1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
29 static int ubifs_default_version_set(const char *val
, const struct kernel_param
*kp
)
33 ret
= kstrtoint(val
, 10, &n
);
34 if (ret
!= 0 || n
< 4 || n
> UBIFS_FORMAT_VERSION
)
36 return param_set_int(val
, kp
);
39 static const struct kernel_param_ops ubifs_default_version_ops
= {
40 .set
= ubifs_default_version_set
,
44 int ubifs_default_version
= UBIFS_FORMAT_VERSION
;
45 module_param_cb(default_version
, &ubifs_default_version_ops
, &ubifs_default_version
, 0600);
48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49 * allocating too much.
51 #define UBIFS_KMALLOC_OK (128*1024)
53 /* Slab cache for UBIFS inodes */
54 static struct kmem_cache
*ubifs_inode_slab
;
56 /* UBIFS TNC shrinker description */
57 static struct shrinker ubifs_shrinker_info
= {
58 .scan_objects
= ubifs_shrink_scan
,
59 .count_objects
= ubifs_shrink_count
,
60 .seeks
= DEFAULT_SEEKS
,
64 * validate_inode - validate inode.
65 * @c: UBIFS file-system description object
66 * @inode: the inode to validate
68 * This is a helper function for 'ubifs_iget()' which validates various fields
69 * of a newly built inode to make sure they contain sane values and prevent
70 * possible vulnerabilities. Returns zero if the inode is all right and
71 * a non-zero error code if not.
73 static int validate_inode(struct ubifs_info
*c
, const struct inode
*inode
)
76 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
78 if (inode
->i_size
> c
->max_inode_sz
) {
79 ubifs_err(c
, "inode is too large (%lld)",
80 (long long)inode
->i_size
);
84 if (ui
->compr_type
>= UBIFS_COMPR_TYPES_CNT
) {
85 ubifs_err(c
, "unknown compression type %d", ui
->compr_type
);
89 if (ui
->xattr_names
+ ui
->xattr_cnt
> XATTR_LIST_MAX
)
92 if (ui
->data_len
< 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
)
95 if (ui
->xattr
&& !S_ISREG(inode
->i_mode
))
98 if (!ubifs_compr_present(c
, ui
->compr_type
)) {
99 ubifs_warn(c
, "inode %lu uses '%s' compression, but it was not compiled in",
100 inode
->i_ino
, ubifs_compr_name(c
, ui
->compr_type
));
103 err
= dbg_check_dir(c
, inode
);
107 struct inode
*ubifs_iget(struct super_block
*sb
, unsigned long inum
)
111 struct ubifs_ino_node
*ino
;
112 struct ubifs_info
*c
= sb
->s_fs_info
;
114 struct ubifs_inode
*ui
;
116 dbg_gen("inode %lu", inum
);
118 inode
= iget_locked(sb
, inum
);
120 return ERR_PTR(-ENOMEM
);
121 if (!(inode
->i_state
& I_NEW
))
123 ui
= ubifs_inode(inode
);
125 ino
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
131 ino_key_init(c
, &key
, inode
->i_ino
);
133 err
= ubifs_tnc_lookup(c
, &key
, ino
);
137 inode
->i_flags
|= S_NOCMTIME
;
139 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT
))
140 inode
->i_flags
|= S_NOATIME
;
142 set_nlink(inode
, le32_to_cpu(ino
->nlink
));
143 i_uid_write(inode
, le32_to_cpu(ino
->uid
));
144 i_gid_write(inode
, le32_to_cpu(ino
->gid
));
145 inode
->i_atime
.tv_sec
= (int64_t)le64_to_cpu(ino
->atime_sec
);
146 inode
->i_atime
.tv_nsec
= le32_to_cpu(ino
->atime_nsec
);
147 inode
->i_mtime
.tv_sec
= (int64_t)le64_to_cpu(ino
->mtime_sec
);
148 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ino
->mtime_nsec
);
149 inode
->i_ctime
.tv_sec
= (int64_t)le64_to_cpu(ino
->ctime_sec
);
150 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ino
->ctime_nsec
);
151 inode
->i_mode
= le32_to_cpu(ino
->mode
);
152 inode
->i_size
= le64_to_cpu(ino
->size
);
154 ui
->data_len
= le32_to_cpu(ino
->data_len
);
155 ui
->flags
= le32_to_cpu(ino
