1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * #!-checking implemented by tytso.
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
68 #include <linux/uaccess.h>
69 #include <asm/mmu_context.h>
72 #include <trace/events/task.h>
75 #include <trace/events/sched.h>
77 static int bprm_creds_from_file(struct linux_binprm
*bprm
);
79 int suid_dumpable
= 0;
81 static LIST_HEAD(formats
);
82 static DEFINE_RWLOCK(binfmt_lock
);
84 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
87 if (WARN_ON(!fmt
->load_binary
))
89 write_lock(&binfmt_lock
);
90 insert
? list_add(&fmt
->lh
, &formats
) :
91 list_add_tail(&fmt
->lh
, &formats
);
92 write_unlock(&binfmt_lock
);
95 EXPORT_SYMBOL(__register_binfmt
);
97 void unregister_binfmt(struct linux_binfmt
* fmt
)
99 write_lock(&binfmt_lock
);
101 write_unlock(&binfmt_lock
);
104 EXPORT_SYMBOL(unregister_binfmt
);
106 static inline void put_binfmt(struct linux_binfmt
* fmt
)
108 module_put(fmt
->module
);
111 bool path_noexec(const struct path
*path
)
113 return (path
->mnt
->mnt_flags
& MNT_NOEXEC
) ||
114 (path
->mnt
->mnt_sb
->s_iflags
& SB_I_NOEXEC
);
119 * Note that a shared library must be both readable and executable due to
122 * Also note that we take the address to load from from the file itself.
124 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
126 struct linux_binfmt
*fmt
;
128 struct filename
*tmp
= getname(library
);
129 int error
= PTR_ERR(tmp
);
130 static const struct open_flags uselib_flags
= {
131 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
132 .acc_mode
= MAY_READ
| MAY_EXEC
,
133 .intent
= LOOKUP_OPEN
,
134 .lookup_flags
= LOOKUP_FOLLOW
,
140 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
142 error
= PTR_ERR(file
);
147 * may_open() has already checked for this, so it should be
148 * impossible to trip now. But we need to be extra cautious
149 * and check again at the very end too.
152 if (WARN_ON_ONCE(!S_ISREG(file_inode(file
)->i_mode
) ||
153 path_noexec(&file
->f_path
)))
160 read_lock(&binfmt_lock
);
161 list_for_each_entry(fmt
, &formats
, lh
) {
162 if (!fmt
->load_shlib
)
164 if (!try_module_get(fmt
->module
))
166 read_unlock(&binfmt_lock
);
167 error
= fmt
->load_shlib(file
);
168 read_lock(&binfmt_lock
);
170 if (error
!= -ENOEXEC
)
173 read_unlock(&binfmt_lock
);
179 #endif /* #ifdef CONFIG_USELIB */
183 * The nascent bprm->mm is not visible until exec_mmap() but it can
184 * use a lot of memory, account these pages in current->mm temporary
185 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
186 * change the counter back via acct_arg_size(0).
188 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
190 struct mm_struct
*mm
= current
->mm
;
191 long diff
= (long)(pages
- bprm
->vma_pages
);
196 bprm
->vma_pages
= pages
;
197 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
200 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
205 unsigned int gup_flags
= FOLL_FORCE
;
207 #ifdef CONFIG_STACK_GROWSUP
209 ret
= expand_downwards(bprm
->vma
, pos
);
216 gup_flags
|= FOLL_WRITE
;
219 * We are doing an exec(). 'current' is the process
220 * doing the exec and bprm->mm is the new process's mm.
222 ret
= get_user_pages_remote(bprm
->mm
, pos
, 1, gup_flags
,
228 acct_arg_size(bprm
, vma_pages(bprm
->vma
));
233 static void put_arg_page(struct page
*page
)
238 static void free_arg_pages(struct linux_binprm
*bprm
)
242 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
245 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
248 static int __bprm_mm_init(struct linux_binprm
*bprm
)
251 struct vm_area_struct
*vma
= NULL
;
252 struct mm_struct
*mm
= bprm
->mm
;
254 bprm
->vma
= vma
= vm_area_alloc(mm
);
257 vma_set_anonymous(vma
);
259 if (mmap_write_lock_killable(mm
)) {
265 * Place the stack at the largest stack address the architecture
266 * supports. Later, we'll move this to an appropriate place. We don't
267 * use STACK_TOP because that can depend on attributes which aren't
270 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
271 vma
->vm_end
= STACK_TOP_MAX
;
272 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
273 vma
->vm_flags
= VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
274 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
276 err
= insert_vm_struct(mm
, vma
);
280 mm
->stack_vm
= mm
->total_vm
= 1;
281 mmap_write_unlock(mm
);
282 bprm
->p
= vma
->vm_end
- sizeof(void *);
285 mmap_write_unlock(mm
);
292 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
294 return len
<= MAX_ARG_STRLEN
;
299 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
303 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
308 page
= bprm
->page
[pos
/ PAGE_SIZE
];
309 if (!page
&& write
) {
310 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
313 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
319 static void put_arg_page(struct page
*page
)
323 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
326 __free_page(bprm
->page
[i
]);
327 bprm
->page
[i
] = NULL
;
331 static void free_arg_pages(struct linux_binprm
*bprm
)
335 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
336 free_arg_page(bprm
, i
);
339 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
344 static int __bprm_mm_init(struct linux_binprm
*bprm
)
346 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
350 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
352 return len
<= bprm
->p
;
355 #endif /* CONFIG_MMU */
358 * Create a new mm_struct and populate it with a temporary stack
359 * vm_area_struct. We don't have enough context at this point to set the stack
360 * flags, permissions, and offset, so we use temporary values. We'll update
361 * them later in setup_arg_pages().
