1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
21 #include <trace/events/f2fs.h>
23 static struct kmem_cache
*ino_entry_slab
;
24 struct kmem_cache
*f2fs_inode_entry_slab
;
26 void f2fs_stop_checkpoint(struct f2fs_sb_info
*sbi
, bool end_io
)
28 f2fs_build_fault_attr(sbi
, 0, 0);
29 set_ckpt_flags(sbi
, CP_ERROR_FLAG
);
31 f2fs_flush_merged_writes(sbi
);
35 * We guarantee no failure on the returned page.
37 struct page
*f2fs_grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
39 struct address_space
*mapping
= META_MAPPING(sbi
);
40 struct page
*page
= NULL
;
42 page
= f2fs_grab_cache_page(mapping
, index
, false);
47 f2fs_wait_on_page_writeback(page
, META
, true, true);
48 if (!PageUptodate(page
))
49 SetPageUptodate(page
);
53 static struct page
*__get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
,
56 struct address_space
*mapping
= META_MAPPING(sbi
);
58 struct f2fs_io_info fio
= {
62 .op_flags
= REQ_META
| REQ_PRIO
,
65 .encrypted_page
= NULL
,
70 if (unlikely(!is_meta
))
71 fio
.op_flags
&= ~REQ_META
;
73 page
= f2fs_grab_cache_page(mapping
, index
, false);
78 if (PageUptodate(page
))
83 err
= f2fs_submit_page_bio(&fio
);
85 f2fs_put_page(page
, 1);
89 f2fs_update_iostat(sbi
, FS_META_READ_IO
, F2FS_BLKSIZE
);
92 if (unlikely(page
->mapping
!= mapping
)) {
93 f2fs_put_page(page
, 1);
97 if (unlikely(!PageUptodate(page
))) {
98 f2fs_put_page(page
, 1);
105 struct page
*f2fs_get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
107 return __get_meta_page(sbi
, index
, true);
110 struct page
*f2fs_get_meta_page_retry(struct f2fs_sb_info
*sbi
, pgoff_t index
)
116 page
= __get_meta_page(sbi
, index
, true);
118 if (PTR_ERR(page
) == -EIO
&&
119 ++count
<= DEFAULT_RETRY_IO_COUNT
)
121 f2fs_stop_checkpoint(sbi
, false);
127 struct page
*f2fs_get_tmp_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
129 return __get_meta_page(sbi
, index
, false);
132 static bool __is_bitmap_valid(struct f2fs_sb_info
*sbi
, block_t blkaddr
,
135 struct seg_entry
*se
;
136 unsigned int segno
, offset
;
139 if (type
!= DATA_GENERIC_ENHANCE
&& type
!= DATA_GENERIC_ENHANCE_READ
)
142 segno
= GET_SEGNO(sbi
, blkaddr
);
143 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
144 se
= get_seg_entry(sbi
, segno
);
146 exist
= f2fs_test_bit(offset
, se
->cur_valid_map
);
147 if (!exist
&& type
== DATA_GENERIC_ENHANCE
) {
148 f2fs_err(sbi
, "Inconsistent error blkaddr:%u, sit bitmap:%d",
150 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
156 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info
*sbi
,
157 block_t blkaddr
, int type
)
163 if (unlikely(blkaddr
>= SIT_BLK_CNT(sbi
)))
167 if (unlikely(blkaddr
>= MAIN_BLKADDR(sbi
) ||
168 blkaddr
< SM_I(sbi
)->ssa_blkaddr
))
172 if (unlikely(blkaddr
>= SIT_I(sbi
)->sit_base_addr
||
173 blkaddr
< __start_cp_addr(sbi
)))
177 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
178 blkaddr
< MAIN_BLKADDR(sbi
)))
182 case DATA_GENERIC_ENHANCE
:
183 case DATA_GENERIC_ENHANCE_READ
:
184 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
185 blkaddr
< MAIN_BLKADDR(sbi
))) {
186 f2fs_warn(sbi
, "access invalid blkaddr:%u",
188 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
192 return __is_bitmap_valid(sbi
, blkaddr
, type
);
196 if (unlikely(blkaddr
< SEG0_BLKADDR(sbi
) ||
197 blkaddr
>= MAIN_BLKADDR(sbi
)))
208 * Readahead CP/NAT/SIT/SSA/POR pages
210 int f2fs_ra_meta_pages(struct f2fs_sb_info
*sbi
, block_t start
, int nrpages
,
214 block_t blkno
= start
;
215 struct f2fs_io_info fio
= {
219 .op_flags
= sync
? (REQ_META
| REQ_PRIO
) : REQ_RAHEAD
,
220 .encrypted_page
= NULL
,
222 .is_por
= (type
== META_POR
),
224 struct blk_plug plug
;
227 if (unlikely(type
== META_POR
))
228 fio
.op_flags
&= ~REQ_META
;
230 blk_start_plug(&plug
);
231 for (; nrpages
-- > 0; blkno
++) {
233 if (!f2fs_is_valid_blkaddr(sbi
, blkno
, type
))
238 if (unlikely(blkno
>=
239 NAT_BLOCK_OFFSET(NM_I(sbi
)->max_nid
)))
241 /* get nat block addr */
242 fio
.new_blkaddr
= current_nat_addr(sbi
,
243 blkno
* NAT_ENTRY_PER_BLOCK
);
246 if (unlikely(blkno
>= TOTAL_SEGS(sbi
)))
248 /* get sit block addr */
249 fio
.new_blkaddr
= current_sit_addr(sbi
,
250 blkno
* SIT_ENTRY_PER_BLOCK
);
255 fio
.new_blkaddr
= blkno
;
261 page
= f2fs_grab_cache_page(META_MAPPING(sbi
),
262 fio
.new_blkaddr
, false);
265 if (PageUptodate(page
)) {
266 f2fs_put_page(page
, 1);
271 err
= f2fs_submit_page_bio(&fio
);
272 f2fs_put_page(page
, err
? 1 : 0);
275 f2fs_update_iostat(sbi
, FS_META_READ_IO
, F2FS_BLKSIZE
);
278 blk_finish_plug(&plug
);
279 return blkno
- start
;
282 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info
*sbi
, pgoff_t index
)
285 bool readahead
= false;
287 page
= find_get_page(META_MAPPING(sbi
), index
);
288 if (!page
|| !PageUptodate(page
))
290 f2fs_put_page(page
, 0);
293 f2fs_ra_meta_pages(sbi
, index
, BIO_MAX_PAGES
, META_POR
, true);
296 static int __f2fs_write_meta_page(struct page
*page
,
297 struct writeback_control
*wbc
,
298 enum iostat_type io_type
)
300 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
