1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
6 * Davide Libenzi <davidel@xmailserver.org>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
44 * There are three level of locking required by epoll :
48 * 3) ep->lock (rwlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a rwlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
103 #define EP_UNACTIVE_PTR ((void *) -1L)
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
107 struct epoll_filefd
{
113 * Structure used to track possible nested calls, for too deep recursions
116 struct nested_call_node
{
117 struct list_head llink
;
123 * This structure is used as collector for nested calls, to check for
124 * maximum recursion dept and loop cycles.
126 struct nested_calls
{
127 struct list_head tasks_call_list
;
132 * Each file descriptor added to the eventpoll interface will
133 * have an entry of this type linked to the "rbr" RB tree.
134 * Avoid increasing the size of this struct, there can be many thousands
135 * of these on a server and we do not want this to take another cache line.
139 /* RB tree node links this structure to the eventpoll RB tree */
141 /* Used to free the struct epitem */
145 /* List header used to link this structure to the eventpoll ready list */
146 struct list_head rdllink
;
149 * Works together "struct eventpoll"->ovflist in keeping the
150 * single linked chain of items.
154 /* The file descriptor information this item refers to */
155 struct epoll_filefd ffd
;
157 /* Number of active wait queue attached to poll operations */
160 /* List containing poll wait queues */
161 struct list_head pwqlist
;
163 /* The "container" of this item */
164 struct eventpoll
*ep
;
166 /* List header used to link this item to the "struct file" items list */
167 struct list_head fllink
;
169 /* wakeup_source used when EPOLLWAKEUP is set */
170 struct wakeup_source __rcu
*ws
;
172 /* The structure that describe the interested events and the source fd */
173 struct epoll_event event
;
177 * This structure is stored inside the "private_data" member of the file
178 * structure and represents the main data structure for the eventpoll
183 * This mutex is used to ensure that files are not removed
184 * while epoll is using them. This is held during the event
185 * collection loop, the file cleanup path, the epoll file exit
186 * code and the ctl operations.
190 /* Wait queue used by sys_epoll_wait() */
191 wait_queue_head_t wq
;
193 /* Wait queue used by file->poll() */
194 wait_queue_head_t poll_wait
;
196 /* List of ready file descriptors */
197 struct list_head rdllist
;
199 /* Lock which protects rdllist and ovflist */
202 /* RB tree root used to store monitored fd structs */
203 struct rb_root_cached rbr
;
206 * This is a single linked list that chains all the "struct epitem" that
207 * happened while transferring ready events to userspace w/out
210 struct epitem
*ovflist
;
212 /* wakeup_source used when ep_scan_ready_list is running */
213 struct wakeup_source
*ws
;
215 /* The user that created the eventpoll descriptor */
216 struct user_struct
*user
;
220 /* used to optimize loop detection check */
223 #ifdef CONFIG_NET_RX_BUSY_POLL
224 /* used to track busy poll napi_id */
225 unsigned int napi_id
;
228 #ifdef CONFIG_DEBUG_LOCK_ALLOC
229 /* tracks wakeup nests for lockdep validation */
234 /* Wait structure used by the poll hooks */
235 struct eppoll_entry
{
236 /* List header used to link this structure to the "struct epitem" */
237 struct list_head llink
;
239 /* The "base" pointer is set to the container "struct epitem" */
243 * Wait queue item that will be linked to the target file wait
246 wait_queue_entry_t wait
;
248 /* The wait queue head that linked the "wait" wait queue item */
249 wait_queue_head_t
*whead
;
252 /* Wrapper struct used by poll queueing */
258 /* Used by the ep_send_events() function as callback private data */
259 struct ep_send_events_data
{
261 struct epoll_event __user
*events
;
266 * Configuration options available inside /proc/sys/fs/epoll/
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly
;
272 * This mutex is used to serialize ep_free() and eventpoll_release_file().
274 static DEFINE_MUTEX(epmutex
);
276 static u64 loop_check_gen
= 0;
278 /* Used to check for epoll file descriptor inclusion loops */
279 static struct nested_calls poll_loop_ncalls
;
281 /* Slab cache used to allocate "struct epitem" */
282 static struct kmem_cache
*epi_cache __read_mostly
;
284 /* Slab cache used to allocate "struct eppoll_entry" */
285 static struct kmem_cache
*pwq_cache __read_mostly
;
288 * List of files with newly added links, where we may need to limit the number
289 * of emanating paths. Protected by the epmutex.
291 static LIST_HEAD(tfile_check_list
);
295 #include <linux/sysctl.h>
297 static long long_zero
;
298 static long long_max
= LONG_MAX
;
300 struct ctl_table epoll_table
[] = {
302 .procname
= "max_user_watches",
303 .data
= &max_user_watches
,
304 .maxlen
= sizeof(max_user_watches
),
306 .proc_handler
= proc_doulongvec_minmax
,
307 .extra1
= &long_zero
,
312 #endif /* CONFIG_SYSCTL */
314 static const struct file_operations eventpoll_fops
;
316 static inline int is_file_epoll(struct file
*f
)
318 return f
->f_op
== &eventpoll_fops
;
321 /* Setup the structure that is used as key for the RB tree */
322 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
323 struct file
*file
, int fd
)
329 /* Compare RB tree keys */
330 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
331 struct epoll_filefd
*p2
)
333 return (p1
->file
> p2
->file
? +1:
334 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
337 /* Tells us if the item is currently linked */
338 static inline int ep_is_linked(struct epitem
*epi
)
340 return !list_empty(&epi
->rdllink
);
343 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_entry_t
*p
)
345 return container_of(p
, struct eppoll_entry
, wait
);
348 /* Get the "struct epitem" from a wait queue pointer */
349 static inline struct epitem
*ep_item_from_wait(wait_queue_entry_t
*p
)
351 return container_of(p
, struct eppoll_entry
, wait
)->base
;
354 /* Get the "struct epitem" from an epoll queue wrapper */
355 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
357 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
360 /* Initialize the poll safe wake up structure */
361 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
363 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
364 spin_lock_init(&ncalls
->lock
);
368 * ep_events_available - Checks if ready events might be available.
370 * @ep: Pointer to the eventpoll context.
372 * Returns: Returns a value different than zero if ready events are available,
375 static inline int ep_events_available(struct eventpoll
*ep
)
377 return !list_empty_careful(&ep
->rdllist
) ||
378 READ_ONCE(ep
->ovflist
) != EP_UNACTIVE_PTR
;
381 #ifdef CONFIG_NET_RX_BUSY_POLL
382 static bool ep_busy_loop_end(void *p
, unsigned long start_time
)
384 struct eventpoll
*ep
= p
;
386 return ep_events_available(ep
) || busy_loop_timeout(start_time
);
390 * Busy poll if globally on and supporting sockets found && no events,
391 * busy loop will return if need_resched or ep_events_available.
393 * we must do our busy polling with irqs enabled
395 static void ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
397 unsigned int napi_id
= READ_ONCE(ep
->napi_id
);
399 if ((napi_id
>= MIN_NAPI_ID
) && net_busy_loop_on())
400 napi_busy_loop(napi_id
, nonblock
? NULL
: ep_busy_loop_end
, ep
);
403 static inline void ep_reset_busy_poll_napi_id(struct eventpoll
*ep
)
410 * Set epoll busy poll NAPI ID from sk.
