikely(rx
->key
->flags
& KEY_FLAG_TAINTED
))
2088 return RX_DROP_MONITOR
;
2090 /* TODO: add threshold stuff again */
2092 return RX_DROP_MONITOR
;
2095 switch (rx
->key
->conf
.cipher
) {
2096 case WLAN_CIPHER_SUITE_WEP40
:
2097 case WLAN_CIPHER_SUITE_WEP104
:
2098 result
= ieee80211_crypto_wep_decrypt(rx
);
2100 case WLAN_CIPHER_SUITE_TKIP
:
2101 result
= ieee80211_crypto_tkip_decrypt(rx
);
2103 case WLAN_CIPHER_SUITE_CCMP
:
2104 result
= ieee80211_crypto_ccmp_decrypt(
2105 rx
, IEEE80211_CCMP_MIC_LEN
);
2107 case WLAN_CIPHER_SUITE_CCMP_256
:
2108 result
= ieee80211_crypto_ccmp_decrypt(
2109 rx
, IEEE80211_CCMP_256_MIC_LEN
);
2111 case WLAN_CIPHER_SUITE_AES_CMAC
:
2112 result
= ieee80211_crypto_aes_cmac_decrypt(rx
);
2114 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
2115 result
= ieee80211_crypto_aes_cmac_256_decrypt(rx
);
2117 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
2118 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
2119 result
= ieee80211_crypto_aes_gmac_decrypt(rx
);
2121 case WLAN_CIPHER_SUITE_GCMP
:
2122 case WLAN_CIPHER_SUITE_GCMP_256
:
2123 result
= ieee80211_crypto_gcmp_decrypt(rx
);
2126 result
= ieee80211_crypto_hw_decrypt(rx
);
2129 /* the hdr variable is invalid after the decrypt handlers */
2131 /* either the frame has been decrypted or will be dropped */
2132 status
->flag
|= RX_FLAG_DECRYPTED
;
2137 static inline struct ieee80211_fragment_entry
*
2138 ieee80211_reassemble_add(struct ieee80211_sub_if_data
*sdata
,
2139 unsigned int frag
, unsigned int seq
, int rx_queue
,
2140 struct sk_buff
**skb
)
2142 struct ieee80211_fragment_entry
*entry
;
2144 entry
= &sdata
->fragments
[sdata
->fragment_next
++];
2145 if (sdata
->fragment_next
>= IEEE80211_FRAGMENT_MAX
)
2146 sdata
->fragment_next
= 0;
2148 if (!skb_queue_empty(&entry
->skb_list
))
2149 __skb_queue_purge(&entry
->skb_list
);
2151 __skb_queue_tail(&entry
->skb_list
, *skb
); /* no need for locking */
2153 entry
->first_frag_time
= jiffies
;
2155 entry
->rx_queue
= rx_queue
;
2156 entry
->last_frag
= frag
;
2157 entry
->check_sequential_pn
= false;
2158 entry
->extra_len
= 0;
2163 static inline struct ieee80211_fragment_entry
*
2164 ieee80211_reassemble_find(struct ieee80211_sub_if_data
*sdata
,
2165 unsigned int frag
, unsigned int seq
,
2166 int rx_queue
, struct ieee80211_hdr
*hdr
)
2168 struct ieee80211_fragment_entry
*entry
;
2171 idx
= sdata
->fragment_next
;
2172 for (i
= 0; i
< IEEE80211_FRAGMENT_MAX
; i
++) {
2173 struct ieee80211_hdr
*f_hdr
;
2174 struct sk_buff
*f_skb
;
2178 idx
= IEEE80211_FRAGMENT_MAX
- 1;
2180 entry
= &sdata
->fragments
[idx
];
2181 if (skb_queue_empty(&entry
->skb_list
) || entry
->seq
!= seq
||
2182 entry
->rx_queue
!= rx_queue
||
2183 entry
->last_frag
+ 1 != frag
)
2186 f_skb
= __skb_peek(&entry
->skb_list
);
2187 f_hdr
= (struct ieee80211_hdr
*) f_skb
->data
;
2190 * Check ftype and addresses are equal, else check next fragment
2192 if (((hdr
->frame_control
^ f_hdr
->frame_control
) &
2193 cpu_to_le16(IEEE80211_FCTL_FTYPE
)) ||
2194 !ether_addr_equal(hdr
->addr1
, f_hdr
->addr1
) ||
2195 !ether_addr_equal(hdr
->addr2
, f_hdr
->addr2
))
2198 if (time_after(jiffies
, entry
->first_frag_time
+ 2 * HZ
)) {
2199 __skb_queue_purge(&entry
->skb_list
);
2208 static ieee80211_rx_result debug_noinline
2209 ieee80211_rx_h_defragment(struct ieee80211_rx_data
*rx
)
2211 struct ieee80211_hdr
*hdr
;
2214 unsigned int frag
, seq
;
2215 struct ieee80211_fragment_entry
*entry
;
2216 struct sk_buff
*skb
;
2218 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2219 fc
= hdr
->frame_control
;
2221 if (ieee80211_is_ctl(fc
))
2224 sc
= le16_to_cpu(hdr
->seq_ctrl
);
2225 frag
= sc
& IEEE80211_SCTL_FRAG
;
2227 if (is_multicast_ether_addr(hdr
->addr1
)) {
2228 I802_DEBUG_INC(rx
->local
->dot11MulticastReceivedFrameCount
);
2232 if (likely(!ieee80211_has_morefrags(fc
) && frag
== 0))
2235 I802_DEBUG_INC(rx
->local
->rx_handlers_fragments
);
2237 if (skb_linearize(rx
->skb
))
2238 return RX_DROP_UNUSABLE
;
2241 * skb_linearize() might change the skb->data and
2242 * previously cached variables (in this case, hdr) need to
2243 * be refreshed with the new data.
2245 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2246 seq
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
2249 /* This is the first fragment of a new frame. */
2250 entry
= ieee80211_reassemble_add(rx
->sdata
, frag
, seq
,
2251 rx
->seqno_idx
, &(rx
->skb
));
2253 (rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP
||
2254 rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP_256
||
2255 rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_GCMP
||
2256 rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_GCMP_256
) &&
2257 ieee80211_has_protected(fc
)) {
2258 int queue
= rx
->security_idx
;
2260 /* Store CCMP/GCMP PN so that we can verify that the
2261 * next fragment has a sequential PN value.
2263 entry
->check_sequential_pn
= true;
2264 memcpy(entry
->last_pn
,
2265 rx
->key
->u
.ccmp
.rx_pn
[queue
],
2266 IEEE80211_CCMP_PN_LEN
);
2267 BUILD_BUG_ON(offsetof(struct ieee80211_key
,
2269 offsetof(struct ieee80211_key
,
2271 BUILD_BUG_ON(sizeof(rx
->key
->u
.ccmp
.rx_pn
[queue
]) !=
2272 sizeof(rx
->key
->u
.gcmp
.rx_pn
[queue
]));
2273 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN
!=
2274 IEEE80211_GCMP_PN_LEN
);
2279 /* This is a fragment for a frame that should already be pending in
2280 * fragment cache. Add this fragment to the end of the pending entry.
2282 entry
= ieee80211_reassemble_find(rx
->sdata
, frag
, seq
,
2283 rx
->seqno_idx
, hdr
);
2285 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
2286 return RX_DROP_MONITOR
;
2289 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2290 * MPDU PN values are not incrementing in steps of 1."
2291 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2292 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2294 if (entry
->check_sequential_pn
) {
2296 u8 pn
[IEEE80211_CCMP_PN_LEN
], *rpn
;
2300 (rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP
&&
2301 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP_256
&&
2302 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_GCMP
&&
2303 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_GCMP_256
))
2304 return RX_DROP_UNUSABLE
;
2305 memcpy(pn
, entry
->last_pn
, IEEE80211_CCMP_PN_LEN
);
2306 for (i
= IEEE80211_CCMP_PN_LEN
- 1; i
>= 0; i
--) {
2311 queue
= rx
->security_idx
;
2312 rpn
= rx
->key
->u
.ccmp
.rx_pn
[queue
];
2313 if (memcmp(pn
, rpn
, IEEE80211_CCMP_PN_LEN
))
2314 return RX_DROP_UNUSABLE
;
2315 memcpy(entry
->last_pn
, pn
, IEEE80211_CCMP_PN_LEN
);
2318 skb_pull(rx
->skb
, ieee80211_hdrlen(fc
));
2319 __skb_queue_tail(&entry
->skb_list
, rx
->skb
);
2320 entry
->last_frag
= frag
;
2321 entry
->extra_len
+= rx
->skb
->len
;
2322 if (ieee80211_has_morefrags(fc
)) {
2327 rx
->skb
= __skb_dequeue(&entry
->skb_list
);
2328 if (skb_tailroom(rx
->skb
) < entry
->extra_len
) {
2329 I802_DEBUG_INC(rx
->local
->rx_expand_skb_head_defrag
);
2330 if (unlikely(pskb_expand_head(rx
->skb
, 0, entry
->extra_len
,
2332 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
2333 __skb_queue_purge(&entry
->skb_list
);
2334 return RX_DROP_UNUSABLE
;
2337 while ((skb
= __skb_dequeue(&entry
->skb_list
))) {
2338 skb_put_data(rx
->skb
, skb
->data
, skb
->len
);
2343 ieee80211_led_rx(rx
->local
);
2346 rx
->sta
->rx_stats
.packets
++;
2350 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data
*rx
)
2352 if (unlikely(!rx
->sta
|| !test_sta_flag(rx
->sta
, WLAN_STA_AUTHORIZED
)))
2358 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data
*rx
, __le16 fc
)
2360 struct sk_buff
*skb
= rx
->skb
;
2361 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2364 * Pass through unencrypted frames if the hardware has
2365 * decrypted them already.
2367 if (status
->flag
& RX_FLAG_DECRYPTED
)
2370 /* Drop unencrypted frames if key is set. */
2371 if (unlikely(!ieee80211_has_protected(fc
) &&
2372 !ieee80211_is_any_nullfunc(fc
) &&
2373 ieee80211_is_data(fc
) && rx
->key
))
2379 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data
*rx
)
2381 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2382 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2383 __le16 fc
= hdr
->frame_control
;
2386 * Pass through unencrypted frames if the hardware has
2387 * decrypted them already.
