Linux 5.10.7
[linux/fpc-iii.git] / fs / ubifs / super.c
blobcb3acfb7dd1fc01e24a53cbde1e3035fc760c95c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
29 static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
31 int n = 0, ret;
33 ret = kstrtoint(val, 10, &n);
34 if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
35 return -EINVAL;
36 return param_set_int(val, kp);
39 static const struct kernel_param_ops ubifs_default_version_ops = {
40 .set = ubifs_default_version_set,
41 .get = param_get_int,
44 int ubifs_default_version = UBIFS_FORMAT_VERSION;
45 module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49 * allocating too much.
51 #define UBIFS_KMALLOC_OK (128*1024)
53 /* Slab cache for UBIFS inodes */
54 static struct kmem_cache *ubifs_inode_slab;
56 /* UBIFS TNC shrinker description */
57 static struct shrinker ubifs_shrinker_info = {
58 .scan_objects = ubifs_shrink_scan,
59 .count_objects = ubifs_shrink_count,
60 .seeks = DEFAULT_SEEKS,
63 /**
64 * validate_inode - validate inode.
65 * @c: UBIFS file-system description object
66 * @inode: the inode to validate
68 * This is a helper function for 'ubifs_iget()' which validates various fields
69 * of a newly built inode to make sure they contain sane values and prevent
70 * possible vulnerabilities. Returns zero if the inode is all right and
71 * a non-zero error code if not.
73 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
75 int err;
76 const struct ubifs_inode *ui = ubifs_inode(inode);
78 if (inode->i_size > c->max_inode_sz) {
79 ubifs_err(c, "inode is too large (%lld)",
80 (long long)inode->i_size);
81 return 1;
84 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
85 ubifs_err(c, "unknown compression type %d", ui->compr_type);
86 return 2;
89 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
90 return 3;
92 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
93 return 4;
95 if (ui->xattr && !S_ISREG(inode->i_mode))
96 return 5;
98 if (!ubifs_compr_present(c, ui->compr_type)) {
99 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
100 inode->i_ino, ubifs_compr_name(c, ui->compr_type));
103 err = dbg_check_dir(c, inode);
104 return err;
107 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
109 int err;
110 union ubifs_key key;
111 struct ubifs_ino_node *ino;
112 struct ubifs_info *c = sb->s_fs_info;
113 struct inode *inode;
114 struct ubifs_inode *ui;
116 dbg_gen("inode %lu", inum);
118 inode = iget_locked(sb, inum);
119 if (!inode)
120 return ERR_PTR(-ENOMEM);
121 if (!(inode->i_state & I_NEW))
122 return inode;
123 ui = ubifs_inode(inode);
125 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
126 if (!ino) {
127 err = -ENOMEM;
128 goto out;
131 ino_key_init(c, &key, inode->i_ino);
133 err = ubifs_tnc_lookup(c, &key, ino);
134 if (err)
135 goto out_ino;
137 inode->i_flags |= S_NOCMTIME;
139 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
140 inode->i_flags |= S_NOATIME;
142 set_nlink(inode, le32_to_cpu(ino->nlink));
143 i_uid_write(inode, le32_to_cpu(ino->uid));
144 i_gid_write(inode, le32_to_cpu(ino->gid));
145 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
146 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
147 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
148 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
149 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
150 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
151 inode->i_mode = le32_to_cpu(ino->mode);
152 inode->i_size = le64_to_cpu(ino->size);
154 ui->data_len = le32_to_cpu(ino->data_len);
155 ui->flags = le32_to_cpu(ino->flags);
156 ui->compr_type = le16_to_cpu(ino->compr_type);
157 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
158 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
159 ui->xattr_size = le32_to_cpu(ino->xattr_size);
160 ui->xattr_names = le32_to_cpu(ino->xattr_names);
161 ui->synced_i_size = ui->ui_size = inode->i_size;
163 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
165 err = validate_inode(c, inode);
166 if (err)
167 goto out_invalid;
169 switch (inode->i_mode & S_IFMT) {
170 case S_IFREG:
171 inode->i_mapping->a_ops = &ubifs_file_address_operations;
172 inode->i_op = &ubifs_file_inode_operations;
173 inode->i_fop = &ubifs_file_operations;
174 if (ui->xattr) {
175 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
176 if (!ui->data) {
177 err = -ENOMEM;
178 goto out_ino;
180 memcpy(ui->data, ino->data, ui->data_len);
181 ((char *)ui->data)[ui->data_len] = '\0';
182 } else if (ui->data_len != 0) {
183 err = 10;
184 goto out_invalid;
186 break;
187 case S_IFDIR:
188 inode->i_op = &ubifs_dir_inode_operations;
189 inode->i_fop = &ubifs_dir_operations;
190 if (ui->data_len != 0) {
191 err = 11;
192 goto out_invalid;
194 break;
195 case S_IFLNK:
196 inode->i_op = &ubifs_symlink_inode_operations;
197 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
198 err = 12;
199 goto out_invalid;
201 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
202 if (!ui->data) {
203 err = -ENOMEM;
204 goto out_ino;
206 memcpy(ui->data, ino->data, ui->data_len);
207 ((char *)ui->data)[ui->data_len] = '\0';
208 break;
209 case S_IFBLK:
210 case S_IFCHR:
212 dev_t rdev;
213 union ubifs_dev_desc *dev;
215 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
216 if (!ui->data) {
217 err = -ENOMEM;
218 goto out_ino;
221 dev = (union ubifs_dev_desc *)ino->data;
222 if (ui->data_len == sizeof(dev->new))
223 rdev = new_decode_dev(le32_to_cpu(dev->new));
224 else if (ui->data_len == sizeof(dev->huge))
225 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
226 else {
227 err = 13;
228 goto out_invalid;
230 memcpy(ui->data, ino->data, ui->data_len);
231 inode->i_op = &ubifs_file_inode_operations;
232 init_special_inode(inode, inode->i_mode, rdev);
233 break;
235 case S_IFSOCK:
236 case S_IFIFO:
237 inode->i_op = &ubifs_file_inode_operations;
238 init_special_inode(inode, inode->i_mode, 0);
239 if (ui->data_len != 0) {
240 err = 14;
241 goto out_invalid;
243 break;
244 default:
245 err = 15;
246 goto out_invalid;
249 kfree(ino);
250 ubifs_set_inode_flags(inode);
251 unlock_new_inode(inode);
252 return inode;
254 out_invalid:
255 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
256 ubifs_dump_node(c, ino);
257 ubifs_dump_inode(c, inode);
258 err = -EINVAL;
259 out_ino:
260 kfree(ino);
261 out:
262 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
263 iget_failed(inode);
264 return ERR_PTR(err);
267 static struct inode *ubifs_alloc_inode(struct super_block *sb)
269 struct ubifs_inode *ui;
271 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
272 if (!ui)
273 return NULL;
275 memset((void *)ui + sizeof(struct inode), 0,
276 sizeof(struct ubifs_inode) - sizeof(struct inode));
277 mutex_init(&ui->ui_mutex);
278 spin_lock_init(&ui->ui_lock);
279 return &ui->vfs_inode;
282 static void ubifs_free_inode(struct inode *inode)
284 struct ubifs_inode *ui = ubifs_inode(inode);
286 kfree(ui->data);
287 fscrypt_free_inode(inode);
289 kmem_cache_free(ubifs_inode_slab, ui);
293 * Note, Linux write-back code calls this without 'i_mutex'.
295 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
297 int err = 0;
298 struct ubifs_info *c = inode->i_sb->s_fs_info;
299 struct ubifs_inode *ui = ubifs_inode(inode);
301 ubifs_assert(c, !ui->xattr);
302 if (is_bad_inode(inode))
303 return 0;
305 mutex_lock(&ui->ui_mutex);
307 * Due to races between write-back forced by budgeting
308 * (see 'sync_some_inodes()') and background write-back, the inode may
309 * have already been synchronized, do not do this again. This might
310 * also happen if it was synchronized in an VFS operation, e.g.
311 * 'ubifs_link()'.
313 if (!ui->dirty) {
314 mutex_unlock(&ui->ui_mutex);
315 return 0;
319 * As an optimization, do not write orphan inodes to the media just
320 * because this is not needed.