->flags
);
156 ui
->compr_type
= le16_to_cpu(ino
->compr_type
);
157 ui
->creat_sqnum
= le64_to_cpu(ino
->creat_sqnum
);
158 ui
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
159 ui
->xattr_size
= le32_to_cpu(ino
->xattr_size
);
160 ui
->xattr_names
= le32_to_cpu(ino
->xattr_names
);
161 ui
->synced_i_size
= ui
->ui_size
= inode
->i_size
;
163 ui
->xattr
= (ui
->flags
& UBIFS_XATTR_FL
) ? 1 : 0;
165 err
= validate_inode(c
, inode
);
169 switch (inode
->i_mode
& S_IFMT
) {
171 inode
->i_mapping
->a_ops
= &ubifs_file_address_operations
;
172 inode
->i_op
= &ubifs_file_inode_operations
;
173 inode
->i_fop
= &ubifs_file_operations
;
175 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
180 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
181 ((char *)ui
->data
)[ui
->data_len
] = '\0';
182 } else if (ui
->data_len
!= 0) {
188 inode
->i_op
= &ubifs_dir_inode_operations
;
189 inode
->i_fop
= &ubifs_dir_operations
;
190 if (ui
->data_len
!= 0) {
196 inode
->i_op
= &ubifs_symlink_inode_operations
;
197 if (ui
->data_len
<= 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
) {
201 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
206 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
207 ((char *)ui
->data
)[ui
->data_len
] = '\0';
213 union ubifs_dev_desc
*dev
;
215 ui
->data
= kmalloc(sizeof(union ubifs_dev_desc
), GFP_NOFS
);
221 dev
= (union ubifs_dev_desc
*)ino
->data
;
222 if (ui
->data_len
== sizeof(dev
->new))
223 rdev
= new_decode_dev(le32_to_cpu(dev
->new));
224 else if (ui
->data_len
== sizeof(dev
->huge
))
225 rdev
= huge_decode_dev(le64_to_cpu(dev
->huge
));
230 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
231 inode
->i_op
= &ubifs_file_inode_operations
;
232 init_special_inode(inode
, inode
->i_mode
, rdev
);
237 inode
->i_op
= &ubifs_file_inode_operations
;
238 init_special_inode(inode
, inode
->i_mode
, 0);
239 if (ui
->data_len
!= 0) {
250 ubifs_set_inode_flags(inode
);
251 unlock_new_inode(inode
);
255 ubifs_err(c
, "inode %lu validation failed, error %d", inode
->i_ino
, err
);
256 ubifs_dump_node(c
, ino
);
257 ubifs_dump_inode(c
, inode
);
262 ubifs_err(c
, "failed to read inode %lu, error %d", inode
->i_ino
, err
);
267 static struct inode
*ubifs_alloc_inode(struct super_block
*sb
)
269 struct ubifs_inode
*ui
;
271 ui
= kmem_cache_alloc(ubifs_inode_slab
, GFP_NOFS
);
275 memset((void *)ui
+ sizeof(struct inode
), 0,
276 sizeof(struct ubifs_inode
) - sizeof(struct inode
));
277 mutex_init(&ui
->ui_mutex
);
278 spin_lock_init(&ui
->ui_lock
);
279 return &ui
->vfs_inode
;
282 static void ubifs_free_inode(struct inode
*inode
)
284 struct ubifs_inode
*ui
= ubifs_inode(inode
);
287 fscrypt_free_inode(inode
);
289 kmem_cache_free(ubifs_inode_slab
, ui
);
293 * Note, Linux write-back code calls this without 'i_mutex'.
295 static int ubifs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
298 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
299 struct ubifs_inode
*ui
= ubifs_inode(inode
);
301 ubifs_assert(c
, !ui
->xattr
);
302 if (is_bad_inode(inode
))
305 mutex_lock(&ui
->ui_mutex
);
307 * Due to races between write-back forced by budgeting
308 * (see 'sync_some_inodes()') and background write-back, the inode may
309 * have already been synchronized, do not do this again. This might
310 * also happen if it was synchronized in an VFS operation, e.g.
314 mutex_unlock(&ui
->ui_mutex
);
319 * As an optimization, do not write orphan inodes to the media just
320 * because this is not needed.