2389 if (status
->flag
& RX_FLAG_DECRYPTED
)
2392 if (rx
->sta
&& test_sta_flag(rx
->sta
, WLAN_STA_MFP
)) {
2393 if (unlikely(!ieee80211_has_protected(fc
) &&
2394 ieee80211_is_unicast_robust_mgmt_frame(rx
->skb
) &&
2396 if (ieee80211_is_deauth(fc
) ||
2397 ieee80211_is_disassoc(fc
))
2398 cfg80211_rx_unprot_mlme_mgmt(rx
->sdata
->dev
,
2403 /* BIP does not use Protected field, so need to check MMIE */
2404 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx
->skb
) &&
2405 ieee80211_get_mmie_keyidx(rx
->skb
) < 0)) {
2406 if (ieee80211_is_deauth(fc
) ||
2407 ieee80211_is_disassoc(fc
))
2408 cfg80211_rx_unprot_mlme_mgmt(rx
->sdata
->dev
,
2413 if (unlikely(ieee80211_is_beacon(fc
) && rx
->key
&&
2414 ieee80211_get_mmie_keyidx(rx
->skb
) < 0))
2417 * When using MFP, Action frames are not allowed prior to
2418 * having configured keys.
2420 if (unlikely(ieee80211_is_action(fc
) && !rx
->key
&&
2421 ieee80211_is_robust_mgmt_frame(rx
->skb
)))
2429 __ieee80211_data_to_8023(struct ieee80211_rx_data
*rx
, bool *port_control
)
2431 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2432 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2433 bool check_port_control
= false;
2434 struct ethhdr
*ehdr
;
2437 *port_control
= false;
2438 if (ieee80211_has_a4(hdr
->frame_control
) &&
2439 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& !sdata
->u
.vlan
.sta
)
2442 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
2443 !!sdata
->u
.mgd
.use_4addr
!= !!ieee80211_has_a4(hdr
->frame_control
)) {
2445 if (!sdata
->u
.mgd
.use_4addr
)
2447 else if (!ether_addr_equal(hdr
->addr1
, sdata
->vif
.addr
))
2448 check_port_control
= true;
2451 if (is_multicast_ether_addr(hdr
->addr1
) &&
2452 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& sdata
->u
.vlan
.sta
)
2455 ret
= ieee80211_data_to_8023(rx
->skb
, sdata
->vif
.addr
, sdata
->vif
.type
);
2459 ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2460 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
)
2461 *port_control
= true;
2462 else if (check_port_control
)
2469 * requires that rx->skb is a frame with ethernet header
2471 static bool ieee80211_frame_allowed(struct ieee80211_rx_data
*rx
, __le16 fc
)
2473 static const u8 pae_group_addr
[ETH_ALEN
] __aligned(2)
2474 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2475 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2478 * Allow EAPOL frames to us/the PAE group address regardless
2479 * of whether the frame was encrypted or not.
2481 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
&&
2482 (ether_addr_equal(ehdr
->h_dest
, rx
->sdata
->vif
.addr
) ||
2483 ether_addr_equal(ehdr
->h_dest
, pae_group_addr
)))
2486 if (ieee80211_802_1x_port_control(rx
) ||
2487 ieee80211_drop_unencrypted(rx
, fc
))
2493 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff
*skb
,
2494 struct ieee80211_rx_data
*rx
)
2496 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2497 struct net_device
*dev
= sdata
->dev
;
2499 if (unlikely((skb
->protocol
== sdata
->control_port_protocol
||
2500 (skb
->protocol
== cpu_to_be16(ETH_P_PREAUTH
) &&
2501 !sdata
->control_port_no_preauth
)) &&
2502 sdata
->control_port_over_nl80211
)) {
2503 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2504 bool noencrypt
= !(status
->flag
& RX_FLAG_DECRYPTED
);
2506 cfg80211_rx_control_port(dev
, skb
, noencrypt
);
2509 memset(skb
->cb
, 0, sizeof(skb
->cb
));
2511 /* deliver to local stack */
2513 napi_gro_receive(rx
->napi
, skb
);
2515 netif_receive_skb(skb
);
2520 * requires that rx->skb is a frame with ethernet header
2523 ieee80211_deliver_skb(struct ieee80211_rx_data
*rx
)
2525 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2526 struct net_device
*dev
= sdata
->dev
;
2527 struct sk_buff
*skb
, *xmit_skb
;
2528 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2529 struct sta_info
*dsta
;
2534 ieee80211_rx_stats(dev
, skb
->len
);
2537 /* The seqno index has the same property as needed
2538 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2539 * for non-QoS-data frames. Here we know it's a data
2540 * frame, so count MSDUs.
2542 u64_stats_update_begin(&rx
->sta
->rx_stats
.syncp
);
2543 rx
->sta
->rx_stats
.msdu
[rx
->seqno_idx
]++;
2544 u64_stats_update_end(&rx
->sta
->rx_stats
.syncp
);
2547 if ((sdata
->vif
.type
== NL80211_IFTYPE_AP
||
2548 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) &&
2549 !(sdata
->flags
& IEEE80211_SDATA_DONT_BRIDGE_PACKETS
) &&
2550 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
|| !sdata
->u
.vlan
.sta
)) {
2551 if (is_multicast_ether_addr(ehdr
->h_dest
) &&
2552 ieee80211_vif_get_num_mcast_if(sdata
) != 0) {
2554 * send multicast frames both to higher layers in
2555 * local net stack and back to the wireless medium
2557 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
2559 net_info_ratelimited("%s: failed to clone multicast frame\n",
2561 } else if (!is_multicast_ether_addr(ehdr
->h_dest
) &&
2562 !ether_addr_equal(ehdr
->h_dest
, ehdr
->h_source
)) {
2563 dsta
= sta_info_get(sdata
, ehdr
->h_dest
);
2566 * The destination station is associated to
2567 * this AP (in this VLAN), so send the frame
2568 * directly to it and do not pass it to local
2577 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2579 /* 'align' will only take the values 0 or 2 here since all
2580 * frames are required to be aligned to 2-byte boundaries
2581 * when being passed to mac80211; the code here works just
2582 * as well if that isn't true, but mac80211 assumes it can
2583 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2587 align
= (unsigned long)(skb
->data
+ sizeof(struct ethhdr
)) & 3;
2589 if (WARN_ON(skb_headroom(skb
) < 3)) {
2593 u8
*data
= skb
->data
;
2594 size_t len
= skb_headlen(skb
);
2596 memmove(skb
->data
, data
, len
);
2597 skb_set_tail_pointer(skb
, len
);
2604 skb
->protocol
= eth_type_trans(skb
, dev
);
2605 ieee80211_deliver_skb_to_local_stack(skb
, rx
);
2610 * Send to wireless media and increase priority by 256 to
2611 * keep the received priority instead of reclassifying
2612 * the frame (see cfg80211_classify8021d).
2614 xmit_skb
->priority
+= 256;
2615 xmit_skb
->protocol
= htons(ETH_P_802_3
);
2616 skb_reset_network_header(xmit_skb
);
2617 skb_reset_mac_header(xmit_skb
);
2618 dev_queue_xmit(xmit_skb
);
2622 static ieee80211_rx_result debug_noinline
2623 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data
*rx
, u8 data_offset
)
2625 struct net_device
*dev
= rx
->sdata
->dev
;
2626 struct sk_buff
*skb
= rx
->skb
;
2627 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2628 __le16 fc
= hdr
->frame_control
;
2629 struct sk_buff_head frame_list
;
2630 struct ethhdr ethhdr
;
2631 const u8
*check_da
= ethhdr
.h_dest
, *check_sa
= ethhdr
.h_source
;
2633 if (unlikely(ieee80211_has_a4(hdr
->frame_control
))) {
2636 } else switch (rx
->sdata
->vif
.type
) {
2637 case NL80211_IFTYPE_AP
:
2638 case NL80211_IFTYPE_AP_VLAN
:
2641 case NL80211_IFTYPE_STATION
:
2643 !test_sta_flag(rx
->sta
, WLAN_STA_TDLS_PEER
))
2646 case NL80211_IFTYPE_MESH_POINT
:
2654 __skb_queue_head_init(&frame_list
);
2656 if (ieee80211_data_to_8023_exthdr(skb
, ðhdr
,
2657 rx
->sdata
->vif
.addr
,
2658 rx
->sdata
->vif
.type
,
2660 return RX_DROP_UNUSABLE
;
2662 ieee80211_amsdu_to_8023s(skb
, &frame_list
, dev
->dev_addr
,
2663 rx
->sdata
->vif
.type
,
2664 rx
->local
->hw
.extra_tx_headroom
,
2665 check_da
, check_sa
);
2667 while (!skb_queue_empty(&frame_list
)) {
2668 rx
->skb
= __skb_dequeue(&frame_list
);
2670 if (!ieee80211_frame_allowed(rx
, fc
)) {
2671 dev_kfree_skb(rx
->skb
);
2675 ieee80211_deliver_skb(rx
);
2681 static ieee80211_rx_result debug_noinline
2682 ieee80211_rx_h_amsdu(struct ieee80211_rx_data
*rx
)
2684 struct sk_buff
*skb
= rx
->skb
;
2685 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2686 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2687 __le16 fc
= hdr
->frame_control
;
2689 if (!(status
->rx_flags
& IEEE80211_RX_AMSDU
))
2692 if (unlikely(!ieee80211_is_data(fc
)))
2695 if (unlikely(!ieee80211_is_data_present(fc
)))
2696 return RX_DROP_MONITOR
;
2698 if (unlikely(ieee80211_has_a4(hdr
->frame_control
))) {
2699 switch (rx
->sdata
->vif
.type
) {
2700 case NL80211_IFTYPE_AP_VLAN
:
2701 if (!rx
->sdata
->u
.vlan
.sta
)
2702 return RX_DROP_UNUSABLE
;
2704 case NL80211_IFTYPE_STATION
:
2705 if (!rx
->sdata
->u
.mgd
.use_4addr
)
2706 return RX_DROP_UNUSABLE
;
2709 return RX_DROP_UNUSABLE
;
2713 if (is_multicast_ether_addr(hdr
->addr1
))
2714 return RX_DROP_UNUSABLE
;
2716 return __ieee80211_rx_h_amsdu(rx
, 0);
2719 #ifdef CONFIG_MAC80211_MESH
2720 static ieee80211_rx_result
2721 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data
