2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
40 #define edac_atomic_scrub(va, size) do { } while (0)
43 int edac_op_state
= EDAC_OPSTATE_INVAL
;
44 EXPORT_SYMBOL_GPL(edac_op_state
);
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex
);
48 static LIST_HEAD(mc_devices
);
51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52 * apei/ghes and i7core_edac to be used at the same time.
54 static const char *edac_mc_owner
;
56 static struct mem_ctl_info
*error_desc_to_mci(struct edac_raw_error_desc
*e
)
58 return container_of(e
, struct mem_ctl_info
, error_desc
);
61 unsigned int edac_dimm_info_location(struct dimm_info
*dimm
, char *buf
,
64 struct mem_ctl_info
*mci
= dimm
->mci
;
68 for (i
= 0; i
< mci
->n_layers
; i
++) {
69 n
= snprintf(p
, len
, "%s %d ",
70 edac_layer_name
[mci
->layers
[i
].type
],
82 #ifdef CONFIG_EDAC_DEBUG
84 static void edac_mc_dump_channel(struct rank_info
*chan
)
86 edac_dbg(4, " channel->chan_idx = %d\n", chan
->chan_idx
);
87 edac_dbg(4, " channel = %p\n", chan
);
88 edac_dbg(4, " channel->csrow = %p\n", chan
->csrow
);
89 edac_dbg(4, " channel->dimm = %p\n", chan
->dimm
);
92 static void edac_mc_dump_dimm(struct dimm_info
*dimm
)
99 edac_dimm_info_location(dimm
, location
, sizeof(location
));
101 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
102 dimm
->mci
->csbased
? "rank" : "dimm",
103 dimm
->idx
, location
, dimm
->csrow
, dimm
->cschannel
);
104 edac_dbg(4, " dimm = %p\n", dimm
);
105 edac_dbg(4, " dimm->label = '%s'\n", dimm
->label
);
106 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
107 edac_dbg(4, " dimm->grain = %d\n", dimm
->grain
);
108 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
111 static void edac_mc_dump_csrow(struct csrow_info
*csrow
)
113 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow
->csrow_idx
);
114 edac_dbg(4, " csrow = %p\n", csrow
);
115 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow
->first_page
);
116 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow
->last_page
);
117 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow
->page_mask
);
118 edac_dbg(4, " csrow->nr_channels = %d\n", csrow
->nr_channels
);
119 edac_dbg(4, " csrow->channels = %p\n", csrow
->channels
);
120 edac_dbg(4, " csrow->mci = %p\n", csrow
->mci
);
123 static void edac_mc_dump_mci(struct mem_ctl_info
*mci
)
125 edac_dbg(3, "\tmci = %p\n", mci
);
126 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci
->mtype_cap
);
127 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci
->edac_ctl_cap
);
128 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci
->edac_cap
);
129 edac_dbg(4, "\tmci->edac_check = %p\n", mci
->edac_check
);
130 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
131 mci
->nr_csrows
, mci
->csrows
);
132 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
133 mci
->tot_dimms
, mci
->dimms
);
134 edac_dbg(3, "\tdev = %p\n", mci
->pdev
);
135 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
136 mci
->mod_name
, mci
->ctl_name
);
137 edac_dbg(3, "\tpvt_info = %p\n\n", mci
->pvt_info
);
140 #endif /* CONFIG_EDAC_DEBUG */
142 const char * const edac_mem_types
[] = {
143 [MEM_EMPTY
] = "Empty",
144 [MEM_RESERVED
] = "Reserved",
145 [MEM_UNKNOWN
] = "Unknown",
149 [MEM_SDR
] = "Unbuffered-SDR",
150 [MEM_RDR
] = "Registered-SDR",
151 [MEM_DDR
] = "Unbuffered-DDR",
152 [MEM_RDDR
] = "Registered-DDR",
154 [MEM_DDR2
] = "Unbuffered-DDR2",
155 [MEM_FB_DDR2
] = "FullyBuffered-DDR2",
156 [MEM_RDDR2
] = "Registered-DDR2",
158 [MEM_DDR3
] = "Unbuffered-DDR3",
159 [MEM_RDDR3
] = "Registered-DDR3",
160 [MEM_LRDDR3
] = "Load-Reduced-DDR3-RAM",
161 [MEM_DDR4
] = "Unbuffered-DDR4",
162 [MEM_RDDR4
] = "Registered-DDR4",
163 [MEM_LRDDR4
] = "Load-Reduced-DDR4-RAM",
164 [MEM_NVDIMM
] = "Non-volatile-RAM",
166 EXPORT_SYMBOL_GPL(edac_mem_types
);
169 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
170 * @p: pointer to a pointer with the memory offset to be used. At
171 * return, this will be incremented to point to the next offset
172 * @size: Size of the data structure to be reserved
173 * @n_elems: Number of elements that should be reserved
175 * If 'size' is a constant, the compiler will optimize this whole function
176 * down to either a no-op or the addition of a constant to the value of '*p'.
