octeontx2-pf: Fix error return code in otx2_probe()
[linux/fpc-iii.git] / net / openvswitch / actions.c
blobfc0efd8833c8482ae89cb3874072fec6be8b33ee
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/netfilter_ipv6.h>
13 #include <linux/sctp.h>
14 #include <linux/tcp.h>
15 #include <linux/udp.h>
16 #include <linux/in6.h>
17 #include <linux/if_arp.h>
18 #include <linux/if_vlan.h>
20 #include <net/dst.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
27 #include <net/sctp/checksum.h>
29 #include "datapath.h"
30 #include "flow.h"
31 #include "conntrack.h"
32 #include "vport.h"
33 #include "flow_netlink.h"
35 struct deferred_action {
36 struct sk_buff *skb;
37 const struct nlattr *actions;
38 int actions_len;
40 /* Store pkt_key clone when creating deferred action. */
41 struct sw_flow_key pkt_key;
44 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
45 struct ovs_frag_data {
46 unsigned long dst;
47 struct vport *vport;
48 struct ovs_skb_cb cb;
49 __be16 inner_protocol;
50 u16 network_offset; /* valid only for MPLS */
51 u16 vlan_tci;
52 __be16 vlan_proto;
53 unsigned int l2_len;
54 u8 mac_proto;
55 u8 l2_data[MAX_L2_LEN];
58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
60 #define DEFERRED_ACTION_FIFO_SIZE 10
61 #define OVS_RECURSION_LIMIT 5
62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
63 struct action_fifo {
64 int head;
65 int tail;
66 /* Deferred action fifo queue storage. */
67 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
70 struct action_flow_keys {
71 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
74 static struct action_fifo __percpu *action_fifos;
75 static struct action_flow_keys __percpu *flow_keys;
76 static DEFINE_PER_CPU(int, exec_actions_level);
78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
79 * space. Return NULL if out of key spaces.
81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
83 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
84 int level = this_cpu_read(exec_actions_level);
85 struct sw_flow_key *key = NULL;
87 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
88 key = &keys->key[level - 1];
89 *key = *key_;
92 return key;
95 static void action_fifo_init(struct action_fifo *fifo)
97 fifo->head = 0;
98 fifo->tail = 0;
101 static bool action_fifo_is_empty(const struct action_fifo *fifo)
103 return (fifo->head == fifo->tail);
106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
108 if (action_fifo_is_empty(fifo))
109 return NULL;
111 return &fifo->fifo[fifo->tail++];
114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
116 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
117 return NULL;
119 return &fifo->fifo[fifo->head++];
122 /* Return true if fifo is not full */
123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
124 const struct sw_flow_key *key,
125 const struct nlattr *actions,
126 const int actions_len)
128 struct action_fifo *fifo;
129 struct deferred_action *da;
131 fifo = this_cpu_ptr(action_fifos);
132 da = action_fifo_put(fifo);
133 if (da) {
134 da->skb = skb;
135 da->actions = actions;
136 da->actions_len = actions_len;
137 da->pkt_key = *key;
140 return da;
143 static void invalidate_flow_key(struct sw_flow_key *key)
145 key->mac_proto |= SW_FLOW_KEY_INVALID;
148 static bool is_flow_key_valid(const struct sw_flow_key *key)
150 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
153 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
154 struct sw_flow_key *key,
155 u32 recirc_id,
156 const struct nlattr *actions, int len,
157 bool last, bool clone_flow_key);
159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
160 struct sw_flow_key *key,
161 const struct nlattr *attr, int len);
163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
164 __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
166 int err;
168 err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
169 if (err)
170 return err;
172 if (!mac_len)
173 key->mac_proto = MAC_PROTO_NONE;
175 invalidate_flow_key(key);
176 return 0;
179 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
180 const __be16 ethertype)
182 int err;
184 err = skb_mpls_pop(skb, ethertype, skb->mac_len,
185 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
186 if (err)
187 return err;
189 if (ethertype == htons(ETH_P_TEB))
190 key->mac_proto = MAC_PROTO_ETHERNET;
192 invalidate_flow_key(key);
193 return 0;
196 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
197 const __be32 *mpls_lse, const __be32 *mask)
199 struct mpls_shim_hdr *stack;
200 __be32 lse;
201 int err;
203 stack = mpls_hdr(skb);
204 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
205 err = skb_mpls_update_lse(skb, lse);
206 if (err)
207 return err;
209 flow_key->mpls.lse[0] = lse;
210 return 0;
213 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
215 int err;
217 err = skb_vlan_pop(skb);
218 if (skb_vlan_tag_present(skb)) {
219 invalidate_flow_key(key);
220 } else {
221 key->eth.vlan.tci = 0;
222 key->eth.vlan.tpid = 0;
224 return err;
227 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
228 const struct ovs_action_push_vlan *vlan)
230 if (skb_vlan_tag_present(skb)) {
231 invalidate_flow_key(key);
232 } else {
233 key->eth.vlan.tci = vlan->vlan_tci;
234 key->eth.vlan.tpid = vlan->vlan_tpid;
236 return skb_vlan_push(skb, vlan->vlan_tpid,
237 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
240 /* 'src' is already properly masked. */
241 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
243 u16 *dst = (u16 *)dst_;
244 const u16 *src = (const u16 *)src_;
245 const u16 *mask = (const u16 *)mask_;
247 OVS_SET_MASKED(dst[0], src[0], mask[0]);
248 OVS_SET_MASKED(dst[1], src[1], mask[1]);
249 OVS_SET_MASKED(dst[2], src[2], mask[2]);
252 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
253 const struct ovs_key_ethernet *key,
254 const struct ovs_key_ethernet *mask)
256 int err;
258 err = skb_ensure_writable(skb, ETH_HLEN);
259 if (unlikely(err))
260 return err;
262 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
264 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
265 mask->eth_src);
266 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
267 mask->eth_dst);
269 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
271 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
272 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
273 return 0;
276 /* pop_eth does not support VLAN packets as this action is never called
277 * for them.