363 static int bprm_mm_init(struct linux_binprm
*bprm
)
366 struct mm_struct
*mm
= NULL
;
368 bprm
->mm
= mm
= mm_alloc();
373 /* Save current stack limit for all calculations made during exec. */
374 task_lock(current
->group_leader
);
375 bprm
->rlim_stack
= current
->signal
->rlim
[RLIMIT_STACK
];
376 task_unlock(current
->group_leader
);
378 err
= __bprm_mm_init(bprm
);
393 struct user_arg_ptr
{
398 const char __user
*const __user
*native
;
400 const compat_uptr_t __user
*compat
;
405 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
407 const char __user
*native
;
410 if (unlikely(argv
.is_compat
)) {
411 compat_uptr_t compat
;
413 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
414 return ERR_PTR(-EFAULT
);
416 return compat_ptr(compat
);
420 if (get_user(native
, argv
.ptr
.native
+ nr
))
421 return ERR_PTR(-EFAULT
);
427 * count() counts the number of strings in array ARGV.
429 static int count(struct user_arg_ptr argv
, int max
)
433 if (argv
.ptr
.native
!= NULL
) {
435 const char __user
*p
= get_user_arg_ptr(argv
, i
);
447 if (fatal_signal_pending(current
))
448 return -ERESTARTNOHAND
;
455 static int count_strings_kernel(const char *const *argv
)
462 for (i
= 0; argv
[i
]; ++i
) {
463 if (i
>= MAX_ARG_STRINGS
)
465 if (fatal_signal_pending(current
))
466 return -ERESTARTNOHAND
;
472 static int bprm_stack_limits(struct linux_binprm
*bprm
)
474 unsigned long limit
, ptr_size
;
477 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478 * (whichever is smaller) for the argv+env strings.
480 * - the remaining binfmt code will not run out of stack space,
481 * - the program will have a reasonable amount of stack left
484 limit
= _STK_LIM
/ 4 * 3;
485 limit
= min(limit
, bprm
->rlim_stack
.rlim_cur
/ 4);
487 * We've historically supported up to 32 pages (ARG_MAX)
488 * of argument strings even with small stacks
490 limit
= max_t(unsigned long, limit
, ARG_MAX
);
492 * We must account for the size of all the argv and envp pointers to
493 * the argv and envp strings, since they will also take up space in
494 * the stack. They aren't stored until much later when we can't
495 * signal to the parent that the child has run out of stack space.
496 * Instead, calculate it here so it's possible to fail gracefully.
498 ptr_size
= (bprm
->argc
+ bprm
->envc
) * sizeof(void *);
499 if (limit
<= ptr_size
)
503 bprm
->argmin
= bprm
->p
- limit
;
508 * 'copy_strings()' copies argument/environment strings from the old
509 * processes's memory to the new process's stack. The call to get_user_pages()
510 * ensures the destination page is created and not swapped out.
512 static int copy_strings(int argc
, struct user_arg_ptr argv
,
513 struct linux_binprm
*bprm
)
515 struct page
*kmapped_page
= NULL
;
517 unsigned long kpos
= 0;
521 const char __user
*str
;
526 str
= get_user_arg_ptr(argv
, argc
);
530 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
535 if (!valid_arg_len(bprm
, len
))
538 /* We're going to work our way backwords. */
543 if (bprm
->p
< bprm
->argmin
)
548 int offset
, bytes_to_copy
;
550 if (fatal_signal_pending(current
)) {
551 ret
= -ERESTARTNOHAND
;
556 offset
= pos
% PAGE_SIZE
;
560 bytes_to_copy
= offset
;
561 if (bytes_to_copy
> len
)
564 offset
-= bytes_to_copy
;
565 pos
-= bytes_to_copy
;
566 str
-= bytes_to_copy
;
567 len
-= bytes_to_copy
;
569 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
572 page
= get_arg_page(bprm
, pos
, 1);
579 flush_kernel_dcache_page(kmapped_page
);
580 kunmap(kmapped_page
);
581 put_arg_page(kmapped_page
);
584 kaddr
= kmap(kmapped_page
);
585 kpos
= pos
& PAGE_MASK
;
586 flush_arg_page(bprm
, kpos
, kmapped_page
);
588 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
597 flush_kernel_dcache_page(kmapped_page
);
598 kunmap(kmapped_page
);
599 put_arg_page(kmapped_page
);
605 * Copy and argument/environment string from the kernel to the processes stack.
607 int copy_string_kernel(const char *arg
, struct linux_binprm
*bprm
)
609 int len
= strnlen(arg
, MAX_ARG_STRLEN
) + 1 /* terminating NUL */;
610 unsigned long pos
= bprm
->p
;
614 if (!valid_arg_len(bprm
, len
))
617 /* We're going to work our way backwards. */
620 if (IS_ENABLED(CONFIG_MMU
) && bprm
->p
< bprm
->argmin
)
624 unsigned int bytes_to_copy
= min_t(unsigned int, len
,
625 min_not_zero(offset_in_page(pos
), PAGE_SIZE
));
629 pos
-= bytes_to_copy
;
630 arg
-= bytes_to_copy
;
631 len
-= bytes_to_copy
;
633 page
= get_arg_page(bprm
, pos
, 1);
636 kaddr
= kmap_atomic(page
);
637 flush_arg_page(bprm
, pos
& PAGE_MASK
, page
);
638 memcpy(kaddr
+ offset_in_page(pos
), arg
, bytes_to_copy
);
639 flush_kernel_dcache_page(page
);
640 kunmap_atomic(kaddr
);
646 EXPORT_SYMBOL(copy_string_kernel
);
648 static int copy_strings_kernel(int argc
, const char *const *argv
,
649 struct linux_binprm
*bprm
)
652 int ret
= copy_string_kernel(argv
[argc
], bprm
);
655 if (fatal_signal_pending(current
))
656 return -ERESTARTNOHAND
;
665 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
666 * the binfmt code determines where the new stack should reside, we shift it to
667 * its final location. The process proceeds as follows:
669 * 1) Use shift to calculate the new vma endpoints.
670 * 2) Extend vma to cover both the old and new ranges. This ensures the
671 * arguments passed to subsequent functions are consistent.
672 * 3) Move vma's page tables to the new range.
673 * 4) Free up any cleared pgd range.