302 trace_f2fs_writepage(page
, META
);
304 if (unlikely(f2fs_cp_error(sbi
)))
306 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
308 if (wbc
->for_reclaim
&& page
->index
< GET_SUM_BLOCK(sbi
, 0))
311 f2fs_do_write_meta_page(sbi
, page
, io_type
);
312 dec_page_count(sbi
, F2FS_DIRTY_META
);
314 if (wbc
->for_reclaim
)
315 f2fs_submit_merged_write_cond(sbi
, NULL
, page
, 0, META
);
319 if (unlikely(f2fs_cp_error(sbi
)))
320 f2fs_submit_merged_write(sbi
, META
);
325 redirty_page_for_writepage(wbc
, page
);
326 return AOP_WRITEPAGE_ACTIVATE
;
329 static int f2fs_write_meta_page(struct page
*page
,
330 struct writeback_control
*wbc
)
332 return __f2fs_write_meta_page(page
, wbc
, FS_META_IO
);
335 static int f2fs_write_meta_pages(struct address_space
*mapping
,
336 struct writeback_control
*wbc
)
338 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
341 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
344 /* collect a number of dirty meta pages and write together */
345 if (wbc
->sync_mode
!= WB_SYNC_ALL
&&
346 get_pages(sbi
, F2FS_DIRTY_META
) <
347 nr_pages_to_skip(sbi
, META
))
350 /* if locked failed, cp will flush dirty pages instead */
351 if (!mutex_trylock(&sbi
->cp_mutex
))
354 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
355 diff
= nr_pages_to_write(sbi
, META
, wbc
);
356 written
= f2fs_sync_meta_pages(sbi
, META
, wbc
->nr_to_write
, FS_META_IO
);
357 mutex_unlock(&sbi
->cp_mutex
);
358 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- written
- diff
);
362 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_META
);
363 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
367 long f2fs_sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
368 long nr_to_write
, enum iostat_type io_type
)
370 struct address_space
*mapping
= META_MAPPING(sbi
);
371 pgoff_t index
= 0, prev
= ULONG_MAX
;
375 struct writeback_control wbc
= {
378 struct blk_plug plug
;
382 blk_start_plug(&plug
);
384 while ((nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
385 PAGECACHE_TAG_DIRTY
))) {
388 for (i
= 0; i
< nr_pages
; i
++) {
389 struct page
*page
= pvec
.pages
[i
];
391 if (prev
== ULONG_MAX
)
392 prev
= page
->index
- 1;
393 if (nr_to_write
!= LONG_MAX
&& page
->index
!= prev
+ 1) {
394 pagevec_release(&pvec
);
400 if (unlikely(page
->mapping
!= mapping
)) {
405 if (!PageDirty(page
)) {
406 /* someone wrote it for us */
407 goto continue_unlock
;
410 f2fs_wait_on_page_writeback(page
, META
, true, true);
412 if (!clear_page_dirty_for_io(page
))
413 goto continue_unlock
;
415 if (__f2fs_write_meta_page(page
, &wbc
, io_type
)) {
421 if (unlikely(nwritten
>= nr_to_write
))
424 pagevec_release(&pvec
);
429 f2fs_submit_merged_write(sbi
, type
);
431 blk_finish_plug(&plug
);
436 static int f2fs_set_meta_page_dirty(struct page
*page
)
438 trace_f2fs_set_page_dirty(page
, META
);
440 if (!PageUptodate(page
))
441 SetPageUptodate(page
);
442 if (!PageDirty(page
)) {
443 __set_page_dirty_nobuffers(page
);
444 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_META
);
445 f2fs_set_page_private(page
, 0);
446 f2fs_trace_pid(page
);
452 const struct address_space_operations f2fs_meta_aops
= {
453 .writepage
= f2fs_write_meta_page
,
454 .writepages
= f2fs_write_meta_pages
,
455 .set_page_dirty
= f2fs_set_meta_page_dirty
,
456 .invalidatepage
= f2fs_invalidate_page
,
457 .releasepage
= f2fs_release_page
,
458 #ifdef CONFIG_MIGRATION
459 .migratepage
= f2fs_migrate_page
,
463 static void __add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
,
464 unsigned int devidx
, int type
)
466 struct inode_management
*im
= &sbi
->im
[type
];
467 struct ino_entry
*e
, *tmp
;
469 tmp
= f2fs_kmem_cache_alloc(ino_entry_slab
, GFP_NOFS
);
471 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
473 spin_lock(&im
->ino_lock
);
474 e
= radix_tree_lookup(&im
->ino_root
, ino
);
477 if (unlikely(radix_tree_insert(&im
->ino_root
, ino
, e
)))
480 memset(e
, 0, sizeof(struct ino_entry
));
483 list_add_tail(&e
->list
, &im
->ino_list
);
484 if (type
!= ORPHAN_INO
)
488 if (type
== FLUSH_INO
)
489 f2fs_set_bit(devidx
, (char *)&e
->dirty_device
);
491 spin_unlock(&im
->ino_lock
);
492 radix_tree_preload_end();
495 kmem_cache_free(ino_entry_slab
, tmp
);
498 static void __remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
500 struct inode_management
*im
= &sbi
->im
[type
];
503 spin_lock(&im
->ino_lock
);
504 e
= radix_tree_lookup(&im
->ino_root
, ino
);
507 radix_tree_delete(&im
->ino_root
, ino
);
509 spin_unlock(&im
->ino_lock
);
510 kmem_cache_free(ino_entry_slab
, e
);
513 spin_unlock(&im
->ino_lock
);
516 void f2fs_add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
518 /* add new dirty ino entry into list */
519 __add_ino_entry(sbi
, ino
, 0, type
);
522 void f2fs_remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
524 /* remove dirty ino entry from list */
525 __remove_ino_entry(sbi
, ino
, type
);
528 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
529 bool f2fs_exist_written_data(struct f2fs_sb_info