*rx
)
2723 struct ieee80211_hdr
*fwd_hdr
, *hdr
;
2724 struct ieee80211_tx_info
*info
;
2725 struct ieee80211s_hdr
*mesh_hdr
;
2726 struct sk_buff
*skb
= rx
->skb
, *fwd_skb
;
2727 struct ieee80211_local
*local
= rx
->local
;
2728 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2729 struct ieee80211_if_mesh
*ifmsh
= &sdata
->u
.mesh
;
2733 hdr
= (struct ieee80211_hdr
*) skb
->data
;
2734 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
2736 /* make sure fixed part of mesh header is there, also checks skb len */
2737 if (!pskb_may_pull(rx
->skb
, hdrlen
+ 6))
2738 return RX_DROP_MONITOR
;
2740 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
2742 /* make sure full mesh header is there, also checks skb len */
2743 if (!pskb_may_pull(rx
->skb
,
2744 hdrlen
+ ieee80211_get_mesh_hdrlen(mesh_hdr
)))
2745 return RX_DROP_MONITOR
;
2747 /* reload pointers */
2748 hdr
= (struct ieee80211_hdr
*) skb
->data
;
2749 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
2751 if (ieee80211_drop_unencrypted(rx
, hdr
->frame_control
))
2752 return RX_DROP_MONITOR
;
2754 /* frame is in RMC, don't forward */
2755 if (ieee80211_is_data(hdr
->frame_control
) &&
2756 is_multicast_ether_addr(hdr
->addr1
) &&
2757 mesh_rmc_check(rx
->sdata
, hdr
->addr3
, mesh_hdr
))
2758 return RX_DROP_MONITOR
;
2760 if (!ieee80211_is_data(hdr
->frame_control
))
2764 return RX_DROP_MONITOR
;
2766 if (mesh_hdr
->flags
& MESH_FLAGS_AE
) {
2767 struct mesh_path
*mppath
;
2771 if (is_multicast_ether_addr(hdr
->addr1
)) {
2772 mpp_addr
= hdr
->addr3
;
2773 proxied_addr
= mesh_hdr
->eaddr1
;
2774 } else if ((mesh_hdr
->flags
& MESH_FLAGS_AE
) ==
2775 MESH_FLAGS_AE_A5_A6
) {
2776 /* has_a4 already checked in ieee80211_rx_mesh_check */
2777 mpp_addr
= hdr
->addr4
;
2778 proxied_addr
= mesh_hdr
->eaddr2
;
2780 return RX_DROP_MONITOR
;
2784 mppath
= mpp_path_lookup(sdata
, proxied_addr
);
2786 mpp_path_add(sdata
, proxied_addr
, mpp_addr
);
2788 spin_lock_bh(&mppath
->state_lock
);
2789 if (!ether_addr_equal(mppath
->mpp
, mpp_addr
))
2790 memcpy(mppath
->mpp
, mpp_addr
, ETH_ALEN
);
2791 mppath
->exp_time
= jiffies
;
2792 spin_unlock_bh(&mppath
->state_lock
);
2797 /* Frame has reached destination. Don't forward */
2798 if (!is_multicast_ether_addr(hdr
->addr1
) &&
2799 ether_addr_equal(sdata
->vif
.addr
, hdr
->addr3
))
2802 ac
= ieee80211_select_queue_80211(sdata
, skb
, hdr
);
2803 q
= sdata
->vif
.hw_queue
[ac
];
2804 if (ieee80211_queue_stopped(&local
->hw
, q
)) {
2805 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_congestion
);
2806 return RX_DROP_MONITOR
;
2808 skb_set_queue_mapping(skb
, q
);
2810 if (!--mesh_hdr
->ttl
) {
2811 if (!is_multicast_ether_addr(hdr
->addr1
))
2812 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
,
2813 dropped_frames_ttl
);
2817 if (!ifmsh
->mshcfg
.dot11MeshForwarding
)
2820 if (sdata
->crypto_tx_tailroom_needed_cnt
)
2821 tailroom
= IEEE80211_ENCRYPT_TAILROOM
;
2823 fwd_skb
= skb_copy_expand(skb
, local
->tx_headroom
+
2824 sdata
->encrypt_headroom
,
2825 tailroom
, GFP_ATOMIC
);
2829 fwd_hdr
= (struct ieee80211_hdr
*) fwd_skb
->data
;
2830 fwd_hdr
->frame_control
&= ~cpu_to_le16(IEEE80211_FCTL_RETRY
);
2831 info
= IEEE80211_SKB_CB(fwd_skb
);
2832 memset(info
, 0, sizeof(*info
));
2833 info
->flags
|= IEEE80211_TX_INTFL_NEED_TXPROCESSING
;
2834 info
->control
.vif
= &rx
->sdata
->vif
;
2835 info
->control
.jiffies
= jiffies
;
2836 if (is_multicast_ether_addr(fwd_hdr
->addr1
)) {
2837 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_mcast
);
2838 memcpy(fwd_hdr
->addr2
, sdata
->vif
.addr
, ETH_ALEN
);
2839 /* update power mode indication when forwarding */
2840 ieee80211_mps_set_frame_flags(sdata
, NULL
, fwd_hdr
);
2841 } else if (!mesh_nexthop_lookup(sdata
, fwd_skb
)) {
2842 /* mesh power mode flags updated in mesh_nexthop_lookup */
2843 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_unicast
);
2845 /* unable to resolve next hop */
2846 mesh_path_error_tx(sdata
, ifmsh
->mshcfg
.element_ttl
,
2848 WLAN_REASON_MESH_PATH_NOFORWARD
,
2850 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_no_route
);
2852 return RX_DROP_MONITOR
;
2855 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_frames
);
2856 ieee80211_add_pending_skb(local
, fwd_skb
);
2858 if (is_multicast_ether_addr(hdr
->addr1
))
2860 return RX_DROP_MONITOR
;
2864 static ieee80211_rx_result debug_noinline
2865 ieee80211_rx_h_data(struct ieee80211_rx_data
*rx
)
2867 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2868 struct ieee80211_local
*local
= rx
->local
;
2869 struct net_device
*dev
= sdata
->dev
;
2870 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2871 __le16 fc
= hdr
->frame_control
;
2875 if (unlikely(!ieee80211_is_data(hdr
->frame_control
)))
2878 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
2879 return RX_DROP_MONITOR
;
2882 * Send unexpected-4addr-frame event to hostapd. For older versions,
2883 * also drop the frame to cooked monitor interfaces.
2885 if (ieee80211_has_a4(hdr
->frame_control
) &&
2886 sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
2888 !test_and_set_sta_flag(rx
->sta
, WLAN_STA_4ADDR_EVENT
))
2889 cfg80211_rx_unexpected_4addr_frame(
2890 rx
->sdata
->dev
, rx
->sta
->sta
.addr
, GFP_ATOMIC
);
2891 return RX_DROP_MONITOR
;
2894 err
= __ieee80211_data_to_8023(rx
, &port_control
);
2896 return RX_DROP_UNUSABLE
;
2898 if (!ieee80211_frame_allowed(rx
, fc
))
2899 return RX_DROP_MONITOR
;
2901 /* directly handle TDLS channel switch requests/responses */
2902 if (unlikely(((struct ethhdr
*)rx
->skb
->data
)->h_proto
==
2903 cpu_to_be16(ETH_P_TDLS
))) {
2904 struct ieee80211_tdls_data
*tf
= (void *)rx
->skb
->data
;
2906 if (pskb_may_pull(rx
->skb
,
2907 offsetof(struct ieee80211_tdls_data
, u
)) &&
2908 tf
->payload_type
== WLAN_TDLS_SNAP_RFTYPE
&&
2909 tf
->category
== WLAN_CATEGORY_TDLS
&&
2910 (tf
->action_code
== WLAN_TDLS_CHANNEL_SWITCH_REQUEST
||
2911 tf
->action_code
== WLAN_TDLS_CHANNEL_SWITCH_RESPONSE
)) {
2912 skb_queue_tail(&local
->skb_queue_tdls_chsw
, rx
->skb
);
2913 schedule_work(&local
->tdls_chsw_work
);
2915 rx
->sta
->rx_stats
.packets
++;
2921 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
2922 unlikely(port_control
) && sdata
->bss
) {
2923 sdata
= container_of(sdata
->bss
, struct ieee80211_sub_if_data
,
2931 if (!ieee80211_hw_check(&local
->hw
, SUPPORTS_DYNAMIC_PS
) &&
2932 local
->ps_sdata
&& local
->hw
.conf
.dynamic_ps_timeout
> 0 &&
2933 !is_multicast_ether_addr(
2934 ((struct ethhdr
*)rx
->skb
->data
)->h_dest
) &&
2935 (!local
->scanning
&&
2936 !test_bit(SDATA_STATE_OFFCHANNEL
, &sdata
->state
)))
2937 mod_timer(&local
->dynamic_ps_timer
, jiffies
+
2938 msecs_to_jiffies(local
->hw
.conf
.dynamic_ps_timeout
));
2940 ieee80211_deliver_skb(rx
);
2945 static ieee80211_rx_result debug_noinline
2946 ieee80211_rx_h_ctrl(struct ieee80211_rx_data
*rx
, struct sk_buff_head
*frames
)
2948 struct sk_buff
*skb
= rx
->skb
;
2949 struct ieee80211_bar
*bar
= (struct ieee80211_bar
*)skb
->data
;
2950 struct tid_ampdu_rx
*tid_agg_rx
;
2954 if (likely(!ieee80211_is_ctl(bar
->frame_control
)))
2957 if (ieee80211_is_back_req(bar
->frame_control
)) {
2959 __le16 control
, start_seq_num
;
2960 } __packed bar_data
;
2961 struct ieee80211_event event
= {
2962 .type
= BAR_RX_EVENT
,
2966 return RX_DROP_MONITOR
;
2968 if (skb_copy_bits(skb
, offsetof(struct ieee80211_bar
, control
),
2969 &bar_data
, sizeof(bar_data
)))
2970 return RX_DROP_MONITOR
;
2972 tid
= le16_to_cpu(bar_data
.control
) >> 12;
2974 if (!test_bit(tid
, rx
->sta
->ampdu_mlme
.agg_session_valid
) &&
2975 !test_and_set_bit(tid
, rx
->sta
->ampdu_mlme
.unexpected_agg
))
2976 ieee80211_send_delba(rx
->sdata
, rx
->sta
->sta
.addr
, tid
,
2977 WLAN_BACK_RECIPIENT
,
2978 WLAN_REASON_QSTA_REQUIRE_SETUP
);
2980 tid_agg_rx
= rcu_dereference(rx
->sta
->ampdu_mlme
.tid_rx
[tid
]);
2982 return RX_DROP_MONITOR
;
2984 start_seq_num
= le16_to_cpu(bar_data
.start_seq_num
) >> 4;
2985 event
.u
.ba
.tid
= tid
;
2986 event
.u
.ba
.ssn
= start_seq_num
;
2987 event
.u
.ba
.sta
= &rx
->sta
->sta
;
2989 /* reset session timer */
2990 if (tid_agg_rx
->timeout
)
2991 mod_timer(&tid_agg_rx
->session_timer
,
2992 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
2994 spin_lock(&tid_agg_rx
->reorder_lock
);
2995 /* release stored frames up to start of BAR */
2996 ieee80211_release_reorder_frames(rx
->sdata
, tid_agg_rx
,
2997 start_seq_num
, frames
);
2998 spin_unlock(&tid_agg_rx
->reorder_lock
);
3000 drv_event_callback(rx
->local
, rx
->sdata
, &event
);
3007 * After this point, we only want management frames,
3008 * so we can drop all remaining control frames to
3009 * cooked monitor interfaces.