674 * 5) Shrink the vma to cover only the new range.
676 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
678 struct mm_struct
*mm
= vma
->vm_mm
;
679 unsigned long old_start
= vma
->vm_start
;
680 unsigned long old_end
= vma
->vm_end
;
681 unsigned long length
= old_end
- old_start
;
682 unsigned long new_start
= old_start
- shift
;
683 unsigned long new_end
= old_end
- shift
;
684 struct mmu_gather tlb
;
686 BUG_ON(new_start
> new_end
);
689 * ensure there are no vmas between where we want to go
692 if (vma
!= find_vma(mm
, new_start
))
696 * cover the whole range: [new_start, old_end)
698 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
702 * move the page tables downwards, on failure we rely on
703 * process cleanup to remove whatever mess we made.
705 if (length
!= move_page_tables(vma
, old_start
,
706 vma
, new_start
, length
, false))
710 tlb_gather_mmu(&tlb
, mm
, old_start
, old_end
);
711 if (new_end
> old_start
) {
713 * when the old and new regions overlap clear from new_end.
715 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
716 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
719 * otherwise, clean from old_start; this is done to not touch
720 * the address space in [new_end, old_start) some architectures
721 * have constraints on va-space that make this illegal (IA64) -
722 * for the others its just a little faster.
724 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
725 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
727 tlb_finish_mmu(&tlb
, old_start
, old_end
);
730 * Shrink the vma to just the new range. Always succeeds.
732 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
738 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
739 * the stack is optionally relocated, and some extra space is added.
741 int setup_arg_pages(struct linux_binprm
*bprm
,
742 unsigned long stack_top
,
743 int executable_stack
)
746 unsigned long stack_shift
;
747 struct mm_struct
*mm
= current
->mm
;
748 struct vm_area_struct
*vma
= bprm
->vma
;
749 struct vm_area_struct
*prev
= NULL
;
750 unsigned long vm_flags
;
751 unsigned long stack_base
;
752 unsigned long stack_size
;
753 unsigned long stack_expand
;
754 unsigned long rlim_stack
;
756 #ifdef CONFIG_STACK_GROWSUP
757 /* Limit stack size */
758 stack_base
= bprm
->rlim_stack
.rlim_max
;
759 if (stack_base
> STACK_SIZE_MAX
)
760 stack_base
= STACK_SIZE_MAX
;
762 /* Add space for stack randomization. */
763 stack_base
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
765 /* Make sure we didn't let the argument array grow too large. */
766 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
769 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
771 stack_shift
= vma
->vm_start
- stack_base
;
772 mm
->arg_start
= bprm
->p
- stack_shift
;
773 bprm
->p
= vma
->vm_end
- stack_shift
;
775 stack_top
= arch_align_stack(stack_top
);
776 stack_top
= PAGE_ALIGN(stack_top
);
778 if (unlikely(stack_top
< mmap_min_addr
) ||
779 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
782 stack_shift
= vma
->vm_end
- stack_top
;
784 bprm
->p
-= stack_shift
;
785 mm
->arg_start
= bprm
->p
;
789 bprm
->loader
-= stack_shift
;
790 bprm
->exec
-= stack_shift
;
792 if (mmap_write_lock_killable(mm
))
795 vm_flags
= VM_STACK_FLAGS
;
798 * Adjust stack execute permissions; explicitly enable for
799 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
800 * (arch default) otherwise.
802 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
804 else if (executable_stack
== EXSTACK_DISABLE_X
)
805 vm_flags
&= ~VM_EXEC
;
806 vm_flags
|= mm
->def_flags
;
807 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
809 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
815 if (unlikely(vm_flags
& VM_EXEC
)) {
816 pr_warn_once("process '%pD4' started with executable stack\n",
820 /* Move stack pages down in memory. */
822 ret
= shift_arg_pages(vma
, stack_shift
);
827 /* mprotect_fixup is overkill to remove the temporary stack flags */
828 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
830 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
831 stack_size
= vma
->vm_end
- vma
->vm_start
;
833 * Align this down to a page boundary as expand_stack
836 rlim_stack
= bprm
->rlim_stack
.rlim_cur
& PAGE_MASK
;
837 #ifdef CONFIG_STACK_GROWSUP
838 if (stack_size
+ stack_expand
> rlim_stack
)
839 stack_base
= vma
->vm_start
+ rlim_stack
;
841 stack_base
= vma
->vm_end
+ stack_expand
;
843 if (stack_size
+ stack_expand
> rlim_stack
)
844 stack_base
= vma
->vm_end
- rlim_stack
;
846 stack_base
= vma
->vm_start
- stack_expand
;
848 current
->mm
->start_stack
= bprm
->p
;
849 ret
= expand_stack(vma
, stack_base
);
854 mmap_write_unlock(mm
);
857 EXPORT_SYMBOL(setup_arg_pages
);
862 * Transfer the program arguments and environment from the holding pages
863 * onto the stack. The provided stack pointer is adjusted accordingly.
865 int transfer_args_to_stack(struct linux_binprm
*bprm
,
866 unsigned long *sp_location
)
868 unsigned long index
, stop
, sp
;
871 stop
= bprm
->p
>> PAGE_SHIFT
;
874 for (index
= MAX_ARG_PAGES
- 1; index
>= stop
; index
--) {
875 unsigned int offset
= index
== stop
? bprm
->p
& ~PAGE_MASK
: 0;
876 char *src
= kmap(bprm
->page
[index
]) + offset
;
877 sp
-= PAGE_SIZE
- offset
;
878 if (copy_to_user((void *) sp
, src
, PAGE_SIZE
- offset
) != 0)
880 kunmap(bprm
->page
[index
]);
890 EXPORT_SYMBOL(transfer_args_to_stack
);
892 #endif /* CONFIG_MMU */
894 static struct file
*do_open_execat(int fd
, struct filename
*name
, int flags
)
898 struct open_flags open_exec_flags
= {
899 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
900 .acc_mode
= MAY_EXEC
,
901 .intent
= LOOKUP_OPEN
,
902 .lookup_flags
= LOOKUP_FOLLOW
,
905 if ((flags
& ~(AT_SYMLINK_NOFOLLOW
| AT_EMPTY_PATH
)) != 0)
906 return ERR_PTR(-EINVAL
);
907 if (flags
& AT_SYMLINK_NOFOLLOW
)
908 open_exec_flags
.lookup_flags
&= ~LOOKUP_FOLLOW
;
909 if (flags
& AT_EMPTY_PATH
)
910 open_exec_flags
.lookup_flags
|= LOOKUP_EMPTY
;
912 file
= do_filp_open(fd
, name
, &open_exec_flags
);
917 * may_open() has already checked for this, so it should be
918 * impossible to trip now. But we need to be extra cautious
919 * and check again at the very end too.