322 dbg_gen("inode %lu, mode %#x, nlink %u",
323 inode
->i_ino
, (int)inode
->i_mode
, inode
->i_nlink
);
324 if (inode
->i_nlink
) {
325 err
= ubifs_jnl_write_inode(c
, inode
);
327 ubifs_err(c
, "can't write inode %lu, error %d",
330 err
= dbg_check_inode_size(c
, inode
, ui
->ui_size
);
334 mutex_unlock(&ui
->ui_mutex
);
335 ubifs_release_dirty_inode_budget(c
, ui
);
339 static int ubifs_drop_inode(struct inode
*inode
)
341 int drop
= generic_drop_inode(inode
);
344 drop
= fscrypt_drop_inode(inode
);
349 static void ubifs_evict_inode(struct inode
*inode
)
352 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
353 struct ubifs_inode
*ui
= ubifs_inode(inode
);
357 * Extended attribute inode deletions are fully handled in
358 * 'ubifs_removexattr()'. These inodes are special and have
359 * limited usage, so there is nothing to do here.
363 dbg_gen("inode %lu, mode %#x", inode
->i_ino
, (int)inode
->i_mode
);
364 ubifs_assert(c
, !atomic_read(&inode
->i_count
));
366 truncate_inode_pages_final(&inode
->i_data
);
371 if (is_bad_inode(inode
))
374 ui
->ui_size
= inode
->i_size
= 0;
375 err
= ubifs_jnl_delete_inode(c
, inode
);
378 * Worst case we have a lost orphan inode wasting space, so a
379 * simple error message is OK here.
381 ubifs_err(c
, "can't delete inode %lu, error %d",
386 ubifs_release_dirty_inode_budget(c
, ui
);
388 /* We've deleted something - clean the "no space" flags */
389 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
394 fscrypt_put_encryption_info(inode
);
397 static void ubifs_dirty_inode(struct inode
*inode
, int flags
)
399 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
400 struct ubifs_inode
*ui
= ubifs_inode(inode
);
402 ubifs_assert(c
, mutex_is_locked(&ui
->ui_mutex
));
405 dbg_gen("inode %lu", inode
->i_ino
);
409 static int ubifs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
411 struct ubifs_info
*c
= dentry
->d_sb
->s_fs_info
;
412 unsigned long long free
;
413 __le32
*uuid
= (__le32
*)c
->uuid
;
415 free
= ubifs_get_free_space(c
);
416 dbg_gen("free space %lld bytes (%lld blocks)",
417 free
, free
>> UBIFS_BLOCK_SHIFT
);
419 buf
->f_type
= UBIFS_SUPER_MAGIC
;
420 buf
->f_bsize
= UBIFS_BLOCK_SIZE
;
421 buf
->f_blocks
= c
->block_cnt
;
422 buf
->f_bfree
= free
>> UBIFS_BLOCK_SHIFT
;
423 if (free
> c
->report_rp_size
)
424 buf
->f_bavail
= (free
- c
->report_rp_size
) >> UBIFS_BLOCK_SHIFT
;
429 buf
->f_namelen
= UBIFS_MAX_NLEN
;
430 buf
->f_fsid
.val
[0] = le32_to_cpu(uuid
[0]) ^ le32_to_cpu(uuid
[2]);
431 buf
->f_fsid
.val
[1] = le32_to_cpu(uuid
[1]) ^ le32_to_cpu(uuid
[3]);
432 ubifs_assert(c
, buf
->f_bfree
<= c
->block_cnt
);
436 static int ubifs_show_options(struct seq_file
*s
, struct dentry
*root
)
438 struct ubifs_info
*c
= root
->d_sb
->s_fs_info
;
440 if (c
->mount_opts
.unmount_mode
== 2)
441 seq_puts(s
, ",fast_unmount");
442 else if (c
->mount_opts
.unmount_mode
== 1)
443 seq_puts(s
, ",norm_unmount");
445 if (c
->mount_opts
.bulk_read
== 2)
446 seq_puts(s
, ",bulk_read");
447 else if (c
->mount_opts
.bulk_read
== 1)
448 seq_puts(s
, ",no_bulk_read");
450 if (c
->mount_opts
.chk_data_crc
== 2)
451 seq_puts(s
, ",chk_data_crc");
452 else if (c
->mount_opts
.chk_data_crc
== 1)
453 seq_puts(s
, ",no_chk_data_crc");
455 if (c
->mount_opts
.override_compr
) {
456 seq_printf(s
, ",compr=%s",
457 ubifs_compr_name(c
, c
->mount_opts
.compr_type
));
460 seq_printf(s
, ",assert=%s", ubifs_assert_action_name(c
));
461 seq_printf(s
, ",ubi=%d,vol=%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
466 static int ubifs_sync_fs(struct super_block
*sb
, int wait
)
469 struct ubifs_info
*c
= sb
->s_fs_info
;
472 * Zero @wait is just an advisory thing to help the file system shove
473 * lots of data into the queues, and there will be the second
474 * '->sync_fs()' call, with non-zero @wait.