279 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
281 skb_pull_rcsum(skb, ETH_HLEN);
282 skb_reset_mac_header(skb);
283 skb_reset_mac_len(skb);
285 /* safe right before invalidate_flow_key */
286 key->mac_proto = MAC_PROTO_NONE;
287 invalidate_flow_key(key);
288 return 0;
291 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
292 const struct ovs_action_push_eth *ethh)
294 struct ethhdr *hdr;
296 /* Add the new Ethernet header */
297 if (skb_cow_head(skb, ETH_HLEN) < 0)
298 return -ENOMEM;
300 skb_push(skb, ETH_HLEN);
301 skb_reset_mac_header(skb);
302 skb_reset_mac_len(skb);
304 hdr = eth_hdr(skb);
305 ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
306 ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
307 hdr->h_proto = skb->protocol;
309 skb_postpush_rcsum(skb, hdr, ETH_HLEN);
311 /* safe right before invalidate_flow_key */
312 key->mac_proto = MAC_PROTO_ETHERNET;
313 invalidate_flow_key(key);
314 return 0;
317 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
318 const struct nshhdr *nh)
320 int err;
322 err = nsh_push(skb, nh);
323 if (err)
324 return err;
326 /* safe right before invalidate_flow_key */
327 key->mac_proto = MAC_PROTO_NONE;
328 invalidate_flow_key(key);
329 return 0;
332 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
334 int err;
336 err = nsh_pop(skb);
337 if (err)
338 return err;
340 /* safe right before invalidate_flow_key */
341 if (skb->protocol == htons(ETH_P_TEB))
342 key->mac_proto = MAC_PROTO_ETHERNET;
343 else
344 key->mac_proto = MAC_PROTO_NONE;
345 invalidate_flow_key(key);
346 return 0;
349 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
350 __be32 addr, __be32 new_addr)
352 int transport_len = skb->len - skb_transport_offset(skb);
354 if (nh->frag_off & htons(IP_OFFSET))
355 return;
357 if (nh->protocol == IPPROTO_TCP) {
358 if (likely(transport_len >= sizeof(struct tcphdr)))
359 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
360 addr, new_addr, true);
361 } else if (nh->protocol == IPPROTO_UDP) {
362 if (likely(transport_len >= sizeof(struct udphdr))) {
363 struct udphdr *uh = udp_hdr(skb);
365 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
366 inet_proto_csum_replace4(&uh->check, skb,
367 addr, new_addr, true);
368 if (!uh->check)
369 uh->check = CSUM_MANGLED_0;
375 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
376 __be32 *addr, __be32 new_addr)
378 update_ip_l4_checksum(skb, nh, *addr, new_addr);
379 csum_replace4(&nh->check, *addr, new_addr);
380 skb_clear_hash(skb);
381 *addr = new_addr;
384 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
385 __be32 addr[4], const __be32 new_addr[4])
387 int transport_len = skb->len - skb_transport_offset(skb);
389 if (l4_proto == NEXTHDR_TCP) {
390 if (likely(transport_len >= sizeof(struct tcphdr)))
391 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
392 addr, new_addr, true);
393 } else if (l4_proto == NEXTHDR_UDP) {
394 if (likely(transport_len >= sizeof(struct udphdr))) {
395 struct udphdr *uh = udp_hdr(skb);
397 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
398 inet_proto_csum_replace16(&uh->check, skb,
399 addr, new_addr, true);
400 if (!uh->check)
401 uh->check = CSUM_MANGLED_0;
404 } else if (l4_proto == NEXTHDR_ICMP) {
405 if (likely(transport_len >= sizeof(struct icmp6hdr)))
406 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
407 skb, addr, new_addr, true);
411 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
412 const __be32 mask[4], __be32 masked[4])
414 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
415 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
416 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
417 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
420 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
421 __be32 addr[4], const __be32 new_addr[4],
422 bool recalculate_csum)
424 if (recalculate_csum)
425 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
427 skb_clear_hash(skb);
428 memcpy(addr, new_addr, sizeof(__be32[4]));
431 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
433 /* Bits 21-24 are always unmasked, so this retains their values. */
434 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
435 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
436 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
439 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
440 u8 mask)
442 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
444 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
445 nh->ttl = new_ttl;
448 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
449 const struct ovs_key_ipv4 *key,
450 const struct ovs_key_ipv4 *mask)
452 struct iphdr *nh;
453 __be32 new_addr;
454 int err;
456 err = skb_ensure_writable(skb, skb_network_offset(skb) +
457 sizeof(struct iphdr));
458 if (unlikely(err))
459 return err;
461 nh = ip_hdr(skb);
463 /* Setting an IP addresses is typically only a side effect of
464 * matching on them in the current userspace implementation, so it
465 * makes sense to check if the value actually changed.