178 * The 'p' pointer is absolutely needed to keep the proper advancing
179 * further in memory to the proper offsets when allocating the struct along
180 * with its embedded structs, as edac_device_alloc_ctl_info() does it
181 * above, for example.
183 * At return, the pointer 'p' will be incremented to be used on a next call
186 void *edac_align_ptr(void **p
, unsigned int size
, int n_elems
)
188 unsigned int align
, r
;
191 *p
+= size
* n_elems
;
194 * 'p' can possibly be an unaligned item X such that sizeof(X) is
195 * 'size'. Adjust 'p' so that its alignment is at least as
196 * stringent as what the compiler would provide for X and return
197 * the aligned result.
198 * Here we assume that the alignment of a "long long" is the most
199 * stringent alignment that the compiler will ever provide by default.
200 * As far as I know, this is a reasonable assumption.
202 if (size
> sizeof(long))
203 align
= sizeof(long long);
204 else if (size
> sizeof(int))
205 align
= sizeof(long);
206 else if (size
> sizeof(short))
208 else if (size
> sizeof(char))
209 align
= sizeof(short);
213 r
= (unsigned long)p
% align
;
220 return (void *)(((unsigned long)ptr
) + align
- r
);
223 static void _edac_mc_free(struct mem_ctl_info
*mci
)
225 put_device(&mci
->dev
);
228 static void mci_release(struct device
*dev
)
230 struct mem_ctl_info
*mci
= container_of(dev
, struct mem_ctl_info
, dev
);
231 struct csrow_info
*csr
;
235 for (i
= 0; i
< mci
->tot_dimms
; i
++)
236 kfree(mci
->dimms
[i
]);
241 for (row
= 0; row
< mci
->nr_csrows
; row
++) {
242 csr
= mci
->csrows
[row
];
247 for (chn
= 0; chn
< mci
->num_cschannel
; chn
++)
248 kfree(csr
->channels
[chn
]);
249 kfree(csr
->channels
);
258 static int edac_mc_alloc_csrows(struct mem_ctl_info
*mci
)
260 unsigned int tot_channels
= mci
->num_cschannel
;
261 unsigned int tot_csrows
= mci
->nr_csrows
;
262 unsigned int row
, chn
;
265 * Alocate and fill the csrow/channels structs
267 mci
->csrows
= kcalloc(tot_csrows
, sizeof(*mci
->csrows
), GFP_KERNEL
);
271 for (row
= 0; row
< tot_csrows
; row
++) {
272 struct csrow_info
*csr
;
274 csr
= kzalloc(sizeof(**mci
->csrows
), GFP_KERNEL
);
278 mci
->csrows
[row
] = csr
;
279 csr
->csrow_idx
= row
;
281 csr
->nr_channels
= tot_channels
;
282 csr
->channels
= kcalloc(tot_channels
, sizeof(*csr
->channels
),
287 for (chn
= 0; chn
< tot_channels
; chn
++) {
288 struct rank_info
*chan
;
290 chan
= kzalloc(sizeof(**csr
->channels
), GFP_KERNEL
);
294 csr
->channels
[chn
] = chan
;
295 chan
->chan_idx
= chn
;
303 static int edac_mc_alloc_dimms(struct mem_ctl_info
*mci
)
305 unsigned int pos
[EDAC_MAX_LAYERS
];
306 unsigned int row
, chn
, idx
;
311 * Allocate and fill the dimm structs
313 mci
->dimms
= kcalloc(mci
->tot_dimms
, sizeof(*mci
->dimms
), GFP_KERNEL
);
317 memset(&pos
, 0, sizeof(pos
));
320 for (idx
= 0; idx
< mci
->tot_dimms
; idx
++) {
321 struct dimm_info
*dimm
;
322 struct rank_info
*chan
;
325 chan
= mci
->csrows
[row
]->channels
[chn
];
327 dimm
= kzalloc(sizeof(**mci
->dimms
), GFP_KERNEL
);
330 mci
->dimms
[idx
] = dimm
;
335 * Copy DIMM location and initialize it.