412 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
414 struct eventpoll
*ep
;
415 unsigned int napi_id
;
420 if (!net_busy_loop_on())
423 sock
= sock_from_file(epi
->ffd
.file
, &err
);
431 napi_id
= READ_ONCE(sk
->sk_napi_id
);
434 /* Non-NAPI IDs can be rejected
436 * Nothing to do if we already have this ID
438 if (napi_id
< MIN_NAPI_ID
|| napi_id
== ep
->napi_id
)
441 /* record NAPI ID for use in next busy poll */
442 ep
->napi_id
= napi_id
;
447 static inline void ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
451 static inline void ep_reset_busy_poll_napi_id(struct eventpoll
*ep
)
455 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
459 #endif /* CONFIG_NET_RX_BUSY_POLL */
462 * ep_call_nested - Perform a bound (possibly) nested call, by checking
463 * that the recursion limit is not exceeded, and that
464 * the same nested call (by the meaning of same cookie) is
467 * @ncalls: Pointer to the nested_calls structure to be used for this call.
468 * @nproc: Nested call core function pointer.
469 * @priv: Opaque data to be passed to the @nproc callback.
470 * @cookie: Cookie to be used to identify this nested call.
471 * @ctx: This instance context.
473 * Returns: Returns the code returned by the @nproc callback, or -1 if
474 * the maximum recursion limit has been exceeded.
476 static int ep_call_nested(struct nested_calls
*ncalls
,
477 int (*nproc
)(void *, void *, int), void *priv
,
478 void *cookie
, void *ctx
)
480 int error
, call_nests
= 0;
482 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
483 struct nested_call_node
*tncur
;
484 struct nested_call_node tnode
;
486 spin_lock_irqsave(&ncalls
->lock
, flags
);
489 * Try to see if the current task is already inside this wakeup call.
490 * We use a list here, since the population inside this set is always
493 list_for_each_entry(tncur
, lsthead
, llink
) {
494 if (tncur
->ctx
== ctx
&&
495 (tncur
->cookie
== cookie
|| ++call_nests
> EP_MAX_NESTS
)) {
497 * Ops ... loop detected or maximum nest level reached.
498 * We abort this wake by breaking the cycle itself.
505 /* Add the current task and cookie to the list */
507 tnode
.cookie
= cookie
;
508 list_add(&tnode
.llink
, lsthead
);
510 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
512 /* Call the nested function */
513 error
= (*nproc
)(priv
, cookie
, call_nests
);
515 /* Remove the current task from the list */
516 spin_lock_irqsave(&ncalls
->lock
, flags
);
517 list_del(&tnode
.llink
);
519 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
525 * As described in commit 0ccf831cb lockdep: annotate epoll
526 * the use of wait queues used by epoll is done in a very controlled
527 * manner. Wake ups can nest inside each other, but are never done
528 * with the same locking. For example:
531 * efd1 = epoll_create();
532 * efd2 = epoll_create();
533 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
534 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
536 * When a packet arrives to the device underneath "dfd", the net code will
537 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
538 * callback wakeup entry on that queue, and the wake_up() performed by the
539 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
540 * (efd1) notices that it may have some event ready, so it needs to wake up
541 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
542 * that ends up in another wake_up(), after having checked about the
543 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
544 * avoid stack blasting.
546 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
547 * this special case of epoll.
549 #ifdef CONFIG_DEBUG_LOCK_ALLOC
551 static void ep_poll_safewake(struct eventpoll
*ep
, struct epitem
*epi
)
553 struct eventpoll
*ep_src
;
558 * To set the subclass or nesting level for spin_lock_irqsave_nested()
559 * it might be natural to create a per-cpu nest count. However, since
560 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
561 * schedule() in the -rt kernel, the per-cpu variable are no longer
562 * protected. Thus, we are introducing a per eventpoll nest field.
563 * If we are not being call from ep_poll_callback(), epi is NULL and
564 * we are at the first level of nesting, 0. Otherwise, we are being
565 * called from ep_poll_callback() and if a previous wakeup source is
566 * not an epoll file itself, we are at depth 1 since the wakeup source
567 * is depth 0. If the wakeup source is a previous epoll file in the
568 * wakeup chain then we use its nests value and record ours as
569 * nests + 1. The previous epoll file nests value is stable since its
570 * already holding its own poll_wait.lock.
573 if ((is_file_epoll(epi
->ffd
.file
))) {
574 ep_src
= epi
->ffd
.file
->private_data
;
575 nests
= ep_src
->nests
;
580 spin_lock_irqsave_nested(&ep
->poll_wait
.lock
, flags
, nests
);
581 ep
->nests
= nests
+ 1;
582 wake_up_locked_poll(&ep
->poll_wait
, EPOLLIN
);
584 spin_unlock_irqrestore(&ep
->poll_wait
.lock
, flags
);
589 static void ep_poll_safewake(struct eventpoll
*ep
, struct epitem
*epi
)
591 wake_up_poll(&ep
->poll_wait
, EPOLLIN
);
596 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
598 wait_queue_head_t
*whead
;
602 * If it is cleared by POLLFREE, it should be rcu-safe.
603 * If we read NULL we need a barrier paired with
604 * smp_store_release() in ep_poll_callback(), otherwise
605 * we rely on whead->lock.
607 whead
= smp_load_acquire(&pwq
->whead
);
609 remove_wait_queue(whead
, &pwq
->wait
);
614 * This function unregisters poll callbacks from the associated file
615 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
618 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
620 struct list_head
*lsthead
= &epi
->pwqlist
;
621 struct eppoll_entry
*pwq
;
623 while (!list_empty(lsthead
)) {
624 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
626 list_del(&pwq
->llink
);
627 ep_remove_wait_queue(pwq
);
628 kmem_cache_free(pwq_cache
, pwq
);
632 /* call only when ep->mtx is held */
633 static inline struct wakeup_source
*ep_wakeup_source(struct epitem
*epi
)
635 return rcu_dereference_check(epi
->ws
, lockdep_is_held(&epi
->ep
->mtx
));
638 /* call only when ep->mtx is held */
639 static inline void ep_pm_stay_awake(struct epitem
*epi
)
641 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
647 static inline bool ep_has_wakeup_source(struct epitem
*epi
)
649 return rcu_access_pointer(epi
->ws
) ? true : false;
652 /* call when ep->mtx cannot be held (ep_poll_callback) */
653 static inline void ep_pm_stay_awake_rcu(struct epitem
*epi
)
655 struct wakeup_source
*ws
;
658 ws
= rcu_dereference(epi
->ws
);
665 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
666 * the scan code, to call f_op->poll(). Also allows for
667 * O(NumReady) performance.
669 * @ep: Pointer to the epoll private data structure.
670 * @sproc: Pointer to the scan callback.
671 * @priv: Private opaque data passed to the @sproc callback.
672 * @depth: The current depth of recursive f_op->poll calls.
673 * @ep_locked: caller already holds ep->mtx
675 * Returns: The same integer error code returned by the @sproc callback.
677 static __poll_t
ep_scan_ready_list(struct eventpoll
*ep
,
678 __poll_t (*sproc
)(struct eventpoll
*,
679 struct list_head
*, void *),
680 void *priv
, int depth
, bool ep_locked
)
683 struct epitem
*epi
, *nepi
;
686 lockdep_assert_irqs_enabled();
689 * We need to lock this because we could be hit by
690 * eventpoll_release_file() and epoll_ctl().
694 mutex_lock_nested(&ep
->mtx
, depth
);
697 * Steal the ready list, and re-init the original one to the
698 * empty list. Also, set ep->ovflist to NULL so that events
699 * happening while looping w/out locks, are not lost. We cannot
700 * have the poll callback to queue directly on ep->rdllist,
701 * because we want the "sproc" callback to be able to do it
704 write_lock_irq(&ep
->lock
);
705 list_splice_init(&ep
->rdllist
, &txlist
);
706 WRITE_ONCE(ep
->ovflist
, NULL
);
707 write_unlock_irq(&ep
->lock
);
710 * Now call the callback function.