467 if (mask->ipv4_src) {
468 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
470 if (unlikely(new_addr != nh->saddr)) {
471 set_ip_addr(skb, nh, &nh->saddr, new_addr);
472 flow_key->ipv4.addr.src = new_addr;
475 if (mask->ipv4_dst) {
476 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
478 if (unlikely(new_addr != nh->daddr)) {
479 set_ip_addr(skb, nh, &nh->daddr, new_addr);
480 flow_key->ipv4.addr.dst = new_addr;
483 if (mask->ipv4_tos) {
484 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
485 flow_key->ip.tos = nh->tos;
487 if (mask->ipv4_ttl) {
488 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
489 flow_key->ip.ttl = nh->ttl;
492 return 0;
495 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
497 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
500 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
501 const struct ovs_key_ipv6 *key,
502 const struct ovs_key_ipv6 *mask)
504 struct ipv6hdr *nh;
505 int err;
507 err = skb_ensure_writable(skb, skb_network_offset(skb) +
508 sizeof(struct ipv6hdr));
509 if (unlikely(err))
510 return err;
512 nh = ipv6_hdr(skb);
514 /* Setting an IP addresses is typically only a side effect of
515 * matching on them in the current userspace implementation, so it
516 * makes sense to check if the value actually changed.
518 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
519 __be32 *saddr = (__be32 *)&nh->saddr;
520 __be32 masked[4];
522 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
524 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
525 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
526 true);
527 memcpy(&flow_key->ipv6.addr.src, masked,
528 sizeof(flow_key->ipv6.addr.src));
531 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
532 unsigned int offset = 0;
533 int flags = IP6_FH_F_SKIP_RH;
534 bool recalc_csum = true;
535 __be32 *daddr = (__be32 *)&nh->daddr;
536 __be32 masked[4];
538 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
540 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
541 if (ipv6_ext_hdr(nh->nexthdr))
542 recalc_csum = (ipv6_find_hdr(skb, &offset,
543 NEXTHDR_ROUTING,
544 NULL, &flags)
545 != NEXTHDR_ROUTING);
547 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
548 recalc_csum);
549 memcpy(&flow_key->ipv6.addr.dst, masked,
550 sizeof(flow_key->ipv6.addr.dst));
553 if (mask->ipv6_tclass) {
554 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
555 flow_key->ip.tos = ipv6_get_dsfield(nh);
557 if (mask->ipv6_label) {
558 set_ipv6_fl(nh, ntohl(key->ipv6_label),
559 ntohl(mask->ipv6_label));
560 flow_key->ipv6.label =
561 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
563 if (mask->ipv6_hlimit) {
564 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
565 mask->ipv6_hlimit);
566 flow_key->ip.ttl = nh->hop_limit;
568 return 0;
571 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
572 const struct nlattr *a)
574 struct nshhdr *nh;
575 size_t length;
576 int err;
577 u8 flags;
578 u8 ttl;
579 int i;
581 struct ovs_key_nsh key;
582 struct ovs_key_nsh mask;
584 err = nsh_key_from_nlattr(a, &key, &mask);
585 if (err)
586 return err;
588 /* Make sure the NSH base header is there */
589 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
590 return -ENOMEM;
592 nh = nsh_hdr(skb);
593 length = nsh_hdr_len(nh);
595 /* Make sure the whole NSH header is there */
596 err = skb_ensure_writable(skb, skb_network_offset(skb) +
597 length);
598 if (unlikely(err))
599 return err;
601 nh = nsh_hdr(skb);
602 skb_postpull_rcsum(skb, nh, length);
603 flags = nsh_get_flags(nh);
604 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
605 flow_key->nsh.base.flags = flags;
606 ttl = nsh_get_ttl(nh);
607 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
608 flow_key->nsh.base.ttl = ttl;
609 nsh_set_flags_and_ttl(nh, flags, ttl);
610 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
611 mask.base.path_hdr);
612 flow_key->nsh.base.path_hdr = nh->path_hdr;
613 switch (nh->mdtype) {
614 case NSH_M_TYPE1:
615 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
616 nh->md1.context[i] =
617 OVS_MASKED(nh->md1.context[i], key.context[i],
618 mask.context[i]);
620 memcpy(flow_key->nsh.context, nh->md1.context,
621 sizeof(nh->md1.context));
622 break;
623 case NSH_M_TYPE2:
624 memset(flow_key->nsh.context, 0,
625 sizeof(flow_key->nsh.context));
626 break;
627 default:
628 return -EINVAL;
630 skb_postpush_rcsum(skb, nh, length);
631 return 0;
634 /* Must follow skb_ensure_writable() since that can move the skb data. */
635 static void set_tp_port(struct sk_buff *skb, __be16 *port,
636 __be16 new_port, __sum16 *check)
638 inet_proto_csum_replace2(check, skb, *port, new_port, false);
639 *port = new_port;
642 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
643 const struct ovs_key_udp *key,
644 const struct ovs_key_udp *mask)
646 struct udphdr *uh;