922 if (WARN_ON_ONCE(!S_ISREG(file_inode(file
)->i_mode
) ||
923 path_noexec(&file
->f_path
)))
926 err
= deny_write_access(file
);
930 if (name
->name
[0] != '\0')
941 struct file
*open_exec(const char *name
)
943 struct filename
*filename
= getname_kernel(name
);
944 struct file
*f
= ERR_CAST(filename
);
946 if (!IS_ERR(filename
)) {
947 f
= do_open_execat(AT_FDCWD
, filename
, 0);
952 EXPORT_SYMBOL(open_exec
);
954 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
955 defined(CONFIG_BINFMT_ELF_FDPIC)
956 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
958 ssize_t res
= vfs_read(file
, (void __user
*)addr
, len
, &pos
);
960 flush_icache_user_range(addr
, addr
+ len
);
963 EXPORT_SYMBOL(read_code
);
967 * Maps the mm_struct mm into the current task struct.
968 * On success, this function returns with exec_update_lock
971 static int exec_mmap(struct mm_struct
*mm
)
973 struct task_struct
*tsk
;
974 struct mm_struct
*old_mm
, *active_mm
;
977 /* Notify parent that we're no longer interested in the old VM */
979 old_mm
= current
->mm
;
980 exec_mm_release(tsk
, old_mm
);
984 ret
= down_write_killable(&tsk
->signal
->exec_update_lock
);
990 * Make sure that if there is a core dump in progress
991 * for the old mm, we get out and die instead of going
992 * through with the exec. We must hold mmap_lock around
993 * checking core_state and changing tsk->mm.
995 mmap_read_lock(old_mm
);
996 if (unlikely(old_mm
->core_state
)) {
997 mmap_read_unlock(old_mm
);
998 up_write(&tsk
->signal
->exec_update_lock
);
1004 membarrier_exec_mmap(mm
);
1006 local_irq_disable();
1007 active_mm
= tsk
->active_mm
;
1008 tsk
->active_mm
= mm
;
1011 * This prevents preemption while active_mm is being loaded and
1012 * it and mm are being updated, which could cause problems for
1013 * lazy tlb mm refcounting when these are updated by context
1014 * switches. Not all architectures can handle irqs off over
1017 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM
))
1019 activate_mm(active_mm
, mm
);
1020 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM
))
1022 tsk
->mm
->vmacache_seqnum
= 0;
1023 vmacache_flush(tsk
);
1026 mmap_read_unlock(old_mm
);
1027 BUG_ON(active_mm
!= old_mm
);
1028 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
1029 mm_update_next_owner(old_mm
);
1037 static int de_thread(struct task_struct
*tsk
)
1039 struct signal_struct
*sig
= tsk
->signal
;
1040 struct sighand_struct
*oldsighand
= tsk
->sighand
;
1041 spinlock_t
*lock
= &oldsighand
->siglock
;
1043 if (thread_group_empty(tsk
))
1044 goto no_thread_group
;
1047 * Kill all other threads in the thread group.
1049 spin_lock_irq(lock
);
1050 if (signal_group_exit(sig
)) {
1052 * Another group action in progress, just
1053 * return so that the signal is processed.
1055 spin_unlock_irq(lock
);
1059 sig
->group_exit_task
= tsk
;
1060 sig
->notify_count
= zap_other_threads(tsk
);
1061 if (!thread_group_leader(tsk
))
1062 sig
->notify_count
--;
1064 while (sig
->notify_count
) {
1065 __set_current_state(TASK_KILLABLE
);
1066 spin_unlock_irq(lock
);
1068 if (__fatal_signal_pending(tsk
))
1070 spin_lock_irq(lock
);
1072 spin_unlock_irq(lock
);
1075 * At this point all other threads have exited, all we have to
1076 * do is to wait for the thread group leader to become inactive,
1077 * and to assume its PID:
1079 if (!thread_group_leader(tsk
)) {
1080 struct task_struct
*leader
= tsk
->group_leader
;
1083 cgroup_threadgroup_change_begin(tsk
);
1084 write_lock_irq(&tasklist_lock
);
1086 * Do this under tasklist_lock to ensure that
1087 * exit_notify() can't miss ->group_exit_task
1089 sig
->notify_count
= -1;
1090 if (likely(leader
->exit_state
))
1092 __set_current_state(TASK_KILLABLE
);
1093 write_unlock_irq(&tasklist_lock
);
1094 cgroup_threadgroup_change_end(tsk
);
1096 if (__fatal_signal_pending(tsk
))
1101 * The only record we have of the real-time age of a
1102 * process, regardless of execs it's done, is start_time.
1103 * All the past CPU time is accumulated in signal_struct
1104 * from sister threads now dead. But in this non-leader
1105 * exec, nothing survives from the original leader thread,
1106 * whose birth marks the true age of this process now.
1107 * When we take on its identity by switching to its PID, we
1108 * also take its birthdate (always earlier than our own).
1110 tsk
->start_time
= leader
->start_time
;
1111 tsk
->start_boottime
= leader
->start_boottime
;
1113 BUG_ON(!same_thread_group(leader
, tsk
));
1115 * An exec() starts a new thread group with the
1116 * TGID of the previous thread group. Rehash the
1117 * two threads with a switched PID, and release
1118 * the former thread group leader:
1121 /* Become a process group leader with the old leader's pid.