322 dbg_gen("inode %lu, mode %#x, nlink %u",
323 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
324 if (inode->i_nlink) {
325 err = ubifs_jnl_write_inode(c, inode);
326 if (err)
327 ubifs_err(c, "can't write inode %lu, error %d",
328 inode->i_ino, err);
329 else
330 err = dbg_check_inode_size(c, inode, ui->ui_size);
333 ui->dirty = 0;
334 mutex_unlock(&ui->ui_mutex);
335 ubifs_release_dirty_inode_budget(c, ui);
336 return err;
339 static int ubifs_drop_inode(struct inode *inode)
341 int drop = generic_drop_inode(inode);
343 if (!drop)
344 drop = fscrypt_drop_inode(inode);
346 return drop;
349 static void ubifs_evict_inode(struct inode *inode)
351 int err;
352 struct ubifs_info *c = inode->i_sb->s_fs_info;
353 struct ubifs_inode *ui = ubifs_inode(inode);
355 if (ui->xattr)
357 * Extended attribute inode deletions are fully handled in
358 * 'ubifs_removexattr()'. These inodes are special and have
359 * limited usage, so there is nothing to do here.
361 goto out;
363 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
364 ubifs_assert(c, !atomic_read(&inode->i_count));
366 truncate_inode_pages_final(&inode->i_data);
368 if (inode->i_nlink)
369 goto done;
371 if (is_bad_inode(inode))
372 goto out;
374 ui->ui_size = inode->i_size = 0;
375 err = ubifs_jnl_delete_inode(c, inode);
376 if (err)
378 * Worst case we have a lost orphan inode wasting space, so a
379 * simple error message is OK here.
381 ubifs_err(c, "can't delete inode %lu, error %d",
382 inode->i_ino, err);
384 out:
385 if (ui->dirty)
386 ubifs_release_dirty_inode_budget(c, ui);
387 else {
388 /* We've deleted something - clean the "no space" flags */
389 c->bi.nospace = c->bi.nospace_rp = 0;
390 smp_wmb();
392 done:
393 clear_inode(inode);
394 fscrypt_put_encryption_info(inode);
397 static void ubifs_dirty_inode(struct inode *inode, int flags)
399 struct ubifs_info *c = inode->i_sb->s_fs_info;
400 struct ubifs_inode *ui = ubifs_inode(inode);
402 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
403 if (!ui->dirty) {
404 ui->dirty = 1;
405 dbg_gen("inode %lu", inode->i_ino);
409 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
411 struct ubifs_info *c = dentry->d_sb->s_fs_info;
412 unsigned long long free;
413 __le32 *uuid = (__le32 *)c->uuid;
415 free = ubifs_get_free_space(c);
416 dbg_gen("free space %lld bytes (%lld blocks)",
417 free, free >> UBIFS_BLOCK_SHIFT);
419 buf->f_type = UBIFS_SUPER_MAGIC;
420 buf->f_bsize = UBIFS_BLOCK_SIZE;
421 buf->f_blocks = c->block_cnt;
422 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
423 if (free > c->report_rp_size)
424 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
425 else
426 buf->f_bavail = 0;
427 buf->f_files = 0;
428 buf->f_ffree = 0;
429 buf->f_namelen = UBIFS_MAX_NLEN;
430 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
431 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
432 ubifs_assert(c, buf->f_bfree <= c->block_cnt);
433 return 0;
436 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
438 struct ubifs_info *c = root->d_sb->s_fs_info;
440 if (c->mount_opts.unmount_mode == 2)
441 seq_puts(s, ",fast_unmount");
442 else if (c->mount_opts.unmount_mode == 1)
443 seq_puts(s, ",norm_unmount");
445 if (c->mount_opts.bulk_read == 2)
446 seq_puts(s, ",bulk_read");
447 else if (c->mount_opts.bulk_read == 1)
448 seq_puts(s, ",no_bulk_read");
450 if (c->mount_opts.chk_data_crc == 2)
451 seq_puts(s, ",chk_data_crc");
452 else if (c->mount_opts.chk_data_crc == 1)
453 seq_puts(s, ",no_chk_data_crc");
455 if (c->mount_opts.override_compr) {
456 seq_printf(s, ",compr=%s",
457 ubifs_compr_name(c, c->mount_opts.compr_type));
460 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
461 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
463 return 0;
466 static int ubifs_sync_fs(struct super_block *sb, int wait)
468 int i, err;
469 struct ubifs_info *c = sb->s_fs_info;
472 * Zero @wait is just an advisory thing to help the file system shove
473 * lots of data into the queues, and there will be the second
474 * '->sync_fs()' call, with non-zero @wait.
476 if (!wait)
477 return 0;
480 * Synchronize write buffers, because 'ubifs_run_commit()' does not
481 * do this if it waits for an already running commit.
483 for (i = 0; i < c->jhead_cnt; i++) {
484 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
485 if (err)
486 return err;
490 * Strictly speaking, it is not necessary to commit the journal here,
491 * synchronizing write-buffers would be enough. But committing makes
492 * UBIFS free space predictions much more accurate, so we want to let
493 * the user be able to get more accurate results of 'statfs()' after
494 * they synchronize the file system.
496 err = ubifs_run_commit(c);
497 if (err)
498 return err;
500 return ubi_sync(c->vi.ubi_num);
504 * init_constants_early - initialize UBIFS constants.
505 * @c: UBIFS file-system description object
507 * This function initialize UBIFS constants which do not need the superblock to
508 * be read. It also checks that the UBI volume satisfies basic UBIFS
509 * requirements. Returns zero in case of success and a negative error code in
510 * case of failure.
512 static int init_constants_early(struct ubifs_info *c)
514 if (c->vi.corrupted) {
515 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
516 c->ro_media = 1;
519 if (c->di.ro_mode) {
520 ubifs_msg(c, "read-only UBI device");
521 c->ro_media = 1;
524 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
525 ubifs_msg(c, "static UBI volume - read-only mode");
526 c->ro_media = 1;
529 c->leb_cnt = c->vi.size;
530 c->leb_size = c->vi.usable_leb_size;
531 c->leb_start = c->di.leb_start;
532 c->half_leb_size = c->leb_size / 2;
533 c->min_io_size = c->di.min_io_size;
534 c->min_io_shift = fls(c->min_io_size) - 1;
535 c->max_write_size = c->di.max_write_size;
536 c->max_write_shift = fls(c->max_write_size) - 1;
538 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
539 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
540 c->leb_size, UBIFS_MIN_LEB_SZ);
541 return -EINVAL;
544 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
545 ubifs_errc(c, "too few LEBs (%d), min. is %d",
546 c->leb_cnt, UBIFS_MIN_LEB_CNT);
547 return -EINVAL;
550 if (!is_power_of_2(c->min_io_size)) {
551 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
552 return -EINVAL;
556 * Maximum write size has to be greater or equivalent to min. I/O
557 * size, and be multiple of min. I/O size.
559 if (c->max_write_size < c->min_io_size ||
560 c->max_write_size % c->min_io_size ||
561 !is_power_of_2(c->max_write_size)) {
562 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
563 c->max_write_size, c->min_io_size);
564 return -EINVAL;
568 * UBIFS aligns all node to 8-byte boundary, so to make function in
569 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
570 * less than 8.
572 if (c->min_io_size < 8) {
573 c->min_io_size = 8;
574 c->min_io_shift = 3;
575 if (c->max_write_size < c->min_io_size) {
576 c->max_write_size = c->min_io_size;
577 c->max_write_shift = c->min_io_shift;
581 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
582 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
585 * Initialize node length ranges which are mostly needed for node
586 * length validation.
588 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
589 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
590 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
591 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
592 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
593 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
594 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
595 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
596 UBIFS_MAX_HMAC_LEN;
597 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
598 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
600 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
601 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
602 c->ranges[UBIFS_ORPH_NODE].min_len =
603 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
604 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
605 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
606 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
607 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
608 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
609 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
610 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
612 * Minimum indexing node size is amended later when superblock is
613 * read and the key length is known.
615 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
617 * Maximum indexing node size is amended later when superblock is
618 * read and the fanout is known.
620 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
623 * Initialize dead and dark LEB space watermarks. See gc.c for comments
624 * about these values.
626 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
627 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
630 * Calculate how many bytes would be wasted at the end of LEB if it was
631 * fully filled with data nodes of maximum size. This is used in
632 * calculations when reporting free space.
634 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
636 /* Buffer size for bulk-reads */
637 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
638 if (c->max_bu_buf_len > c->leb_size)
639 c->max_bu_buf_len = c->leb_size;
641 /* Log is ready, preserve one LEB for commits. */
642 c->min_log_bytes = c->leb_size;
644 return 0;
648 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
649 * @c: UBIFS file-system description object
650 * @lnum: LEB the write-buffer was synchronized to
651 * @free: how many free bytes left in this LEB
652 * @pad: how many bytes were padded
654 * This is a callback function which is called by the I/O unit when the
655 * write-buffer is synchronized. We need this to correctly maintain space
656 * accounting in bud logical eraseblocks. This function returns zero in case of
657 * success and a negative error code in case of failure.