*sbi
, nid_t ino
, int mode
)
531 struct inode_management
*im
= &sbi
->im
[mode
];
534 spin_lock(&im
->ino_lock
);
535 e
= radix_tree_lookup(&im
->ino_root
, ino
);
536 spin_unlock(&im
->ino_lock
);
537 return e
? true : false;
540 void f2fs_release_ino_entry(struct f2fs_sb_info
*sbi
, bool all
)
542 struct ino_entry
*e
, *tmp
;
545 for (i
= all
? ORPHAN_INO
: APPEND_INO
; i
< MAX_INO_ENTRY
; i
++) {
546 struct inode_management
*im
= &sbi
->im
[i
];
548 spin_lock(&im
->ino_lock
);
549 list_for_each_entry_safe(e
, tmp
, &im
->ino_list
, list
) {
551 radix_tree_delete(&im
->ino_root
, e
->ino
);
552 kmem_cache_free(ino_entry_slab
, e
);
555 spin_unlock(&im
->ino_lock
);
559 void f2fs_set_dirty_device(struct f2fs_sb_info
*sbi
, nid_t ino
,
560 unsigned int devidx
, int type
)
562 __add_ino_entry(sbi
, ino
, devidx
, type
);
565 bool f2fs_is_dirty_device(struct f2fs_sb_info
*sbi
, nid_t ino
,
566 unsigned int devidx
, int type
)
568 struct inode_management
*im
= &sbi
->im
[type
];
570 bool is_dirty
= false;
572 spin_lock(&im
->ino_lock
);
573 e
= radix_tree_lookup(&im
->ino_root
, ino
);
574 if (e
&& f2fs_test_bit(devidx
, (char *)&e
->dirty_device
))
576 spin_unlock(&im
->ino_lock
);
580 int f2fs_acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
582 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
585 spin_lock(&im
->ino_lock
);
587 if (time_to_inject(sbi
, FAULT_ORPHAN
)) {
588 spin_unlock(&im
->ino_lock
);
589 f2fs_show_injection_info(sbi
, FAULT_ORPHAN
);
593 if (unlikely(im
->ino_num
>= sbi
->max_orphans
))
597 spin_unlock(&im
->ino_lock
);
602 void f2fs_release_orphan_inode(struct f2fs_sb_info
*sbi
)
604 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
606 spin_lock(&im
->ino_lock
);
607 f2fs_bug_on(sbi
, im
->ino_num
== 0);
609 spin_unlock(&im
->ino_lock
);
612 void f2fs_add_orphan_inode(struct inode
*inode
)
614 /* add new orphan ino entry into list */
615 __add_ino_entry(F2FS_I_SB(inode
), inode
->i_ino
, 0, ORPHAN_INO
);
616 f2fs_update_inode_page(inode
);
619 void f2fs_remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
621 /* remove orphan entry from orphan list */
622 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
625 static int recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
631 inode
= f2fs_iget_retry(sbi
->sb
, ino
);
634 * there should be a bug that we can't find the entry
637 f2fs_bug_on(sbi
, PTR_ERR(inode
) == -ENOENT
);
638 return PTR_ERR(inode
);
641 err
= dquot_initialize(inode
);
649 /* truncate all the data during iput */
652 err
= f2fs_get_node_info(sbi
, ino
, &ni
);
656 /* ENOMEM was fully retried in f2fs_evict_inode. */
657 if (ni
.blk_addr
!= NULL_ADDR
) {
664 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
665 f2fs_warn(sbi
, "%s: orphan failed (ino=%x), run fsck to fix.",
670 int f2fs_recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
672 block_t start_blk
, orphan_blocks
, i
, j
;
673 unsigned int s_flags
= sbi
->sb
->s_flags
;
679 if (!is_set_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
))
682 if (bdev_read_only(sbi
->sb
->s_bdev
)) {
683 f2fs_info(sbi
, "write access unavailable, skipping orphan cleanup");
687 if (s_flags
& SB_RDONLY
) {
688 f2fs_info(sbi
, "orphan cleanup on readonly fs");
689 sbi
->sb
->s_flags
&= ~SB_RDONLY
;
693 /* Needed for iput() to work correctly and not trash data */
694 sbi
->sb
->s_flags
|= SB_ACTIVE
;
697 * Turn on quotas which were not enabled for read-only mounts if
698 * filesystem has quota feature, so that they are updated correctly.
700 quota_enabled
= f2fs_enable_quota_files(sbi
, s_flags
& SB_RDONLY
);
703 start_blk
= __start_cp_addr(sbi
) + 1 + __cp_payload(sbi
);
704 orphan_blocks
= __start_sum_addr(sbi
) - 1 - __cp_payload(sbi
);
706 f2fs_ra_meta_pages(sbi
, start_blk
, orphan_blocks
, META_CP
, true);
708 for (i
= 0; i
< orphan_blocks
; i
++) {
710 struct f2fs_orphan_block
*orphan_blk
;
712 page
= f2fs_get_meta_page(sbi
, start_blk
+ i
);
718 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
719 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
720 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
721 err
= recover_orphan_inode(sbi
, ino
);
723 f2fs_put_page(page
, 1);
727 f2fs_put_page(page
, 1);
729 /* clear Orphan Flag */
730 clear_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
);
732 set_sbi_flag(sbi
, SBI_IS_RECOVERED
);
735 /* Turn quotas off */
737 f2fs_quota_off_umount(sbi
->sb
);
739 sbi
->sb
->s_flags
= s_flags
; /* Restore SB_RDONLY status */
744 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
746 struct list_head
*head
;
747 struct f2fs_orphan_block
*orphan_blk
= NULL
;
748 unsigned int nentries
= 0;
749 unsigned short index
= 1;
750 unsigned short orphan_blocks
;
751 struct page
*page
= NULL
;
752 struct ino_entry
*orphan
= NULL
;
753 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
755 orphan_blocks
= GET_ORPHAN_BLOCKS(im
->ino_num
);
758 * we don't need to do spin_lock(&im->ino_lock) here, since all the
759 * orphan inode operations are covered under f2fs_lock_op().