712 res
= (*sproc
)(ep
, &txlist
, priv
);
714 write_lock_irq(&ep
->lock
);
716 * During the time we spent inside the "sproc" callback, some
717 * other events might have been queued by the poll callback.
718 * We re-insert them inside the main ready-list here.
720 for (nepi
= READ_ONCE(ep
->ovflist
); (epi
= nepi
) != NULL
;
721 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
723 * We need to check if the item is already in the list.
724 * During the "sproc" callback execution time, items are
725 * queued into ->ovflist but the "txlist" might already
726 * contain them, and the list_splice() below takes care of them.
728 if (!ep_is_linked(epi
)) {
730 * ->ovflist is LIFO, so we have to reverse it in order
733 list_add(&epi
->rdllink
, &ep
->rdllist
);
734 ep_pm_stay_awake(epi
);
738 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
739 * releasing the lock, events will be queued in the normal way inside
742 WRITE_ONCE(ep
->ovflist
, EP_UNACTIVE_PTR
);
745 * Quickly re-inject items left on "txlist".
747 list_splice(&txlist
, &ep
->rdllist
);
749 write_unlock_irq(&ep
->lock
);
752 mutex_unlock(&ep
->mtx
);
757 static void epi_rcu_free(struct rcu_head
*head
)
759 struct epitem
*epi
= container_of(head
, struct epitem
, rcu
);
760 kmem_cache_free(epi_cache
, epi
);
764 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
765 * all the associated resources. Must be called with "mtx" held.
767 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
769 struct file
*file
= epi
->ffd
.file
;
771 lockdep_assert_irqs_enabled();
774 * Removes poll wait queue hooks.
776 ep_unregister_pollwait(ep
, epi
);
778 /* Remove the current item from the list of epoll hooks */
779 spin_lock(&file
->f_lock
);
780 list_del_rcu(&epi
->fllink
);
781 spin_unlock(&file
->f_lock
);
783 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
785 write_lock_irq(&ep
->lock
);
786 if (ep_is_linked(epi
))
787 list_del_init(&epi
->rdllink
);
788 write_unlock_irq(&ep
->lock
);
790 wakeup_source_unregister(ep_wakeup_source(epi
));
792 * At this point it is safe to free the eventpoll item. Use the union
793 * field epi->rcu, since we are trying to minimize the size of
794 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
795 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
796 * use of the rbn field.
798 call_rcu(&epi
->rcu
, epi_rcu_free
);
800 atomic_long_dec(&ep
->user
->epoll_watches
);
805 static void ep_free(struct eventpoll
*ep
)
810 /* We need to release all tasks waiting for these file */
811 if (waitqueue_active(&ep
->poll_wait
))
812 ep_poll_safewake(ep
, NULL
);
815 * We need to lock this because we could be hit by
816 * eventpoll_release_file() while we're freeing the "struct eventpoll".
817 * We do not need to hold "ep->mtx" here because the epoll file
818 * is on the way to be removed and no one has references to it
819 * anymore. The only hit might come from eventpoll_release_file() but
820 * holding "epmutex" is sufficient here.
822 mutex_lock(&epmutex
);
825 * Walks through the whole tree by unregistering poll callbacks.
827 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
828 epi
= rb_entry(rbp
, struct epitem
, rbn
);
830 ep_unregister_pollwait(ep
, epi
);
835 * Walks through the whole tree by freeing each "struct epitem". At this
836 * point we are sure no poll callbacks will be lingering around, and also by
837 * holding "epmutex" we can be sure that no file cleanup code will hit
838 * us during this operation. So we can avoid the lock on "ep->lock".
839 * We do not need to lock ep->mtx, either, we only do it to prevent
842 mutex_lock(&ep
->mtx
);
843 while ((rbp
= rb_first_cached(&ep
->rbr
)) != NULL
) {
844 epi
= rb_entry(rbp
, struct epitem
, rbn
);
848 mutex_unlock(&ep
->mtx
);
850 mutex_unlock(&epmutex
);
851 mutex_destroy(&ep
->mtx
);
853 wakeup_source_unregister(ep
->ws
);
857 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
859 struct eventpoll
*ep
= file
->private_data
;
867 static __poll_t
ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
869 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
873 * Differs from ep_eventpoll_poll() in that internal callers already have
874 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
875 * is correctly annotated.
877 static __poll_t
ep_item_poll(const struct epitem
*epi
, poll_table
*pt
,
880 struct eventpoll
*ep
;
883 pt
->_key
= epi
->event
.events
;
884 if (!is_file_epoll(epi
->ffd
.file
))
885 return vfs_poll(epi
->ffd
.file
, pt
) & epi
->event
.events
;
887 ep
= epi
->ffd
.file
->private_data
;
888 poll_wait(epi
->ffd
.file
, &ep
->poll_wait
, pt
);
889 locked
= pt
&& (pt
->_qproc
== ep_ptable_queue_proc
);
891 return ep_scan_ready_list(epi
->ffd
.file
->private_data
,
892 ep_read_events_proc
, &depth
, depth
,
893 locked
) & epi
->event
.events
;
896 static __poll_t
ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
899 struct epitem
*epi
, *tmp
;
901 int depth
= *(int *)priv
;
903 init_poll_funcptr(&pt
, NULL
);
906 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
907 if (ep_item_poll(epi
, &pt
, depth
)) {
908 return EPOLLIN
| EPOLLRDNORM
;
911 * Item has been dropped into the ready list by the poll
912 * callback, but it's not actually ready, as far as
913 * caller requested events goes. We can remove it here.
915 __pm_relax(ep_wakeup_source(epi
));
916 list_del_init(&epi
->rdllink
);
923 static __poll_t
ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
925 struct eventpoll
*ep
= file
->private_data
;
928 /* Insert inside our poll wait queue */
929 poll_wait(file
, &ep
->poll_wait
, wait
);
932 * Proceed to find out if wanted events are really available inside
935 return ep_scan_ready_list(ep
, ep_read_events_proc
,
936 &depth
, depth
, false);
939 #ifdef CONFIG_PROC_FS
940 static void ep_show_fdinfo(struct seq_file
*m
, struct file
*f
)
942 struct eventpoll
*ep
= f
->private_data
;
945 mutex_lock(&ep
->mtx
);
946 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
947 struct epitem
*epi
= rb_entry(rbp
, struct epitem
, rbn
);
948 struct inode
*inode
= file_inode(epi
->ffd
.file
);
950 seq_printf(m
, "tfd: %8d events: %8x data: %16llx "
951 " pos:%lli ino:%lx sdev:%x\n",
952 epi
->ffd
.fd
, epi
->event
.events
,
953 (long long)epi
->event
.data
,
954 (long long)epi
->ffd
.file
->f_pos
,
955 inode
->i_ino
, inode
->i_sb
->s_dev
);
956 if (seq_has_overflowed(m
))
959 mutex_unlock(&ep
->mtx
);
963 /* File callbacks that implement the eventpoll file behaviour */
964 static const struct file_operations eventpoll_fops
= {
965 #ifdef CONFIG_PROC_FS
966 .show_fdinfo
= ep_show_fdinfo
,
968 .release
= ep_eventpoll_release
,
969 .poll
= ep_eventpoll_poll
,
970 .llseek
= noop_llseek
,
974 * This is called from eventpoll_release() to unlink files from the eventpoll
975 * interface. We need to have this facility to cleanup correctly files that are
976 * closed without being removed from the eventpoll interface.