480 * Synchronize write buffers, because 'ubifs_run_commit()' does not
481 * do this if it waits for an already running commit.
483 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
484 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
490 * Strictly speaking, it is not necessary to commit the journal here,
491 * synchronizing write-buffers would be enough. But committing makes
492 * UBIFS free space predictions much more accurate, so we want to let
493 * the user be able to get more accurate results of 'statfs()' after
494 * they synchronize the file system.
496 err
= ubifs_run_commit(c
);
500 return ubi_sync(c
->vi
.ubi_num
);
504 * init_constants_early - initialize UBIFS constants.
505 * @c: UBIFS file-system description object
507 * This function initialize UBIFS constants which do not need the superblock to
508 * be read. It also checks that the UBI volume satisfies basic UBIFS
509 * requirements. Returns zero in case of success and a negative error code in
512 static int init_constants_early(struct ubifs_info
*c
)
514 if (c
->vi
.corrupted
) {
515 ubifs_warn(c
, "UBI volume is corrupted - read-only mode");
520 ubifs_msg(c
, "read-only UBI device");
524 if (c
->vi
.vol_type
== UBI_STATIC_VOLUME
) {
525 ubifs_msg(c
, "static UBI volume - read-only mode");
529 c
->leb_cnt
= c
->vi
.size
;
530 c
->leb_size
= c
->vi
.usable_leb_size
;
531 c
->leb_start
= c
->di
.leb_start
;
532 c
->half_leb_size
= c
->leb_size
/ 2;
533 c
->min_io_size
= c
->di
.min_io_size
;
534 c
->min_io_shift
= fls(c
->min_io_size
) - 1;
535 c
->max_write_size
= c
->di
.max_write_size
;
536 c
->max_write_shift
= fls(c
->max_write_size
) - 1;
538 if (c
->leb_size
< UBIFS_MIN_LEB_SZ
) {
539 ubifs_errc(c
, "too small LEBs (%d bytes), min. is %d bytes",
540 c
->leb_size
, UBIFS_MIN_LEB_SZ
);
544 if (c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
545 ubifs_errc(c
, "too few LEBs (%d), min. is %d",
546 c
->leb_cnt
, UBIFS_MIN_LEB_CNT
);
550 if (!is_power_of_2(c
->min_io_size
)) {
551 ubifs_errc(c
, "bad min. I/O size %d", c
->min_io_size
);
556 * Maximum write size has to be greater or equivalent to min. I/O
557 * size, and be multiple of min. I/O size.
559 if (c
->max_write_size
< c
->min_io_size
||
560 c
->max_write_size
% c
->min_io_size
||
561 !is_power_of_2(c
->max_write_size
)) {
562 ubifs_errc(c
, "bad write buffer size %d for %d min. I/O unit",
563 c
->max_write_size
, c
->min_io_size
);
568 * UBIFS aligns all node to 8-byte boundary, so to make function in
569 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
572 if (c
->min_io_size
< 8) {
575 if (c
->max_write_size
< c
->min_io_size
) {
576 c
->max_write_size
= c
->min_io_size
;
577 c
->max_write_shift
= c
->min_io_shift
;
581 c
->ref_node_alsz
= ALIGN(UBIFS_REF_NODE_SZ
, c
->min_io_size
);
582 c
->mst_node_alsz
= ALIGN(UBIFS_MST_NODE_SZ
, c
->min_io_size
);
585 * Initialize node length ranges which are mostly needed for node
588 c
->ranges
[UBIFS_PAD_NODE
].len
= UBIFS_PAD_NODE_SZ
;
589 c
->ranges
[UBIFS_SB_NODE
].len
= UBIFS_SB_NODE_SZ
;
590 c
->ranges
[UBIFS_MST_NODE
].len
= UBIFS_MST_NODE_SZ
;
591 c
->ranges
[UBIFS_REF_NODE
].len
= UBIFS_REF_NODE_SZ
;
592 c
->ranges
[UBIFS_TRUN_NODE
].len
= UBIFS_TRUN_NODE_SZ
;
593 c
->ranges
[UBIFS_CS_NODE
].len
= UBIFS_CS_NODE_SZ