647 __be16 src, dst;
648 int err;
650 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
651 sizeof(struct udphdr));
652 if (unlikely(err))
653 return err;
655 uh = udp_hdr(skb);
656 /* Either of the masks is non-zero, so do not bother checking them. */
657 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
658 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
660 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
661 if (likely(src != uh->source)) {
662 set_tp_port(skb, &uh->source, src, &uh->check);
663 flow_key->tp.src = src;
665 if (likely(dst != uh->dest)) {
666 set_tp_port(skb, &uh->dest, dst, &uh->check);
667 flow_key->tp.dst = dst;
670 if (unlikely(!uh->check))
671 uh->check = CSUM_MANGLED_0;
672 } else {
673 uh->source = src;
674 uh->dest = dst;
675 flow_key->tp.src = src;
676 flow_key->tp.dst = dst;
679 skb_clear_hash(skb);
681 return 0;
684 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
685 const struct ovs_key_tcp *key,
686 const struct ovs_key_tcp *mask)
688 struct tcphdr *th;
689 __be16 src, dst;
690 int err;
692 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
693 sizeof(struct tcphdr));
694 if (unlikely(err))
695 return err;
697 th = tcp_hdr(skb);
698 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
699 if (likely(src != th->source)) {
700 set_tp_port(skb, &th->source, src, &th->check);
701 flow_key->tp.src = src;
703 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
704 if (likely(dst != th->dest)) {
705 set_tp_port(skb, &th->dest, dst, &th->check);
706 flow_key->tp.dst = dst;
708 skb_clear_hash(skb);
710 return 0;
713 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
714 const struct ovs_key_sctp *key,
715 const struct ovs_key_sctp *mask)
717 unsigned int sctphoff = skb_transport_offset(skb);
718 struct sctphdr *sh;
719 __le32 old_correct_csum, new_csum, old_csum;
720 int err;
722 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
723 if (unlikely(err))
724 return err;
726 sh = sctp_hdr(skb);
727 old_csum = sh->checksum;
728 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
730 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
731 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
733 new_csum = sctp_compute_cksum(skb, sctphoff);
735 /* Carry any checksum errors through. */
736 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
738 skb_clear_hash(skb);
739 flow_key->tp.src = sh->source;
740 flow_key->tp.dst = sh->dest;
742 return 0;
745 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
747 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
748 struct vport *vport = data->vport;
750 if (skb_cow_head(skb, data->l2_len) < 0) {
751 kfree_skb(skb);
752 return -ENOMEM;
755 __skb_dst_copy(skb, data->dst);
756 *OVS_CB(skb) = data->cb;
757 skb->inner_protocol = data->inner_protocol;
758 if (data->vlan_tci & VLAN_CFI_MASK)
759 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
760 else
761 __vlan_hwaccel_clear_tag(skb);
763 /* Reconstruct the MAC header. */
764 skb_push(skb, data->l2_len);
765 memcpy(skb->data, &data->l2_data, data->l2_len);
766 skb_postpush_rcsum(skb, skb->data, data->l2_len);
767 skb_reset_mac_header(skb);
769 if (eth_p_mpls(skb->protocol)) {
770 skb->inner_network_header = skb->network_header;
771 skb_set_network_header(skb, data->network_offset);
772 skb_reset_mac_len(skb);
775 ovs_vport_send(vport, skb, data->mac_proto);
776 return 0;
779 static unsigned int
780 ovs_dst_get_mtu(const struct dst_entry *dst)
782 return dst->dev->mtu;
785 static struct dst_ops ovs_dst_ops = {
786 .family = AF_UNSPEC,
787 .mtu = ovs_dst_get_mtu,
790 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
791 * ovs_vport_output(), which is called once per fragmented packet.
793 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
794 u16 orig_network_offset, u8 mac_proto)
796 unsigned int hlen = skb_network_offset(skb);
797 struct ovs_frag_data *data;
799 data = this_cpu_ptr(&ovs_frag_data_storage);
800 data->dst = skb->_skb_refdst;
801 data->vport = vport;
802 data->cb = *OVS_CB(skb);
803 data->inner_protocol = skb->inner_protocol;
804 data->network_offset = orig_network_offset;
805 if (skb_vlan_tag_present(skb))
806 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
807 else
808 data->vlan_tci = 0;
809 data->vlan_proto = skb->vlan_proto;
810 data->mac_proto = mac_proto;
811 data->l2_len = hlen;
812 memcpy(&data->l2_data, skb->data, hlen);
814 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
815 skb_pull(skb, hlen);
818 static void ovs_fragment(struct net *net, struct vport *vport,
819 struct sk_buff *skb, u16 mru,
820 struct sw_flow_key *key)
822 u16 orig_network_offset = 0;
824 if (eth_p_mpls(skb->protocol)) {
825 orig_network_offset = skb_network_offset(skb);
826 skb->network_header = skb->inner_network_header;
829 if (skb_network_offset(skb) > MAX_L2_LEN) {
830 OVS_NLERR(1, "L2 header too long to fragment");