659 * This function actually belongs to the journal, but we keep it here because
660 * we want to keep it static.
662 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
664 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
668 * init_constants_sb - initialize UBIFS constants.
669 * @c: UBIFS file-system description object
671 * This is a helper function which initializes various UBIFS constants after
672 * the superblock has been read. It also checks various UBIFS parameters and
673 * makes sure they are all right. Returns zero in case of success and a
674 * negative error code in case of failure.
676 static int init_constants_sb(struct ubifs_info *c)
678 int tmp, err;
679 long long tmp64;
681 c->main_bytes = (long long)c->main_lebs * c->leb_size;
682 c->max_znode_sz = sizeof(struct ubifs_znode) +
683 c->fanout * sizeof(struct ubifs_zbranch);
685 tmp = ubifs_idx_node_sz(c, 1);
686 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
687 c->min_idx_node_sz = ALIGN(tmp, 8);
689 tmp = ubifs_idx_node_sz(c, c->fanout);
690 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
691 c->max_idx_node_sz = ALIGN(tmp, 8);
693 /* Make sure LEB size is large enough to fit full commit */
694 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
695 tmp = ALIGN(tmp, c->min_io_size);
696 if (tmp > c->leb_size) {
697 ubifs_err(c, "too small LEB size %d, at least %d needed",
698 c->leb_size, tmp);
699 return -EINVAL;
703 * Make sure that the log is large enough to fit reference nodes for
704 * all buds plus one reserved LEB.
706 tmp64 = c->max_bud_bytes + c->leb_size - 1;
707 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
708 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
709 tmp /= c->leb_size;
710 tmp += 1;
711 if (c->log_lebs < tmp) {
712 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
713 c->log_lebs, tmp);
714 return -EINVAL;
718 * When budgeting we assume worst-case scenarios when the pages are not
719 * be compressed and direntries are of the maximum size.
721 * Note, data, which may be stored in inodes is budgeted separately, so
722 * it is not included into 'c->bi.inode_budget'.
724 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
725 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
726 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
729 * When the amount of flash space used by buds becomes
730 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
731 * The writers are unblocked when the commit is finished. To avoid
732 * writers to be blocked UBIFS initiates background commit in advance,
733 * when number of bud bytes becomes above the limit defined below.
735 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
738 * Ensure minimum journal size. All the bytes in the journal heads are
739 * considered to be used, when calculating the current journal usage.
740 * Consequently, if the journal is too small, UBIFS will treat it as
741 * always full.
743 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
744 if (c->bg_bud_bytes < tmp64)
745 c->bg_bud_bytes = tmp64;
746 if (c->max_bud_bytes < tmp64 + c->leb_size)
747 c->max_bud_bytes = tmp64 + c->leb_size;
749 err = ubifs_calc_lpt_geom(c);
750 if (err)
751 return err;
753 /* Initialize effective LEB size used in budgeting calculations */
754 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
755 return 0;
759 * init_constants_master - initialize UBIFS constants.
760 * @c: UBIFS file-system description object
762 * This is a helper function which initializes various UBIFS constants after
763 * the master node has been read. It also checks various UBIFS parameters and
764 * makes sure they are all right.
766 static void init_constants_master(struct ubifs_info *c)
768 long long tmp64;
770 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
771 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
774 * Calculate total amount of FS blocks. This number is not used
775 * internally because it does not make much sense for UBIFS, but it is
776 * necessary to report something for the 'statfs()' call.
778 * Subtract the LEB reserved for GC, the LEB which is reserved for
779 * deletions, minimum LEBs for the index, and assume only one journal
780 * head is available.
782 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
783 tmp64 *= (long long)c->leb_size - c->leb_overhead;
784 tmp64 = ubifs_reported_space(c, tmp64);
785 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
789 * take_gc_lnum - reserve GC LEB.
790 * @c: UBIFS file-system description object
792 * This function ensures that the LEB reserved for garbage collection is marked
793 * as "taken" in lprops. We also have to set free space to LEB size and dirty
794 * space to zero, because lprops may contain out-of-date information if the
795 * file-system was un-mounted before it has been committed. This function
796 * returns zero in case of success and a negative error code in case of
797 * failure.
799 static int take_gc_lnum(struct ubifs_info *c)
801 int err;
803 if (c->gc_lnum == -1) {
804 ubifs_err(c, "no LEB for GC");
805 return -EINVAL;
808 /* And we have to tell lprops that this LEB is taken */
809 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
810 LPROPS_TAKEN, 0, 0);
811 return err;
815 * alloc_wbufs - allocate write-buffers.
816 * @c: UBIFS file-system description object
818 * This helper function allocates and initializes UBIFS write-buffers. Returns
819 * zero in case of success and %-ENOMEM in case of failure.
821 static int alloc_wbufs(struct ubifs_info *c)
823 int i, err;
825 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
826 GFP_KERNEL);
827 if (!c->jheads)
828 return -ENOMEM;
830 /* Initialize journal heads */
831 for (i = 0; i < c->jhead_cnt; i++) {
832 INIT_LIST_HEAD(&c->jheads[i].buds_list);
833 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
834 if (err)
835 return err;
837 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
838 c->jheads[i].wbuf.jhead = i;
839 c->jheads[i].grouped = 1;
840 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
841 if (IS_ERR(c->jheads[i].log_hash))
842 goto out;
846 * Garbage Collector head does not need to be synchronized by timer.
847 * Also GC head nodes are not grouped.
849 c->jheads[GCHD].wbuf.no_timer = 1;
850 c->jheads[GCHD].grouped = 0;
852 return 0;
854 out:
855 while (i--)
856 kfree(c->jheads[i].log_hash);
858 return err;
862 * free_wbufs - free write-buffers.
863 * @c: UBIFS file-system description object
865 static void free_wbufs(struct ubifs_info *c)
867 int i;
869 if (c->jheads) {
870 for (i = 0; i < c->jhead_cnt; i++) {
871 kfree(c->jheads[i].wbuf.buf);
872 kfree(c->jheads[i].wbuf.inodes);
873 kfree(c->jheads[i].log_hash);
875 kfree(c->jheads);
876 c->jheads = NULL;
881 * free_orphans - free orphans.
882 * @c: UBIFS file-system description object
884 static void free_orphans(struct ubifs_info *c)
886 struct ubifs_orphan *orph;
888 while (c->orph_dnext) {
889 orph = c->orph_dnext;
890 c->orph_dnext = orph->dnext;
891 list_del(&orph->list);
892 kfree(orph);
895 while (!list_empty(&c->orph_list)) {
896 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
897 list_del(&orph->list);
898 kfree(orph);
899 ubifs_err(c, "orphan list not empty at unmount");
902 vfree(c->orph_buf);
903 c->orph_buf = NULL;
907 * free_buds - free per-bud objects.
908 * @c: UBIFS file-system description object
910 static void free_buds(struct ubifs_info *c)
912 struct ubifs_bud *bud, *n;
914 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
915 kfree(bud);
919 * check_volume_empty - check if the UBI volume is empty.
920 * @c: UBIFS file-system description object
922 * This function checks if the UBIFS volume is empty by looking if its LEBs are
923 * mapped or not. The result of checking is stored in the @c->empty variable.
924 * Returns zero in case of success and a negative error code in case of
925 * failure.
927 static int check_volume_empty(struct ubifs_info *c)
929 int lnum, err;
931 c->empty = 1;
932 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
933 err = ubifs_is_mapped(c, lnum);
934 if (unlikely(err < 0))
935 return err;
936 if (err == 1) {
937 c->empty = 0;
938 break;
941 cond_resched();
944 return 0;
948 * UBIFS mount options.