;
594 c
->ranges
[UBIFS_AUTH_NODE
].min_len
= UBIFS_AUTH_NODE_SZ
;
595 c
->ranges
[UBIFS_AUTH_NODE
].max_len
= UBIFS_AUTH_NODE_SZ
+
597 c
->ranges
[UBIFS_SIG_NODE
].min_len
= UBIFS_SIG_NODE_SZ
;
598 c
->ranges
[UBIFS_SIG_NODE
].max_len
= c
->leb_size
- UBIFS_SB_NODE_SZ
;
600 c
->ranges
[UBIFS_INO_NODE
].min_len
= UBIFS_INO_NODE_SZ
;
601 c
->ranges
[UBIFS_INO_NODE
].max_len
= UBIFS_MAX_INO_NODE_SZ
;
602 c
->ranges
[UBIFS_ORPH_NODE
].min_len
=
603 UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
);
604 c
->ranges
[UBIFS_ORPH_NODE
].max_len
= c
->leb_size
;
605 c
->ranges
[UBIFS_DENT_NODE
].min_len
= UBIFS_DENT_NODE_SZ
;
606 c
->ranges
[UBIFS_DENT_NODE
].max_len
= UBIFS_MAX_DENT_NODE_SZ
;
607 c
->ranges
[UBIFS_XENT_NODE
].min_len
= UBIFS_XENT_NODE_SZ
;
608 c
->ranges
[UBIFS_XENT_NODE
].max_len
= UBIFS_MAX_XENT_NODE_SZ
;
609 c
->ranges
[UBIFS_DATA_NODE
].min_len
= UBIFS_DATA_NODE_SZ
;
610 c
->ranges
[UBIFS_DATA_NODE
].max_len
= UBIFS_MAX_DATA_NODE_SZ
;
612 * Minimum indexing node size is amended later when superblock is
613 * read and the key length is known.
615 c
->ranges
[UBIFS_IDX_NODE
].min_len
= UBIFS_IDX_NODE_SZ
+ UBIFS_BRANCH_SZ
;
617 * Maximum indexing node size is amended later when superblock is
618 * read and the fanout is known.
620 c
->ranges
[UBIFS_IDX_NODE
].max_len
= INT_MAX
;
623 * Initialize dead and dark LEB space watermarks. See gc.c for comments
624 * about these values.
626 c
->dead_wm
= ALIGN(MIN_WRITE_SZ
, c
->min_io_size
);
627 c
->dark_wm
= ALIGN(UBIFS_MAX_NODE_SZ
, c
->min_io_size
);
630 * Calculate how many bytes would be wasted at the end of LEB if it was
631 * fully filled with data nodes of maximum size. This is used in
632 * calculations when reporting free space.
634 c
->leb_overhead
= c
->leb_size
% UBIFS_MAX_DATA_NODE_SZ
;
636 /* Buffer size for bulk-reads */
637 c
->max_bu_buf_len
= UBIFS_MAX_BULK_READ
* UBIFS_MAX_DATA_NODE_SZ
;
638 if (c
->max_bu_buf_len
> c
->leb_size
)
639 c
->max_bu_buf_len
= c
->leb_size
;
641 /* Log is ready, preserve one LEB for commits. */
642 c
->min_log_bytes
= c
->leb_size
;
648 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
649 * @c: UBIFS file-system description object
650 * @lnum: LEB the write-buffer was synchronized to
651 * @free: how many free bytes left in this LEB
652 * @pad: how many bytes were padded
654 * This is a callback function which is called by the I/O unit when the
655 * write-buffer is synchronized. We need this to correctly maintain space
656 * accounting in bud logical eraseblocks. This function returns zero in case of
657 * success and a negative error code in case of failure.
659 * This function actually belongs to the journal, but we keep it here because
660 * we want to keep it static.
662 static int bud_wbuf_callback(struct ubifs_info
*c
, int lnum
, int free
, int pad
)
664 return ubifs_update_one_lp(c
, lnum
, free
, pad
, 0, 0);
668 * init_constants_sb - initialize UBIFS constants.
669 * @c: UBIFS file-system description object
671 * This is a helper function which initializes various UBIFS constants after
672 * the superblock has been read. It also checks various UBIFS parameters and
673 * makes sure they are all right. Returns zero in case of success and a
674 * negative error code in case of failure.