978 void eventpoll_release_file(struct file
*file
)
980 struct eventpoll
*ep
;
981 struct epitem
*epi
, *next
;
984 * We don't want to get "file->f_lock" because it is not
985 * necessary. It is not necessary because we're in the "struct file"
986 * cleanup path, and this means that no one is using this file anymore.
987 * So, for example, epoll_ctl() cannot hit here since if we reach this
988 * point, the file counter already went to zero and fget() would fail.
989 * The only hit might come from ep_free() but by holding the mutex
990 * will correctly serialize the operation. We do need to acquire
991 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
992 * from anywhere but ep_free().
994 * Besides, ep_remove() acquires the lock, so we can't hold it here.
996 mutex_lock(&epmutex
);
997 list_for_each_entry_safe(epi
, next
, &file
->f_ep_links
, fllink
) {
999 mutex_lock_nested(&ep
->mtx
, 0);
1001 mutex_unlock(&ep
->mtx
);
1003 mutex_unlock(&epmutex
);
1006 static int ep_alloc(struct eventpoll
**pep
)
1009 struct user_struct
*user
;
1010 struct eventpoll
*ep
;
1012 user
= get_current_user();
1014 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
1018 mutex_init(&ep
->mtx
);
1019 rwlock_init(&ep
->lock
);
1020 init_waitqueue_head(&ep
->wq
);
1021 init_waitqueue_head(&ep
->poll_wait
);
1022 INIT_LIST_HEAD(&ep
->rdllist
);
1023 ep
->rbr
= RB_ROOT_CACHED
;
1024 ep
->ovflist
= EP_UNACTIVE_PTR
;
1037 * Search the file inside the eventpoll tree. The RB tree operations
1038 * are protected by the "mtx" mutex, and ep_find() must be called with
1041 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
1044 struct rb_node
*rbp
;
1045 struct epitem
*epi
, *epir
= NULL
;
1046 struct epoll_filefd ffd
;
1048 ep_set_ffd(&ffd
, file
, fd
);
1049 for (rbp
= ep
->rbr
.rb_root
.rb_node
; rbp
; ) {
1050 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1051 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
1053 rbp
= rbp
->rb_right
;
1065 #ifdef CONFIG_CHECKPOINT_RESTORE
1066 static struct epitem
*ep_find_tfd(struct eventpoll
*ep
, int tfd
, unsigned long toff
)
1068 struct rb_node
*rbp
;
1071 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1072 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1073 if (epi
->ffd
.fd
== tfd
) {
1085 struct file
*get_epoll_tfile_raw_ptr(struct file
*file
, int tfd
,
1088 struct file
*file_raw
;
1089 struct eventpoll
*ep
;
1092 if (!is_file_epoll(file
))
1093 return ERR_PTR(-EINVAL
);
1095 ep
= file
->private_data
;
1097 mutex_lock(&ep
->mtx
);
1098 epi
= ep_find_tfd(ep
, tfd
, toff
);
1100 file_raw
= epi
->ffd
.file
;
1102 file_raw
= ERR_PTR(-ENOENT
);
1103 mutex_unlock(&ep
->mtx
);
1107 #endif /* CONFIG_CHECKPOINT_RESTORE */
1110 * Adds a new entry to the tail of the list in a lockless way, i.e.
1111 * multiple CPUs are allowed to call this function concurrently.
1113 * Beware: it is necessary to prevent any other modifications of the
1114 * existing list until all changes are completed, in other words
1115 * concurrent list_add_tail_lockless() calls should be protected
1116 * with a read lock, where write lock acts as a barrier which
1117 * makes sure all list_add_tail_lockless() calls are fully
1120 * Also an element can be locklessly added to the list only in one
1121 * direction i.e. either to the tail either to the head, otherwise
1122 * concurrent access will corrupt the list.
1124 * Returns %false if element has been already added to the list, %true
1127 static inline bool list_add_tail_lockless(struct list_head
*new,
1128 struct list_head
*head
)
1130 struct list_head
*prev
;
1133 * This is simple 'new->next = head' operation, but cmpxchg()
1134 * is used in order to detect that same element has been just
1135 * added to the list from another CPU: the winner observes
1138 if (cmpxchg(&new->next
, new, head
) != new)
1142 * Initially ->next of a new element must be updated with the head
1143 * (we are inserting to the tail) and only then pointers are atomically
1144 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1145 * updated before pointers are actually swapped and pointers are
1146 * swapped before prev->next is updated.
1149 prev
= xchg(&head
->prev
, new);
1152 * It is safe to modify prev->next and new->prev, because a new element
1153 * is added only to the tail and new->next is updated before XCHG.
1163 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1164 * i.e. multiple CPUs are allowed to call this function concurrently.
1166 * Returns %false if epi element has been already chained, %true otherwise.
1168 static inline bool chain_epi_lockless(struct epitem
*epi
)
1170 struct eventpoll
*ep
= epi
->ep
;
1172 /* Fast preliminary check */
1173 if (epi
->next
!= EP_UNACTIVE_PTR
)
1176 /* Check that the same epi has not been just chained from another CPU */
1177 if (cmpxchg(&epi
->next
, EP_UNACTIVE_PTR
, NULL
) != EP_UNACTIVE_PTR
)
1180 /* Atomically exchange tail */
1181 epi
->next
= xchg(&ep
->ovflist
, epi
);
1187 * This is the callback that is passed to the wait queue wakeup
1188 * mechanism. It is called by the stored file descriptors when they
1189 * have events to report.
1191 * This callback takes a read lock in order not to content with concurrent
1192 * events from another file descriptors, thus all modifications to ->rdllist
1193 * or ->ovflist are lockless. Read lock is paired with the write lock from
1194 * ep_scan_ready_list(), which stops all list modifications and guarantees
1195 * that lists state is seen correctly.
1197 * Another thing worth to mention is that ep_poll_callback() can be called
1198 * concurrently for the same @epi from different CPUs if poll table was inited
1199 * with several wait queues entries. Plural wakeup from different CPUs of a
1200 * single wait queue is serialized by wq.lock, but the case when multiple wait
1201 * queues are used should be detected accordingly. This is detected using
1202 * cmpxchg() operation.
1204 static int ep_poll_callback(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1207 struct epitem
*epi
= ep_item_from_wait(wait
);
1208 struct eventpoll
*ep
= epi
->ep
;
1209 __poll_t pollflags
= key_to_poll(key
);
1210 unsigned long flags
;
1213 read_lock_irqsave(&ep
->lock
, flags
);
1215 ep_set_busy_poll_napi_id(epi
);
1218 * If the event mask does not contain any poll(2) event, we consider the
1219 * descriptor to be disabled. This condition is likely the effect of the
1220 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1221 * until the next EPOLL_CTL_MOD will be issued.
1223 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
1227 * Check the events coming with the callback. At this stage, not
1228 * every device reports the events in the "key" parameter of the
1229 * callback. We need to be able to handle both cases here, hence the
1230 * test for "key" != NULL before the event match test.
1232 if (pollflags
&& !(pollflags
& epi
->event
.events
))
1236 * If we are transferring events to userspace, we can hold no locks
1237 * (because we're accessing user memory, and because of linux f_op->poll()
1238 * semantics). All the events that happen during that period of time are
1239 * chained in ep->ovflist and requeued later on.