3011 return RX_DROP_MONITOR
;
3014 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data
*sdata
,
3015 struct ieee80211_mgmt
*mgmt
,
3018 struct ieee80211_local
*local
= sdata
->local
;
3019 struct sk_buff
*skb
;
3020 struct ieee80211_mgmt
*resp
;
3022 if (!ether_addr_equal(mgmt
->da
, sdata
->vif
.addr
)) {
3023 /* Not to own unicast address */
3027 if (!ether_addr_equal(mgmt
->sa
, sdata
->u
.mgd
.bssid
) ||
3028 !ether_addr_equal(mgmt
->bssid
, sdata
->u
.mgd
.bssid
)) {
3029 /* Not from the current AP or not associated yet. */
3033 if (len
< 24 + 1 + sizeof(resp
->u
.action
.u
.sa_query
)) {
3034 /* Too short SA Query request frame */
3038 skb
= dev_alloc_skb(sizeof(*resp
) + local
->hw
.extra_tx_headroom
);
3042 skb_reserve(skb
, local
->hw
.extra_tx_headroom
);
3043 resp
= skb_put_zero(skb
, 24);
3044 memcpy(resp
->da
, mgmt
->sa
, ETH_ALEN
);
3045 memcpy(resp
->sa
, sdata
->vif
.addr
, ETH_ALEN
);
3046 memcpy(resp
->bssid
, sdata
->u
.mgd
.bssid
, ETH_ALEN
);
3047 resp
->frame_control
= cpu_to_le16(IEEE80211_FTYPE_MGMT
|
3048 IEEE80211_STYPE_ACTION
);
3049 skb_put(skb
, 1 + sizeof(resp
->u
.action
.u
.sa_query
));
3050 resp
->u
.action
.category
= WLAN_CATEGORY_SA_QUERY
;
3051 resp
->u
.action
.u
.sa_query
.action
= WLAN_ACTION_SA_QUERY_RESPONSE
;
3052 memcpy(resp
->u
.action
.u
.sa_query
.trans_id
,
3053 mgmt
->u
.action
.u
.sa_query
.trans_id
,
3054 WLAN_SA_QUERY_TR_ID_LEN
);
3056 ieee80211_tx_skb(sdata
, skb
);
3059 static ieee80211_rx_result debug_noinline
3060 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data
*rx
)
3062 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
3063 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
3066 * From here on, look only at management frames.
3067 * Data and control frames are already handled,
3068 * and unknown (reserved) frames are useless.
3070 if (rx
->skb
->len
< 24)
3071 return RX_DROP_MONITOR
;
3073 if (!ieee80211_is_mgmt(mgmt
->frame_control
))
3074 return RX_DROP_MONITOR
;
3076 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
&&
3077 ieee80211_is_beacon(mgmt
->frame_control
) &&
3078 !(rx
->flags
& IEEE80211_RX_BEACON_REPORTED
)) {
3081 if (ieee80211_hw_check(&rx
->local
->hw
, SIGNAL_DBM
) &&
3082 !(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
))
3083 sig
= status
->signal
;
3085 cfg80211_report_obss_beacon(rx
->local
->hw
.wiphy
,
3086 rx
->skb
->data
, rx
->skb
->len
,
3088 rx
->flags
|= IEEE80211_RX_BEACON_REPORTED
;
3091 if (ieee80211_drop_unencrypted_mgmt(rx
))
3092 return RX_DROP_UNUSABLE
;
3097 static ieee80211_rx_result debug_noinline
3098 ieee80211_rx_h_action(struct ieee80211_rx_data
*rx
)
3100 struct ieee80211_local
*local
= rx
->local
;
3101 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3102 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
3103 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
3104 int len
= rx
->skb
->len
;
3106 if (!ieee80211_is_action(mgmt
->frame_control
))
3109 /* drop too small frames */
3110 if (len
< IEEE80211_MIN_ACTION_SIZE
)
3111 return RX_DROP_UNUSABLE
;
3113 if (!rx
->sta
&& mgmt
->u
.action
.category
!= WLAN_CATEGORY_PUBLIC
&&
3114 mgmt
->u
.action
.category
!= WLAN_CATEGORY_SELF_PROTECTED
&&
3115 mgmt
->u
.action
.category
!= WLAN_CATEGORY_SPECTRUM_MGMT
)
3116 return RX_DROP_UNUSABLE
;
3118 switch (mgmt
->u
.action
.category
) {
3119 case WLAN_CATEGORY_HT
:
3120 /* reject HT action frames from stations not supporting HT */
3121 if (!rx
->sta
->sta
.ht_cap
.ht_supported
)
3124 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
3125 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
3126 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
3127 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
3128 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
3131 /* verify action & smps_control/chanwidth are present */
3132 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 2)
3135 switch (mgmt
->u
.action
.u
.ht_smps
.action
) {
3136 case WLAN_HT_ACTION_SMPS
: {
3137 struct ieee80211_supported_band
*sband
;
3138 enum ieee80211_smps_mode smps_mode
;
3139 struct sta_opmode_info sta_opmode
= {};
3141 if (sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
3142 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
)
3145 /* convert to HT capability */
3146 switch (mgmt
->u
.action
.u
.ht_smps
.smps_control
) {
3147 case WLAN_HT_SMPS_CONTROL_DISABLED
:
3148 smps_mode
= IEEE80211_SMPS_OFF
;
3150 case WLAN_HT_SMPS_CONTROL_STATIC
:
3151 smps_mode
= IEEE80211_SMPS_STATIC
;
3153 case WLAN_HT_SMPS_CONTROL_DYNAMIC
:
3154 smps_mode
= IEEE80211_SMPS_DYNAMIC
;
3160 /* if no change do nothing */
3161 if (rx
->sta
->sta
.smps_mode
== smps_mode
)
3163 rx
->sta
->sta
.smps_mode
= smps_mode
;
3164 sta_opmode
.smps_mode
=
3165 ieee80211_smps_mode_to_smps_mode(smps_mode
);
3166 sta_opmode
.changed
= STA_OPMODE_SMPS_MODE_CHANGED
;
3168 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
3170 rate_control_rate_update(local
, sband
, rx
->sta
,
3171 IEEE80211_RC_SMPS_CHANGED
);
3172 cfg80211_sta_opmode_change_notify(sdata
->dev
,
3178 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH
: {
3179 struct ieee80211_supported_band
*sband
;
3180 u8 chanwidth
= mgmt
->u
.action
.u
.ht_notify_cw
.chanwidth
;
3181 enum ieee80211_sta_rx_bandwidth max_bw
, new_bw
;
3182 struct sta_opmode_info sta_opmode
= {};
3184 /* If it doesn't support 40 MHz it can't change ... */
3185 if (!(rx
->sta
->sta
.ht_cap
.cap
&
3186 IEEE80211_HT_CAP_SUP_WIDTH_20_40
))
3189 if (chanwidth
== IEEE80211_HT_CHANWIDTH_20MHZ
)
3190 max_bw
= IEEE80211_STA_RX_BW_20
;
3192 max_bw
= ieee80211_sta_cap_rx_bw(rx
->sta
);
3194 /* set cur_max_bandwidth and recalc sta bw */
3195 rx
->sta
->cur_max_bandwidth
= max_bw
;
3196 new_bw
= ieee80211_sta_cur_vht_bw(rx
->sta
);
3198 if (rx
->sta
->sta
.bandwidth
== new_bw
)
3201 rx
->sta
->sta
.bandwidth
= new_bw
;
3202 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
3204 ieee80211_sta_rx_bw_to_chan_width(rx
->sta
);
3205 sta_opmode
.changed
= STA_OPMODE_MAX_BW_CHANGED
;
3207 rate_control_rate_update(local
, sband
, rx
->sta
,
3208 IEEE80211_RC_BW_CHANGED
);
3209 cfg80211_sta_opmode_change_notify(sdata
->dev
,
3220 case WLAN_CATEGORY_PUBLIC
:
3221 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
3223 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3227 if (!ether_addr_equal(mgmt
->bssid
, sdata
->u
.mgd
.bssid
))
3229 if (mgmt
->u
.action
.u
.ext_chan_switch
.action_code
!=
3230 WLAN_PUB_ACTION_EXT_CHANSW_ANN
)
3232 if (len
< offsetof(struct ieee80211_mgmt
,
3233 u
.action
.u
.ext_chan_switch
.variable
))
3236 case WLAN_CATEGORY_VHT
:
3237 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
3238 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
3239 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
3240 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
3241 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
3244 /* verify action code is present */
3245 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
3248 switch (mgmt
->u
.action
.u
.vht_opmode_notif
.action_code
) {
3249 case WLAN_VHT_ACTION_OPMODE_NOTIF
: {
3250 /* verify opmode is present */
3251 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 2)
3255 case WLAN_VHT_ACTION_GROUPID_MGMT
: {
3256 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 25)
3264 case WLAN_CATEGORY_BACK
:
3265 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
3266 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
3267 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
3268 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
3269 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
3272 /* verify action_code is present */
3273 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
3276 switch (mgmt
->u
.action
.u
.addba_req
.action_code
) {
3277 case WLAN_ACTION_ADDBA_REQ
:
3278 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3279 sizeof(mgmt
->u
.action
.u
.addba_req
)))
3282 case WLAN_ACTION_ADDBA_RESP
:
3283 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3284 sizeof(mgmt
->u
.action
.u
.addba_resp
)))
3287 case WLAN_ACTION_DELBA
:
3288 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3289 sizeof(mgmt
->u
.action
.u
.delba
)))
3297 case WLAN_CATEGORY_SPECTRUM_MGMT
:
3298 /* verify action_code is present */
3299 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
3302 switch (mgmt
->u
.action
.u
.measurement
.action_code
) {
3303 case WLAN_ACTION_SPCT_MSR_REQ
:
3304 if (status
->band
!= NL80211_BAND_5GHZ
)
3307 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3308 sizeof(mgmt
->u
.action
.u
.measurement
)))
3311 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3314 ieee80211_process_measurement_req(sdata
, mgmt
, len
);
3316 case WLAN_ACTION_SPCT_CHL_SWITCH
: {
3318 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3319 sizeof(mgmt
->u
.action
.u
.chan_switch
)))
3322 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
3323 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
3324 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
)
3327 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
3328 bssid
= sdata
->u
.mgd
.bssid
;
3329 else if (sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
)
3330 bssid
= sdata
->u
.ibss
.bssid
;
3331 else if (sdata
->vif
.type
== NL80211_IFTYPE_MESH_POINT
)
3336 if (!ether_addr_equal(mgmt
->bssid
, bssid
))
3343 case WLAN_CATEGORY_SA_QUERY
:
3344 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3345 sizeof(mgmt
->u
.action
.u
.sa_query
)))
3348 switch (mgmt
->u
.action
.u
.sa_query
.action
) {
3349 case WLAN_ACTION_SA_QUERY_REQUEST
:
3350 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3352 ieee80211_process_sa_query_req(sdata
, mgmt
, len
);
3356 case WLAN_CATEGORY_SELF_PROTECTED
:
3357 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3358 sizeof(mgmt
->u
.action
.u
.self_prot
.action_code
)))
3361 switch (mgmt
->u
.action
.u
.self_prot
.action_code
) {
3362 case WLAN_SP_MESH_PEERING_OPEN
:
3363 case WLAN_SP_MESH_PEERING_CLOSE
:
3364 case WLAN_SP_MESH_PEERING_CONFIRM
:
3365 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
3367 if (sdata
->u
.mesh
.user_mpm
)
3368 /* userspace handles this frame */
3371 case WLAN_SP_MGK_INFORM
:
3372 case WLAN_SP_MGK_ACK
:
3373 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
3378 case WLAN_CATEGORY_MESH_ACTION
:
3379 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3380 sizeof(mgmt
->u
.action
.u
.mesh_action
.action_code
)))
3383 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
3385 if (mesh_action_is_path_sel(mgmt
) &&
3386 !mesh_path_sel_is_hwmp(sdata
))
3394 status
->rx_flags
|= IEEE80211_RX_MALFORMED_ACTION_FRM
;
3395 /* will return in the next handlers */
3400 rx
->sta
->rx_stats
.packets
++;
3401 dev_kfree_skb(rx
->skb
);
3405 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
3406 ieee80211_queue_work(&local
->hw
, &sdata
->work
);
3408 rx
->sta
->rx_stats
.packets
++;
3412 static ieee80211_rx_result debug_noinline
3413 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data
*rx
)
3415 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
3418 /* skip known-bad action frames and return them in the next handler */
3419 if (status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
)
3423 * Getting here means the kernel doesn't know how to handle
3424 * it, but maybe userspace does ... include returned frames
3425 * so userspace can register for those to know whether ones
3426 * it transmitted were processed or returned.