760 * And, spin_lock should be avoided due to page operations below.
762 head
= &im
->ino_list
;
764 /* loop for each orphan inode entry and write them in Jornal block */
765 list_for_each_entry(orphan
, head
, list
) {
767 page
= f2fs_grab_meta_page(sbi
, start_blk
++);
769 (struct f2fs_orphan_block
*)page_address(page
);
770 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
773 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
775 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
777 * an orphan block is full of 1020 entries,
778 * then we need to flush current orphan blocks
779 * and bring another one in memory
781 orphan_blk
->blk_addr
= cpu_to_le16(index
);
782 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
783 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
784 set_page_dirty(page
);
785 f2fs_put_page(page
, 1);
793 orphan_blk
->blk_addr
= cpu_to_le16(index
);
794 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
795 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
796 set_page_dirty(page
);
797 f2fs_put_page(page
, 1);
801 static __u32
f2fs_checkpoint_chksum(struct f2fs_sb_info
*sbi
,
802 struct f2fs_checkpoint
*ckpt
)
804 unsigned int chksum_ofs
= le32_to_cpu(ckpt
->checksum_offset
);
807 chksum
= f2fs_crc32(sbi
, ckpt
, chksum_ofs
);
808 if (chksum_ofs
< CP_CHKSUM_OFFSET
) {
809 chksum_ofs
+= sizeof(chksum
);
810 chksum
= f2fs_chksum(sbi
, chksum
, (__u8
*)ckpt
+ chksum_ofs
,
811 F2FS_BLKSIZE
- chksum_ofs
);
816 static int get_checkpoint_version(struct f2fs_sb_info
*sbi
, block_t cp_addr
,
817 struct f2fs_checkpoint
**cp_block
, struct page
**cp_page
,
818 unsigned long long *version
)
820 size_t crc_offset
= 0;
823 *cp_page
= f2fs_get_meta_page(sbi
, cp_addr
);
824 if (IS_ERR(*cp_page
))
825 return PTR_ERR(*cp_page
);
827 *cp_block
= (struct f2fs_checkpoint
*)page_address(*cp_page
);
829 crc_offset
= le32_to_cpu((*cp_block
)->checksum_offset
);
830 if (crc_offset
< CP_MIN_CHKSUM_OFFSET
||
831 crc_offset
> CP_CHKSUM_OFFSET
) {
832 f2fs_put_page(*cp_page
, 1);
833 f2fs_warn(sbi
, "invalid crc_offset: %zu", crc_offset
);
837 crc
= f2fs_checkpoint_chksum(sbi
, *cp_block
);
838 if (crc
!= cur_cp_crc(*cp_block
)) {
839 f2fs_put_page(*cp_page
, 1);
840 f2fs_warn(sbi
, "invalid crc value");
844 *version
= cur_cp_version(*cp_block
);
848 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
849 block_t cp_addr
, unsigned long long *version
)
851 struct page
*cp_page_1
= NULL
, *cp_page_2
= NULL
;
852 struct f2fs_checkpoint
*cp_block
= NULL
;
853 unsigned long long cur_version
= 0, pre_version
= 0;
856 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
857 &cp_page_1
, version
);
861 if (le32_to_cpu(cp_block
->cp_pack_total_block_count
) >
862 sbi
->blocks_per_seg
) {
863 f2fs_warn(sbi
, "invalid cp_pack_total_block_count:%u",
864 le32_to_cpu(cp_block
->cp_pack_total_block_count
));
867 pre_version
= *version
;
869 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
870 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
871 &cp_page_2
, version
);
874 cur_version
= *version
;
876 if (cur_version
== pre_version
) {
877 *version
= cur_version
;
878 f2fs_put_page(cp_page_2
, 1);
881 f2fs_put_page(cp_page_2
, 1);
883 f2fs_put_page(cp_page_1
, 1);
887 int f2fs_get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
889 struct f2fs_checkpoint
*cp_block
;
890 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
891 struct page
*cp1
, *cp2
, *cur_page
;
892 unsigned long blk_size
= sbi
->blocksize
;
893 unsigned long long cp1_version
= 0, cp2_version
= 0;
894 unsigned long long cp_start_blk_no
;
895 unsigned int cp_blks
= 1 + __cp_payload(sbi
);
900 sbi
->ckpt
= f2fs_kvzalloc(sbi
, array_size(blk_size
, cp_blks
),
905 * Finding out valid cp block involves read both
906 * sets( cp pack 1 and cp pack 2)
908 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
909 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
911 /* The second checkpoint pack should start at the next segment */
912 cp_start_blk_no
+= ((unsigned long long)1) <<
913 le32_to_cpu(fsb
->log_blocks_per_seg
);
914 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
917 if (ver_after(cp2_version
, cp1_version
))
930 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
931 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
934 sbi
->cur_cp_pack
= 1;
936 sbi
->cur_cp_pack
= 2;
938 /* Sanity checking of checkpoint */
939 if (f2fs_sanity_check_ckpt(sbi
)) {
941 goto free_fail_no_cp
;
947 cp_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
949 cp_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
951 for (i
= 1; i
< cp_blks
; i
++) {
952 void *sit_bitmap_ptr
;
953 unsigned char *ckpt
= (unsigned char *)sbi
->ckpt
;
955 cur_page
= f2fs_get_meta_page(sbi
, cp_blk_no
+ i
);
956 if (IS_ERR(cur_page
)) {
957 err
= PTR_ERR(cur_page
);
958 goto free_fail_no_cp
;
960 sit_bitmap_ptr
= page_address(cur_page
);
961 memcpy(ckpt
+ i
* blk_size
, sit_bitmap_ptr
, blk_size
);
962 f2fs_put_page(cur_page
, 1);
965 f2fs_put_page(cp1
, 1);
966 f2fs_put_page(cp2
, 1);