1122 * The old leader becomes a thread of the this thread group.
1124 exchange_tids(tsk
, leader
);
1125 transfer_pid(leader
, tsk
, PIDTYPE_TGID
);
1126 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
1127 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
1129 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
1130 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
1132 tsk
->group_leader
= tsk
;
1133 leader
->group_leader
= tsk
;
1135 tsk
->exit_signal
= SIGCHLD
;
1136 leader
->exit_signal
= -1;
1138 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
1139 leader
->exit_state
= EXIT_DEAD
;
1142 * We are going to release_task()->ptrace_unlink() silently,
1143 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1144 * the tracer wont't block again waiting for this thread.
1146 if (unlikely(leader
->ptrace
))
1147 __wake_up_parent(leader
, leader
->parent
);
1148 write_unlock_irq(&tasklist_lock
);
1149 cgroup_threadgroup_change_end(tsk
);
1151 release_task(leader
);
1154 sig
->group_exit_task
= NULL
;
1155 sig
->notify_count
= 0;
1158 /* we have changed execution domain */
1159 tsk
->exit_signal
= SIGCHLD
;
1161 BUG_ON(!thread_group_leader(tsk
));
1165 /* protects against exit_notify() and __exit_signal() */
1166 read_lock(&tasklist_lock
);
1167 sig
->group_exit_task
= NULL
;
1168 sig
->notify_count
= 0;
1169 read_unlock(&tasklist_lock
);
1175 * This function makes sure the current process has its own signal table,
1176 * so that flush_signal_handlers can later reset the handlers without
1177 * disturbing other processes. (Other processes might share the signal
1178 * table via the CLONE_SIGHAND option to clone().)
1180 static int unshare_sighand(struct task_struct
*me
)
1182 struct sighand_struct
*oldsighand
= me
->sighand
;
1184 if (refcount_read(&oldsighand
->count
) != 1) {
1185 struct sighand_struct
*newsighand
;
1187 * This ->sighand is shared with the CLONE_SIGHAND
1188 * but not CLONE_THREAD task, switch to the new one.
1190 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1194 refcount_set(&newsighand
->count
, 1);
1195 memcpy(newsighand
->action
, oldsighand
->action
,
1196 sizeof(newsighand
->action
));
1198 write_lock_irq(&tasklist_lock
);
1199 spin_lock(&oldsighand
->siglock
);
1200 rcu_assign_pointer(me
->sighand
, newsighand
);
1201 spin_unlock(&oldsighand
->siglock
);
1202 write_unlock_irq(&tasklist_lock
);
1204 __cleanup_sighand(oldsighand
);
1209 char *__get_task_comm(char *buf
, size_t buf_size
, struct task_struct
*tsk
)
1212 strncpy(buf
, tsk
->comm
, buf_size
);
1216 EXPORT_SYMBOL_GPL(__get_task_comm
);
1219 * These functions flushes out all traces of the currently running executable
1220 * so that a new one can be started
1223 void __set_task_comm(struct task_struct
*tsk
, const char *buf
, bool exec
)
1226 trace_task_rename(tsk
, buf
);
1227 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1229 perf_event_comm(tsk
, exec
);
1233 * Calling this is the point of no return. None of the failures will be
1234 * seen by userspace since either the process is already taking a fatal
1235 * signal (via de_thread() or coredump), or will have SEGV raised
1236 * (after exec_mmap()) by search_binary_handler (see below).
1238 int begin_new_exec(struct linux_binprm
* bprm
)
1240 struct task_struct
*me
= current
;
1243 /* Once we are committed compute the creds */
1244 retval
= bprm_creds_from_file(bprm
);
1249 * Ensure all future errors are fatal.
1251 bprm
->point_of_no_return
= true;
1254 * Make this the only thread in the thread group.
1256 retval
= de_thread(me
);
1261 * Must be called _before_ exec_mmap() as bprm->mm is
1262 * not visibile until then. This also enables the update
1265 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1267 /* If the binary is not readable then enforce mm->dumpable=0 */
1268 would_dump(bprm
, bprm
->file
);
1269 if (bprm
->have_execfd
)
1270 would_dump(bprm
, bprm
->executable
);
1273 * Release all of the old mmap stuff
1275 acct_arg_size(bprm
, 0);
1276 retval
= exec_mmap(bprm
->mm
);
1282 #ifdef CONFIG_POSIX_TIMERS
1283 exit_itimers(me
->signal
);
1284 flush_itimer_signals();
1288 * Make the signal table private.
1290 retval
= unshare_sighand(me
);
1295 * Ensure that the uaccess routines can actually operate on userspace
1298 force_uaccess_begin();
1300 me
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
|
1301 PF_NOFREEZE
| PF_NO_SETAFFINITY
);
1303 me
->personality
&= ~bprm
->per_clear
;
1306 * We have to apply CLOEXEC before we change whether the process is
1307 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1308 * trying to access the should-be-closed file descriptors of a process
1309 * undergoing exec(2).
1311 do_close_on_exec(me
->files
);
1313 if (bprm
->secureexec
) {
1314 /* Make sure parent cannot signal privileged process. */
1315 me
->pdeath_signal
= 0;
1318 * For secureexec, reset the stack limit to sane default to
1319 * avoid bad behavior from the prior rlimits. This has to
1320 * happen before arch_pick_mmap_layout(), which examines
1321 * RLIMIT_STACK, but after the point of no return to avoid
1322 * needing to clean up the change on failure.
1324 if (bprm
->rlim_stack
.rlim_cur
> _STK_LIM
)
1325 bprm
->rlim_stack
.rlim_cur
= _STK_LIM
;
1328 me
->sas_ss_sp
= me
->sas_ss_size
= 0;
1331 * Figure out dumpability. Note that this checking only of current
1332 * is wrong, but userspace depends on it. This should be testing
1333 * bprm->secureexec instead.