950 * Opt_fast_unmount: do not run a journal commit before un-mounting
951 * Opt_norm_unmount: run a journal commit before un-mounting
952 * Opt_bulk_read: enable bulk-reads
953 * Opt_no_bulk_read: disable bulk-reads
954 * Opt_chk_data_crc: check CRCs when reading data nodes
955 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
956 * Opt_override_compr: override default compressor
957 * Opt_assert: set ubifs_assert() action
958 * Opt_auth_key: The key name used for authentication
959 * Opt_auth_hash_name: The hash type used for authentication
960 * Opt_err: just end of array marker
962 enum {
963 Opt_fast_unmount,
964 Opt_norm_unmount,
965 Opt_bulk_read,
966 Opt_no_bulk_read,
967 Opt_chk_data_crc,
968 Opt_no_chk_data_crc,
969 Opt_override_compr,
970 Opt_assert,
971 Opt_auth_key,
972 Opt_auth_hash_name,
973 Opt_ignore,
974 Opt_err,
977 static const match_table_t tokens = {
978 {Opt_fast_unmount, "fast_unmount"},
979 {Opt_norm_unmount, "norm_unmount"},
980 {Opt_bulk_read, "bulk_read"},
981 {Opt_no_bulk_read, "no_bulk_read"},
982 {Opt_chk_data_crc, "chk_data_crc"},
983 {Opt_no_chk_data_crc, "no_chk_data_crc"},
984 {Opt_override_compr, "compr=%s"},
985 {Opt_auth_key, "auth_key=%s"},
986 {Opt_auth_hash_name, "auth_hash_name=%s"},
987 {Opt_ignore, "ubi=%s"},
988 {Opt_ignore, "vol=%s"},
989 {Opt_assert, "assert=%s"},
990 {Opt_err, NULL},
994 * parse_standard_option - parse a standard mount option.
995 * @option: the option to parse
997 * Normally, standard mount options like "sync" are passed to file-systems as
998 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
999 * be present in the options string. This function tries to deal with this
1000 * situation and parse standard options. Returns 0 if the option was not
1001 * recognized, and the corresponding integer flag if it was.
1003 * UBIFS is only interested in the "sync" option, so do not check for anything
1004 * else.
1006 static int parse_standard_option(const char *option)
1009 pr_notice("UBIFS: parse %s\n", option);
1010 if (!strcmp(option, "sync"))
1011 return SB_SYNCHRONOUS;
1012 return 0;
1016 * ubifs_parse_options - parse mount parameters.
1017 * @c: UBIFS file-system description object
1018 * @options: parameters to parse
1019 * @is_remount: non-zero if this is FS re-mount
1021 * This function parses UBIFS mount options and returns zero in case success
1022 * and a negative error code in case of failure.
1024 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1025 int is_remount)
1027 char *p;
1028 substring_t args[MAX_OPT_ARGS];
1030 if (!options)
1031 return 0;
1033 while ((p = strsep(&options, ","))) {
1034 int token;
1036 if (!*p)
1037 continue;
1039 token = match_token(p, tokens, args);
1040 switch (token) {
1042 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1043 * We accept them in order to be backward-compatible. But this
1044 * should be removed at some point.
1046 case Opt_fast_unmount:
1047 c->mount_opts.unmount_mode = 2;
1048 break;
1049 case Opt_norm_unmount:
1050 c->mount_opts.unmount_mode = 1;
1051 break;
1052 case Opt_bulk_read:
1053 c->mount_opts.bulk_read = 2;
1054 c->bulk_read = 1;
1055 break;
1056 case Opt_no_bulk_read:
1057 c->mount_opts.bulk_read = 1;
1058 c->bulk_read = 0;
1059 break;
1060 case Opt_chk_data_crc:
1061 c->mount_opts.chk_data_crc = 2;
1062 c->no_chk_data_crc = 0;
1063 break;
1064 case Opt_no_chk_data_crc:
1065 c->mount_opts.chk_data_crc = 1;
1066 c->no_chk_data_crc = 1;
1067 break;
1068 case Opt_override_compr:
1070 char *name = match_strdup(&args[0]);
1072 if (!name)
1073 return -ENOMEM;
1074 if (!strcmp(name, "none"))
1075 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1076 else if (!strcmp(name, "lzo"))
1077 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1078 else if (!strcmp(name, "zlib"))
1079 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1080 else if (!strcmp(name, "zstd"))
1081 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1082 else {
1083 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1084 kfree(name);
1085 return -EINVAL;
1087 kfree(name);
1088 c->mount_opts.override_compr = 1;
1089 c->default_compr = c->mount_opts.compr_type;
1090 break;
1092 case Opt_assert:
1094 char *act = match_strdup(&args[0]);
1096 if (!act)
1097 return -ENOMEM;
1098 if (!strcmp(act, "report"))
1099 c->assert_action = ASSACT_REPORT;
1100 else if (!strcmp(act, "read-only"))
1101 c->assert_action = ASSACT_RO;
1102 else if (!strcmp(act, "panic"))
1103 c->assert_action = ASSACT_PANIC;
1104 else {
1105 ubifs_err(c, "unknown assert action \"%s\"", act);
1106 kfree(act);
1107 return -EINVAL;
1109 kfree(act);
1110 break;
1112 case Opt_auth_key:
1113 if (!is_remount) {
1114 c->auth_key_name = kstrdup(args[0].from,
1115 GFP_KERNEL);
1116 if (!c->auth_key_name)
1117 return -ENOMEM;
1119 break;
1120 case Opt_auth_hash_name:
1121 if (!is_remount) {
1122 c->auth_hash_name = kstrdup(args[0].from,
1123 GFP_KERNEL);
1124 if (!c->auth_hash_name)
1125 return -ENOMEM;
1127 break;
1128 case Opt_ignore:
1129 break;
1130 default:
1132 unsigned long flag;
1133 struct super_block *sb = c->vfs_sb;
1135 flag = parse_standard_option(p);
1136 if (!flag) {
1137 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1139 return -EINVAL;
1141 sb->s_flags |= flag;
1142 break;
1147 return 0;
1151 * ubifs_release_options - release mount parameters which have been dumped.
1152 * @c: UBIFS file-system description object
1154 static void ubifs_release_options(struct ubifs_info *c)
1156 kfree(c->auth_key_name);
1157 c->auth_key_name = NULL;
1158 kfree(c->auth_hash_name);
1159 c->auth_hash_name = NULL;
1163 * destroy_journal - destroy journal data structures.
1164 * @c: UBIFS file-system description object
1166 * This function destroys journal data structures including those that may have
1167 * been created by recovery functions.
1169 static void destroy_journal(struct ubifs_info *c)
1171 while (!list_empty(&c->unclean_leb_list)) {
1172 struct ubifs_unclean_leb *ucleb;
1174 ucleb = list_entry(c->unclean_leb_list.next,
1175 struct ubifs_unclean_leb, list);
1176 list_del(&ucleb->list);
1177 kfree(ucleb);
1179 while (!list_empty(&c->old_buds)) {
1180 struct ubifs_bud *bud;
1182 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1183 list_del(&bud->list);
1184 kfree(bud);
1186 ubifs_destroy_idx_gc(c);
1187 ubifs_destroy_size_tree(c);
1188 ubifs_tnc_close(c);
1189 free_buds(c);
1193 * bu_init - initialize bulk-read information.
1194 * @c: UBIFS file-system description object
1196 static void bu_init(struct ubifs_info *c)
1198 ubifs_assert(c, c->bulk_read == 1);
1200 if (c->bu.buf)
1201 return; /* Already initialized */
1203 again:
1204 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1205 if (!c->bu.buf) {
1206 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1207 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1208 goto again;
1211 /* Just disable bulk-read */
1212 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1213 c->max_bu_buf_len);
1214 c->mount_opts.bulk_read = 1;
1215 c->bulk_read = 0;
1216 return;
1221 * check_free_space - check if there is enough free space to mount.
1222 * @c: UBIFS file-system description object
1224 * This function makes sure UBIFS has enough free space to be mounted in
1225 * read/write mode. UBIFS must always have some free space to allow deletions.
1227 static int check_free_space(struct ubifs_info *c)
1229 ubifs_assert(c, c->dark_wm > 0);
1230 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1231 ubifs_err(c, "insufficient free space to mount in R/W mode");
1232 ubifs_dump_budg(c, &c->bi);
1233 ubifs_dump_lprops(c);
1234 return -ENOSPC;
1236 return 0;
1240 * mount_ubifs - mount UBIFS file-system.
1241 * @c: UBIFS file-system description object
1243 * This function mounts UBIFS file system. Returns zero in case of success and
1244 * a negative error code in case of failure.
1246 static int mount_ubifs(struct ubifs_info *c)
1248 int err;
1249 long long x, y;
1250 size_t sz;
1252 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1253 /* Suppress error messages while probing if SB_SILENT is set */
1254 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1256 err = init_constants_early(c);
1257 if (err)
1258 return err;
1260 err = ubifs_debugging_init(c);
1261 if (err)
1262 return err;
1264 err = check_volume_empty(c);
1265 if (err)
1266 goto out_free;
1268 if (c->empty && (c->ro_mount || c->ro_media)) {
1270 * This UBI volume is empty, and read-only, or the file system
1271 * is mounted read-only - we cannot format it.