970 f2fs_put_page(cp1
, 1);
971 f2fs_put_page(cp2
, 1);
977 static void __add_dirty_inode(struct inode
*inode
, enum inode_type type
)
979 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
980 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
982 if (is_inode_flag_set(inode
, flag
))
985 set_inode_flag(inode
, flag
);
986 if (!f2fs_is_volatile_file(inode
))
987 list_add_tail(&F2FS_I(inode
)->dirty_list
,
988 &sbi
->inode_list
[type
]);
989 stat_inc_dirty_inode(sbi
, type
);
992 static void __remove_dirty_inode(struct inode
*inode
, enum inode_type type
)
994 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
996 if (get_dirty_pages(inode
) || !is_inode_flag_set(inode
, flag
))
999 list_del_init(&F2FS_I(inode
)->dirty_list
);
1000 clear_inode_flag(inode
, flag
);
1001 stat_dec_dirty_inode(F2FS_I_SB(inode
), type
);
1004 void f2fs_update_dirty_page(struct inode
*inode
, struct page
*page
)
1006 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1007 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
1009 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
1010 !S_ISLNK(inode
->i_mode
))
1013 spin_lock(&sbi
->inode_lock
[type
]);
1014 if (type
!= FILE_INODE
|| test_opt(sbi
, DATA_FLUSH
))
1015 __add_dirty_inode(inode
, type
);
1016 inode_inc_dirty_pages(inode
);
1017 spin_unlock(&sbi
->inode_lock
[type
]);
1019 f2fs_set_page_private(page
, 0);
1020 f2fs_trace_pid(page
);
1023 void f2fs_remove_dirty_inode(struct inode
*inode
)
1025 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1026 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
1028 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
1029 !S_ISLNK(inode
->i_mode
))
1032 if (type
== FILE_INODE
&& !test_opt(sbi
, DATA_FLUSH
))
1035 spin_lock(&sbi
->inode_lock
[type
]);
1036 __remove_dirty_inode(inode
, type
);
1037 spin_unlock(&sbi
->inode_lock
[type
]);
1040 int f2fs_sync_dirty_inodes(struct f2fs_sb_info
*sbi
, enum inode_type type
)
1042 struct list_head
*head
;
1043 struct inode
*inode
;
1044 struct f2fs_inode_info
*fi
;
1045 bool is_dir
= (type
== DIR_INODE
);
1046 unsigned long ino
= 0;
1048 trace_f2fs_sync_dirty_inodes_enter(sbi
->sb
, is_dir
,
1049 get_pages(sbi
, is_dir
?
1050 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
1052 if (unlikely(f2fs_cp_error(sbi
))) {
1053 trace_f2fs_sync_dirty_inodes_exit(sbi
->sb
, is_dir
,
1054 get_pages(sbi
, is_dir
?
1055 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
1059 spin_lock(&sbi
->inode_lock
[type
]);
1061 head
= &sbi
->inode_list
[type
];
1062 if (list_empty(head
)) {
1063 spin_unlock(&sbi
->inode_lock
[type
]);
1064 trace_f2fs_sync_dirty_inodes_exit(sbi
->sb
, is_dir
,
1065 get_pages(sbi
, is_dir
?
1066 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
1069 fi
= list_first_entry(head
, struct f2fs_inode_info
, dirty_list
);
1070 inode
= igrab(&fi
->vfs_inode
);
1071 spin_unlock(&sbi
->inode_lock
[type
]);
1073 unsigned long cur_ino
= inode
->i_ino
;
1075 F2FS_I(inode
)->cp_task
= current
;
1077 filemap_fdatawrite(inode
->i_mapping
);
1079 F2FS_I(inode
)->cp_task
= NULL
;
1082 /* We need to give cpu to another writers. */
1089 * We should submit bio, since it exists several
1090 * wribacking dentry pages in the freeing inode.
1092 f2fs_submit_merged_write(sbi
, DATA
);
1098 int f2fs_sync_inode_meta(struct f2fs_sb_info
*sbi
)
1100 struct list_head
*head
= &sbi
->inode_list
[DIRTY_META
];
1101 struct inode
*inode
;
1102 struct f2fs_inode_info
*fi
;
1103 s64 total
= get_pages(sbi
, F2FS_DIRTY_IMETA
);
1106 if (unlikely(f2fs_cp_error(sbi
)))
1109 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
1110 if (list_empty(head
)) {
1111 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1114 fi
= list_first_entry(head
, struct f2fs_inode_info
,
1116 inode
= igrab(&fi
->vfs_inode
);
1117 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1119 sync_inode_metadata(inode
, 0);
1121 /* it's on eviction */
1122 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
))
1123 f2fs_update_inode_page(inode
);
1130 static void __prepare_cp_block(struct f2fs_sb_info
*sbi
)
1132 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1133 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1134 nid_t last_nid
= nm_i
->next_scan_nid
;
1136 next_free_nid(sbi
, &last_nid
);
1137 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
1138 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
1139 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
1140 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
1143 static bool __need_flush_quota(struct f2fs_sb_info
*sbi
)
1147 if (!is_journalled_quota(sbi
))
1150 down_write(&sbi
->quota_sem
);
1151 if (is_sbi_flag_set(sbi
, SBI_QUOTA_SKIP_FLUSH
)) {
1153 } else if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_REPAIR
)) {
1155 } else if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_FLUSH
)) {
1156 clear_sbi_flag(sbi
, SBI_QUOTA_NEED_FLUSH
);
1158 } else if (get_pages(sbi
, F2FS_DIRTY_QDATA
)) {
1161 up_write(&sbi
->quota_sem
);
1166 * Freeze all the FS-operations for checkpoint.