1335 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
||
1336 !(uid_eq(current_euid(), current_uid()) &&
1337 gid_eq(current_egid(), current_gid())))
1338 set_dumpable(current
->mm
, suid_dumpable
);
1340 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1343 __set_task_comm(me
, kbasename(bprm
->filename
), true);
1345 /* An exec changes our domain. We are no longer part of the thread
1347 WRITE_ONCE(me
->self_exec_id
, me
->self_exec_id
+ 1);
1348 flush_signal_handlers(me
, 0);
1351 * install the new credentials for this executable
1353 security_bprm_committing_creds(bprm
);
1355 commit_creds(bprm
->cred
);
1359 * Disable monitoring for regular users
1360 * when executing setuid binaries. Must
1361 * wait until new credentials are committed
1362 * by commit_creds() above
1364 if (get_dumpable(me
->mm
) != SUID_DUMP_USER
)
1365 perf_event_exit_task(me
);
1367 * cred_guard_mutex must be held at least to this point to prevent
1368 * ptrace_attach() from altering our determination of the task's
1369 * credentials; any time after this it may be unlocked.
1371 security_bprm_committed_creds(bprm
);
1373 /* Pass the opened binary to the interpreter. */
1374 if (bprm
->have_execfd
) {
1375 retval
= get_unused_fd_flags(0);
1378 fd_install(retval
, bprm
->executable
);
1379 bprm
->executable
= NULL
;
1380 bprm
->execfd
= retval
;
1385 up_write(&me
->signal
->exec_update_lock
);
1389 EXPORT_SYMBOL(begin_new_exec
);
1391 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1393 struct inode
*inode
= file_inode(file
);
1394 if (inode_permission(inode
, MAY_READ
) < 0) {
1395 struct user_namespace
*old
, *user_ns
;
1396 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1398 /* Ensure mm->user_ns contains the executable */
1399 user_ns
= old
= bprm
->mm
->user_ns
;
1400 while ((user_ns
!= &init_user_ns
) &&
1401 !privileged_wrt_inode_uidgid(user_ns
, inode
))
1402 user_ns
= user_ns
->parent
;
1404 if (old
!= user_ns
) {
1405 bprm
->mm
->user_ns
= get_user_ns(user_ns
);
1410 EXPORT_SYMBOL(would_dump
);
1412 void setup_new_exec(struct linux_binprm
* bprm
)
1414 /* Setup things that can depend upon the personality */
1415 struct task_struct
*me
= current
;
1417 arch_pick_mmap_layout(me
->mm
, &bprm
->rlim_stack
);
1419 arch_setup_new_exec();
1421 /* Set the new mm task size. We have to do that late because it may
1422 * depend on TIF_32BIT which is only updated in flush_thread() on
1423 * some architectures like powerpc
1425 me
->mm
->task_size
= TASK_SIZE
;
1426 up_write(&me
->signal
->exec_update_lock
);
1427 mutex_unlock(&me
->signal
->cred_guard_mutex
);
1429 EXPORT_SYMBOL(setup_new_exec
);
1431 /* Runs immediately before start_thread() takes over. */
1432 void finalize_exec(struct linux_binprm
*bprm
)
1434 /* Store any stack rlimit changes before starting thread. */
1435 task_lock(current
->group_leader
);
1436 current
->signal
->rlim
[RLIMIT_STACK
] = bprm
->rlim_stack
;
1437 task_unlock(current
->group_leader
);
1439 EXPORT_SYMBOL(finalize_exec
);
1442 * Prepare credentials and lock ->cred_guard_mutex.
1443 * setup_new_exec() commits the new creds and drops the lock.
1444 * Or, if exec fails before, free_bprm() should release ->cred and
1447 static int prepare_bprm_creds(struct linux_binprm
*bprm
)
1449 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1450 return -ERESTARTNOINTR
;
1452 bprm
->cred
= prepare_exec_creds();
1453 if (likely(bprm
->cred
))
1456 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1460 static void free_bprm(struct linux_binprm
*bprm
)
1463 acct_arg_size(bprm
, 0);
1466 free_arg_pages(bprm
);
1468 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1469 abort_creds(bprm
->cred
);
1472 allow_write_access(bprm
->file
);
1475 if (bprm
->executable
)
1476 fput(bprm
->executable
);
1477 /* If a binfmt changed the interp, free it. */
1478 if (bprm
->interp
!= bprm
->filename
)
1479 kfree(bprm
->interp
);
1480 kfree(bprm
->fdpath
);
1484 static struct linux_binprm
*alloc_bprm(int fd
, struct filename
*filename
)
1486 struct linux_binprm
*bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1487 int retval
= -ENOMEM
;
1491 if (fd
== AT_FDCWD
|| filename
->name
[0] == '/') {
1492 bprm
->filename
= filename
->name
;
1494 if (filename
->name
[0] == '\0')
1495 bprm
->fdpath
= kasprintf(GFP_KERNEL
, "/dev/fd/%d", fd
);
1497 bprm
->fdpath
= kasprintf(GFP_KERNEL
, "/dev/fd/%d/%s",
1498 fd
, filename
->name
);
1502 bprm
->filename
= bprm
->fdpath
;
1504 bprm
->interp
= bprm
->filename
;
1506 retval
= bprm_mm_init(bprm
);
1514 return ERR_PTR(retval
);
1517 int bprm_change_interp(const char *interp
, struct linux_binprm
*bprm
)
1519 /* If a binfmt changed the interp, free it first. */
1520 if (bprm
->interp
!= bprm
->filename
)
1521 kfree(bprm
->interp
);
1522 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1527 EXPORT_SYMBOL(bprm_change_interp
);
1530 * determine how safe it is to execute the proposed program
1531 * - the caller must hold ->cred_guard_mutex to protect against
1532 * PTRACE_ATTACH or seccomp thread-sync
1534 static void check_unsafe_exec(struct linux_binprm
*bprm
)
1536 struct task_struct
*p
= current
, *t
;
1540 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1543 * This isn't strictly necessary, but it makes it harder for LSMs to
1546 if (task_no_new_privs(current
))
1547 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1551 spin_lock(&p
->fs
->lock
);
1553 while_each_thread(p
, t
) {
1559 if (p
->fs
->users
> n_fs
)
1560 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1563 spin_unlock(&p
->fs
->lock
);
1566 static void bprm_fill_uid(struct linux_binprm
*bprm
, struct file
*file
)
1568 /* Handle suid and sgid on files */
1569 struct inode
*inode
;
1574 if (!mnt_may_suid(file
->f_path
.mnt
))
1577 if (task_no_new_privs(current
))
1580 inode
= file
->f_path
.dentry
->d_inode
;
1581 mode
= READ_ONCE(inode
->i_mode
);
1582 if (!(mode
& (S_ISUID
|S_ISGID
)))
1585 /* Be careful if suid/sgid is set */
1588 /* reload atomically mode/uid/gid now that lock held */
1589 mode
= inode
->i_mode
;
1592 inode_unlock(inode
);
1594 /* We ignore suid/sgid if there are no mappings for them in the ns */
1595 if (!kuid_has_mapping(bprm
->cred
->user_ns
, uid
) ||
1596 !kgid_has_mapping(bprm
->cred
->user_ns
, gid
))
1599 if (mode
& S_ISUID
) {
1600 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1601 bprm
->cred
->euid
= uid
;
1604 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1605 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1606 bprm
->cred
->egid
= gid
;
1611 * Compute brpm->cred based upon the final binary.