337 len
= sizeof(dimm
->label
);
339 n
= snprintf(p
, len
, "mc#%u", mci
->mc_idx
);
342 for (layer
= 0; layer
< mci
->n_layers
; layer
++) {
343 n
= snprintf(p
, len
, "%s#%u",
344 edac_layer_name
[mci
->layers
[layer
].type
],
348 dimm
->location
[layer
] = pos
[layer
];
354 /* Link it to the csrows old API data */
357 dimm
->cschannel
= chn
;
359 /* Increment csrow location */
360 if (mci
->layers
[0].is_virt_csrow
) {
362 if (chn
== mci
->num_cschannel
) {
368 if (row
== mci
->nr_csrows
) {
374 /* Increment dimm location */
375 for (layer
= mci
->n_layers
- 1; layer
>= 0; layer
--) {
377 if (pos
[layer
] < mci
->layers
[layer
].size
)
386 struct mem_ctl_info
*edac_mc_alloc(unsigned int mc_num
,
387 unsigned int n_layers
,
388 struct edac_mc_layer
*layers
,
391 struct mem_ctl_info
*mci
;
392 struct edac_mc_layer
*layer
;
393 unsigned int idx
, size
, tot_dimms
= 1;
394 unsigned int tot_csrows
= 1, tot_channels
= 1;
395 void *pvt
, *ptr
= NULL
;
396 bool per_rank
= false;
398 if (WARN_ON(n_layers
> EDAC_MAX_LAYERS
|| n_layers
== 0))
402 * Calculate the total amount of dimms and csrows/cschannels while
403 * in the old API emulation mode
405 for (idx
= 0; idx
< n_layers
; idx
++) {
406 tot_dimms
*= layers
[idx
].size
;
408 if (layers
[idx
].is_virt_csrow
)
409 tot_csrows
*= layers
[idx
].size
;
411 tot_channels
*= layers
[idx
].size
;
413 if (layers
[idx
].type
== EDAC_MC_LAYER_CHIP_SELECT
)
417 /* Figure out the offsets of the various items from the start of an mc
418 * structure. We want the alignment of each item to be at least as
419 * stringent as what the compiler would provide if we could simply
420 * hardcode everything into a single struct.
422 mci
= edac_align_ptr(&ptr
, sizeof(*mci
), 1);
423 layer
= edac_align_ptr(&ptr
, sizeof(*layer
), n_layers
);
424 pvt
= edac_align_ptr(&ptr
, sz_pvt
, 1);
425 size
= ((unsigned long)pvt
) + sz_pvt
;
427 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
430 per_rank
? "ranks" : "dimms",
431 tot_csrows
* tot_channels
);
433 mci
= kzalloc(size
, GFP_KERNEL
);
437 mci
->dev
.release
= mci_release
;
438 device_initialize(&mci
->dev
);
440 /* Adjust pointers so they point within the memory we just allocated
441 * rather than an imaginary chunk of memory located at address 0.