1168 static int block_operations(struct f2fs_sb_info
*sbi
)
1170 struct writeback_control wbc
= {
1171 .sync_mode
= WB_SYNC_ALL
,
1172 .nr_to_write
= LONG_MAX
,
1175 int err
= 0, cnt
= 0;
1178 * Let's flush inline_data in dirty node pages.
1180 f2fs_flush_inline_data(sbi
);
1184 if (__need_flush_quota(sbi
)) {
1187 if (++cnt
> DEFAULT_RETRY_QUOTA_FLUSH_COUNT
) {
1188 set_sbi_flag(sbi
, SBI_QUOTA_SKIP_FLUSH
);
1189 set_sbi_flag(sbi
, SBI_QUOTA_NEED_FLUSH
);
1190 goto retry_flush_dents
;
1192 f2fs_unlock_all(sbi
);
1194 /* only failed during mount/umount/freeze/quotactl */
1195 locked
= down_read_trylock(&sbi
->sb
->s_umount
);
1196 f2fs_quota_sync(sbi
->sb
, -1);
1198 up_read(&sbi
->sb
->s_umount
);
1200 goto retry_flush_quotas
;
1204 /* write all the dirty dentry pages */
1205 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
1206 f2fs_unlock_all(sbi
);
1207 err
= f2fs_sync_dirty_inodes(sbi
, DIR_INODE
);
1211 goto retry_flush_quotas
;
1215 * POR: we should ensure that there are no dirty node pages
1216 * until finishing nat/sit flush. inode->i_blocks can be updated.
1218 down_write(&sbi
->node_change
);
1220 if (get_pages(sbi
, F2FS_DIRTY_IMETA
)) {
1221 up_write(&sbi
->node_change
);
1222 f2fs_unlock_all(sbi
);
1223 err
= f2fs_sync_inode_meta(sbi
);
1227 goto retry_flush_quotas
;
1231 down_write(&sbi
->node_write
);
1233 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
1234 up_write(&sbi
->node_write
);
1235 atomic_inc(&sbi
->wb_sync_req
[NODE
]);
1236 err
= f2fs_sync_node_pages(sbi
, &wbc
, false, FS_CP_NODE_IO
);
1237 atomic_dec(&sbi
->wb_sync_req
[NODE
]);
1239 up_write(&sbi
->node_change
);
1240 f2fs_unlock_all(sbi
);
1244 goto retry_flush_nodes
;
1248 * sbi->node_change is used only for AIO write_begin path which produces
1249 * dirty node blocks and some checkpoint values by block allocation.
1251 __prepare_cp_block(sbi
);
1252 up_write(&sbi
->node_change
);
1256 static void unblock_operations(struct f2fs_sb_info
*sbi
)
1258 up_write(&sbi
->node_write
);
1259 f2fs_unlock_all(sbi
);
1262 void f2fs_wait_on_all_pages(struct f2fs_sb_info
*sbi
, int type
)
1267 if (!get_pages(sbi
, type
))
1270 if (unlikely(f2fs_cp_error(sbi
)))
1273 if (type
== F2FS_DIRTY_META
)
1274 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
,
1276 else if (type
== F2FS_WB_CP_DATA
)
1277 f2fs_submit_merged_write(sbi
, DATA
);
1279 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
1280 io_schedule_timeout(DEFAULT_IO_TIMEOUT
);
1282 finish_wait(&sbi
->cp_wait
, &wait
);
1285 static void update_ckpt_flags(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1287 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
1288 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1289 unsigned long flags
;
1291 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1293 if ((cpc
->reason
& CP_UMOUNT
) &&
1294 le32_to_cpu(ckpt
->cp_pack_total_block_count
) >
1295 sbi
->blocks_per_seg
- NM_I(sbi
)->nat_bits_blocks
)
1296 disable_nat_bits(sbi
, false);
1298 if (cpc
->reason
& CP_TRIMMED
)
1299 __set_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1301 __clear_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1303 if (cpc
->reason
& CP_UMOUNT
)
1304 __set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1306 __clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1308 if (cpc
->reason
& CP_FASTBOOT
)
1309 __set_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1311 __clear_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1314 __set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1316 __clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1318 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1319 __set_ckpt_flags(ckpt
, CP_FSCK_FLAG
);
1321 if (is_sbi_flag_set(sbi
, SBI_IS_RESIZEFS
))
1322 __set_ckpt_flags(ckpt
, CP_RESIZEFS_FLAG
);
1324 __clear_ckpt_flags(ckpt
, CP_RESIZEFS_FLAG
);
1326 if (is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))
1327 __set_ckpt_flags(ckpt
, CP_DISABLED_FLAG
);
1329 __clear_ckpt_flags(ckpt
, CP_DISABLED_FLAG
);
1331 if (is_sbi_flag_set(sbi
, SBI_CP_DISABLED_QUICK
))
1332 __set_ckpt_flags(ckpt
, CP_DISABLED_QUICK_FLAG
);
1334 __clear_ckpt_flags(ckpt
, CP_DISABLED_QUICK_FLAG
);
1336 if (is_sbi_flag_set(sbi
, SBI_QUOTA_SKIP_FLUSH
))
1337 __set_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1339 __clear_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1341 if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_REPAIR
))
1342 __set_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1344 /* set this flag to activate crc|cp_ver for recovery */
1345 __set_ckpt_flags(ckpt
, CP_CRC_RECOVERY_FLAG
);
1346 __clear_ckpt_flags(ckpt
, CP_NOCRC_RECOVERY_FLAG
);
1348 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1351 static void commit_checkpoint(struct f2fs_sb_info
*sbi
,
1352 void *src
, block_t blk_addr
)
1354 struct writeback_control wbc
= {
1359 * pagevec_lookup_tag and lock_page again will take
1360 * some extra time. Therefore, f2fs_update_meta_pages and
1361 * f2fs_sync_meta_pages are combined in this function.