1613 static int bprm_creds_from_file(struct linux_binprm
*bprm
)
1615 /* Compute creds based on which file? */
1616 struct file
*file
= bprm
->execfd_creds
? bprm
->executable
: bprm
->file
;
1618 bprm_fill_uid(bprm
, file
);
1619 return security_bprm_creds_from_file(bprm
, file
);
1623 * Fill the binprm structure from the inode.
1624 * Read the first BINPRM_BUF_SIZE bytes
1626 * This may be called multiple times for binary chains (scripts for example).
1628 static int prepare_binprm(struct linux_binprm
*bprm
)
1632 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1633 return kernel_read(bprm
->file
, bprm
->buf
, BINPRM_BUF_SIZE
, &pos
);
1637 * Arguments are '\0' separated strings found at the location bprm->p
1638 * points to; chop off the first by relocating brpm->p to right after
1639 * the first '\0' encountered.
1641 int remove_arg_zero(struct linux_binprm
*bprm
)
1644 unsigned long offset
;
1652 offset
= bprm
->p
& ~PAGE_MASK
;
1653 page
= get_arg_page(bprm
, bprm
->p
, 0);
1658 kaddr
= kmap_atomic(page
);
1660 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1661 offset
++, bprm
->p
++)
1664 kunmap_atomic(kaddr
);
1666 } while (offset
== PAGE_SIZE
);
1675 EXPORT_SYMBOL(remove_arg_zero
);
1677 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1679 * cycle the list of binary formats handler, until one recognizes the image
1681 static int search_binary_handler(struct linux_binprm
*bprm
)
1683 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1684 struct linux_binfmt
*fmt
;
1687 retval
= prepare_binprm(bprm
);
1691 retval
= security_bprm_check(bprm
);
1697 read_lock(&binfmt_lock
);
1698 list_for_each_entry(fmt
, &formats
, lh
) {
1699 if (!try_module_get(fmt
->module
))
1701 read_unlock(&binfmt_lock
);
1703 retval
= fmt
->load_binary(bprm
);
1705 read_lock(&binfmt_lock
);
1707 if (bprm
->point_of_no_return
|| (retval
!= -ENOEXEC
)) {
1708 read_unlock(&binfmt_lock
);
1712 read_unlock(&binfmt_lock
);
1715 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1716 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1718 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1727 static int exec_binprm(struct linux_binprm
*bprm
)
1729 pid_t old_pid
, old_vpid
;
1732 /* Need to fetch pid before load_binary changes it */
1733 old_pid
= current
->pid
;
1735 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1738 /* This allows 4 levels of binfmt rewrites before failing hard. */
1739 for (depth
= 0;; depth
++) {
1744 ret
= search_binary_handler(bprm
);
1747 if (!bprm
->interpreter
)
1751 bprm
->file
= bprm
->interpreter
;
1752 bprm
->interpreter
= NULL
;
1754 allow_write_access(exec
);
1755 if (unlikely(bprm
->have_execfd
)) {
1756 if (bprm
->executable
) {
1760 bprm
->executable
= exec
;
1766 trace_sched_process_exec(current
, old_pid
, bprm
);
1767 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1768 proc_exec_connector(current
);
1773 * sys_execve() executes a new program.
1775 static int bprm_execve(struct linux_binprm
*bprm
,
1776 int fd
, struct filename
*filename
, int flags
)
1779 struct files_struct
*displaced
;
1783 * Cancel any io_uring activity across execve
1785 io_uring_task_cancel();
1787 retval
= unshare_files(&displaced
);
1791 retval
= prepare_bprm_creds(bprm
);
1795 check_unsafe_exec(bprm
);
1796 current
->in_execve
= 1;
1798 file
= do_open_execat(fd
, filename
, flags
);
1799 retval
= PTR_ERR(file
);
1807 * Record that a name derived from an O_CLOEXEC fd will be
1808 * inaccessible after exec. Relies on having exclusive access to
1809 * current->files (due to unshare_files above).