443 layer
= (struct edac_mc_layer
*)(((char *)mci
) + ((unsigned long)layer
));
444 pvt
= sz_pvt
? (((char *)mci
) + ((unsigned long)pvt
)) : NULL
;
446 /* setup index and various internal pointers */
447 mci
->mc_idx
= mc_num
;
448 mci
->tot_dimms
= tot_dimms
;
450 mci
->n_layers
= n_layers
;
452 memcpy(mci
->layers
, layers
, sizeof(*layer
) * n_layers
);
453 mci
->nr_csrows
= tot_csrows
;
454 mci
->num_cschannel
= tot_channels
;
455 mci
->csbased
= per_rank
;
457 if (edac_mc_alloc_csrows(mci
))
460 if (edac_mc_alloc_dimms(mci
))
463 mci
->op_state
= OP_ALLOC
;
472 EXPORT_SYMBOL_GPL(edac_mc_alloc
);
474 void edac_mc_free(struct mem_ctl_info
*mci
)
480 EXPORT_SYMBOL_GPL(edac_mc_free
);
482 bool edac_has_mcs(void)
486 mutex_lock(&mem_ctls_mutex
);
488 ret
= list_empty(&mc_devices
);
490 mutex_unlock(&mem_ctls_mutex
);
494 EXPORT_SYMBOL_GPL(edac_has_mcs
);
496 /* Caller must hold mem_ctls_mutex */
497 static struct mem_ctl_info
*__find_mci_by_dev(struct device
*dev
)
499 struct mem_ctl_info
*mci
;
500 struct list_head
*item
;
504 list_for_each(item
, &mc_devices
) {
505 mci
= list_entry(item
, struct mem_ctl_info
, link
);
507 if (mci
->pdev
== dev
)
517 * scan list of controllers looking for the one that manages
519 * @dev: pointer to a struct device related with the MCI
521 struct mem_ctl_info
*find_mci_by_dev(struct device
*dev
)
523 struct mem_ctl_info
*ret
;
525 mutex_lock(&mem_ctls_mutex
);
526 ret
= __find_mci_by_dev(dev
);
527 mutex_unlock(&mem_ctls_mutex
);
531 EXPORT_SYMBOL_GPL(find_mci_by_dev
);
534 * edac_mc_workq_function
535 * performs the operation scheduled by a workq request
537 static void edac_mc_workq_function(struct work_struct
*work_req
)
539 struct delayed_work
*d_work
= to_delayed_work(work_req
);
540 struct mem_ctl_info
*mci
= to_edac_mem_ctl_work(d_work
);
542 mutex_lock(&mem_ctls_mutex
);
544 if (mci
->op_state
!= OP_RUNNING_POLL
) {
545 mutex_unlock(&mem_ctls_mutex
);
549 if (edac_op_state
== EDAC_OPSTATE_POLL
)
550 mci
->edac_check(mci
);
552 mutex_unlock(&mem_ctls_mutex
);
554 /* Queue ourselves again. */
555 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
559 * edac_mc_reset_delay_period(unsigned long value)
561 * user space has updated our poll period value, need to
562 * reset our workq delays
564 void edac_mc_reset_delay_period(unsigned long value
)
566 struct mem_ctl_info
*mci
;
567 struct list_head
*item
;
569 mutex_lock(&mem_ctls_mutex
);
571 list_for_each(item
, &mc_devices
) {
572 mci
= list_entry(item
, struct mem_ctl_info
, link
);
574 if (mci
->op_state
== OP_RUNNING_POLL
)
575 edac_mod_work(&mci
->work
, value
);
577 mutex_unlock(&mem_ctls_mutex
);
582 /* Return 0 on success, 1 on failure.
583 * Before calling this function, caller must
584 * assign a unique value to mci->mc_idx.