676 static int init_constants_sb(struct ubifs_info
*c
)
681 c
->main_bytes
= (long long)c
->main_lebs
* c
->leb_size
;
682 c
->max_znode_sz
= sizeof(struct ubifs_znode
) +
683 c
->fanout
* sizeof(struct ubifs_zbranch
);
685 tmp
= ubifs_idx_node_sz(c
, 1);
686 c
->ranges
[UBIFS_IDX_NODE
].min_len
= tmp
;
687 c
->min_idx_node_sz
= ALIGN(tmp
, 8);
689 tmp
= ubifs_idx_node_sz(c
, c
->fanout
);
690 c
->ranges
[UBIFS_IDX_NODE
].max_len
= tmp
;
691 c
->max_idx_node_sz
= ALIGN(tmp
, 8);
693 /* Make sure LEB size is large enough to fit full commit */
694 tmp
= UBIFS_CS_NODE_SZ
+ UBIFS_REF_NODE_SZ
* c
->jhead_cnt
;
695 tmp
= ALIGN(tmp
, c
->min_io_size
);
696 if (tmp
> c
->leb_size
) {
697 ubifs_err(c
, "too small LEB size %d, at least %d needed",
703 * Make sure that the log is large enough to fit reference nodes for
704 * all buds plus one reserved LEB.
706 tmp64
= c
->max_bud_bytes
+ c
->leb_size
- 1;
707 c
->max_bud_cnt
= div_u64(tmp64
, c
->leb_size
);
708 tmp
= (c
->ref_node_alsz
* c
->max_bud_cnt
+ c
->leb_size
- 1);
711 if (c
->log_lebs
< tmp
) {
712 ubifs_err(c
, "too small log %d LEBs, required min. %d LEBs",
718 * When budgeting we assume worst-case scenarios when the pages are not
719 * be compressed and direntries are of the maximum size.
721 * Note, data, which may be stored in inodes is budgeted separately, so
722 * it is not included into 'c->bi.inode_budget'.
724 c
->bi
.page_budget
= UBIFS_MAX_DATA_NODE_SZ
* UBIFS_BLOCKS_PER_PAGE
;
725 c
->bi
.inode_budget
= UBIFS_INO_NODE_SZ
;
726 c
->bi
.dent_budget
= UBIFS_MAX_DENT_NODE_SZ
;
729 * When the amount of flash space used by buds becomes
730 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
731 * The writers are unblocked when the commit is finished. To avoid
732 * writers to be blocked UBIFS initiates background commit in advance,
733 * when number of bud bytes becomes above the limit defined below.
735 c
->bg_bud_bytes
= (c
->max_bud_bytes
* 13) >> 4;
738 * Ensure minimum journal size. All the bytes in the journal heads are
739 * considered to be used, when calculating the current journal usage.
740 * Consequently, if the journal is too small, UBIFS will treat it as
743 tmp64
= (long long)(c
->jhead_cnt
+ 1) * c
->leb_size
+ 1;
744 if (c
->bg_bud_bytes
< tmp64
)
745 c
->bg_bud_bytes
= tmp64
;
746 if (c
->max_bud_bytes
< tmp64
+ c
->leb_size
)
747 c
->max_bud_bytes
= tmp64
+ c
->leb_size
;
749 err
= ubifs_calc_lpt_geom(c
);
753 /* Initialize effective LEB size used in budgeting calculations */
754 c
->idx_leb_size
= c
->leb_size
- c
->max_idx_node_sz
;
759 * init_constants_master - initialize UBIFS constants.
760 * @c: UBIFS file-system description object
762 * This is a helper function which initializes various UBIFS constants after
763 * the master node has been read. It also checks various UBIFS parameters and
764 * makes sure they are all right.
766 static void init_constants_master(struct ubifs_info
*c
)
770 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
771 c
->report_rp_size
= ubifs_reported_space(c
, c
->rp_size
);
774 * Calculate total amount of FS blocks. This number is not used
775 * internally because it does not make much sense for UBIFS, but it is
776 * necessary to report something for the 'statfs()' call.
778 * Subtract the LEB reserved for GC, the LEB which is reserved for
779 * deletions, minimum LEBs for the index, and assume only one journal
782 tmp64
= c
->main_lebs
- 1 - 1 - MIN_INDEX_LEBS
- c
->jhead_cnt
+ 1;
783 tmp64
*= (long long)c
->leb_size
- c
->leb_overhead
;
784 tmp64
= ubifs_reported_space(c
, tmp64
);
785 c
->block_cnt
= tmp64
>> UBIFS_BLOCK_SHIFT
;
789 * take_gc_lnum - reserve GC LEB.