831 goto err;
834 if (key->eth.type == htons(ETH_P_IP)) {
835 struct dst_entry ovs_dst;
836 unsigned long orig_dst;
838 prepare_frag(vport, skb, orig_network_offset,
839 ovs_key_mac_proto(key));
840 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
841 DST_OBSOLETE_NONE, DST_NOCOUNT);
842 ovs_dst.dev = vport->dev;
844 orig_dst = skb->_skb_refdst;
845 skb_dst_set_noref(skb, &ovs_dst);
846 IPCB(skb)->frag_max_size = mru;
848 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
849 refdst_drop(orig_dst);
850 } else if (key->eth.type == htons(ETH_P_IPV6)) {
851 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
852 unsigned long orig_dst;
853 struct rt6_info ovs_rt;
855 if (!v6ops)
856 goto err;
858 prepare_frag(vport, skb, orig_network_offset,
859 ovs_key_mac_proto(key));
860 memset(&ovs_rt, 0, sizeof(ovs_rt));
861 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
862 DST_OBSOLETE_NONE, DST_NOCOUNT);
863 ovs_rt.dst.dev = vport->dev;
865 orig_dst = skb->_skb_refdst;
866 skb_dst_set_noref(skb, &ovs_rt.dst);
867 IP6CB(skb)->frag_max_size = mru;
869 v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
870 refdst_drop(orig_dst);
871 } else {
872 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
873 ovs_vport_name(vport), ntohs(key->eth.type), mru,
874 vport->dev->mtu);
875 goto err;
878 return;
879 err:
880 kfree_skb(skb);
883 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
884 struct sw_flow_key *key)
886 struct vport *vport = ovs_vport_rcu(dp, out_port);
888 if (likely(vport)) {
889 u16 mru = OVS_CB(skb)->mru;
890 u32 cutlen = OVS_CB(skb)->cutlen;
892 if (unlikely(cutlen > 0)) {
893 if (skb->len - cutlen > ovs_mac_header_len(key))
894 pskb_trim(skb, skb->len - cutlen);
895 else
896 pskb_trim(skb, ovs_mac_header_len(key));
899 if (likely(!mru ||
900 (skb->len <= mru + vport->dev->hard_header_len))) {
901 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
902 } else if (mru <= vport->dev->mtu) {
903 struct net *net = read_pnet(&dp->net);
905 ovs_fragment(net, vport, skb, mru, key);
906 } else {
907 kfree_skb(skb);
909 } else {
910 kfree_skb(skb);
914 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
915 struct sw_flow_key *key, const struct nlattr *attr,
916 const struct nlattr *actions, int actions_len,
917 uint32_t cutlen)
919 struct dp_upcall_info upcall;
920 const struct nlattr *a;
921 int rem;
923 memset(&upcall, 0, sizeof(upcall));
924 upcall.cmd = OVS_PACKET_CMD_ACTION;
925 upcall.mru = OVS_CB(skb)->mru;
927 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
928 a = nla_next(a, &rem)) {
929 switch (nla_type(a)) {
930 case OVS_USERSPACE_ATTR_USERDATA:
931 upcall.userdata = a;
932 break;
934 case OVS_USERSPACE_ATTR_PID:
935 upcall.portid = nla_get_u32(a);
936 break;
938 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
939 /* Get out tunnel info. */
940 struct vport *vport;
942 vport = ovs_vport_rcu(dp, nla_get_u32(a));
943 if (vport) {
944 int err;
946 err = dev_fill_metadata_dst(vport->dev, skb);
947 if (!err)
948 upcall.egress_tun_info = skb_tunnel_info(skb);
951 break;
954 case OVS_USERSPACE_ATTR_ACTIONS: {
955 /* Include actions. */
956 upcall.actions = actions;
957 upcall.actions_len = actions_len;
958 break;
961 } /* End of switch. */
964 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
967 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
968 struct sw_flow_key *key,
969 const struct nlattr *attr, bool last)
971 /* The first action is always 'OVS_DEC_TTL_ATTR_ARG'. */
972 struct nlattr *dec_ttl_arg = nla_data(attr);
973 int rem = nla_len(attr);
975 if (nla_len(dec_ttl_arg)) {
976 struct nlattr *actions = nla_next(dec_ttl_arg, &rem);
978 if (actions)
979 return clone_execute(dp, skb, key, 0, actions, rem,
980 last, false);
982 consume_skb(skb);
983 return 0;
986 /* When 'last' is true, sample() should always consume the 'skb'.
987 * Otherwise, sample() should keep 'skb' intact regardless what
988 * actions are executed within sample().
990 static int sample(struct datapath *dp, struct sk_buff *skb,
991 struct sw_flow_key *key, const struct nlattr *attr,
992 bool last)
994 struct nlattr *actions;
995 struct nlattr *sample_arg;
996 int rem = nla_len(attr);
997 const struct sample_arg *arg;
998 bool clone_flow_key;
1000 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1001 sample_arg = nla_data(attr);
1002 arg = nla_data(sample_arg);
1003 actions = nla_next(sample_arg, &rem);
1005 if ((arg->probability != U32_MAX) &&
1006 (!arg->probability || prandom_u32() > arg->probability)) {
1007 if (last)
1008 consume_skb(skb);
1009 return 0;
1012 clone_flow_key = !arg->exec;
1013 return clone_execute(dp, skb, key, 0, actions, rem, last,
1014 clone_flow_key);
1017 /* When 'last' is true, clone() should always consume the 'skb'.
1018 * Otherwise, clone() should keep 'skb' intact regardless what
1019 * actions are executed within clone().