588 * called with the mem_ctls_mutex lock held
590 static int add_mc_to_global_list(struct mem_ctl_info
*mci
)
592 struct list_head
*item
, *insert_before
;
593 struct mem_ctl_info
*p
;
595 insert_before
= &mc_devices
;
597 p
= __find_mci_by_dev(mci
->pdev
);
598 if (unlikely(p
!= NULL
))
601 list_for_each(item
, &mc_devices
) {
602 p
= list_entry(item
, struct mem_ctl_info
, link
);
604 if (p
->mc_idx
>= mci
->mc_idx
) {
605 if (unlikely(p
->mc_idx
== mci
->mc_idx
))
608 insert_before
= item
;
613 list_add_tail_rcu(&mci
->link
, insert_before
);
617 edac_printk(KERN_WARNING
, EDAC_MC
,
618 "%s (%s) %s %s already assigned %d\n", dev_name(p
->pdev
),
619 edac_dev_name(mci
), p
->mod_name
, p
->ctl_name
, p
->mc_idx
);
623 edac_printk(KERN_WARNING
, EDAC_MC
,
624 "bug in low-level driver: attempt to assign\n"
625 " duplicate mc_idx %d in %s()\n", p
->mc_idx
, __func__
);
629 static int del_mc_from_global_list(struct mem_ctl_info
*mci
)
631 list_del_rcu(&mci
->link
);
633 /* these are for safe removal of devices from global list while
634 * NMI handlers may be traversing list
637 INIT_LIST_HEAD(&mci
->link
);
639 return list_empty(&mc_devices
);
642 struct mem_ctl_info
*edac_mc_find(int idx
)
644 struct mem_ctl_info
*mci
;
645 struct list_head
*item
;
647 mutex_lock(&mem_ctls_mutex
);
649 list_for_each(item
, &mc_devices
) {
650 mci
= list_entry(item
, struct mem_ctl_info
, link
);
651 if (mci
->mc_idx
== idx
)
657 mutex_unlock(&mem_ctls_mutex
);
660 EXPORT_SYMBOL(edac_mc_find
);
662 const char *edac_get_owner(void)
664 return edac_mc_owner
;
666 EXPORT_SYMBOL_GPL(edac_get_owner
);
668 /* FIXME - should a warning be printed if no error detection? correction? */
669 int edac_mc_add_mc_with_groups(struct mem_ctl_info
*mci
,
670 const struct attribute_group
**groups
)
675 #ifdef CONFIG_EDAC_DEBUG
676 if (edac_debug_level
>= 3)
677 edac_mc_dump_mci(mci
);
679 if (edac_debug_level
>= 4) {
680 struct dimm_info
*dimm
;
683 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
684 struct csrow_info
*csrow
= mci
->csrows
[i
];
688 for (j
= 0; j
< csrow
->nr_channels
; j
++)
689 nr_pages
+= csrow
->channels
[j
]->dimm
->nr_pages
;
692 edac_mc_dump_csrow(csrow
);
693 for (j
= 0; j
< csrow
->nr_channels
; j
++)
694 if (csrow
->channels
[j
]->dimm
->nr_pages
)
695 edac_mc_dump_channel(csrow
->channels
[j
]);
698 mci_for_each_dimm(mci
, dimm
)
699 edac_mc_dump_dimm(dimm
);
702 mutex_lock(&mem_ctls_mutex
);
704 if (edac_mc_owner
&& edac_mc_owner
!= mci
->mod_name
) {
709 if (add_mc_to_global_list(mci
))
712 /* set load time so that error rate can be tracked */
713 mci
->start_time
= jiffies
;
715 mci
->bus
= edac_get_sysfs_subsys();
717 if (edac_create_sysfs_mci_device(mci
, groups
)) {
718 edac_mc_printk(mci
, KERN_WARNING
,
719 "failed to create sysfs device\n");
723 if (mci
->edac_check
) {
724 mci
->op_state
= OP_RUNNING_POLL
;
726 INIT_DELAYED_WORK(&mci
->work
, edac_mc_workq_function
);
727 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
730 mci
->op_state
= OP_RUNNING_INTERRUPT
;
733 /* Report action taken */
734 edac_mc_printk(mci
, KERN_INFO
,
735 "Giving out device to module %s controller %s: DEV %s (%s)\n",
736 mci
->mod_name
, mci
->ctl_name
, mci
->dev_name
,
737 edac_op_state_to_string(mci
->op_state
));
739 edac_mc_owner
= mci
->mod_name
;
741 mutex_unlock(&mem_ctls_mutex
);
745 del_mc_from_global_list(mci
);
748 mutex_unlock(&mem_ctls_mutex
);
751 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups
);
753 struct mem_ctl_info
*edac_mc_del_mc(struct device
*dev
)
755 struct mem_ctl_info
*mci
;
759 mutex_lock(&mem_ctls_mutex
);
761 /* find the requested mci struct in the global list */
762 mci
= __find_mci_by_dev(dev