790 * @c: UBIFS file-system description object
792 * This function ensures that the LEB reserved for garbage collection is marked
793 * as "taken" in lprops. We also have to set free space to LEB size and dirty
794 * space to zero, because lprops may contain out-of-date information if the
795 * file-system was un-mounted before it has been committed. This function
796 * returns zero in case of success and a negative error code in case of
799 static int take_gc_lnum(struct ubifs_info
*c
)
803 if (c
->gc_lnum
== -1) {
804 ubifs_err(c
, "no LEB for GC");
808 /* And we have to tell lprops that this LEB is taken */
809 err
= ubifs_change_one_lp(c
, c
->gc_lnum
, c
->leb_size
, 0,
815 * alloc_wbufs - allocate write-buffers.
816 * @c: UBIFS file-system description object
818 * This helper function allocates and initializes UBIFS write-buffers. Returns
819 * zero in case of success and %-ENOMEM in case of failure.
821 static int alloc_wbufs(struct ubifs_info
*c
)
825 c
->jheads
= kcalloc(c
->jhead_cnt
, sizeof(struct ubifs_jhead
),
830 /* Initialize journal heads */
831 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
832 INIT_LIST_HEAD(&c
->jheads
[i
].buds_list
);
833 err
= ubifs_wbuf_init(c
, &c
->jheads
[i
].wbuf
);
837 c
->jheads
[i
].wbuf
.sync_callback
= &bud_wbuf_callback
;
838 c
->jheads
[i
].wbuf
.jhead
= i
;
839 c
->jheads
[i
].grouped
= 1;
840 c
->jheads
[i
].log_hash
= ubifs_hash_get_desc(c
);
841 if (IS_ERR(c
->jheads
[i
].log_hash
))
846 * Garbage Collector head does not need to be synchronized by timer.
847 * Also GC head nodes are not grouped.
849 c
->jheads
[GCHD
].wbuf
.no_timer
= 1;
850 c
->jheads
[GCHD
].grouped
= 0;
856 kfree(c
->jheads
[i
].log_hash
);
862 * free_wbufs - free write-buffers.
863 * @c: UBIFS file-system description object
865 static void free_wbufs(struct ubifs_info
*c
)
870 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
871 kfree(c
->jheads
[i
].wbuf
.buf
);
872 kfree(c
->jheads
[i
].wbuf
.inodes
);
873 kfree(c
->jheads
[i
].log_hash
);
881 * free_orphans - free orphans.
882 * @c: UBIFS file-system description object
884 static void free_orphans(struct ubifs_info
*c
)
886 struct ubifs_orphan
*orph
;
888 while (c
->orph_dnext
) {
889 orph
= c
->orph_dnext
;
890 c
->orph_dnext
= orph
->dnext
;
891 list_del(&orph
->list
);
895 while (!list_empty(&c
->orph_list
)) {
896 orph
= list_entry(c
->orph_list
.next
, struct ubifs_orphan
, list
);
897 list_del(&orph
->list
);
899 ubifs_err(c
, "orphan list not empty at unmount");
907 * free_buds - free per-bud objects.
908 * @c: UBIFS file-system description object
910 static void free_buds(struct ubifs_info
*c
)
912 struct ubifs_bud
*bud
, *n
;
914 rbtree_postorder_for_each_entry_safe(bud
, n
, &c
->buds
, rb
)
919 * check_volume_empty - check if the UBI volume is empty.
920 * @c: UBIFS file-system description object
922 * This function checks if the UBIFS volume is empty by looking if its LEBs are
923 * mapped or not. The result of checking is stored in the @c->empty variable.
924 * Returns zero in case of success and a negative error code in case of
927 static int check_volume_empty(struct ubifs_info
*c
)
932 for (lnum
= 0; lnum
< c
->leb_cnt
; lnum
++) {
933 err
= ubifs_is_mapped(c
, lnum
);
934 if (unlikely(err
< 0))
948 * UBIFS mount options.