1021 static int clone(struct datapath *dp, struct sk_buff *skb,
1022 struct sw_flow_key *key, const struct nlattr *attr,
1023 bool last)
1025 struct nlattr *actions;
1026 struct nlattr *clone_arg;
1027 int rem = nla_len(attr);
1028 bool dont_clone_flow_key;
1030 /* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1031 clone_arg = nla_data(attr);
1032 dont_clone_flow_key = nla_get_u32(clone_arg);
1033 actions = nla_next(clone_arg, &rem);
1035 return clone_execute(dp, skb, key, 0, actions, rem, last,
1036 !dont_clone_flow_key);
1039 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1040 const struct nlattr *attr)
1042 struct ovs_action_hash *hash_act = nla_data(attr);
1043 u32 hash = 0;
1045 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
1046 hash = skb_get_hash(skb);
1047 hash = jhash_1word(hash, hash_act->hash_basis);
1048 if (!hash)
1049 hash = 0x1;
1051 key->ovs_flow_hash = hash;
1054 static int execute_set_action(struct sk_buff *skb,
1055 struct sw_flow_key *flow_key,
1056 const struct nlattr *a)
1058 /* Only tunnel set execution is supported without a mask. */
1059 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1060 struct ovs_tunnel_info *tun = nla_data(a);
1062 skb_dst_drop(skb);
1063 dst_hold((struct dst_entry *)tun->tun_dst);
1064 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1065 return 0;
1068 return -EINVAL;
1071 /* Mask is at the midpoint of the data. */
1072 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1074 static int execute_masked_set_action(struct sk_buff *skb,
1075 struct sw_flow_key *flow_key,
1076 const struct nlattr *a)
1078 int err = 0;
1080 switch (nla_type(a)) {
1081 case OVS_KEY_ATTR_PRIORITY:
1082 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1083 *get_mask(a, u32 *));
1084 flow_key->phy.priority = skb->priority;
1085 break;
1087 case OVS_KEY_ATTR_SKB_MARK:
1088 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1089 flow_key->phy.skb_mark = skb->mark;
1090 break;
1092 case OVS_KEY_ATTR_TUNNEL_INFO:
1093 /* Masked data not supported for tunnel. */
1094 err = -EINVAL;
1095 break;
1097 case OVS_KEY_ATTR_ETHERNET:
1098 err = set_eth_addr(skb, flow_key, nla_data(a),
1099 get_mask(a, struct ovs_key_ethernet *));
1100 break;
1102 case OVS_KEY_ATTR_NSH:
1103 err = set_nsh(skb, flow_key, a);
1104 break;
1106 case OVS_KEY_ATTR_IPV4:
1107 err = set_ipv4(skb, flow_key, nla_data(a),
1108 get_mask(a, struct ovs_key_ipv4 *));
1109 break;
1111 case OVS_KEY_ATTR_IPV6:
1112 err = set_ipv6(skb, flow_key, nla_data(a),
1113 get_mask(a, struct ovs_key_ipv6 *));
1114 break;
1116 case OVS_KEY_ATTR_TCP:
1117 err = set_tcp(skb, flow_key, nla_data(a),
1118 get_mask(a, struct ovs_key_tcp *));
1119 break;
1121 case OVS_KEY_ATTR_UDP:
1122 err = set_udp(skb, flow_key, nla_data(a),
1123 get_mask(a, struct ovs_key_udp *));
1124 break;
1126 case OVS_KEY_ATTR_SCTP:
1127 err = set_sctp(skb, flow_key, nla_data(a),
1128 get_mask(a, struct ovs_key_sctp *));
1129 break;
1131 case OVS_KEY_ATTR_MPLS:
1132 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1133 __be32 *));
1134 break;
1136 case OVS_KEY_ATTR_CT_STATE:
1137 case OVS_KEY_ATTR_CT_ZONE:
1138 case OVS_KEY_ATTR_CT_MARK:
1139 case OVS_KEY_ATTR_CT_LABELS:
1140 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1141 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1142 err = -EINVAL;
1143 break;
1146 return err;
1149 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1150 struct sw_flow_key *key,
1151 const struct nlattr *a, bool last)
1153 u32 recirc_id;
1155 if (!is_flow_key_valid(key)) {
1156 int err;
1158 err = ovs_flow_key_update(skb, key);
1159 if (err)
1160 return err;
1162 BUG_ON(!is_flow_key_valid(key));
1164 recirc_id = nla_get_u32(a);
1165 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1168 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1169 struct sw_flow_key *key,
1170 const struct nlattr *attr, bool last)
1172 const struct nlattr *actions, *cpl_arg;
1173 const struct check_pkt_len_arg *arg;
1174 int rem = nla_len(attr);
1175 bool clone_flow_key;
1177 /* The first netlink attribute in 'attr' is always
1178 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1180 cpl_arg = nla_data(attr);
1181 arg = nla_data(cpl_arg);
1183 if (skb->len <= arg->pkt_len) {
1184 /* Second netlink attribute in 'attr' is always
1185 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1187 actions = nla_next(cpl_arg, &rem);
1188 clone_flow_key = !arg->exec_for_lesser_equal;
1189 } else {
1190 /* Third netlink attribute in 'attr' is always
1191 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1193 actions = nla_next(cpl_arg, &rem);
1194 actions = nla_next(actions, &rem);
1195 clone_flow_key = !arg->exec_for_greater;
1198 return clone_execute(dp, skb, key, 0, nla_data(actions),
1199 nla_len(actions), last, clone_flow_key);
1202 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1204 int err;
1206 if (skb->protocol == htons(ETH_P_IPV6)) {
1207 struct ipv6hdr *nh;
1209 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1210 sizeof(*nh));
1211 if (unlikely(err))
1212 return err;
1214 nh = ipv6_hdr(skb);
1216 if (nh->hop_limit <= 1)
1217 return -EHOSTUNREACH;
1219 key->ip.ttl = --nh->hop_limit;
1220 } else {
1221 struct iphdr *nh;
1222 u8 old_ttl;
1224 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1225 sizeof(*nh));
1226 if (unlikely(err))
1227 return err;
1229 nh = ip_hdr(skb);
1230 if (nh->ttl <= 1)
1231 return -EHOSTUNREACH;
1233 old_ttl = nh->ttl--;
1234 csum_replace2(&nh->check, htons(old_ttl << 8),
1235 htons(nh->ttl << 8));
1236 key->ip.ttl = nh->ttl;
1238 return 0;
1241 /* Execute a list of actions against 'skb'. */
1242 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1243 struct sw_flow_key *key,
1244 const struct nlattr *attr, int len)
1246 const struct nlattr *a;
1247 int rem;
1249 for (a = attr, rem = len; rem > 0;
1250 a = nla_next(a, &rem)) {
1251 int err = 0;
1253 switch (nla_type(a)) {
1254 case OVS_ACTION_ATTR_OUTPUT: {
1255 int port = nla_get_u32(a);
1256 struct sk_buff *clone;
1258 /* Every output action needs a separate clone
1259 * of 'skb', In case the output action is the
1260 * last action, cloning can be avoided.