1273 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1274 c->ro_media ? "UBI volume" : "mount");
1275 err = -EROFS;
1276 goto out_free;
1279 if (c->ro_media && !c->ro_mount) {
1280 ubifs_err(c, "cannot mount read-write - read-only media");
1281 err = -EROFS;
1282 goto out_free;
1286 * The requirement for the buffer is that it should fit indexing B-tree
1287 * height amount of integers. We assume the height if the TNC tree will
1288 * never exceed 64.
1290 err = -ENOMEM;
1291 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1292 GFP_KERNEL);
1293 if (!c->bottom_up_buf)
1294 goto out_free;
1296 c->sbuf = vmalloc(c->leb_size);
1297 if (!c->sbuf)
1298 goto out_free;
1300 if (!c->ro_mount) {
1301 c->ileb_buf = vmalloc(c->leb_size);
1302 if (!c->ileb_buf)
1303 goto out_free;
1306 if (c->bulk_read == 1)
1307 bu_init(c);
1309 if (!c->ro_mount) {
1310 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1311 UBIFS_CIPHER_BLOCK_SIZE,
1312 GFP_KERNEL);
1313 if (!c->write_reserve_buf)
1314 goto out_free;
1317 c->mounting = 1;
1319 if (c->auth_key_name) {
1320 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1321 err = ubifs_init_authentication(c);
1322 if (err)
1323 goto out_free;
1324 } else {
1325 ubifs_err(c, "auth_key_name, but UBIFS is built without"
1326 " authentication support");
1327 err = -EINVAL;
1328 goto out_free;
1332 err = ubifs_read_superblock(c);
1333 if (err)
1334 goto out_auth;
1336 c->probing = 0;
1339 * Make sure the compressor which is set as default in the superblock
1340 * or overridden by mount options is actually compiled in.
1342 if (!ubifs_compr_present(c, c->default_compr)) {
1343 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1344 ubifs_compr_name(c, c->default_compr));
1345 err = -ENOTSUPP;
1346 goto out_auth;
1349 err = init_constants_sb(c);
1350 if (err)
1351 goto out_auth;
1353 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1354 c->cbuf = kmalloc(sz, GFP_NOFS);
1355 if (!c->cbuf) {
1356 err = -ENOMEM;
1357 goto out_auth;
1360 err = alloc_wbufs(c);
1361 if (err)
1362 goto out_cbuf;
1364 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1365 if (!c->ro_mount) {
1366 /* Create background thread */
1367 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1368 if (IS_ERR(c->bgt)) {
1369 err = PTR_ERR(c->bgt);
1370 c->bgt = NULL;
1371 ubifs_err(c, "cannot spawn \"%s\", error %d",
1372 c->bgt_name, err);
1373 goto out_wbufs;
1375 wake_up_process(c->bgt);
1378 err = ubifs_read_master(c);
1379 if (err)
1380 goto out_master;
1382 init_constants_master(c);
1384 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1385 ubifs_msg(c, "recovery needed");
1386 c->need_recovery = 1;
1389 if (c->need_recovery && !c->ro_mount) {
1390 err = ubifs_recover_inl_heads(c, c->sbuf);
1391 if (err)
1392 goto out_master;
1395 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1396 if (err)
1397 goto out_master;
1399 if (!c->ro_mount && c->space_fixup) {
1400 err = ubifs_fixup_free_space(c);
1401 if (err)
1402 goto out_lpt;
1405 if (!c->ro_mount && !c->need_recovery) {
1407 * Set the "dirty" flag so that if we reboot uncleanly we
1408 * will notice this immediately on the next mount.
1410 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1411 err = ubifs_write_master(c);
1412 if (err)
1413 goto out_lpt;
1417 * Handle offline signed images: Now that the master node is
1418 * written and its validation no longer depends on the hash
1419 * in the superblock, we can update the offline signed
1420 * superblock with a HMAC version,
1422 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1423 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1424 if (err)
1425 goto out_lpt;
1426 c->superblock_need_write = 1;
1429 if (!c->ro_mount && c->superblock_need_write) {
1430 err = ubifs_write_sb_node(c, c->sup_node);
1431 if (err)
1432 goto out_lpt;
1433 c->superblock_need_write = 0;
1436 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1437 if (err)
1438 goto out_lpt;
1440 err = ubifs_replay_journal(c);
1441 if (err)
1442 goto out_journal;
1444 /* Calculate 'min_idx_lebs' after journal replay */
1445 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1447 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1448 if (err)
1449 goto out_orphans;
1451 if (!c->ro_mount) {
1452 int lnum;
1454 err = check_free_space(c);
1455 if (err)
1456 goto out_orphans;
1458 /* Check for enough log space */
1459 lnum = c->lhead_lnum + 1;
1460 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1461 lnum = UBIFS_LOG_LNUM;
1462 if (lnum == c->ltail_lnum) {
1463 err = ubifs_consolidate_log(c);
1464 if (err)
1465 goto out_orphans;
1468 if (c->need_recovery) {
1469 if (!ubifs_authenticated(c)) {
1470 err = ubifs_recover_size(c, true);
1471 if (err)
1472 goto out_orphans;
1475 err = ubifs_rcvry_gc_commit(c);
1476 if (err)
1477 goto out_orphans;
1479 if (ubifs_authenticated(c)) {
1480 err = ubifs_recover_size(c, false);
1481 if (err)
1482 goto out_orphans;
1484 } else {
1485 err = take_gc_lnum(c);
1486 if (err)
1487 goto out_orphans;
1490 * GC LEB may contain garbage if there was an unclean
1491 * reboot, and it should be un-mapped.
1493 err = ubifs_leb_unmap(c, c->gc_lnum);
1494 if (err)
1495 goto out_orphans;
1498 err = dbg_check_lprops(c);
1499 if (err)
1500 goto out_orphans;
1501 } else if (c->need_recovery) {
1502 err = ubifs_recover_size(c, false);
1503 if (err)
1504 goto out_orphans;
1505 } else {
1507 * Even if we mount read-only, we have to set space in GC LEB
1508 * to proper value because this affects UBIFS free space
1509 * reporting. We do not want to have a situation when
1510 * re-mounting from R/O to R/W changes amount of free space.
1512 err = take_gc_lnum(c);
1513 if (err)
1514 goto out_orphans;
1517 spin_lock(&ubifs_infos_lock);
1518 list_add_tail(&c->infos_list, &ubifs_infos);
1519 spin_unlock(&ubifs_infos_lock);
1521 if (c->need_recovery) {
1522 if (c->ro_mount)
1523 ubifs_msg(c, "recovery deferred");
1524 else {
1525 c->need_recovery = 0;
1526 ubifs_msg(c, "recovery completed");
1528 * GC LEB has to be empty and taken at this point. But
1529 * the journal head LEBs may also be accounted as
1530 * "empty taken" if they are empty.