3429 if (ieee80211_hw_check(&rx
->local
->hw
, SIGNAL_DBM
) &&
3430 !(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
))
3431 sig
= status
->signal
;
3433 if (cfg80211_rx_mgmt(&rx
->sdata
->wdev
, status
->freq
, sig
,
3434 rx
->skb
->data
, rx
->skb
->len
, 0)) {
3436 rx
->sta
->rx_stats
.packets
++;
3437 dev_kfree_skb(rx
->skb
);
3444 static ieee80211_rx_result debug_noinline
3445 ieee80211_rx_h_action_return(struct ieee80211_rx_data
*rx
)
3447 struct ieee80211_local
*local
= rx
->local
;
3448 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
3449 struct sk_buff
*nskb
;
3450 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3451 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
3453 if (!ieee80211_is_action(mgmt
->frame_control
))
3457 * For AP mode, hostapd is responsible for handling any action
3458 * frames that we didn't handle, including returning unknown
3459 * ones. For all other modes we will return them to the sender,
3460 * setting the 0x80 bit in the action category, as required by
3461 * 802.11-2012 9.24.4.
3462 * Newer versions of hostapd shall also use the management frame
3463 * registration mechanisms, but older ones still use cooked
3464 * monitor interfaces so push all frames there.
3466 if (!(status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
) &&
3467 (sdata
->vif
.type
== NL80211_IFTYPE_AP
||
3468 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
))
3469 return RX_DROP_MONITOR
;
3471 if (is_multicast_ether_addr(mgmt
->da
))
3472 return RX_DROP_MONITOR
;
3474 /* do not return rejected action frames */
3475 if (mgmt
->u
.action
.category
& 0x80)
3476 return RX_DROP_UNUSABLE
;
3478 nskb
= skb_copy_expand(rx
->skb
, local
->hw
.extra_tx_headroom
, 0,
3481 struct ieee80211_mgmt
*nmgmt
= (void *)nskb
->data
;
3483 nmgmt
->u
.action
.category
|= 0x80;
3484 memcpy(nmgmt
->da
, nmgmt
->sa
, ETH_ALEN
);
3485 memcpy(nmgmt
->sa
, rx
->sdata
->vif
.addr
, ETH_ALEN
);
3487 memset(nskb
->cb
, 0, sizeof(nskb
->cb
));
3489 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_P2P_DEVICE
) {
3490 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(nskb
);
3492 info
->flags
= IEEE80211_TX_CTL_TX_OFFCHAN
|
3493 IEEE80211_TX_INTFL_OFFCHAN_TX_OK
|
3494 IEEE80211_TX_CTL_NO_CCK_RATE
;
3495 if (ieee80211_hw_check(&local
->hw
, QUEUE_CONTROL
))
3497 local
->hw
.offchannel_tx_hw_queue
;
3500 __ieee80211_tx_skb_tid_band(rx
->sdata
, nskb
, 7,
3503 dev_kfree_skb(rx
->skb
);
3507 static ieee80211_rx_result debug_noinline
3508 ieee80211_rx_h_mgmt(struct ieee80211_rx_data
*rx
)
3510 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3511 struct ieee80211_mgmt
*mgmt
= (void *)rx
->skb
->data
;
3514 stype
= mgmt
->frame_control
& cpu_to_le16(IEEE80211_FCTL_STYPE
);
3516 if (!ieee80211_vif_is_mesh(&sdata
->vif
) &&
3517 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
3518 sdata
->vif
.type
!= NL80211_IFTYPE_OCB
&&
3519 sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3520 return RX_DROP_MONITOR
;
3523 case cpu_to_le16(IEEE80211_STYPE_AUTH
):
3524 case cpu_to_le16(IEEE80211_STYPE_BEACON
):
3525 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP
):
3526 /* process for all: mesh, mlme, ibss */
3528 case cpu_to_le16(IEEE80211_STYPE_DEAUTH
):
3529 if (is_multicast_ether_addr(mgmt
->da
) &&
3530 !is_broadcast_ether_addr(mgmt
->da
))
3531 return RX_DROP_MONITOR
;
3533 /* process only for station/IBSS */
3534 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
3535 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
3536 return RX_DROP_MONITOR
;
3538 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP
):
3539 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP
):
3540 case cpu_to_le16(IEEE80211_STYPE_DISASSOC
):
3541 if (is_multicast_ether_addr(mgmt
->da
) &&
3542 !is_broadcast_ether_addr(mgmt
->da
))
3543 return RX_DROP_MONITOR
;
3545 /* process only for station */
3546 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3547 return RX_DROP_MONITOR
;
3549 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ
):
3550 /* process only for ibss and mesh */
3551 if (sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
3552 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
)
3553 return RX_DROP_MONITOR
;
3556 return RX_DROP_MONITOR
;
3559 /* queue up frame and kick off work to process it */
3560 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
3561 ieee80211_queue_work(&rx
->local
->hw
, &sdata
->work
);
3563 rx
->sta
->rx_stats
.packets
++;
3568 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data
*rx
,
3569 struct ieee80211_rate
*rate
)
3571 struct ieee80211_sub_if_data
*sdata
;
3572 struct ieee80211_local
*local
= rx
->local
;
3573 struct sk_buff
*skb
= rx
->skb
, *skb2
;
3574 struct net_device
*prev_dev
= NULL
;
3575 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3576 int needed_headroom
;
3579 * If cooked monitor has been processed already, then
3580 * don't do it again. If not, set the flag.