1363 struct page
*page
= f2fs_grab_meta_page(sbi
, blk_addr
);
1366 f2fs_wait_on_page_writeback(page
, META
, true, true);
1368 memcpy(page_address(page
), src
, PAGE_SIZE
);
1370 set_page_dirty(page
);
1371 if (unlikely(!clear_page_dirty_for_io(page
)))
1372 f2fs_bug_on(sbi
, 1);
1374 /* writeout cp pack 2 page */
1375 err
= __f2fs_write_meta_page(page
, &wbc
, FS_CP_META_IO
);
1376 if (unlikely(err
&& f2fs_cp_error(sbi
))) {
1377 f2fs_put_page(page
, 1);
1381 f2fs_bug_on(sbi
, err
);
1382 f2fs_put_page(page
, 0);
1384 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1385 f2fs_submit_merged_write(sbi
, META_FLUSH
);
1388 static int do_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1390 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1391 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1392 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
, flags
;
1394 unsigned int data_sum_blocks
, orphan_blocks
;
1397 int cp_payload_blks
= __cp_payload(sbi
);
1398 struct super_block
*sb
= sbi
->sb
;
1399 struct curseg_info
*seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
1403 /* Flush all the NAT/SIT pages */
1404 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1406 /* start to update checkpoint, cp ver is already updated previously */
1407 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
, true));
1408 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
1409 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
1410 ckpt
->cur_node_segno
[i
] =
1411 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
1412 ckpt
->cur_node_blkoff
[i
] =
1413 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
1414 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
1415 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
1417 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
1418 ckpt
->cur_data_segno
[i
] =
1419 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
1420 ckpt
->cur_data_blkoff
[i
] =
1421 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
1422 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
1423 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
1426 /* 2 cp + n data seg summary + orphan inode blocks */
1427 data_sum_blocks
= f2fs_npages_for_summary_flush(sbi
, false);
1428 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1429 if (data_sum_blocks
< NR_CURSEG_DATA_TYPE
)
1430 __set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1432 __clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1433 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1435 orphan_blocks
= GET_ORPHAN_BLOCKS(orphan_num
);
1436 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + cp_payload_blks
+
1439 if (__remain_node_summaries(cpc
->reason
))
1440 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1441 cp_payload_blks
+ data_sum_blocks
+
1442 orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
1444 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1445 cp_payload_blks
+ data_sum_blocks
+
1448 /* update ckpt flag for checkpoint */
1449 update_ckpt_flags(sbi
, cpc
);
1451 /* update SIT/NAT bitmap */
1452 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
1453 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
1455 crc32
= f2fs_checkpoint_chksum(sbi
, ckpt
);
1456 *((__le32
*)((unsigned char *)ckpt
+
1457 le32_to_cpu(ckpt
->checksum_offset
)))
1458 = cpu_to_le32(crc32
);
1460 start_blk
= __start_cp_next_addr(sbi
);
1462 /* write nat bits */
1463 if (enabled_nat_bits(sbi
, cpc
)) {
1464 __u64 cp_ver
= cur_cp_version(ckpt
);
1467 cp_ver
|= ((__u64
)crc32
<< 32);
1468 *(__le64
*)nm_i
->nat_bits
= cpu_to_le64(cp_ver
);
1470 blk
= start_blk
+ sbi
->blocks_per_seg
- nm_i
->nat_bits_blocks
;
1471 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++)
1472 f2fs_update_meta_page(sbi
, nm_i
->nat_bits
+
1473 (i
<< F2FS_BLKSIZE_BITS
), blk
+ i
);
1476 /* write out checkpoint buffer at block 0 */
1477 f2fs_update_meta_page(sbi
, ckpt
, start_blk
++);
1479 for (i
= 1; i
< 1 + cp_payload_blks
; i
++)
1480 f2fs_update_meta_page(sbi
, (char *)ckpt
+ i
* F2FS_BLKSIZE
,
1484 write_orphan_inodes(sbi
, start_blk
);
1485 start_blk
+= orphan_blocks
;
1488 f2fs_write_data_summaries(sbi
, start_blk
);
1489 start_blk
+= data_sum_blocks
;
1491 /* Record write statistics in the hot node summary */
1492 kbytes_written
= sbi
->kbytes_written
;
1493 if (sb
->s_bdev
->bd_part
)
1494 kbytes_written
+= BD_PART_WRITTEN(sbi
);
1496 seg_i
->journal
->info
.kbytes_written
= cpu_to_le64(kbytes_written
);
1498 if (__remain_node_summaries(cpc
->reason
)) {
1499 f2fs_write_node_summaries(sbi
, start_blk
);
1500 start_blk
+= NR_CURSEG_NODE_TYPE
;
1503 /* update user_block_counts */
1504 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1505 percpu_counter_set(&sbi
->alloc_valid_block_count
, 0);
1507 /* Here, we have one bio having CP pack except cp pack 2 page */
1508 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1509 /* Wait for all dirty meta pages to be submitted for IO */
1510 f2fs_wait_on_all_pages(sbi
, F2FS_DIRTY_META
);
1512 /* wait for previous submitted meta pages writeback */
1513 f2fs_wait_on_all_pages(sbi
, F2FS_WB_CP_DATA
);
1515 /* flush all device cache */
1516 err
= f2fs_flush_device_cache(sbi
);
1520 /* barrier and flush checkpoint cp pack 2 page if it can */
1521 commit_checkpoint(sbi
, ckpt
, start_blk
);
1522 f2fs_wait_on_all_pages(sbi
, F2FS_WB_CP_DATA
);
1525 * invalidate intermediate page cache borrowed from meta inode which are
1526 * used for migration of encrypted, verity or compressed inode's blocks.