);
764 mutex_unlock(&mem_ctls_mutex
);
768 /* mark MCI offline: */
769 mci
->op_state
= OP_OFFLINE
;
771 if (del_mc_from_global_list(mci
))
772 edac_mc_owner
= NULL
;
774 mutex_unlock(&mem_ctls_mutex
);
777 edac_stop_work(&mci
->work
);
779 /* remove from sysfs */
780 edac_remove_sysfs_mci_device(mci
);
782 edac_printk(KERN_INFO
, EDAC_MC
,
783 "Removed device %d for %s %s: DEV %s\n", mci
->mc_idx
,
784 mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
788 EXPORT_SYMBOL_GPL(edac_mc_del_mc
);
790 static void edac_mc_scrub_block(unsigned long page
, unsigned long offset
,
795 unsigned long flags
= 0;
799 /* ECC error page was not in our memory. Ignore it. */
800 if (!pfn_valid(page
))
803 /* Find the actual page structure then map it and fix */
804 pg
= pfn_to_page(page
);
807 local_irq_save(flags
);
809 virt_addr
= kmap_atomic(pg
);
811 /* Perform architecture specific atomic scrub operation */
812 edac_atomic_scrub(virt_addr
+ offset
, size
);
814 /* Unmap and complete */
815 kunmap_atomic(virt_addr
);
818 local_irq_restore(flags
);
821 /* FIXME - should return -1 */
822 int edac_mc_find_csrow_by_page(struct mem_ctl_info
*mci
, unsigned long page
)
824 struct csrow_info
**csrows
= mci
->csrows
;
827 edac_dbg(1, "MC%d: 0x%lx\n", mci
->mc_idx
, page
);
830 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
831 struct csrow_info
*csrow
= csrows
[i
];
833 for (j
= 0; j
< csrow
->nr_channels
; j
++) {
834 struct dimm_info
*dimm
= csrow
->channels
[j
]->dimm
;
840 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
842 csrow
->first_page
, page
, csrow
->last_page
,
845 if ((page
>= csrow
->first_page
) &&
846 (page
<= csrow
->last_page
) &&
847 ((page
& csrow
->page_mask
) ==
848 (csrow
->first_page
& csrow
->page_mask
))) {
855 edac_mc_printk(mci
, KERN_ERR
,
856 "could not look up page error address %lx\n",
857 (unsigned long)page
);
861 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page
);
863 const char *edac_layer_name
[] = {
864 [EDAC_MC_LAYER_BRANCH
] = "branch",
865 [EDAC_MC_LAYER_CHANNEL
] = "channel",
866 [EDAC_MC_LAYER_SLOT
] = "slot",
867 [EDAC_MC_LAYER_CHIP_SELECT
] = "csrow",
868 [EDAC_MC_LAYER_ALL_MEM
] = "memory",
870 EXPORT_SYMBOL_GPL(edac_layer_name
);
872 static void edac_inc_ce_error(struct edac_raw_error_desc
*e
)
874 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
875 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
876 struct dimm_info
*dimm
= edac_get_dimm(mci
, pos
[0], pos
[1], pos
[2]);
878 mci
->ce_mc
+= e
->error_count
;
881 dimm
->ce_count
+= e
->error_count
;
883 mci
->ce_noinfo_count
+= e
->error_count
;
886 static void edac_inc_ue_error(struct edac_raw_error_desc
*e
)
888 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
889 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
890 struct dimm_info
*dimm
= edac_get_dimm(mci
, pos
[0], pos
[1], pos
[2]);
892 mci
->ue_mc
+= e
->error_count
;
895 dimm
->ue_count
+= e
->error_count
;
897 mci
->ue_noinfo_count
+= e
->error_count
;
900 static void edac_ce_error(struct edac_raw_error_desc
*e
)
902 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
903 unsigned long remapped_page
;
905 if (edac_mc_get_log_ce()) {
906 edac_mc_printk(mci
, KERN_WARNING
,
907 "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
908 e
->error_count
, e
->msg
,
910 e
->label
, e
->location
, e
->page_frame_number
, e
->offset_in_page
,
911 e
->grain
, e
->syndrome
,
912 *e
->other_detail
? " - " : "",
916 edac_inc_ce_error(e
);
918 if (mci
->scrub_mode
== SCRUB_SW_SRC
) {
920 * Some memory controllers (called MCs below) can remap
921 * memory so that it is still available at a different
922 * address when PCI devices map into memory.