1532 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1534 } else
1535 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1537 err = dbg_check_filesystem(c);
1538 if (err)
1539 goto out_infos;
1541 dbg_debugfs_init_fs(c);
1543 c->mounting = 0;
1545 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1546 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1547 c->ro_mount ? ", R/O mode" : "");
1548 x = (long long)c->main_lebs * c->leb_size;
1549 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1550 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1551 c->leb_size, c->leb_size >> 10, c->min_io_size,
1552 c->max_write_size);
1553 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1554 x, x >> 20, c->main_lebs,
1555 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1556 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1557 c->report_rp_size, c->report_rp_size >> 10);
1558 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1559 c->fmt_version, c->ro_compat_version,
1560 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1561 c->big_lpt ? ", big LPT model" : ", small LPT model");
1563 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr));
1564 dbg_gen("data journal heads: %d",
1565 c->jhead_cnt - NONDATA_JHEADS_CNT);
1566 dbg_gen("log LEBs: %d (%d - %d)",
1567 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1568 dbg_gen("LPT area LEBs: %d (%d - %d)",
1569 c->lpt_lebs, c->lpt_first, c->lpt_last);
1570 dbg_gen("orphan area LEBs: %d (%d - %d)",
1571 c->orph_lebs, c->orph_first, c->orph_last);
1572 dbg_gen("main area LEBs: %d (%d - %d)",
1573 c->main_lebs, c->main_first, c->leb_cnt - 1);
1574 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1575 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1576 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1577 c->bi.old_idx_sz >> 20);
1578 dbg_gen("key hash type: %d", c->key_hash_type);
1579 dbg_gen("tree fanout: %d", c->fanout);
1580 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1581 dbg_gen("max. znode size %d", c->max_znode_sz);
1582 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1583 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1584 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1585 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1586 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1587 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1588 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1589 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1590 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1591 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1592 dbg_gen("dead watermark: %d", c->dead_wm);
1593 dbg_gen("dark watermark: %d", c->dark_wm);
1594 dbg_gen("LEB overhead: %d", c->leb_overhead);
1595 x = (long long)c->main_lebs * c->dark_wm;
1596 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1597 x, x >> 10, x >> 20);
1598 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1599 c->max_bud_bytes, c->max_bud_bytes >> 10,
1600 c->max_bud_bytes >> 20);
1601 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1602 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1603 c->bg_bud_bytes >> 20);
1604 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1605 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1606 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1607 dbg_gen("commit number: %llu", c->cmt_no);
1608 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1609 dbg_gen("max orphans: %d", c->max_orphans);
1611 return 0;
1613 out_infos:
1614 spin_lock(&ubifs_infos_lock);
1615 list_del(&c->infos_list);
1616 spin_unlock(&ubifs_infos_lock);
1617 out_orphans:
1618 free_orphans(c);
1619 out_journal:
1620 destroy_journal(c);
1621 out_lpt:
1622 ubifs_lpt_free(c, 0);
1623 out_master:
1624 kfree(c->mst_node);
1625 kfree(c->rcvrd_mst_node);
1626 if (c->bgt)
1627 kthread_stop(c->bgt);
1628 out_wbufs:
1629 free_wbufs(c);
1630 out_cbuf:
1631 kfree(c->cbuf);
1632 out_auth:
1633 ubifs_exit_authentication(c);
1634 out_free:
1635 kfree(c->write_reserve_buf);
1636 kfree(c->bu.buf);
1637 vfree(c->ileb_buf);
1638 vfree(c->sbuf);
1639 kfree(c->bottom_up_buf);
1640 kfree(c->sup_node);
1641 ubifs_debugging_exit(c);
1642 return err;
1646 * ubifs_umount - un-mount UBIFS file-system.
1647 * @c: UBIFS file-system description object
1649 * Note, this function is called to free allocated resourced when un-mounting,
1650 * as well as free resources when an error occurred while we were half way
1651 * through mounting (error path cleanup function). So it has to make sure the
1652 * resource was actually allocated before freeing it.
1654 static void ubifs_umount(struct ubifs_info *c)
1656 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1657 c->vi.vol_id);
1659 dbg_debugfs_exit_fs(c);
1660 spin_lock(&ubifs_infos_lock);
1661 list_del(&c->infos_list);
1662 spin_unlock(&ubifs_infos_lock);
1664 if (c->bgt)
1665 kthread_stop(c->bgt);
1667 destroy_journal(c);
1668 free_wbufs(c);
1669 free_orphans(c);
1670 ubifs_lpt_free(c, 0);
1671 ubifs_exit_authentication(c);
1673 ubifs_release_options(c);
1674 kfree(c->cbuf);
1675 kfree(c->rcvrd_mst_node);
1676 kfree(c->mst_node);
1677 kfree(c->write_reserve_buf);
1678 kfree(c->bu.buf);
1679 vfree(c->ileb_buf);
1680 vfree(c->sbuf);
1681 kfree(c->bottom_up_buf);
1682 kfree(c->sup_node);
1683 ubifs_debugging_exit(c);
1687 * ubifs_remount_rw - re-mount in read-write mode.
1688 * @c: UBIFS file-system description object
1690 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1691 * mode. This function allocates the needed resources and re-mounts UBIFS in
1692 * read-write mode.
1694 static int ubifs_remount_rw(struct ubifs_info *c)
1696 int err, lnum;
1698 if (c->rw_incompat) {
1699 ubifs_err(c, "the file-system is not R/W-compatible");
1700 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1701 c->fmt_version, c->ro_compat_version,
1702 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1703 return -EROFS;
1706 mutex_lock(&c->umount_mutex);
1707 dbg_save_space_info(c);
1708 c->remounting_rw = 1;
1709 c->ro_mount = 0;
1711 if (c->space_fixup) {
1712 err = ubifs_fixup_free_space(c);
1713 if (err)
1714 goto out;
1717 err = check_free_space(c);
1718 if (err)
1719 goto out;
1721 if (c->need_recovery) {
1722 ubifs_msg(c, "completing deferred recovery");
1723 err = ubifs_write_rcvrd_mst_node(c);
1724 if (err)
1725 goto out;
1726 if (!ubifs_authenticated(c)) {
1727 err = ubifs_recover_size(c, true);
1728 if (err)
1729 goto out;
1731 err = ubifs_clean_lebs(c, c->sbuf);
1732 if (err)
1733 goto out;
1734 err = ubifs_recover_inl_heads(c, c->sbuf);
1735 if (err)
1736 goto out;
1737 } else {
1738 /* A readonly mount is not allowed to have orphans */
1739 ubifs_assert(c, c->tot_orphans == 0);
1740 err = ubifs_clear_orphans(c);
1741 if (err)
1742 goto out;
1745 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1746 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1747 err = ubifs_write_master(c);
1748 if (err)
1749 goto out;
1752 if (c->superblock_need_write) {
1753 struct ubifs_sb_node *sup = c->sup_node;
1755 err = ubifs_write_sb_node(c, sup);
1756 if (err)
1757 goto out;
1759 c->superblock_need_write = 0;
1762 c->ileb_buf = vmalloc(c->leb_size);
1763 if (!c->ileb_buf) {
1764 err = -ENOMEM;
1765 goto out;
1768 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1769 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1770 if (!c->write_reserve_buf) {
1771 err = -ENOMEM;
1772 goto out;
1775 err = ubifs_lpt_init(c, 0, 1);
1776 if (err)
1777 goto out;
1779 /* Create background thread */
1780 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1781 if (IS_ERR(c->bgt)) {
1782 err = PTR_ERR(c->bgt);
1783 c->bgt = NULL;
1784 ubifs_err(c, "cannot spawn \"%s\", error %d",
1785 c->bgt_name, err);
1786 goto out;
1788 wake_up_process(c->bgt);
1790 c->orph_buf = vmalloc(c->leb_size);
1791 if (!c->orph_buf) {
1792 err = -ENOMEM;
1793 goto out;
1796 /* Check for enough log space */
1797 lnum = c->lhead_lnum + 1;
1798 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1799 lnum = UBIFS_LOG_LNUM;
1800 if (lnum == c->ltail_lnum) {
1801 err = ubifs_consolidate_log(c);
1802 if (err)
1803 goto out;
1806 if (c->need_recovery) {
1807 err = ubifs_rcvry_gc_commit(c);
1808 if (err)
1809 goto out;
1811 if (ubifs_authenticated(c)) {
1812 err = ubifs_recover_size(c, false);
1813 if (err)
1814 goto out;
1816 } else {
1817 err = ubifs_leb_unmap(c, c->gc_lnum);
1819 if (err)
1820 goto out;
1822 dbg_gen("re-mounted read-write");
1823 c->remounting_rw = 0;
1825 if (c->need_recovery) {
1826 c->need_recovery = 0;
1827 ubifs_msg(c, "deferred recovery completed");
1828 } else {
1830 * Do not run the debugging space check if the were doing
1831 * recovery, because when we saved the information we had the
1832 * file-system in a state where the TNC and lprops has been
1833 * modified in memory, but all the I/O operations (including a
1834 * commit) were deferred. So the file-system was in
1835 * "non-committed" state. Now the file-system is in committed
1836 * state, and of course the amount of free space will change
1837 * because, for example, the old index size was imprecise.
1839 err = dbg_check_space_info(c);
1842 mutex_unlock(&c->umount_mutex);
1843 return err;
1845 out:
1846 c->ro_mount = 1;
1847 vfree(c->orph_buf);
1848 c->orph_buf = NULL;
1849 if (c->bgt) {
1850 kthread_stop(c->bgt);
1851 c->bgt = NULL;
1853 free_wbufs(c);
1854 kfree(c->write_reserve_buf);
1855 c->write_reserve_buf = NULL;
1856 vfree(c->ileb_buf);
1857 c->ileb_buf = NULL;
1858 ubifs_lpt_free(c, 1);
1859 c->remounting_rw = 0;
1860 mutex_unlock(&c->umount_mutex);
1861 return err;
1865 * ubifs_remount_ro - re-mount in read-only mode.