1241 if (READ_ONCE(ep
->ovflist
) != EP_UNACTIVE_PTR
) {
1242 if (chain_epi_lockless(epi
))
1243 ep_pm_stay_awake_rcu(epi
);
1244 } else if (!ep_is_linked(epi
)) {
1245 /* In the usual case, add event to ready list. */
1246 if (list_add_tail_lockless(&epi
->rdllink
, &ep
->rdllist
))
1247 ep_pm_stay_awake_rcu(epi
);
1251 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1254 if (waitqueue_active(&ep
->wq
)) {
1255 if ((epi
->event
.events
& EPOLLEXCLUSIVE
) &&
1256 !(pollflags
& POLLFREE
)) {
1257 switch (pollflags
& EPOLLINOUT_BITS
) {
1259 if (epi
->event
.events
& EPOLLIN
)
1263 if (epi
->event
.events
& EPOLLOUT
)
1273 if (waitqueue_active(&ep
->poll_wait
))
1277 read_unlock_irqrestore(&ep
->lock
, flags
);
1279 /* We have to call this outside the lock */
1281 ep_poll_safewake(ep
, epi
);
1283 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
))
1286 if (pollflags
& POLLFREE
) {
1288 * If we race with ep_remove_wait_queue() it can miss
1289 * ->whead = NULL and do another remove_wait_queue() after
1290 * us, so we can't use __remove_wait_queue().
1292 list_del_init(&wait
->entry
);
1294 * ->whead != NULL protects us from the race with ep_free()
1295 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1296 * held by the caller. Once we nullify it, nothing protects
1297 * ep/epi or even wait.
1299 smp_store_release(&ep_pwq_from_wait(wait
)->whead
, NULL
);
1306 * This is the callback that is used to add our wait queue to the
1307 * target file wakeup lists.
1309 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
1312 struct epitem
*epi
= ep_item_from_epqueue(pt
);
1313 struct eppoll_entry
*pwq
;
1315 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
1316 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
1319 if (epi
->event
.events
& EPOLLEXCLUSIVE
)
1320 add_wait_queue_exclusive(whead
, &pwq
->wait
);
1322 add_wait_queue(whead
, &pwq
->wait
);
1323 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
1326 /* We have to signal that an error occurred */
1331 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
1334 struct rb_node
**p
= &ep
->rbr
.rb_root
.rb_node
, *parent
= NULL
;
1335 struct epitem
*epic
;
1336 bool leftmost
= true;
1340 epic
= rb_entry(parent
, struct epitem
, rbn
);
1341 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
1343 p
= &parent
->rb_right
;
1346 p
= &parent
->rb_left
;
1348 rb_link_node(&epi
->rbn
, parent
, p
);
1349 rb_insert_color_cached(&epi
->rbn
, &ep
->rbr
, leftmost
);
1354 #define PATH_ARR_SIZE 5
1356 * These are the number paths of length 1 to 5, that we are allowing to emanate
1357 * from a single file of interest. For example, we allow 1000 paths of length
1358 * 1, to emanate from each file of interest. This essentially represents the
1359 * potential wakeup paths, which need to be limited in order to avoid massive
1360 * uncontrolled wakeup storms. The common use case should be a single ep which
1361 * is connected to n file sources. In this case each file source has 1 path
1362 * of length 1. Thus, the numbers below should be more than sufficient. These
1363 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1364 * and delete can't add additional paths. Protected by the epmutex.
1366 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1367 static int path_count
[PATH_ARR_SIZE
];
1369 static int path_count_inc(int nests
)
1371 /* Allow an arbitrary number of depth 1 paths */
1375 if (++path_count
[nests
] > path_limits
[nests
])
1380 static void path_count_init(void)
1384 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1388 static int reverse_path_check_proc(void *priv
, void *cookie
, int call_nests
)
1391 struct file
*file
= priv
;
1392 struct file
*child_file
;
1395 /* CTL_DEL can remove links here, but that can't increase our count */
1397 list_for_each_entry_rcu(epi
, &file
->f_ep_links
, fllink
) {
1398 child_file
= epi
->ep
->file
;
1399 if (is_file_epoll(child_file
)) {
1400 if (list_empty(&child_file
->f_ep_links
)) {
1401 if (path_count_inc(call_nests
)) {
1406 error
= ep_call_nested(&poll_loop_ncalls
,
1407 reverse_path_check_proc
,
1408 child_file
, child_file
,
1414 printk(KERN_ERR
"reverse_path_check_proc: "
1415 "file is not an ep!\n");
1423 * reverse_path_check - The tfile_check_list is list of file *, which have
1424 * links that are proposed to be newly added. We need to
1425 * make sure that those added links don't add too many
1426 * paths such that we will spend all our time waking up
1427 * eventpoll objects.
1429 * Returns: Returns zero if the proposed links don't create too many paths,
1432 static int reverse_path_check(void)
1435 struct file
*current_file
;
1437 /* let's call this for all tfiles */
1438 list_for_each_entry(current_file
, &tfile_check_list
, f_tfile_llink
) {
1440 error
= ep_call_nested(&poll_loop_ncalls
,
1441 reverse_path_check_proc
, current_file
,
1442 current_file
, current
);
1449 static int ep_create_wakeup_source(struct epitem
*epi
)
1451 struct name_snapshot n
;
1452 struct wakeup_source
*ws
;
1455 epi
->ep
->ws
= wakeup_source_register(NULL
, "eventpoll");
1460 take_dentry_name_snapshot(&n
, epi
->ffd
.file
->f_path
.dentry
);
1461 ws
= wakeup_source_register(NULL
, n
.name
.name
);
1462 release_dentry_name_snapshot(&n
);
1466 rcu_assign_pointer(epi
->ws
, ws
);
1471 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1472 static noinline
void ep_destroy_wakeup_source(struct epitem
*epi
)
1474 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
1476 RCU_INIT_POINTER(epi
->ws
, NULL
);
1479 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1480 * used internally by wakeup_source_remove, too (called by
1481 * wakeup_source_unregister), so we cannot use call_rcu
1484 wakeup_source_unregister(ws
);
1488 * Must be called with "mtx" held.
1490 static int ep_insert(struct eventpoll
*ep
, const struct epoll_event
*event
,
1491 struct file
*tfile
, int fd
, int full_check
)
1493 int error
, pwake
= 0;
1497 struct ep_pqueue epq
;
1499 lockdep_assert_irqs_enabled();
1501 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
1502 if (unlikely(user_watches
>= max_user_watches
))
1504 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
1507 /* Item initialization follow here ... */
1508 INIT_LIST_HEAD(&epi
->rdllink
);
1509 INIT_LIST_HEAD(&epi
->fllink
);
1510 INIT_LIST_HEAD(&epi
->pwqlist
);
1512 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1513 epi
->event
= *event
;
1515 epi
->next
= EP_UNACTIVE_PTR
;
1516 if (epi
->event
.events
& EPOLLWAKEUP
) {
1517 error
= ep_create_wakeup_source(epi
);
1519 goto error_create_wakeup_source
;
1521 RCU_INIT_POINTER(epi
->ws
, NULL
);
1524 /* Add the current item to the list of active epoll hook for this file */
1525 spin_lock(&tfile
->f_lock
);
1526 list_add_tail_rcu(&epi
->fllink
, &tfile
->f_ep_links
);
1527 spin_unlock(&tfile
->f_lock
);
1530 * Add the current item to the RB tree. All RB tree operations are
1531 * protected by "mtx", and ep_insert() is called with "mtx" held.