1262 if (nla_is_last(a, rem)) {
1263 do_output(dp, skb, port, key);
1264 /* 'skb' has been used for output.
1266 return 0;
1269 clone = skb_clone(skb, GFP_ATOMIC);
1270 if (clone)
1271 do_output(dp, clone, port, key);
1272 OVS_CB(skb)->cutlen = 0;
1273 break;
1276 case OVS_ACTION_ATTR_TRUNC: {
1277 struct ovs_action_trunc *trunc = nla_data(a);
1279 if (skb->len > trunc->max_len)
1280 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1281 break;
1284 case OVS_ACTION_ATTR_USERSPACE:
1285 output_userspace(dp, skb, key, a, attr,
1286 len, OVS_CB(skb)->cutlen);
1287 OVS_CB(skb)->cutlen = 0;
1288 break;
1290 case OVS_ACTION_ATTR_HASH:
1291 execute_hash(skb, key, a);
1292 break;
1294 case OVS_ACTION_ATTR_PUSH_MPLS: {
1295 struct ovs_action_push_mpls *mpls = nla_data(a);
1297 err = push_mpls(skb, key, mpls->mpls_lse,
1298 mpls->mpls_ethertype, skb->mac_len);
1299 break;
1301 case OVS_ACTION_ATTR_ADD_MPLS: {
1302 struct ovs_action_add_mpls *mpls = nla_data(a);
1303 __u16 mac_len = 0;
1305 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1306 mac_len = skb->mac_len;
1308 err = push_mpls(skb, key, mpls->mpls_lse,
1309 mpls->mpls_ethertype, mac_len);
1310 break;
1312 case OVS_ACTION_ATTR_POP_MPLS:
1313 err = pop_mpls(skb, key, nla_get_be16(a));
1314 break;
1316 case OVS_ACTION_ATTR_PUSH_VLAN:
1317 err = push_vlan(skb, key, nla_data(a));
1318 break;
1320 case OVS_ACTION_ATTR_POP_VLAN:
1321 err = pop_vlan(skb, key);
1322 break;
1324 case OVS_ACTION_ATTR_RECIRC: {
1325 bool last = nla_is_last(a, rem);
1327 err = execute_recirc(dp, skb, key, a, last);
1328 if (last) {
1329 /* If this is the last action, the skb has
1330 * been consumed or freed.
1331 * Return immediately.
1333 return err;
1335 break;
1338 case OVS_ACTION_ATTR_SET:
1339 err = execute_set_action(skb, key, nla_data(a));
1340 break;
1342 case OVS_ACTION_ATTR_SET_MASKED:
1343 case OVS_ACTION_ATTR_SET_TO_MASKED:
1344 err = execute_masked_set_action(skb, key, nla_data(a));
1345 break;
1347 case OVS_ACTION_ATTR_SAMPLE: {
1348 bool last = nla_is_last(a, rem);
1350 err = sample(dp, skb, key, a, last);
1351 if (last)
1352 return err;
1354 break;
1357 case OVS_ACTION_ATTR_CT:
1358 if (!is_flow_key_valid(key)) {
1359 err = ovs_flow_key_update(skb, key);
1360 if (err)
1361 return err;
1364 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1365 nla_data(a));
1367 /* Hide stolen IP fragments from user space. */
1368 if (err)
1369 return err == -EINPROGRESS ? 0 : err;
1370 break;
1372 case OVS_ACTION_ATTR_CT_CLEAR:
1373 err = ovs_ct_clear(skb, key);
1374 break;
1376 case OVS_ACTION_ATTR_PUSH_ETH:
1377 err = push_eth(skb, key, nla_data(a));
1378 break;
1380 case OVS_ACTION_ATTR_POP_ETH:
1381 err = pop_eth(skb, key);
1382 break;
1384 case OVS_ACTION_ATTR_PUSH_NSH: {
1385 u8 buffer[NSH_HDR_MAX_LEN];
1386 struct nshhdr *nh = (struct nshhdr *)buffer;
1388 err = nsh_hdr_from_nlattr(nla_data(a), nh,
1389 NSH_HDR_MAX_LEN);
1390 if (unlikely(err))
1391 break;
1392 err = push_nsh(skb, key, nh);
1393 break;
1396 case OVS_ACTION_ATTR_POP_NSH:
1397 err = pop_nsh(skb, key);
1398 break;
1400 case OVS_ACTION_ATTR_METER:
1401 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1402 consume_skb(skb);
1403 return 0;
1405 break;
1407 case OVS_ACTION_ATTR_CLONE: {
1408 bool last = nla_is_last(a, rem);
1410 err = clone(dp, skb, key, a, last);
1411 if (last)
1412 return err;
1414 break;
1417 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1418 bool last = nla_is_last(a, rem);
1420 err = execute_check_pkt_len(dp, skb, key, a, last);
1421 if (last)
1422 return err;
1424 break;
1427 case OVS_ACTION_ATTR_DEC_TTL:
1428 err = execute_dec_ttl(skb, key);
1429 if (err == -EHOSTUNREACH) {
1430 err = dec_ttl_exception_handler(dp, skb, key,
1431 a, true);
1432 return err;
1434 break;
1437 if (unlikely(err)) {
1438 kfree_skb(skb);
1439 return err;
1443 consume_skb(skb);
1444 return 0;
1447 /* Execute the actions on the clone of the packet. The effect of the
1448 * execution does not affect the original 'skb' nor the original 'key'.