1866 * @c: UBIFS file-system description object
1868 * We assume VFS has stopped writing. Possibly the background thread could be
1869 * running a commit, however kthread_stop will wait in that case.
1871 static void ubifs_remount_ro(struct ubifs_info *c)
1873 int i, err;
1875 ubifs_assert(c, !c->need_recovery);
1876 ubifs_assert(c, !c->ro_mount);
1878 mutex_lock(&c->umount_mutex);
1879 if (c->bgt) {
1880 kthread_stop(c->bgt);
1881 c->bgt = NULL;
1884 dbg_save_space_info(c);
1886 for (i = 0; i < c->jhead_cnt; i++) {
1887 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1888 if (err)
1889 ubifs_ro_mode(c, err);
1892 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1893 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1894 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1895 err = ubifs_write_master(c);
1896 if (err)
1897 ubifs_ro_mode(c, err);
1899 vfree(c->orph_buf);
1900 c->orph_buf = NULL;
1901 kfree(c->write_reserve_buf);
1902 c->write_reserve_buf = NULL;
1903 vfree(c->ileb_buf);
1904 c->ileb_buf = NULL;
1905 ubifs_lpt_free(c, 1);
1906 c->ro_mount = 1;
1907 err = dbg_check_space_info(c);
1908 if (err)
1909 ubifs_ro_mode(c, err);
1910 mutex_unlock(&c->umount_mutex);
1913 static void ubifs_put_super(struct super_block *sb)
1915 int i;
1916 struct ubifs_info *c = sb->s_fs_info;
1918 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1921 * The following asserts are only valid if there has not been a failure
1922 * of the media. For example, there will be dirty inodes if we failed
1923 * to write them back because of I/O errors.
1925 if (!c->ro_error) {
1926 ubifs_assert(c, c->bi.idx_growth == 0);
1927 ubifs_assert(c, c->bi.dd_growth == 0);
1928 ubifs_assert(c, c->bi.data_growth == 0);
1932 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1933 * and file system un-mount. Namely, it prevents the shrinker from
1934 * picking this superblock for shrinking - it will be just skipped if
1935 * the mutex is locked.
1937 mutex_lock(&c->umount_mutex);
1938 if (!c->ro_mount) {
1940 * First of all kill the background thread to make sure it does
1941 * not interfere with un-mounting and freeing resources.
1943 if (c->bgt) {
1944 kthread_stop(c->bgt);
1945 c->bgt = NULL;
1949 * On fatal errors c->ro_error is set to 1, in which case we do
1950 * not write the master node.
1952 if (!c->ro_error) {
1953 int err;
1955 /* Synchronize write-buffers */
1956 for (i = 0; i < c->jhead_cnt; i++) {
1957 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1958 if (err)
1959 ubifs_ro_mode(c, err);
1963 * We are being cleanly unmounted which means the
1964 * orphans were killed - indicate this in the master
1965 * node. Also save the reserved GC LEB number.
1967 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1968 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1969 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1970 err = ubifs_write_master(c);
1971 if (err)
1973 * Recovery will attempt to fix the master area
1974 * next mount, so we just print a message and
1975 * continue to unmount normally.
1977 ubifs_err(c, "failed to write master node, error %d",
1978 err);
1979 } else {
1980 for (i = 0; i < c->jhead_cnt; i++)
1981 /* Make sure write-buffer timers are canceled */
1982 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1986 ubifs_umount(c);
1987 ubi_close_volume(c->ubi);
1988 mutex_unlock(&c->umount_mutex);
1991 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1993 int err;
1994 struct ubifs_info *c = sb->s_fs_info;
1996 sync_filesystem(sb);
1997 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1999 err = ubifs_parse_options(c, data, 1);
2000 if (err) {
2001 ubifs_err(c, "invalid or unknown remount parameter");
2002 return err;
2005 if (c->ro_mount && !(*flags & SB_RDONLY)) {
2006 if (c->ro_error) {
2007 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2008 return -EROFS;
2010 if (c->ro_media) {
2011 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2012 return -EROFS;
2014 err = ubifs_remount_rw(c);
2015 if (err)
2016 return err;
2017 } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
2018 if (c->ro_error) {
2019 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2020 return -EROFS;
2022 ubifs_remount_ro(c);
2025 if (c->bulk_read == 1)
2026 bu_init(c);
2027 else {
2028 dbg_gen("disable bulk-read");
2029 mutex_lock(&c->bu_mutex);
2030 kfree(c->bu.buf);
2031 c->bu.buf = NULL;
2032 mutex_unlock(&c->bu_mutex);
2035 if (!c->need_recovery)
2036 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2038 return 0;
2041 const struct super_operations ubifs_super_operations = {
2042 .alloc_inode = ubifs_alloc_inode,
2043 .free_inode = ubifs_free_inode,
2044 .put_super = ubifs_put_super,
2045 .write_inode = ubifs_write_inode,
2046 .drop_inode = ubifs_drop_inode,
2047 .evict_inode = ubifs_evict_inode,
2048 .statfs = ubifs_statfs,
2049 .dirty_inode = ubifs_dirty_inode,
2050 .remount_fs = ubifs_remount_fs,
2051 .show_options = ubifs_show_options,
2052 .sync_fs = ubifs_sync_fs,
2056 * open_ubi - parse UBI device name string and open the UBI device.
2057 * @name: UBI volume name
2058 * @mode: UBI volume open mode
2060 * The primary method of mounting UBIFS is by specifying the UBI volume
2061 * character device node path. However, UBIFS may also be mounted withoug any
2062 * character device node using one of the following methods:
2064 * o ubiX_Y - mount UBI device number X, volume Y;
2065 * o ubiY - mount UBI device number 0, volume Y;
2066 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2067 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2069 * Alternative '!' separator may be used instead of ':' (because some shells
2070 * like busybox may interpret ':' as an NFS host name separator). This function
2071 * returns UBI volume description object in case of success and a negative
2072 * error code in case of failure.
2074 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2076 struct ubi_volume_desc *ubi;
2077 int dev, vol;
2078 char *endptr;
2080 if (!name || !*name)
2081 return ERR_PTR(-EINVAL);
2083 /* First, try to open using the device node path method */
2084 ubi = ubi_open_volume_path(name, mode);
2085 if (!IS_ERR(ubi))
2086 return ubi;
2088 /* Try the "nodev" method */
2089 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2090 return ERR_PTR(-EINVAL);
2092 /* ubi:NAME method */
2093 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2094 return ubi_open_volume_nm(0, name + 4, mode);
2096 if (!isdigit(name[3]))
2097 return ERR_PTR(-EINVAL);
2099 dev = simple_strtoul(name + 3, &endptr, 0);
2101 /* ubiY method */
2102 if (*endptr == '\0')
2103 return ubi_open_volume(0, dev, mode);
2105 /* ubiX_Y method */
2106 if (*endptr == '_' && isdigit(endptr[1])) {
2107 vol = simple_strtoul(endptr + 1, &endptr, 0);
2108 if (*endptr != '\0')
2109 return ERR_PTR(-EINVAL);
2110 return ubi_open_volume(dev, vol, mode);
2113 /* ubiX:NAME method */
2114 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2115 return ubi_open_volume_nm(dev, ++endptr, mode);
2117 return ERR_PTR(-EINVAL);
2120 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2122 struct ubifs_info *c;
2124 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2125 if (c) {
2126 spin_lock_init(&c->cnt_lock);
2127 spin_lock_init(&c->cs_lock);
2128 spin_lock_init(&c->buds_lock);
2129 spin_lock_init(&c->space_lock);
2130 spin_lock_init(&c->orphan_lock);
2131 init_rwsem(&c->commit_sem);
2132 mutex_init(&c->lp_mutex);
2133 mutex_init(&c->tnc_mutex);
2134 mutex_init(&c->log_mutex);
2135 mutex_init(&c->umount_mutex);
2136 mutex_init(&c->bu_mutex);
2137 mutex_init(&c->write_reserve_mutex);
2138 init_waitqueue_head(&c->cmt_wq);
2139 c->buds = RB_ROOT;
2140 c->old_idx = RB_ROOT;
2141 c->size_tree = RB_ROOT;
2142 c->orph_tree = RB_ROOT;
2143 INIT_LIST_HEAD(&c->infos_list);
2144 INIT_LIST_HEAD(&c->idx_gc);
2145 INIT_LIST_HEAD(&c->replay_list);
2146 INIT_LIST_HEAD(&c->replay_buds);
2147 INIT_LIST_HEAD(&c->uncat_list);
2148 INIT_LIST_HEAD(&c->empty_list);
2149 INIT_LIST_HEAD(&c->freeable_list);
2150 INIT_LIST_HEAD(&c->frdi_idx_list);
2151 INIT_LIST_HEAD(&c->unclean_leb_list);
2152 INIT_LIST_HEAD(&c->old_buds);
2153 INIT_LIST_HEAD(&c->orph_list);
2154 INIT_LIST_HEAD(&c->orph_new);
2155 c->no_chk_data_crc = 1;
2156 c->assert_action = ASSACT_RO;
2158 c->highest_inum = UBIFS_FIRST_INO;
2159 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2161 ubi_get_volume_info(ubi, &c->vi);
2162 ubi_get_device_info(c->vi.ubi_num, &c->di);
2164 return c;
2167 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2169 struct ubifs_info *c = sb->s_fs_info;
2170 struct inode *root;
2171 int err;
2173 c->vfs_sb = sb;
2174 /* Re-open the UBI device in read-write mode */
2175 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2176 if (IS_ERR(c->ubi)) {
2177 err = PTR_ERR(c->ubi);
2178 goto out;
2181 err = ubifs_parse_options(c, data, 0);
2182 if (err)
2183 goto out_close;
2186 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2187 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2188 * which means the user would have to wait not just for their own I/O
2189 * but the read-ahead I/O as well i.e. completely pointless.