1533 ep_rbtree_insert(ep
, epi
);
1535 /* now check if we've created too many backpaths */
1537 if (full_check
&& reverse_path_check())
1538 goto error_remove_epi
;
1540 /* Initialize the poll table using the queue callback */
1542 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1545 * Attach the item to the poll hooks and get current event bits.
1546 * We can safely use the file* here because its usage count has
1547 * been increased by the caller of this function. Note that after
1548 * this operation completes, the poll callback can start hitting
1551 revents
= ep_item_poll(epi
, &epq
.pt
, 1);
1554 * We have to check if something went wrong during the poll wait queue
1555 * install process. Namely an allocation for a wait queue failed due
1556 * high memory pressure.
1560 goto error_unregister
;
1562 /* We have to drop the new item inside our item list to keep track of it */
1563 write_lock_irq(&ep
->lock
);
1565 /* record NAPI ID of new item if present */
1566 ep_set_busy_poll_napi_id(epi
);
1568 /* If the file is already "ready" we drop it inside the ready list */
1569 if (revents
&& !ep_is_linked(epi
)) {
1570 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1571 ep_pm_stay_awake(epi
);
1573 /* Notify waiting tasks that events are available */
1574 if (waitqueue_active(&ep
->wq
))
1576 if (waitqueue_active(&ep
->poll_wait
))
1580 write_unlock_irq(&ep
->lock
);
1582 atomic_long_inc(&ep
->user
->epoll_watches
);
1584 /* We have to call this outside the lock */
1586 ep_poll_safewake(ep
, NULL
);
1591 ep_unregister_pollwait(ep
, epi
);
1593 spin_lock(&tfile
->f_lock
);
1594 list_del_rcu(&epi
->fllink
);
1595 spin_unlock(&tfile
->f_lock
);
1597 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
1600 * We need to do this because an event could have been arrived on some
1601 * allocated wait queue. Note that we don't care about the ep->ovflist
1602 * list, since that is used/cleaned only inside a section bound by "mtx".
1603 * And ep_insert() is called with "mtx" held.
1605 write_lock_irq(&ep
->lock
);
1606 if (ep_is_linked(epi
))
1607 list_del_init(&epi
->rdllink
);
1608 write_unlock_irq(&ep
->lock
);
1610 wakeup_source_unregister(ep_wakeup_source(epi
));
1612 error_create_wakeup_source
:
1613 kmem_cache_free(epi_cache
, epi
);
1619 * Modify the interest event mask by dropping an event if the new mask
1620 * has a match in the current file status. Must be called with "mtx" held.
1622 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
,
1623 const struct epoll_event
*event
)
1628 lockdep_assert_irqs_enabled();
1630 init_poll_funcptr(&pt
, NULL
);
1633 * Set the new event interest mask before calling f_op->poll();
1634 * otherwise we might miss an event that happens between the
1635 * f_op->poll() call and the new event set registering.
1637 epi
->event
.events
= event
->events
; /* need barrier below */
1638 epi
->event
.data
= event
->data
; /* protected by mtx */
1639 if (epi
->event
.events
& EPOLLWAKEUP
) {
1640 if (!ep_has_wakeup_source(epi
))
1641 ep_create_wakeup_source(epi
);
1642 } else if (ep_has_wakeup_source(epi
)) {
1643 ep_destroy_wakeup_source(epi
);
1647 * The following barrier has two effects:
1649 * 1) Flush epi changes above to other CPUs. This ensures
1650 * we do not miss events from ep_poll_callback if an
1651 * event occurs immediately after we call f_op->poll().
1652 * We need this because we did not take ep->lock while
1653 * changing epi above (but ep_poll_callback does take
1656 * 2) We also need to ensure we do not miss _past_ events
1657 * when calling f_op->poll(). This barrier also
1658 * pairs with the barrier in wq_has_sleeper (see
1659 * comments for wq_has_sleeper).
1661 * This barrier will now guarantee ep_poll_callback or f_op->poll
1662 * (or both) will notice the readiness of an item.
1667 * Get current event bits. We can safely use the file* here because
1668 * its usage count has been increased by the caller of this function.
1669 * If the item is "hot" and it is not registered inside the ready
1670 * list, push it inside.
1672 if (ep_item_poll(epi
, &pt
, 1)) {
1673 write_lock_irq(&ep
->lock
);
1674 if (!ep_is_linked(epi
)) {
1675 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1676 ep_pm_stay_awake(epi
);
1678 /* Notify waiting tasks that events are available */
1679 if (waitqueue_active(&ep
->wq
))
1681 if (waitqueue_active(&ep
->poll_wait
))
1684 write_unlock_irq(&ep
->lock
);
1687 /* We have to call this outside the lock */
1689 ep_poll_safewake(ep
, NULL
);
1694 static __poll_t
ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1697 struct ep_send_events_data
*esed
= priv
;
1699 struct epitem
*epi
, *tmp
;
1700 struct epoll_event __user
*uevent
= esed
->events
;
1701 struct wakeup_source
*ws
;
1704 init_poll_funcptr(&pt
, NULL
);
1708 * We can loop without lock because we are passed a task private list.
1709 * Items cannot vanish during the loop because ep_scan_ready_list() is
1710 * holding "mtx" during this call.
1712 lockdep_assert_held(&ep
->mtx
);
1714 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
1715 if (esed
->res
>= esed
->maxevents
)
1719 * Activate ep->ws before deactivating epi->ws to prevent
1720 * triggering auto-suspend here (in case we reactive epi->ws
1723 * This could be rearranged to delay the deactivation of epi->ws
1724 * instead, but then epi->ws would temporarily be out of sync
1725 * with ep_is_linked().
1727 ws
= ep_wakeup_source(epi
);
1730 __pm_stay_awake(ep
->ws
);
1734 list_del_init(&epi
->rdllink
);
1737 * If the event mask intersect the caller-requested one,
1738 * deliver the event to userspace. Again, ep_scan_ready_list()
1739 * is holding ep->mtx, so no operations coming from userspace
1740 * can change the item.
1742 revents
= ep_item_poll(epi
, &pt
, 1);
1746 if (__put_user(revents
, &uevent
->events
) ||
1747 __put_user(epi
->event
.data
, &uevent
->data
)) {
1748 list_add(&epi
->rdllink
, head
);
1749 ep_pm_stay_awake(epi
);
1751 esed
->res
= -EFAULT
;
1756 if (epi
->event
.events
& EPOLLONESHOT
)
1757 epi
->event
.events
&= EP_PRIVATE_BITS
;
1758 else if (!(epi
->event
.events
& EPOLLET
)) {
1760 * If this file has been added with Level
1761 * Trigger mode, we need to insert back inside
1762 * the ready list, so that the next call to
1763 * epoll_wait() will check again the events
1764 * availability. At this point, no one can insert
1765 * into ep->rdllist besides us. The epoll_ctl()
1766 * callers are locked out by
1767 * ep_scan_ready_list() holding "mtx" and the
1768 * poll callback will queue them in ep->ovflist.
1770 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1771 ep_pm_stay_awake(epi
);
1778 static int ep_send_events(struct eventpoll
*ep
,
1779 struct epoll_event __user
*events
, int maxevents
)
1781 struct ep_send_events_data esed
;
1783 esed
.maxevents
= maxevents
;
1784 esed
.events
= events
;
1786 ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0, false);
1790 static inline struct timespec64
ep_set_mstimeout(long ms
)
1792 struct timespec64 now
, ts
= {
1793 .tv_sec
= ms
/ MSEC_PER_SEC
,
1794 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1797 ktime_get_ts64(&now
);
1798 return timespec64_add_safe(now
, ts
);
1802 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1805 * @ep: Pointer to the eventpoll context.