3582 if (rx
->flags
& IEEE80211_RX_CMNTR
)
3584 rx
->flags
|= IEEE80211_RX_CMNTR
;
3586 /* If there are no cooked monitor interfaces, just free the SKB */
3587 if (!local
->cooked_mntrs
)
3590 /* vendor data is long removed here */
3591 status
->flag
&= ~RX_FLAG_RADIOTAP_VENDOR_DATA
;
3592 /* room for the radiotap header based on driver features */
3593 needed_headroom
= ieee80211_rx_radiotap_hdrlen(local
, status
, skb
);
3595 if (skb_headroom(skb
) < needed_headroom
&&
3596 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
))
3599 /* prepend radiotap information */
3600 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, needed_headroom
,
3603 skb_reset_mac_header(skb
);
3604 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3605 skb
->pkt_type
= PACKET_OTHERHOST
;
3606 skb
->protocol
= htons(ETH_P_802_2
);
3608 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
3609 if (!ieee80211_sdata_running(sdata
))
3612 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
||
3613 !(sdata
->u
.mntr
.flags
& MONITOR_FLAG_COOK_FRAMES
))
3617 skb2
= skb_clone(skb
, GFP_ATOMIC
);
3619 skb2
->dev
= prev_dev
;
3620 netif_receive_skb(skb2
);
3624 prev_dev
= sdata
->dev
;
3625 ieee80211_rx_stats(sdata
->dev
, skb
->len
);
3629 skb
->dev
= prev_dev
;
3630 netif_receive_skb(skb
);
3638 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data
*rx
,
3639 ieee80211_rx_result res
)
3642 case RX_DROP_MONITOR
:
3643 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
3645 rx
->sta
->rx_stats
.dropped
++;
3648 struct ieee80211_rate
*rate
= NULL
;
3649 struct ieee80211_supported_band
*sband
;
3650 struct ieee80211_rx_status
*status
;
3652 status
= IEEE80211_SKB_RXCB((rx
->skb
));
3654 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
3655 if (status
->encoding
== RX_ENC_LEGACY
)
3656 rate
= &sband
->bitrates
[status
->rate_idx
];
3658 ieee80211_rx_cooked_monitor(rx
, rate
);
3661 case RX_DROP_UNUSABLE
:
3662 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
3664 rx
->sta
->rx_stats
.dropped
++;
3665 dev_kfree_skb(rx
->skb
);
3668 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_queued
);
3673 static void ieee80211_rx_handlers(struct ieee80211_rx_data
*rx
,
3674 struct sk_buff_head
*frames
)
3676 ieee80211_rx_result res
= RX_DROP_MONITOR
;
3677 struct sk_buff
*skb
;
3679 #define CALL_RXH(rxh) \
3682 if (res != RX_CONTINUE) \
3686 /* Lock here to avoid hitting all of the data used in the RX
3687 * path (e.g. key data, station data, ...) concurrently when
3688 * a frame is released from the reorder buffer due to timeout
3689 * from the timer, potentially concurrently with RX from the
3692 spin_lock_bh(&rx
->local
->rx_path_lock
);
3694 while ((skb
= __skb_dequeue(frames
))) {
3696 * all the other fields are valid across frames
3697 * that belong to an aMPDU since they are on the
3698 * same TID from the same station
3702 CALL_RXH(ieee80211_rx_h_check_more_data
);
3703 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll
);
3704 CALL_RXH(ieee80211_rx_h_sta_process
);
3705 CALL_RXH(ieee80211_rx_h_decrypt
);
3706 CALL_RXH(ieee80211_rx_h_defragment
);
3707 CALL_RXH(ieee80211_rx_h_michael_mic_verify
);
3708 /* must be after MMIC verify so header is counted in MPDU mic */
3709 #ifdef CONFIG_MAC80211_MESH
3710 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
3711 CALL_RXH(ieee80211_rx_h_mesh_fwding
);
3713 CALL_RXH(ieee80211_rx_h_amsdu
);
3714 CALL_RXH(ieee80211_rx_h_data
);
3716 /* special treatment -- needs the queue */
3717 res
= ieee80211_rx_h_ctrl(rx
, frames
);
3718 if (res
!= RX_CONTINUE
)
3721 CALL_RXH(ieee80211_rx_h_mgmt_check
);
3722 CALL_RXH(ieee80211_rx_h_action
);
3723 CALL_RXH(ieee80211_rx_h_userspace_mgmt
);
3724 CALL_RXH(ieee80211_rx_h_action_return
);
3725 CALL_RXH(ieee80211_rx_h_mgmt
);
3728 ieee80211_rx_handlers_result(rx
, res
);
3733 spin_unlock_bh(&rx
->local
->rx_path_lock
);
3736 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data
*rx
)
3738 struct sk_buff_head reorder_release
;
3739 ieee80211_rx_result res
= RX_DROP_MONITOR
;
3741 __skb_queue_head_init(&reorder_release
);
3743 #define CALL_RXH(rxh) \
3746 if (res != RX_CONTINUE) \
3750 CALL_RXH(ieee80211_rx_h_check_dup
);
3751 CALL_RXH(ieee80211_rx_h_check
);
3753 ieee80211_rx_reorder_ampdu(rx
, &reorder_release
);
3755 ieee80211_rx_handlers(rx
, &reorder_release
);
3759 ieee80211_rx_handlers_result(rx
, res
);
3765 * This function makes calls into the RX path, therefore
3766 * it has to be invoked under RCU read lock.
3768 void ieee80211_release_reorder_timeout(struct sta_info
*sta
, int tid
)
3770 struct sk_buff_head frames
;
3771 struct ieee80211_rx_data rx
= {
3773 .sdata
= sta
->sdata
,
3774 .local
= sta
->local
,
3775 /* This is OK -- must be QoS data frame */
3776 .security_idx
= tid
,
3778 .napi
= NULL
, /* must be NULL to not have races */
3780 struct tid_ampdu_rx
*tid_agg_rx
;
3782 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
3786 __skb_queue_head_init(&frames
);
3788 spin_lock(&tid_agg_rx
->reorder_lock
);
3789 ieee80211_sta_reorder_release(sta
->sdata
, tid_agg_rx
, &frames
);
3790 spin_unlock(&tid_agg_rx
->reorder_lock
);
3792 if (!skb_queue_empty(&frames
)) {
3793 struct ieee80211_event event
= {
3794 .type
= BA_FRAME_TIMEOUT
,
3796 .u
.ba
.sta
= &sta
->sta
,
3798 drv_event_callback(rx
.local
, rx
.sdata
, &event
);
3801 ieee80211_rx_handlers(&rx
, &frames
);
3804 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta
*pubsta
, u8 tid
,
3805 u16 ssn
, u64 filtered
,
3808 struct sta_info
*sta
;
3809 struct tid_ampdu_rx
*tid_agg_rx
;
3810 struct sk_buff_head frames
;
3811 struct ieee80211_rx_data rx
= {
3812 /* This is OK -- must be QoS data frame */
3813 .security_idx
= tid
,
3818 if (WARN_ON(!pubsta
|| tid
>= IEEE80211_NUM_TIDS
))
3821 __skb_queue_head_init(&frames
);
3823 sta
= container_of(pubsta
, struct sta_info
, sta
);
3826 rx
.sdata
= sta
->sdata
;
3827 rx
.local
= sta
->local
;
3830 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
3834 spin_lock_bh(&tid_agg_rx
->reorder_lock
);
3836 if (received_mpdus
>= IEEE80211_SN_MODULO
>> 1) {
3839 /* release all frames in the reorder buffer */
3840 release
= (tid_agg_rx
->head_seq_num
+ tid_agg_rx
->buf_size
) %
3841 IEEE80211_SN_MODULO
;
3842 ieee80211_release_reorder_frames(sta
->sdata
, tid_agg_rx
,
3844 /* update ssn to match received ssn */
3845 tid_agg_rx
->head_seq_num
= ssn
;
3847 ieee80211_release_reorder_frames(sta
->sdata
, tid_agg_rx
, ssn
,
3851 /* handle the case that received ssn is behind the mac ssn.
3852 * it can be tid_agg_rx->buf_size behind and still be valid */
3853 diff
= (tid_agg_rx
->head_seq_num
- ssn
) & IEEE80211_SN_MASK
;
3854 if (diff
>= tid_agg_rx
->buf_size
) {
3855 tid_agg_rx
->reorder_buf_filtered
= 0;
3858 filtered
= filtered
>> diff
;
3862 for (i
= 0; i
< tid_agg_rx
->buf_size
; i
++) {
3863 int index
= (ssn
+ i
) % tid_agg_rx
->buf_size
;
3865 tid_agg_rx
->reorder_buf_filtered
&= ~BIT_ULL(index
);
3866 if (filtered
& BIT_ULL(i
))
3867 tid_agg_rx
->reorder_buf_filtered
|= BIT_ULL(index
);
3870 /* now process also frames that the filter marking released */
3871 ieee80211_sta_reorder_release(sta
->sdata
, tid_agg_rx
, &frames
);
3874 spin_unlock_bh(&tid_agg_rx
->reorder_lock
);
3876 ieee80211_rx_handlers(&rx
, &frames
);
3881 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames
);
3883 /* main receive path */
3885 static bool ieee80211_accept_frame(struct ieee80211_rx_data
*rx
)
3887 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3888 struct sk_buff
*skb
= rx
->skb
;
3889 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
3890 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3891 u8
*bssid
= ieee80211_get_bssid(hdr
, skb
->len
, sdata
->vif
.type
);
3892 bool multicast
= is_multicast_ether_addr(hdr
->addr1
);
3894 switch (sdata
->vif
.type
) {
3895 case NL80211_IFTYPE_STATION
:
3896 if (!bssid
&& !sdata
->u
.mgd
.use_4addr
)
3898 if (ieee80211_is_robust_mgmt_frame(skb
) && !rx
->sta
)
3902 return ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
);
3903 case NL80211_IFTYPE_ADHOC
:
3906 if (ether_addr_equal(sdata
->vif
.addr
, hdr
->addr2
) ||
3907 ether_addr_equal(sdata
->u
.ibss
.bssid
, hdr
->addr2
))
3909 if (ieee80211_is_beacon(hdr
->frame_control
))
3911 if (!ieee80211_bssid_match(bssid
, sdata
->u
.ibss
.bssid
))
3914 !ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
))
3918 if (status
->encoding
!= RX_ENC_LEGACY
)
3919 rate_idx
= 0; /* TODO: HT/VHT rates */
3921 rate_idx
= status
->rate_idx
;
3922 ieee80211_ibss_rx_no_sta(sdata
, bssid
, hdr
->addr2
,
3926 case NL80211_IFTYPE_OCB
:
3929 if (!ieee80211_is_data_present(hdr
->frame_control
))
3931 if (!is_broadcast_ether_addr(bssid
))
3934 !ether_addr_equal(sdata
->dev
->dev_addr
, hdr
->addr1
))
3938 if (status
->encoding
!= RX_ENC_LEGACY
)
3939 rate_idx
= 0; /* TODO: HT rates */
3941 rate_idx
= status
->rate_idx
;
3942 ieee80211_ocb_rx_no_sta(sdata
, bssid
, hdr
->addr2
,
3946 case NL80211_IFTYPE_MESH_POINT
:
3947 if (ether_addr_equal(sdata
->vif
.addr
, hdr
->addr2
))
3951 return ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
);
3952 case NL80211_IFTYPE_AP_VLAN
:
3953 case NL80211_IFTYPE_AP
:
3955 return ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
);
3957 if (!ieee80211_bssid_match(bssid
, sdata
->vif
.addr
)) {
3959 * Accept public action frames even when the
3960 * BSSID doesn't match, this is used for P2P
3961 * and location updates. Note that mac80211
3962 * itself never looks at these frames.
3965 !ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
))
3967 if (ieee80211_is_public_action(hdr
, skb
->len
))
3969 return ieee80211_is_beacon(hdr
->frame_control
);
3972 if (!ieee80211_has_tods(hdr
->frame_control
)) {
3973 /* ignore data frames to TDLS-peers */
3974 if (ieee80211_is_data(hdr
->frame_control
))
3976 /* ignore action frames to TDLS-peers */
3977 if (ieee80211_is_action(hdr
->frame_control
) &&
3978 !is_broadcast_ether_addr(bssid
) &&
3979 !ether_addr_equal(bssid
, hdr
->addr1
))
3984 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3985 * the BSSID - we've checked that already but may have accepted
3986 * the wildcard (ff:ff:ff:ff:ff:ff).
3989 * The BSSID of the Data frame is determined as follows:
3990 * a) If the STA is contained within an AP or is associated
3991 * with an AP, the BSSID is the address currently in use
3992 * by the STA contained in the AP.
3994 * So we should not accept data frames with an address that's
3997 * Accepting it also opens a security problem because stations
3998 * could encrypt it with the GTK and inject traffic that way.