1450 * The execution may be deferred in case the actions can not be executed
1451 * immediately.
1453 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1454 struct sw_flow_key *key, u32 recirc_id,
1455 const struct nlattr *actions, int len,
1456 bool last, bool clone_flow_key)
1458 struct deferred_action *da;
1459 struct sw_flow_key *clone;
1461 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1462 if (!skb) {
1463 /* Out of memory, skip this action.
1465 return 0;
1468 /* When clone_flow_key is false, the 'key' will not be change
1469 * by the actions, then the 'key' can be used directly.
1470 * Otherwise, try to clone key from the next recursion level of
1471 * 'flow_keys'. If clone is successful, execute the actions
1472 * without deferring.
1474 clone = clone_flow_key ? clone_key(key) : key;
1475 if (clone) {
1476 int err = 0;
1478 if (actions) { /* Sample action */
1479 if (clone_flow_key)
1480 __this_cpu_inc(exec_actions_level);
1482 err = do_execute_actions(dp, skb, clone,
1483 actions, len);
1485 if (clone_flow_key)
1486 __this_cpu_dec(exec_actions_level);
1487 } else { /* Recirc action */
1488 clone->recirc_id = recirc_id;
1489 ovs_dp_process_packet(skb, clone);
1491 return err;
1494 /* Out of 'flow_keys' space. Defer actions */
1495 da = add_deferred_actions(skb, key, actions, len);
1496 if (da) {
1497 if (!actions) { /* Recirc action */
1498 key = &da->pkt_key;
1499 key->recirc_id = recirc_id;
1501 } else {
1502 /* Out of per CPU action FIFO space. Drop the 'skb' and
1503 * log an error.
1505 kfree_skb(skb);
1507 if (net_ratelimit()) {
1508 if (actions) { /* Sample action */
1509 pr_warn("%s: deferred action limit reached, drop sample action\n",
1510 ovs_dp_name(dp));
1511 } else { /* Recirc action */
1512 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1513 ovs_dp_name(dp));
1517 return 0;
1520 static void process_deferred_actions(struct datapath *dp)
1522 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1524 /* Do not touch the FIFO in case there is no deferred actions. */
1525 if (action_fifo_is_empty(fifo))
1526 return;
1528 /* Finishing executing all deferred actions. */
1529 do {
1530 struct deferred_action *da = action_fifo_get(fifo);
1531 struct sk_buff *skb = da->skb;
1532 struct sw_flow_key *key = &da->pkt_key;
1533 const struct nlattr *actions = da->actions;
1534 int actions_len = da->actions_len;
1536 if (actions)
1537 do_execute_actions(dp, skb, key, actions, actions_len);
1538 else
1539 ovs_dp_process_packet(skb, key);
1540 } while (!action_fifo_is_empty(fifo));
1542 /* Reset FIFO for the next packet. */
1543 action_fifo_init(fifo);
1546 /* Execute a list of actions against 'skb'. */
1547 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1548 const struct sw_flow_actions *acts,
1549 struct sw_flow_key *key)
1551 int err, level;
1553 level = __this_cpu_inc_return(exec_actions_level);
1554 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1555 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1556 ovs_dp_name(dp));
1557 kfree_skb(skb);
1558 err = -ENETDOWN;
1559 goto out;
1562 OVS_CB(skb)->acts_origlen = acts->orig_len;
1563 err = do_execute_actions(dp, skb, key,
1564 acts->actions, acts->actions_len);
1566 if (level == 1)
1567 process_deferred_actions(dp);
1569 out:
1570 __this_cpu_dec(exec_actions_level);
1571 return err;
1574 int action_fifos_init(void)
1576 action_fifos = alloc_percpu(struct action_fifo);
1577 if (!action_fifos)
1578 return -ENOMEM;
1580 flow_keys = alloc_percpu(struct action_flow_keys);
1581 if (!flow_keys) {
1582 free_percpu(action_fifos);
1583 return -ENOMEM;
1586 return 0;
1589 void action_fifos_exit(void)
1591 free_percpu(action_fifos);
1592 free_percpu(flow_keys);