2191 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2192 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2193 * writeback happening.
2195 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2196 c->vi.vol_id);
2197 if (err)
2198 goto out_close;
2199 sb->s_bdi->ra_pages = 0;
2200 sb->s_bdi->io_pages = 0;
2202 sb->s_fs_info = c;
2203 sb->s_magic = UBIFS_SUPER_MAGIC;
2204 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2205 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2206 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2207 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2208 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2209 sb->s_op = &ubifs_super_operations;
2210 #ifdef CONFIG_UBIFS_FS_XATTR
2211 sb->s_xattr = ubifs_xattr_handlers;
2212 #endif
2213 fscrypt_set_ops(sb, &ubifs_crypt_operations);
2215 mutex_lock(&c->umount_mutex);
2216 err = mount_ubifs(c);
2217 if (err) {
2218 ubifs_assert(c, err < 0);
2219 goto out_unlock;
2222 /* Read the root inode */
2223 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2224 if (IS_ERR(root)) {
2225 err = PTR_ERR(root);
2226 goto out_umount;
2229 sb->s_root = d_make_root(root);
2230 if (!sb->s_root) {
2231 err = -ENOMEM;
2232 goto out_umount;
2235 mutex_unlock(&c->umount_mutex);
2236 return 0;
2238 out_umount:
2239 ubifs_umount(c);
2240 out_unlock:
2241 mutex_unlock(&c->umount_mutex);
2242 out_close:
2243 ubifs_release_options(c);
2244 ubi_close_volume(c->ubi);
2245 out:
2246 return err;
2249 static int sb_test(struct super_block *sb, void *data)
2251 struct ubifs_info *c1 = data;
2252 struct ubifs_info *c = sb->s_fs_info;
2254 return c->vi.cdev == c1->vi.cdev;
2257 static int sb_set(struct super_block *sb, void *data)
2259 sb->s_fs_info = data;
2260 return set_anon_super(sb, NULL);
2263 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2264 const char *name, void *data)
2266 struct ubi_volume_desc *ubi;
2267 struct ubifs_info *c;
2268 struct super_block *sb;
2269 int err;
2271 dbg_gen("name %s, flags %#x", name, flags);
2274 * Get UBI device number and volume ID. Mount it read-only so far
2275 * because this might be a new mount point, and UBI allows only one
2276 * read-write user at a time.
2278 ubi = open_ubi(name, UBI_READONLY);
2279 if (IS_ERR(ubi)) {
2280 if (!(flags & SB_SILENT))
2281 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2282 current->pid, name, (int)PTR_ERR(ubi));
2283 return ERR_CAST(ubi);
2286 c = alloc_ubifs_info(ubi);
2287 if (!c) {
2288 err = -ENOMEM;
2289 goto out_close;
2292 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2294 sb = sget(fs_type, sb_test, sb_set, flags, c);
2295 if (IS_ERR(sb)) {
2296 err = PTR_ERR(sb);
2297 kfree(c);
2298 goto out_close;
2301 if (sb->s_root) {
2302 struct ubifs_info *c1 = sb->s_fs_info;
2303 kfree(c);
2304 /* A new mount point for already mounted UBIFS */
2305 dbg_gen("this ubi volume is already mounted");
2306 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2307 err = -EBUSY;
2308 goto out_deact;
2310 } else {
2311 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2312 if (err)
2313 goto out_deact;
2314 /* We do not support atime */
2315 sb->s_flags |= SB_ACTIVE;
2316 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2317 ubifs_msg(c, "full atime support is enabled.");
2318 else
2319 sb->s_flags |= SB_NOATIME;
2322 /* 'fill_super()' opens ubi again so we must close it here */
2323 ubi_close_volume(ubi);
2325 return dget(sb->s_root);
2327 out_deact:
2328 deactivate_locked_super(sb);
2329 out_close:
2330 ubi_close_volume(ubi);
2331 return ERR_PTR(err);
2334 static void kill_ubifs_super(struct super_block *s)
2336 struct ubifs_info *c = s->s_fs_info;
2337 kill_anon_super(s);
2338 kfree(c);
2341 static struct file_system_type ubifs_fs_type = {
2342 .name = "ubifs",
2343 .owner = THIS_MODULE,
2344 .mount = ubifs_mount,
2345 .kill_sb = kill_ubifs_super,
2347 MODULE_ALIAS_FS("ubifs");
2350 * Inode slab cache constructor.
2352 static void inode_slab_ctor(void *obj)
2354 struct ubifs_inode *ui = obj;
2355 inode_init_once(&ui->vfs_inode);
2358 static int __init ubifs_init(void)
2360 int err;
2362 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2364 /* Make sure node sizes are 8-byte aligned */
2365 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2366 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2367 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2368 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2369 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2370 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2371 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2372 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2373 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2374 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2375 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2377 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2378 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2379 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2380 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2381 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2382 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2384 /* Check min. node size */
2385 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2386 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2387 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2388 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2390 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2391 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2392 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2393 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2395 /* Defined node sizes */
2396 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2397 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2398 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2399 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2402 * We use 2 bit wide bit-fields to store compression type, which should
2403 * be amended if more compressors are added. The bit-fields are:
2404 * @compr_type in 'struct ubifs_inode', @default_compr in
2405 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2407 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2410 * We require that PAGE_SIZE is greater-than-or-equal-to
2411 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2413 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2414 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2415 current->pid, (unsigned int)PAGE_SIZE);
2416 return -EINVAL;
2419 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2420 sizeof(struct ubifs_inode), 0,
2421 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2422 SLAB_ACCOUNT, &inode_slab_ctor);
2423 if (!ubifs_inode_slab)
2424 return -ENOMEM;
2426 err = register_shrinker(&ubifs_shrinker_info);
2427 if (err)
2428 goto out_slab;
2430 err = ubifs_compressors_init();
2431 if (err)
2432 goto out_shrinker;
2434 dbg_debugfs_init();
2436 err = register_filesystem(&ubifs_fs_type);
2437 if (err) {
2438 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2439 current->pid, err);
2440 goto out_dbg;
2442 return 0;
2444 out_dbg:
2445 dbg_debugfs_exit();
2446 ubifs_compressors_exit();
2447 out_shrinker:
2448 unregister_shrinker(&ubifs_shrinker_info);
2449 out_slab:
2450 kmem_cache_destroy(ubifs_inode_slab);
2451 return err;
2453 /* late_initcall to let compressors initialize first */
2454 late_initcall(ubifs_init);
2456 static void __exit ubifs_exit(void)
2458 WARN_ON(!list_empty(&ubifs_infos));
2459 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2461 dbg_debugfs_exit();
2462 ubifs_compressors_exit();
2463 unregister_shrinker(&ubifs_shrinker_info);
2466 * Make sure all delayed rcu free inodes are flushed before we
2467 * destroy cache.
2469 rcu_barrier();
2470 kmem_cache_destroy(ubifs_inode_slab);
2471 unregister_filesystem(&ubifs_fs_type);
2473 module_exit(ubifs_exit);
2475 MODULE_LICENSE("GPL");
2476 MODULE_VERSION(__stringify(UBIFS_VERSION));
2477 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2478 MODULE_DESCRIPTION("UBIFS - UBI File System");