1806 * @events: Pointer to the userspace buffer where the ready events should be
1808 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1809 * @timeout: Maximum timeout for the ready events fetch operation, in
1810 * milliseconds. If the @timeout is zero, the function will not block,
1811 * while if the @timeout is less than zero, the function will block
1812 * until at least one event has been retrieved (or an error
1815 * Returns: Returns the number of ready events which have been fetched, or an
1816 * error code, in case of error.
1818 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1819 int maxevents
, long timeout
)
1821 int res
= 0, eavail
, timed_out
= 0;
1823 wait_queue_entry_t wait
;
1824 ktime_t expires
, *to
= NULL
;
1826 lockdep_assert_irqs_enabled();
1829 struct timespec64 end_time
= ep_set_mstimeout(timeout
);
1831 slack
= select_estimate_accuracy(&end_time
);
1833 *to
= timespec64_to_ktime(end_time
);
1834 } else if (timeout
== 0) {
1836 * Avoid the unnecessary trip to the wait queue loop, if the
1837 * caller specified a non blocking operation. We still need
1838 * lock because we could race and not see an epi being added
1839 * to the ready list while in irq callback. Thus incorrectly
1840 * returning 0 back to userspace.
1844 write_lock_irq(&ep
->lock
);
1845 eavail
= ep_events_available(ep
);
1846 write_unlock_irq(&ep
->lock
);
1853 if (!ep_events_available(ep
))
1854 ep_busy_loop(ep
, timed_out
);
1856 eavail
= ep_events_available(ep
);
1861 * Busy poll timed out. Drop NAPI ID for now, we can add
1862 * it back in when we have moved a socket with a valid NAPI
1863 * ID onto the ready list.
1865 ep_reset_busy_poll_napi_id(ep
);
1869 * Internally init_wait() uses autoremove_wake_function(),
1870 * thus wait entry is removed from the wait queue on each
1871 * wakeup. Why it is important? In case of several waiters
1872 * each new wakeup will hit the next waiter, giving it the
1873 * chance to harvest new event. Otherwise wakeup can be
1874 * lost. This is also good performance-wise, because on
1875 * normal wakeup path no need to call __remove_wait_queue()
1876 * explicitly, thus ep->lock is not taken, which halts the
1881 write_lock_irq(&ep
->lock
);
1883 * Barrierless variant, waitqueue_active() is called under
1884 * the same lock on wakeup ep_poll_callback() side, so it
1885 * is safe to avoid an explicit barrier.
1887 __set_current_state(TASK_INTERRUPTIBLE
);
1890 * Do the final check under the lock. ep_scan_ready_list()
1891 * plays with two lists (->rdllist and ->ovflist) and there
1892 * is always a race when both lists are empty for short
1893 * period of time although events are pending, so lock is
1896 eavail
= ep_events_available(ep
);
1898 if (signal_pending(current
))
1901 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1903 write_unlock_irq(&ep
->lock
);
1905 if (!eavail
&& !res
)
1906 timed_out
= !schedule_hrtimeout_range(to
, slack
,
1910 * We were woken up, thus go and try to harvest some events.
1911 * If timed out and still on the wait queue, recheck eavail
1912 * carefully under lock, below.
1917 __set_current_state(TASK_RUNNING
);
1919 if (!list_empty_careful(&wait
.entry
)) {
1920 write_lock_irq(&ep
->lock
);
1922 * If the thread timed out and is not on the wait queue, it
1923 * means that the thread was woken up after its timeout expired
1924 * before it could reacquire the lock. Thus, when wait.entry is
1925 * empty, it needs to harvest events.
1928 eavail
= list_empty(&wait
.entry
);
1929 __remove_wait_queue(&ep
->wq
, &wait
);
1930 write_unlock_irq(&ep
->lock
);
1934 if (fatal_signal_pending(current
)) {
1936 * Always short-circuit for fatal signals to allow
1937 * threads to make a timely exit without the chance of
1938 * finding more events available and fetching
1944 * Try to transfer events to user space. In case we get 0 events and
1945 * there's still timeout left over, we go trying again in search of
1948 if (!res
&& eavail
&&
1949 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1956 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1957 * API, to verify that adding an epoll file inside another
1958 * epoll structure, does not violate the constraints, in
1959 * terms of closed loops, or too deep chains (which can
1960 * result in excessive stack usage).
1962 * @priv: Pointer to the epoll file to be currently checked.
1963 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1964 * data structure pointer.
1965 * @call_nests: Current dept of the @ep_call_nested() call stack.
1967 * Returns: Returns zero if adding the epoll @file inside current epoll
1968 * structure @ep does not violate the constraints, or -1 otherwise.
1970 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1973 struct file
*file
= priv
;
1974 struct eventpoll
*ep
= file
->private_data
;
1975 struct eventpoll
*ep_tovisit
;
1976 struct rb_node
*rbp
;
1979 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1980 ep
->gen
= loop_check_gen
;
1981 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1982 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1983 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1984 ep_tovisit
= epi
->ffd
.file
->private_data
;
1985 if (ep_tovisit
->gen
== loop_check_gen
)
1987 error
= ep_call_nested(&poll_loop_ncalls
,
1988 ep_loop_check_proc
, epi
->ffd
.file
,
1989 ep_tovisit
, current
);
1994 * If we've reached a file that is not associated with
1995 * an ep, then we need to check if the newly added
1996 * links are going to add too many wakeup paths. We do
1997 * this by adding it to the tfile_check_list, if it's
1998 * not already there, and calling reverse_path_check()
1999 * during ep_insert().
2001 if (list_empty(&epi
->ffd
.file
->f_tfile_llink
)) {
2002 if (get_file_rcu(epi
->ffd
.file
))
2003 list_add(&epi
->ffd
.file
->f_tfile_llink
,
2008 mutex_unlock(&ep
->mtx
);
2014 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2015 * another epoll file (represented by @ep) does not create
2016 * closed loops or too deep chains.
2018 * @ep: Pointer to the epoll private data structure.
2019 * @file: Pointer to the epoll file to be checked.
2021 * Returns: Returns zero if adding the epoll @file inside current epoll
2022 * structure @ep does not violate the constraints, or -1 otherwise.
2024 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
2026 return ep_call_nested(&poll_loop_ncalls
,
2027 ep_loop_check_proc
, file
, ep
, current
);
2030 static void clear_tfile_check_list(void)
2034 /* first clear the tfile_check_list */
2035 while (!list_empty(&tfile_check_list
)) {
2036 file
= list_first_entry(&tfile_check_list
, struct file
,
2038 list_del_init(&file
->f_tfile_llink
);
2041 INIT_LIST_HEAD(&tfile_check_list
);
2045 * Open an eventpoll file descriptor.
2047 static int do_epoll_create(int flags
)
2050 struct eventpoll
*ep
= NULL
;
2053 /* Check the EPOLL_* constant for consistency. */
2054 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
2056 if (flags
& ~EPOLL_CLOEXEC
)
2059 * Create the internal data structure ("struct eventpoll").
2061 error
= ep_alloc(&ep
);
2065 * Creates all the items needed to setup an eventpoll file. That is,
2066 * a file structure and a free file descriptor.