1812 close_on_exec(fd
, rcu_dereference_raw(current
->files
->fdt
)))
1813 bprm
->interp_flags
|= BINPRM_FLAGS_PATH_INACCESSIBLE
;
1815 /* Set the unchanging part of bprm->cred */
1816 retval
= security_bprm_creds_for_exec(bprm
);
1820 retval
= exec_binprm(bprm
);
1824 /* execve succeeded */
1825 current
->fs
->in_exec
= 0;
1826 current
->in_execve
= 0;
1827 rseq_execve(current
);
1828 acct_update_integrals(current
);
1829 task_numa_free(current
, false);
1831 put_files_struct(displaced
);
1836 * If past the point of no return ensure the the code never
1837 * returns to the userspace process. Use an existing fatal
1838 * signal if present otherwise terminate the process with
1841 if (bprm
->point_of_no_return
&& !fatal_signal_pending(current
))
1842 force_sigsegv(SIGSEGV
);
1845 current
->fs
->in_exec
= 0;
1846 current
->in_execve
= 0;
1850 reset_files_struct(displaced
);
1855 static int do_execveat_common(int fd
, struct filename
*filename
,
1856 struct user_arg_ptr argv
,
1857 struct user_arg_ptr envp
,
1860 struct linux_binprm
*bprm
;
1863 if (IS_ERR(filename
))
1864 return PTR_ERR(filename
);
1867 * We move the actual failure in case of RLIMIT_NPROC excess from
1868 * set*uid() to execve() because too many poorly written programs
1869 * don't check setuid() return code. Here we additionally recheck
1870 * whether NPROC limit is still exceeded.
1872 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1873 atomic_read(¤t_user()->processes
) > rlimit(RLIMIT_NPROC
)) {
1878 /* We're below the limit (still or again), so we don't want to make
1879 * further execve() calls fail. */
1880 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1882 bprm
= alloc_bprm(fd
, filename
);
1884 retval
= PTR_ERR(bprm
);
1888 retval
= count(argv
, MAX_ARG_STRINGS
);
1891 bprm
->argc
= retval
;
1893 retval
= count(envp
, MAX_ARG_STRINGS
);
1896 bprm
->envc
= retval
;
1898 retval
= bprm_stack_limits(bprm
);
1902 retval
= copy_string_kernel(bprm
->filename
, bprm
);
1905 bprm
->exec
= bprm
->p
;
1907 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1911 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1915 retval
= bprm_execve(bprm
, fd
, filename
, flags
);
1924 int kernel_execve(const char *kernel_filename
,
1925 const char *const *argv
, const char *const *envp
)
1927 struct filename
*filename
;
1928 struct linux_binprm
*bprm
;
1932 filename
= getname_kernel(kernel_filename
);
1933 if (IS_ERR(filename
))
1934 return PTR_ERR(filename
);
1936 bprm
= alloc_bprm(fd
, filename
);
1938 retval
= PTR_ERR(bprm
);
1942 retval
= count_strings_kernel(argv
);
1945 bprm
->argc
= retval
;
1947 retval
= count_strings_kernel(envp
);
1950 bprm
->envc
= retval
;
1952 retval
= bprm_stack_limits(bprm
);
1956 retval
= copy_string_kernel(bprm
->filename
, bprm
);
1959 bprm
->exec
= bprm
->p
;
1961 retval
= copy_strings_kernel(bprm
->envc
, envp
, bprm
);
1965 retval
= copy_strings_kernel(bprm
->argc
, argv
, bprm
);
1969 retval
= bprm_execve(bprm
, fd
, filename
, 0);
1977 static int do_execve(struct filename
*filename
,
1978 const char __user
*const __user
*__argv
,
1979 const char __user
*const __user
*__envp
)
1981 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1982 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1983 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1986 static int do_execveat(int fd
, struct filename
*filename
,
1987 const char __user
*const __user
*__argv
,
1988 const char __user
*const __user
*__envp
,
1991 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1992 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1994 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1997 #ifdef CONFIG_COMPAT
1998 static int compat_do_execve(struct filename
*filename
,
1999 const compat_uptr_t __user
*__argv
,
2000 const compat_uptr_t __user
*__envp
)
2002 struct user_arg_ptr argv
= {
2004 .ptr
.compat
= __argv
,
2006 struct user_arg_ptr envp
= {
2008 .ptr
.compat
= __envp
,
2010 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
2013 static int compat_do_execveat(int fd
, struct filename
*filename
,
2014 const compat_uptr_t __user
*__argv
,
2015 const compat_uptr_t __user
*__envp
,
2018 struct user_arg_ptr argv
= {
2020 .ptr
.compat
= __argv
,
2022 struct user_arg_ptr envp
= {
2024 .ptr
.compat
= __envp
,
2026 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
2030 void set_binfmt(struct linux_binfmt
*new)
2032 struct mm_struct
*mm
= current
->mm
;
2035 module_put(mm
->binfmt
->module
);
2039 __module_get(new->module
);
2041 EXPORT_SYMBOL(set_binfmt
);
2044 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2046 void set_dumpable(struct mm_struct
*mm
, int value
)
2048 if (WARN_ON((unsigned)value
> SUID_DUMP_ROOT
))
2051 set_mask_bits(&mm
->flags
, MMF_DUMPABLE_MASK
, value
);
2054 SYSCALL_DEFINE3(execve
,
2055 const char __user
*, filename
,
2056 const char __user
*const __user
*, argv
,
2057 const char __user
*const __user
*, envp
)
2059 return do_execve(getname(filename
), argv
, envp
);
2062 SYSCALL_DEFINE5(execveat
,
2063 int, fd
, const char __user
*, filename
,
2064 const char __user
*const __user
*, argv
,
2065 const char __user
*const __user
*, envp
,
2068 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
2070 return do_execveat(fd
,
2071 getname_flags(filename
, lookup_flags
, NULL
),
2075 #ifdef CONFIG_COMPAT
2076 COMPAT_SYSCALL_DEFINE3(execve
, const char __user
*, filename
,
2077 const compat_uptr_t __user
*, argv
,
2078 const compat_uptr_t __user
*, envp
)
2080 return compat_do_execve(getname(filename
), argv
, envp
);
2083 COMPAT_SYSCALL_DEFINE5(execveat
, int, fd
,
2084 const char __user
*, filename
,
2085 const compat_uptr_t __user
*, argv
,
2086 const compat_uptr_t __user
*, envp
,
2089 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
2091 return compat_do_execveat(fd
,
2092 getname_flags(filename
, lookup_flags
, NULL
),