923 * MC's that can't do this, lose the memory where PCI
924 * devices are mapped. This mapping is MC-dependent
925 * and so we call back into the MC driver for it to
926 * map the MC page to a physical (CPU) page which can
927 * then be mapped to a virtual page - which can then
930 remapped_page
= mci
->ctl_page_to_phys
?
931 mci
->ctl_page_to_phys(mci
, e
->page_frame_number
) :
932 e
->page_frame_number
;
934 edac_mc_scrub_block(remapped_page
, e
->offset_in_page
, e
->grain
);
938 static void edac_ue_error(struct edac_raw_error_desc
*e
)
940 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
942 if (edac_mc_get_log_ue()) {
943 edac_mc_printk(mci
, KERN_WARNING
,
944 "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
945 e
->error_count
, e
->msg
,
947 e
->label
, e
->location
, e
->page_frame_number
, e
->offset_in_page
,
949 *e
->other_detail
? " - " : "",
953 edac_inc_ue_error(e
);
955 if (edac_mc_get_panic_on_ue()) {
956 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
959 e
->label
, e
->location
, e
->page_frame_number
, e
->offset_in_page
,
961 *e
->other_detail
? " - " : "",
966 static void edac_inc_csrow(struct edac_raw_error_desc
*e
, int row
, int chan
)
968 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
969 enum hw_event_mc_err_type type
= e
->type
;
970 u16 count
= e
->error_count
;
975 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row
, chan
);
977 if (type
== HW_EVENT_ERR_CORRECTED
) {
978 mci
->csrows
[row
]->ce_count
+= count
;
980 mci
->csrows
[row
]->channels
[chan
]->ce_count
+= count
;
982 mci
->csrows
[row
]->ue_count
+= count
;
986 void edac_raw_mc_handle_error(struct edac_raw_error_desc
*e
)
988 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
991 /* Sanity-check driver-supplied grain value. */
992 if (WARN_ON_ONCE(!e
->grain
))
995 grain_bits
= fls_long(e
->grain
- 1);
997 /* Report the error via the trace interface */
998 if (IS_ENABLED(CONFIG_RAS
))
999 trace_mc_event(e
->type
, e
->msg
, e
->label
, e
->error_count
,
1000 mci
->mc_idx
, e
->top_layer
, e
->mid_layer
,
1002 (e
->page_frame_number
<< PAGE_SHIFT
) | e
->offset_in_page
,
1003 grain_bits
, e
->syndrome
, e
->other_detail
);
1005 if (e
->type
== HW_EVENT_ERR_CORRECTED
)
1010 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error
);
1012 void edac_mc_handle_error(const enum hw_event_mc_err_type type
,
1013 struct mem_ctl_info
*mci
,
1014 const u16 error_count
,
1015 const unsigned long page_frame_number
,
1016 const unsigned long offset_in_page
,
1017 const unsigned long syndrome
,
1018 const int top_layer
,
1019 const int mid_layer
,
1020 const int low_layer
,
1022 const char *other_detail
)
1024 struct dimm_info
*dimm
;
1026 int row
= -1, chan
= -1;
1027 int pos
[EDAC_MAX_LAYERS
] = { top_layer
, mid_layer
, low_layer
};
1028 int i
, n_labels
= 0;
1029 struct edac_raw_error_desc
*e
= &mci
->error_desc
;
1030 bool any_memory
= true;
1032 edac_dbg(3, "MC%d\n", mci
->mc_idx
);
1034 /* Fills the error report buffer */
1035 memset(e
, 0, sizeof (*e
));
1036 e
->error_count
= error_count
;
1038 e
->top_layer
= top_layer
;
1039 e
->mid_layer
= mid_layer
;
1040 e
->low_layer
= low_layer
;
1041 e
->page_frame_number
= page_frame_number
;
1042 e
->offset_in_page
= offset_in_page
;
1043 e
->syndrome
= syndrome
;
1044 /* need valid strings here for both: */
1046 e
->other_detail
= other_detail
?: "";
1049 * Check if the event report is consistent and if the memory location is
1050 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1051 * error counters will be incremented.