2068 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
2073 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
2074 O_RDWR
| (flags
& O_CLOEXEC
));
2076 error
= PTR_ERR(file
);
2080 fd_install(fd
, file
);
2090 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
2092 return do_epoll_create(flags
);
2095 SYSCALL_DEFINE1(epoll_create
, int, size
)
2100 return do_epoll_create(0);
2103 static inline int epoll_mutex_lock(struct mutex
*mutex
, int depth
,
2107 mutex_lock_nested(mutex
, depth
);
2110 if (mutex_trylock(mutex
))
2115 int do_epoll_ctl(int epfd
, int op
, int fd
, struct epoll_event
*epds
,
2121 struct eventpoll
*ep
;
2123 struct eventpoll
*tep
= NULL
;
2130 /* Get the "struct file *" for the target file */
2135 /* The target file descriptor must support poll */
2137 if (!file_can_poll(tf
.file
))
2138 goto error_tgt_fput
;
2140 /* Check if EPOLLWAKEUP is allowed */
2141 if (ep_op_has_event(op
))
2142 ep_take_care_of_epollwakeup(epds
);
2145 * We have to check that the file structure underneath the file descriptor
2146 * the user passed to us _is_ an eventpoll file. And also we do not permit
2147 * adding an epoll file descriptor inside itself.
2150 if (f
.file
== tf
.file
|| !is_file_epoll(f
.file
))
2151 goto error_tgt_fput
;
2154 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2155 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2156 * Also, we do not currently supported nested exclusive wakeups.
2158 if (ep_op_has_event(op
) && (epds
->events
& EPOLLEXCLUSIVE
)) {
2159 if (op
== EPOLL_CTL_MOD
)
2160 goto error_tgt_fput
;
2161 if (op
== EPOLL_CTL_ADD
&& (is_file_epoll(tf
.file
) ||
2162 (epds
->events
& ~EPOLLEXCLUSIVE_OK_BITS
)))
2163 goto error_tgt_fput
;
2167 * At this point it is safe to assume that the "private_data" contains
2168 * our own data structure.
2170 ep
= f
.file
->private_data
;
2173 * When we insert an epoll file descriptor, inside another epoll file
2174 * descriptor, there is the change of creating closed loops, which are
2175 * better be handled here, than in more critical paths. While we are
2176 * checking for loops we also determine the list of files reachable
2177 * and hang them on the tfile_check_list, so we can check that we
2178 * haven't created too many possible wakeup paths.
2180 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2181 * the epoll file descriptor is attaching directly to a wakeup source,
2182 * unless the epoll file descriptor is nested. The purpose of taking the
2183 * 'epmutex' on add is to prevent complex toplogies such as loops and
2184 * deep wakeup paths from forming in parallel through multiple
2185 * EPOLL_CTL_ADD operations.
2187 error
= epoll_mutex_lock(&ep
->mtx
, 0, nonblock
);
2189 goto error_tgt_fput
;
2190 if (op
== EPOLL_CTL_ADD
) {
2191 if (!list_empty(&f
.file
->f_ep_links
) ||
2192 ep
->gen
== loop_check_gen
||
2193 is_file_epoll(tf
.file
)) {
2194 mutex_unlock(&ep
->mtx
);
2195 error
= epoll_mutex_lock(&epmutex
, 0, nonblock
);
2197 goto error_tgt_fput
;
2200 if (is_file_epoll(tf
.file
)) {
2202 if (ep_loop_check(ep
, tf
.file
) != 0)
2203 goto error_tgt_fput
;
2206 list_add(&tf
.file
->f_tfile_llink
,
2209 error
= epoll_mutex_lock(&ep
->mtx
, 0, nonblock
);
2211 goto error_tgt_fput
;
2212 if (is_file_epoll(tf
.file
)) {
2213 tep
= tf
.file
->private_data
;
2214 error
= epoll_mutex_lock(&tep
->mtx
, 1, nonblock
);
2216 mutex_unlock(&ep
->mtx
);
2217 goto error_tgt_fput
;
2224 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2225 * above, we can be sure to be able to use the item looked up by
2226 * ep_find() till we release the mutex.
2228 epi
= ep_find(ep
, tf
.file
, fd
);
2234 epds
->events
|= EPOLLERR
| EPOLLHUP
;
2235 error
= ep_insert(ep
, epds
, tf
.file
, fd
, full_check
);
2241 error
= ep_remove(ep
, epi
);
2247 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
)) {
2248 epds
->events
|= EPOLLERR
| EPOLLHUP
;
2249 error
= ep_modify(ep
, epi
, epds
);
2256 mutex_unlock(&tep
->mtx
);
2257 mutex_unlock(&ep
->mtx
);
2261 clear_tfile_check_list();
2263 mutex_unlock(&epmutex
);
2275 * The following function implements the controller interface for
2276 * the eventpoll file that enables the insertion/removal/change of
2277 * file descriptors inside the interest set.
2279 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
2280 struct epoll_event __user
*, event
)
2282 struct epoll_event epds
;
2284 if (ep_op_has_event(op
) &&
2285 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
2288 return do_epoll_ctl(epfd
, op
, fd
, &epds
, false);
2292 * Implement the event wait interface for the eventpoll file. It is the kernel
2293 * part of the user space epoll_wait(2).
2295 static int do_epoll_wait(int epfd
, struct epoll_event __user
*events
,
2296 int maxevents
, int timeout
)
2300 struct eventpoll
*ep
;
2302 /* The maximum number of event must be greater than zero */
2303 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
2306 /* Verify that the area passed by the user is writeable */
2307 if (!access_ok(events
, maxevents
* sizeof(struct epoll_event
)))
2310 /* Get the "struct file *" for the eventpoll file */
2316 * We have to check that the file structure underneath the fd
2317 * the user passed to us _is_ an eventpoll file.
2320 if (!is_file_epoll(f
.file
))
2324 * At this point it is safe to assume that the "private_data" contains
2325 * our own data structure.
2327 ep
= f
.file
->private_data
;
2329 /* Time to fish for events ... */
2330 error
= ep_poll(ep
, events
, maxevents
, timeout
);
2337 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
2338 int, maxevents
, int, timeout
)
2340 return do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2344 * Implement the event wait interface for the eventpoll file. It is the kernel
2345 * part of the user space epoll_pwait(2).
2347 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
2348 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
2354 * If the caller wants a certain signal mask to be set during the wait,
2357 error
= set_user_sigmask(sigmask
, sigsetsize
);
2361 error
= do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2362 restore_saved_sigmask_unless(error
== -EINTR
);
2367 #ifdef CONFIG_COMPAT
2368 COMPAT_SYSCALL_DEFINE6(epoll_pwait
, int, epfd
,
2369 struct epoll_event __user
*, events
,
2370 int, maxevents
, int, timeout
,
2371 const compat_sigset_t __user
*, sigmask
,
2372 compat_size_t
, sigsetsize
)
2377 * If the caller wants a certain signal mask to be set during the wait,
2380 err
= set_compat_user_sigmask(sigmask
, sigsetsize
);
2384 err
= do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2385 restore_saved_sigmask_unless(err
== -EINTR
);
2391 static int __init
eventpoll_init(void)
2397 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2399 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
2401 BUG_ON(max_user_watches
< 0);
2404 * Initialize the structure used to perform epoll file descriptor
2405 * inclusion loops checks.
2407 ep_nested_calls_init(&poll_loop_ncalls
);
2410 * We can have many thousands of epitems, so prevent this from
2411 * using an extra cache line on 64-bit (and smaller) CPUs
2413 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem
) > 128);
2415 /* Allocates slab cache used to allocate "struct epitem" items */
2416 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
2417 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2419 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2420 pwq_cache
= kmem_cache_create("eventpoll_pwq",
2421 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2425 fs_initcall(eventpoll_init
);