1528 if (f2fs_sb_has_encrypt(sbi
) || f2fs_sb_has_verity(sbi
) ||
1529 f2fs_sb_has_compression(sbi
))
1530 invalidate_mapping_pages(META_MAPPING(sbi
),
1531 MAIN_BLKADDR(sbi
), MAX_BLKADDR(sbi
) - 1);
1533 f2fs_release_ino_entry(sbi
, false);
1535 f2fs_reset_fsync_node_info(sbi
);
1537 clear_sbi_flag(sbi
, SBI_IS_DIRTY
);
1538 clear_sbi_flag(sbi
, SBI_NEED_CP
);
1539 clear_sbi_flag(sbi
, SBI_QUOTA_SKIP_FLUSH
);
1541 spin_lock(&sbi
->stat_lock
);
1542 sbi
->unusable_block_count
= 0;
1543 spin_unlock(&sbi
->stat_lock
);
1545 __set_cp_next_pack(sbi
);
1548 * redirty superblock if metadata like node page or inode cache is
1549 * updated during writing checkpoint.
1551 if (get_pages(sbi
, F2FS_DIRTY_NODES
) ||
1552 get_pages(sbi
, F2FS_DIRTY_IMETA
))
1553 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1555 f2fs_bug_on(sbi
, get_pages(sbi
, F2FS_DIRTY_DENTS
));
1557 return unlikely(f2fs_cp_error(sbi
)) ? -EIO
: 0;
1560 int f2fs_write_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1562 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1563 unsigned long long ckpt_ver
;
1566 if (f2fs_readonly(sbi
->sb
) || f2fs_hw_is_readonly(sbi
))
1569 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))) {
1570 if (cpc
->reason
!= CP_PAUSE
)
1572 f2fs_warn(sbi
, "Start checkpoint disabled!");
1574 if (cpc
->reason
!= CP_RESIZE
)
1575 mutex_lock(&sbi
->cp_mutex
);
1577 if (!is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) &&
1578 ((cpc
->reason
& CP_FASTBOOT
) || (cpc
->reason
& CP_SYNC
) ||
1579 ((cpc
->reason
& CP_DISCARD
) && !sbi
->discard_blks
)))
1581 if (unlikely(f2fs_cp_error(sbi
))) {
1586 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "start block_ops");
1588 err
= block_operations(sbi
);
1592 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish block_ops");
1594 f2fs_flush_merged_writes(sbi
);
1596 /* this is the case of multiple fstrims without any changes */
1597 if (cpc
->reason
& CP_DISCARD
) {
1598 if (!f2fs_exist_trim_candidates(sbi
, cpc
)) {
1599 unblock_operations(sbi
);
1603 if (NM_I(sbi
)->nat_cnt
[DIRTY_NAT
] == 0 &&
1604 SIT_I(sbi
)->dirty_sentries
== 0 &&
1605 prefree_segments(sbi
) == 0) {
1606 f2fs_flush_sit_entries(sbi
, cpc
);
1607 f2fs_clear_prefree_segments(sbi
, cpc
);
1608 unblock_operations(sbi
);
1614 * update checkpoint pack index
1615 * Increase the version number so that
1616 * SIT entries and seg summaries are written at correct place
1618 ckpt_ver
= cur_cp_version(ckpt
);
1619 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
1621 /* write cached NAT/SIT entries to NAT/SIT area */
1622 err
= f2fs_flush_nat_entries(sbi
, cpc
);
1626 f2fs_flush_sit_entries(sbi
, cpc
);
1628 /* save inmem log status */
1629 f2fs_save_inmem_curseg(sbi
);
1631 err
= do_checkpoint(sbi
, cpc
);
1633 f2fs_release_discard_addrs(sbi
);
1635 f2fs_clear_prefree_segments(sbi
, cpc
);
1637 f2fs_restore_inmem_curseg(sbi
);
1639 unblock_operations(sbi
);
1640 stat_inc_cp_count(sbi
->stat_info
);
1642 if (cpc
->reason
& CP_RECOVERY
)
1643 f2fs_notice(sbi
, "checkpoint: version = %llx", ckpt_ver
);
1645 /* update CP_TIME to trigger checkpoint periodically */
1646 f2fs_update_time(sbi
, CP_TIME
);
1647 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish checkpoint");
1649 if (cpc
->reason
!= CP_RESIZE
)
1650 mutex_unlock(&sbi
->cp_mutex
);
1654 void f2fs_init_ino_entry_info(struct f2fs_sb_info
*sbi
)
1658 for (i
= 0; i
< MAX_INO_ENTRY
; i
++) {
1659 struct inode_management
*im
= &sbi
->im
[i
];
1661 INIT_RADIX_TREE(&im
->ino_root
, GFP_ATOMIC
);
1662 spin_lock_init(&im
->ino_lock
);
1663 INIT_LIST_HEAD(&im
->ino_list
);
1667 sbi
->max_orphans
= (sbi
->blocks_per_seg
- F2FS_CP_PACKS
-
1668 NR_CURSEG_PERSIST_TYPE
- __cp_payload(sbi
)) *
1669 F2FS_ORPHANS_PER_BLOCK
;
1672 int __init
f2fs_create_checkpoint_caches(void)
1674 ino_entry_slab
= f2fs_kmem_cache_create("f2fs_ino_entry",
1675 sizeof(struct ino_entry
));
1676 if (!ino_entry_slab
)
1678 f2fs_inode_entry_slab
= f2fs_kmem_cache_create("f2fs_inode_entry",
1679 sizeof(struct inode_entry
));
1680 if (!f2fs_inode_entry_slab
) {
1681 kmem_cache_destroy(ino_entry_slab
);
1687 void f2fs_destroy_checkpoint_caches(void)
1689 kmem_cache_destroy(ino_entry_slab
);
1690 kmem_cache_destroy(f2fs_inode_entry_slab
);