4000 if (ieee80211_is_data(hdr
->frame_control
) && multicast
)
4004 case NL80211_IFTYPE_WDS
:
4005 if (bssid
|| !ieee80211_is_data(hdr
->frame_control
))
4007 return ether_addr_equal(sdata
->u
.wds
.remote_addr
, hdr
->addr2
);
4008 case NL80211_IFTYPE_P2P_DEVICE
:
4009 return ieee80211_is_public_action(hdr
, skb
->len
) ||
4010 ieee80211_is_probe_req(hdr
->frame_control
) ||
4011 ieee80211_is_probe_resp(hdr
->frame_control
) ||
4012 ieee80211_is_beacon(hdr
->frame_control
);
4013 case NL80211_IFTYPE_NAN
:
4014 /* Currently no frames on NAN interface are allowed */
4024 void ieee80211_check_fast_rx(struct sta_info
*sta
)
4026 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
4027 struct ieee80211_local
*local
= sdata
->local
;
4028 struct ieee80211_key
*key
;
4029 struct ieee80211_fast_rx fastrx
= {
4031 .vif_type
= sdata
->vif
.type
,
4032 .control_port_protocol
= sdata
->control_port_protocol
,
4033 }, *old
, *new = NULL
;
4034 bool assign
= false;
4036 /* use sparse to check that we don't return without updating */
4037 __acquire(check_fast_rx
);
4039 BUILD_BUG_ON(sizeof(fastrx
.rfc1042_hdr
) != sizeof(rfc1042_header
));
4040 BUILD_BUG_ON(sizeof(fastrx
.rfc1042_hdr
) != ETH_ALEN
);
4041 ether_addr_copy(fastrx
.rfc1042_hdr
, rfc1042_header
);
4042 ether_addr_copy(fastrx
.vif_addr
, sdata
->vif
.addr
);
4044 fastrx
.uses_rss
= ieee80211_hw_check(&local
->hw
, USES_RSS
);
4046 /* fast-rx doesn't do reordering */
4047 if (ieee80211_hw_check(&local
->hw
, AMPDU_AGGREGATION
) &&
4048 !ieee80211_hw_check(&local
->hw
, SUPPORTS_REORDERING_BUFFER
))
4051 switch (sdata
->vif
.type
) {
4052 case NL80211_IFTYPE_STATION
:
4053 if (sta
->sta
.tdls
) {
4054 fastrx
.da_offs
= offsetof(struct ieee80211_hdr
, addr1
);
4055 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr2
);
4056 fastrx
.expected_ds_bits
= 0;
4058 fastrx
.sta_notify
= sdata
->u
.mgd
.probe_send_count
> 0;
4059 fastrx
.da_offs
= offsetof(struct ieee80211_hdr
, addr1
);
4060 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr3
);
4061 fastrx
.expected_ds_bits
=
4062 cpu_to_le16(IEEE80211_FCTL_FROMDS
);
4065 if (sdata
->u
.mgd
.use_4addr
&& !sta
->sta
.tdls
) {
4066 fastrx
.expected_ds_bits
|=
4067 cpu_to_le16(IEEE80211_FCTL_TODS
);
4068 fastrx
.da_offs
= offsetof(struct ieee80211_hdr
, addr3
);
4069 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr4
);
4072 if (!sdata
->u
.mgd
.powersave
)
4075 /* software powersave is a huge mess, avoid all of it */
4076 if (ieee80211_hw_check(&local
->hw
, PS_NULLFUNC_STACK
))
4078 if (ieee80211_hw_check(&local
->hw
, SUPPORTS_PS
) &&
4079 !ieee80211_hw_check(&local
->hw
, SUPPORTS_DYNAMIC_PS
))
4082 case NL80211_IFTYPE_AP_VLAN
:
4083 case NL80211_IFTYPE_AP
:
4084 /* parallel-rx requires this, at least with calls to
4085 * ieee80211_sta_ps_transition()
4087 if (!ieee80211_hw_check(&local
->hw
, AP_LINK_PS
))
4089 fastrx
.da_offs
= offsetof(struct ieee80211_hdr
, addr3
);
4090 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr2
);
4091 fastrx
.expected_ds_bits
= cpu_to_le16(IEEE80211_FCTL_TODS
);
4093 fastrx
.internal_forward
=
4094 !(sdata
->flags
& IEEE80211_SDATA_DONT_BRIDGE_PACKETS
) &&
4095 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
||
4096 !sdata
->u
.vlan
.sta
);
4098 if (sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
4099 sdata
->u
.vlan
.sta
) {
4100 fastrx
.expected_ds_bits
|=
4101 cpu_to_le16(IEEE80211_FCTL_FROMDS
);
4102 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr4
);
4103 fastrx
.internal_forward
= 0;
4111 if (!test_sta_flag(sta
, WLAN_STA_AUTHORIZED
))
4115 key
= rcu_dereference(sta
->ptk
[sta
->ptk_idx
]);
4117 switch (key
->conf
.cipher
) {
4118 case WLAN_CIPHER_SUITE_TKIP
:
4119 /* we don't want to deal with MMIC in fast-rx */
4121 case WLAN_CIPHER_SUITE_CCMP
:
4122 case WLAN_CIPHER_SUITE_CCMP_256
:
4123 case WLAN_CIPHER_SUITE_GCMP
:
4124 case WLAN_CIPHER_SUITE_GCMP_256
:
4127 /* We also don't want to deal with
4128 * WEP or cipher scheme.
4134 fastrx
.icv_len
= key
->conf
.icv_len
;
4141 __release(check_fast_rx
);
4144 new = kmemdup(&fastrx
, sizeof(fastrx
), GFP_KERNEL
);
4146 spin_lock_bh(&sta
->lock
);
4147 old
= rcu_dereference_protected(sta
->fast_rx
, true);
4148 rcu_assign_pointer(sta
->fast_rx
, new);
4149 spin_unlock_bh(&sta
->lock
);
4152 kfree_rcu(old
, rcu_head
);
4155 void ieee80211_clear_fast_rx(struct sta_info
*sta
)
4157 struct ieee80211_fast_rx
*old
;
4159 spin_lock_bh(&sta
->lock
);
4160 old
= rcu_dereference_protected(sta
->fast_rx
, true);
4161 RCU_INIT_POINTER(sta
->fast_rx
, NULL
);
4162 spin_unlock_bh(&sta
->lock
);
4165 kfree_rcu(old
, rcu_head
);
4168 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data
*sdata
)
4170 struct ieee80211_local
*local
= sdata
->local
;
4171 struct sta_info
*sta
;
4173 lockdep_assert_held(&local
->sta_mtx
);
4175 list_for_each_entry(sta
, &local
->sta_list
, list
) {
4176 if (sdata
!= sta
->sdata
&&
4177 (!sta
->sdata
->bss
|| sta
->sdata
->bss
!= sdata
->bss
))
4179 ieee80211_check_fast_rx(sta
);
4183 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data
*sdata
)
4185 struct ieee80211_local
*local
= sdata
->local
;
4187 mutex_lock(&local
->sta_mtx
);
4188 __ieee80211_check_fast_rx_iface(sdata
);
4189 mutex_unlock(&local
->sta_mtx
);
4192 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data
*rx
,
4193 struct ieee80211_fast_rx
*fast_rx
)
4195 struct sk_buff
*skb
= rx
->skb
;
4196 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
4197 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
4198 struct sta_info
*sta
= rx
->sta
;
4199 int orig_len
= skb
->len
;
4200 int hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
4201 int snap_offs
= hdrlen
;
4203 u8 snap
[sizeof(rfc1042_header
)];
4205 } *payload
__aligned(2);
4209 } addrs
__aligned(2);
4210 struct ieee80211_sta_rx_stats
*stats
= &sta
->rx_stats
;
4212 if (fast_rx
->uses_rss
)
4213 stats
= this_cpu_ptr(sta
->pcpu_rx_stats
);
4215 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4216 * to a common data structure; drivers can implement that per queue
4217 * but we don't have that information in mac80211
4219 if (!(status
->flag
& RX_FLAG_DUP_VALIDATED
))
4222 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4224 /* If using encryption, we also need to have:
4225 * - PN_VALIDATED: similar, but the implementation is tricky
4226 * - DECRYPTED: necessary for PN_VALIDATED
4229 (status
->flag
& FAST_RX_CRYPT_FLAGS
) != FAST_RX_CRYPT_FLAGS
)
4232 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
4235 if (unlikely(ieee80211_is_frag(hdr
)))
4238 /* Since our interface address cannot be multicast, this
4239 * implicitly also rejects multicast frames without the
4242 * We shouldn't get any *data* frames not addressed to us
4243 * (AP mode will accept multicast *management* frames), but
4244 * punting here will make it go through the full checks in
4245 * ieee80211_accept_frame().
4247 if (!ether_addr_equal(fast_rx
->vif_addr
, hdr
->addr1
))
4250 if ((hdr
->frame_control
& cpu_to_le16(IEEE80211_FCTL_FROMDS
|
4251 IEEE80211_FCTL_TODS
)) !=
4252 fast_rx
->expected_ds_bits
)
4255 /* assign the key to drop unencrypted frames (later)
4256 * and strip the IV/MIC if necessary
4258 if (fast_rx
->key
&& !(status
->flag
& RX_FLAG_IV_STRIPPED
)) {
4259 /* GCMP header length is the same */
4260 snap_offs
+= IEEE80211_CCMP_HDR_LEN
;
4263 if (!(status
->rx_flags
& IEEE80211_RX_AMSDU
)) {
4264 if (!pskb_may_pull(skb
, snap_offs
+ sizeof(*payload
)))
4267 payload
= (void *)(skb
->data
+ snap_offs
);
4269 if (!ether_addr_equal(payload
->snap
, fast_rx
->rfc1042_hdr
))
4272 /* Don't handle these here since they require special code.
4273 * Accept AARP and IPX even though they should come with a
4274 * bridge-tunnel header - but if we get them this way then
4275 * there's little point in discarding them.