1053 for (i
= 0; i
< mci
->n_layers
; i
++) {
1054 if (pos
[i
] >= (int)mci
->layers
[i
].size
) {
1056 edac_mc_printk(mci
, KERN_ERR
,
1057 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1058 edac_layer_name
[mci
->layers
[i
].type
],
1059 pos
[i
], mci
->layers
[i
].size
);
1061 * Instead of just returning it, let's use what's
1062 * known about the error. The increment routines and
1063 * the DIMM filter logic will do the right thing by
1064 * pointing the likely damaged DIMMs.
1073 * Get the dimm label/grain that applies to the match criteria.
1074 * As the error algorithm may not be able to point to just one memory
1075 * stick, the logic here will get all possible labels that could
1076 * pottentially be affected by the error.
1077 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1078 * to have only the MC channel and the MC dimm (also called "branch")
1079 * but the channel is not known, as the memory is arranged in pairs,
1080 * where each memory belongs to a separate channel within the same
1086 mci_for_each_dimm(mci
, dimm
) {
1087 if (top_layer
>= 0 && top_layer
!= dimm
->location
[0])
1089 if (mid_layer
>= 0 && mid_layer
!= dimm
->location
[1])
1091 if (low_layer
>= 0 && low_layer
!= dimm
->location
[2])
1094 /* get the max grain, over the error match range */
1095 if (dimm
->grain
> e
->grain
)
1096 e
->grain
= dimm
->grain
;
1099 * If the error is memory-controller wide, there's no need to
1100 * seek for the affected DIMMs because the whole channel/memory
1101 * controller/... may be affected. Also, don't show errors for
1104 if (!dimm
->nr_pages
)
1108 if (n_labels
> EDAC_MAX_LABELS
) {
1112 if (p
!= e
->label
) {
1113 strcpy(p
, OTHER_LABEL
);
1114 p
+= strlen(OTHER_LABEL
);
1116 strcpy(p
, dimm
->label
);
1121 * get csrow/channel of the DIMM, in order to allow
1122 * incrementing the compat API counters
1124 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1125 mci
->csbased
? "rank" : "dimm",
1126 dimm
->csrow
, dimm
->cschannel
);
1129 else if (row
>= 0 && row
!= dimm
->csrow
)
1133 chan
= dimm
->cschannel
;
1134 else if (chan
>= 0 && chan
!= dimm
->cschannel
)
1139 strcpy(e
->label
, "any memory");
1140 else if (!*e
->label
)
1141 strcpy(e
->label
, "unknown memory");
1143 edac_inc_csrow(e
, row
, chan
);
1145 /* Fill the RAM location data */
1148 for (i
= 0; i
< mci
->n_layers
; i
++) {
1152 p
+= sprintf(p
, "%s:%d ",
1153 edac_layer_name
[mci
->layers
[i
].type
],
1156 if (p
> e
->location
)
1159 edac_raw_mc_handle_error(e
);
1161 EXPORT_SYMBOL_GPL(edac_mc_handle_error
);