4277 if (unlikely(payload
->proto
== cpu_to_be16(ETH_P_TDLS
) ||
4278 payload
->proto
== fast_rx
->control_port_protocol
))
4282 /* after this point, don't punt to the slowpath! */
4284 if (rx
->key
&& !(status
->flag
& RX_FLAG_MIC_STRIPPED
) &&
4285 pskb_trim(skb
, skb
->len
- fast_rx
->icv_len
))
4288 if (unlikely(fast_rx
->sta_notify
)) {
4289 ieee80211_sta_rx_notify(rx
->sdata
, hdr
);
4290 fast_rx
->sta_notify
= false;
4293 /* statistics part of ieee80211_rx_h_sta_process() */
4294 if (!(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
)) {
4295 stats
->last_signal
= status
->signal
;
4296 if (!fast_rx
->uses_rss
)
4297 ewma_signal_add(&sta
->rx_stats_avg
.signal
,
4301 if (status
->chains
) {
4304 stats
->chains
= status
->chains
;
4305 for (i
= 0; i
< ARRAY_SIZE(status
->chain_signal
); i
++) {
4306 int signal
= status
->chain_signal
[i
];
4308 if (!(status
->chains
& BIT(i
)))
4311 stats
->chain_signal_last
[i
] = signal
;
4312 if (!fast_rx
->uses_rss
)
4313 ewma_signal_add(&sta
->rx_stats_avg
.chain_signal
[i
],
4317 /* end of statistics */
4319 if (rx
->key
&& !ieee80211_has_protected(hdr
->frame_control
))
4322 if (status
->rx_flags
& IEEE80211_RX_AMSDU
) {
4323 if (__ieee80211_rx_h_amsdu(rx
, snap_offs
- hdrlen
) !=
4330 stats
->last_rx
= jiffies
;
4331 stats
->last_rate
= sta_stats_encode_rate(status
);
4336 /* do the header conversion - first grab the addresses */
4337 ether_addr_copy(addrs
.da
, skb
->data
+ fast_rx
->da_offs
);
4338 ether_addr_copy(addrs
.sa
, skb
->data
+ fast_rx
->sa_offs
);
4339 /* remove the SNAP but leave the ethertype */
4340 skb_pull(skb
, snap_offs
+ sizeof(rfc1042_header
));
4341 /* push the addresses in front */
4342 memcpy(skb_push(skb
, sizeof(addrs
)), &addrs
, sizeof(addrs
));
4344 skb
->dev
= fast_rx
->dev
;
4346 ieee80211_rx_stats(fast_rx
->dev
, skb
->len
);
4348 /* The seqno index has the same property as needed
4349 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4350 * for non-QoS-data frames. Here we know it's a data
4351 * frame, so count MSDUs.
4353 u64_stats_update_begin(&stats
->syncp
);
4354 stats
->msdu
[rx
->seqno_idx
]++;
4355 stats
->bytes
+= orig_len
;
4356 u64_stats_update_end(&stats
->syncp
);
4358 if (fast_rx
->internal_forward
) {
4359 struct sk_buff
*xmit_skb
= NULL
;
4360 if (is_multicast_ether_addr(addrs
.da
)) {
4361 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
4362 } else if (!ether_addr_equal(addrs
.da
, addrs
.sa
) &&
4363 sta_info_get(rx
->sdata
, addrs
.da
)) {
4370 * Send to wireless media and increase priority by 256
4371 * to keep the received priority instead of
4372 * reclassifying the frame (see cfg80211_classify8021d).
4374 xmit_skb
->priority
+= 256;
4375 xmit_skb
->protocol
= htons(ETH_P_802_3
);
4376 skb_reset_network_header(xmit_skb
);
4377 skb_reset_mac_header(xmit_skb
);
4378 dev_queue_xmit(xmit_skb
);
4385 /* deliver to local stack */
4386 skb
->protocol
= eth_type_trans(skb
, fast_rx
->dev
);
4387 memset(skb
->cb
, 0, sizeof(skb
->cb
));
4389 napi_gro_receive(rx
->napi
, skb
);
4391 netif_receive_skb(skb
);
4401 * This function returns whether or not the SKB
4402 * was destined for RX processing or not, which,
4403 * if consume is true, is equivalent to whether
4404 * or not the skb was consumed.
4406 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data
*rx
,
4407 struct sk_buff
*skb
, bool consume
)
4409 struct ieee80211_local
*local
= rx
->local
;
4410 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
4414 /* See if we can do fast-rx; if we have to copy we already lost,
4415 * so punt in that case. We should never have to deliver a data
4416 * frame to multiple interfaces anyway.
4418 * We skip the ieee80211_accept_frame() call and do the necessary
4419 * checking inside ieee80211_invoke_fast_rx().
4421 if (consume
&& rx
->sta
) {
4422 struct ieee80211_fast_rx
*fast_rx
;
4424 fast_rx
= rcu_dereference(rx
->sta
->fast_rx
);
4425 if (fast_rx
&& ieee80211_invoke_fast_rx(rx
, fast_rx
))
4429 if (!ieee80211_accept_frame(rx
))
4433 skb
= skb_copy(skb
, GFP_ATOMIC
);
4435 if (net_ratelimit())
4436 wiphy_debug(local
->hw
.wiphy
,
4437 "failed to copy skb for %s\n",
4445 ieee80211_invoke_rx_handlers(rx
);
4450 * This is the actual Rx frames handler. as it belongs to Rx path it must
4451 * be called with rcu_read_lock protection.
4453 static void __ieee80211_rx_handle_packet(struct ieee80211_hw
*hw
,
4454 struct ieee80211_sta
*pubsta
,
4455 struct sk_buff
*skb
,
4456 struct napi_struct
*napi
)
4458 struct ieee80211_local
*local
= hw_to_local(hw
);
4459 struct ieee80211_sub_if_data
*sdata
;
4460 struct ieee80211_hdr
*hdr
;
4462 struct ieee80211_rx_data rx
;
4463 struct ieee80211_sub_if_data
*prev
;
4464 struct rhlist_head
*tmp
;
4467 fc
= ((struct ieee80211_hdr
*)skb
->data
)->frame_control
;
4468 memset(&rx
, 0, sizeof(rx
));
4473 if (ieee80211_is_data(fc
) || ieee80211_is_mgmt(fc
))
4474 I802_DEBUG_INC(local
->dot11ReceivedFragmentCount
);
4476 if (ieee80211_is_mgmt(fc
)) {
4477 /* drop frame if too short for header */
4478 if (skb
->len
< ieee80211_hdrlen(fc
))
4481 err
= skb_linearize(skb
);
4483 err
= !pskb_may_pull(skb
, ieee80211_hdrlen(fc
));
4491 hdr
= (struct ieee80211_hdr
*)skb
->data
;
4492 ieee80211_parse_qos(&rx
);
4493 ieee80211_verify_alignment(&rx
);
4495 if (unlikely(ieee80211_is_probe_resp(hdr
->frame_control
) ||
4496 ieee80211_is_beacon(hdr
->frame_control
)))
4497 ieee80211_scan_rx(local
, skb
);
4499 if (ieee80211_is_data(fc
)) {
4500 struct sta_info
*sta
, *prev_sta
;
4503 rx
.sta
= container_of(pubsta
, struct sta_info
, sta
);
4504 rx
.sdata
= rx
.sta
->sdata
;
4505 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
4512 for_each_sta_info(local
, hdr
->addr2
, sta
, tmp
) {
4519 rx
.sdata
= prev_sta
->sdata
;
4520 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
4527 rx
.sdata
= prev_sta
->sdata
;
4529 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
4537 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
4538 if (!ieee80211_sdata_running(sdata
))
4541 if (sdata
->vif
.type
== NL80211_IFTYPE_MONITOR
||
4542 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
4546 * frame is destined for this interface, but if it's
4547 * not also for the previous one we handle that after
4548 * the loop to avoid copying the SKB once too much
4556 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
4558 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
4564 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
4567 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
4576 * This is the receive path handler. It is called by a low level driver when an
4577 * 802.11 MPDU is received from the hardware.
4579 void ieee80211_rx_napi(struct ieee80211_hw
*hw
, struct ieee80211_sta
*pubsta
,
4580 struct sk_buff
*skb
, struct napi_struct
*napi
)
4582 struct ieee80211_local
*local
= hw_to_local(hw
);
4583 struct ieee80211_rate
*rate
= NULL
;
4584 struct ieee80211_supported_band
*sband
;
4585 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
4587 WARN_ON_ONCE(softirq_count() == 0);
4589 if (WARN_ON(status
->band
>= NUM_NL80211_BANDS
))
4592 sband
= local
->hw
.wiphy
->bands
[status
->band
];
4593 if (WARN_ON(!sband
))
4597 * If we're suspending, it is possible although not too likely
4598 * that we'd be receiving frames after having already partially
4599 * quiesced the stack. We can't process such frames then since
4600 * that might, for example, cause stations to be added or other
4601 * driver callbacks be invoked.
4603 if (unlikely(local
->quiescing
|| local
->suspended
))
4606 /* We might be during a HW reconfig, prevent Rx for the same reason */
4607 if (unlikely(local
->in_reconfig
))
4611 * The same happens when we're not even started,
4612 * but that's worth a warning.
4614 if (WARN_ON(!local
->started
))
4617 if (likely(!(status
->flag
& RX_FLAG_FAILED_PLCP_CRC
))) {
4619 * Validate the rate, unless a PLCP error means that
4620 * we probably can't have a valid rate here anyway.
4623 switch (status
->encoding
) {
4626 * rate_idx is MCS index, which can be [0-76]
4629 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4631 * Anything else would be some sort of driver or
4632 * hardware error. The driver should catch hardware
4635 if (WARN(status
->rate_idx
> 76,
4636 "Rate marked as an HT rate but passed "
4637 "status->rate_idx is not "
4638 "an MCS index [0-76]: %d (0x%02x)\n",
4644 if (WARN_ONCE(status
->rate_idx
> 9 ||
4647 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4648 status
->rate_idx
, status
->nss
))
4652 if (WARN_ONCE(status
->rate_idx
> 11 ||
4655 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4656 status
->rate_idx
, status
->nss
))
4663 if (WARN_ON(status
->rate_idx
>= sband
->n_bitrates
))
4665 rate
= &sband
->bitrates
[status
->rate_idx
];
4669 status
->rx_flags
= 0;
4672 * key references and virtual interfaces are protected using RCU
4673 * and this requires that we are in a read-side RCU section during
4674 * receive processing
4679 * Frames with failed FCS/PLCP checksum are not returned,
4680 * all other frames are returned without radiotap header
4681 * if it was previously present.
4682 * Also, frames with less than 16 bytes are dropped.
4684 skb
= ieee80211_rx_monitor(local
, skb
, rate
);
4690 ieee80211_tpt_led_trig_rx(local
,
4691 ((struct ieee80211_hdr
*)skb
->data
)->frame_control
,
4694 __ieee80211_rx_handle_packet(hw
, pubsta
, skb
, napi
);
4702 EXPORT_SYMBOL(ieee80211_rx_napi
);
4704 /* This is a version of the rx handler that can be called from hard irq
4705 * context. Post the skb on the queue and schedule the tasklet */
4706 void ieee80211_rx_irqsafe(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
4708 struct ieee80211_local
*local
= hw_to_local(hw
);
4710 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status
) > sizeof(skb
->cb
));
4712 skb
->pkt_type
= IEEE80211_RX_MSG
;
4713 skb_queue_tail(&local
->skb_queue
, skb
);
4714 tasklet_schedule(&local
->tasklet
);
4716 EXPORT_SYMBOL(ieee80211_rx_irqsafe
);