950 * Opt_fast_unmount: do not run a journal commit before un-mounting
951 * Opt_norm_unmount: run a journal commit before un-mounting
952 * Opt_bulk_read: enable bulk-reads
953 * Opt_no_bulk_read: disable bulk-reads
954 * Opt_chk_data_crc: check CRCs when reading data nodes
955 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
956 * Opt_override_compr: override default compressor
957 * Opt_assert: set ubifs_assert() action
958 * Opt_auth_key: The key name used for authentication
959 * Opt_auth_hash_name: The hash type used for authentication
960 * Opt_err: just end of array marker
977 static const match_table_t tokens
= {
978 {Opt_fast_unmount
, "fast_unmount"},
979 {Opt_norm_unmount
, "norm_unmount"},
980 {Opt_bulk_read
, "bulk_read"},
981 {Opt_no_bulk_read
, "no_bulk_read"},
982 {Opt_chk_data_crc
, "chk_data_crc"},
983 {Opt_no_chk_data_crc
, "no_chk_data_crc"},
984 {Opt_override_compr
, "compr=%s"},
985 {Opt_auth_key
, "auth_key=%s"},
986 {Opt_auth_hash_name
, "auth_hash_name=%s"},
987 {Opt_ignore
, "ubi=%s"},
988 {Opt_ignore
, "vol=%s"},
989 {Opt_assert
, "assert=%s"},
994 * parse_standard_option - parse a standard mount option.
995 * @option: the option to parse
997 * Normally, standard mount options like "sync" are passed to file-systems as
998 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
999 * be present in the options string. This function tries to deal with this
1000 * situation and parse standard options. Returns 0 if the option was not
1001 * recognized, and the corresponding integer flag if it was.
1003 * UBIFS is only interested in the "sync" option, so do not check for anything
1006 static int parse_standard_option(const char *option
)
1009 pr_notice("UBIFS: parse %s\n", option
);
1010 if (!strcmp(option
, "sync"))
1011 return SB_SYNCHRONOUS
;
1016 * ubifs_parse_options - parse mount parameters.
1017 * @c: UBIFS file-system description object
1018 * @options: parameters to parse
1019 * @is_remount: non-zero if this is FS re-mount
1021 * This function parses UBIFS mount options and returns zero in case success
1022 * and a negative error code in case of failure.
1024 static int ubifs_parse_options(struct ubifs_info
*c
, char *options
,
1028 substring_t args
[MAX_OPT_ARGS
];
1033 while ((p
= strsep(&options
, ","))) {
1039 token
= match_token(p
, tokens
, args
);
1042 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1043 * We accept them in order to be backward-compatible. But this
1044 * should be removed at some point.
1046 case Opt_fast_unmount
:
1047 c
->mount_opts
.unmount_mode
= 2;
1049 case Opt_norm_unmount
:
1050 c
->mount_opts
.unmount_mode
= 1;
1053 c
->mount_opts
.bulk_read
= 2;
1056 case Opt_no_bulk_read
:
1057 c
->mount_opts
.bulk_read
= 1;
1060 case Opt_chk_data_crc
:
1061 c
->mount_opts
.chk_data_crc
= 2;
1062 c
->no_chk_data_crc
= 0;
1064 case Opt_no_chk_data_crc
:
1065 c
->mount_opts
.chk_data_crc
= 1;
1066 c
->no_chk_data_crc
= 1;
1068 case Opt_override_compr
:
1070 char *name
= match_strdup(&args
[0]);
1074 if (!strcmp(name
, "none"))
1075 c
->mount_opts
.compr_type
= UBIFS_COMPR_NONE
;
1076 else if (!strcmp(name
, "lzo"))
1077 c
->mount_opts
.compr_type
= UBIFS_COMPR_LZO
;
1078 else if (!strcmp(name
, "zlib"))
1079 c
->mount_opts
.compr_type
= UBIFS_COMPR_ZLIB
;
1080 else if (!strcmp(name
, "zstd"))
1081 c
->mount_opts
.compr_type
= UBIFS_COMPR_ZSTD
;
1083 ubifs_err(c
, "unknown compressor \"%s\"", name
); //FIXME: is c ready?
1088 c
->mount_opts
.override_compr
= 1;
1089 c
->default_compr
= c
->mount_opts
.compr_type
;
1094 char *act
= match_strdup(&args
[0]);
1098 if (!strcmp(act
, "report"))
1099 c
->assert_action
= ASSACT_REPORT
;
1100 else if (!strcmp(act
, "read-only"))
1101 c
->assert_action
= ASSACT_RO
;
1102 else if (!strcmp(act
, "panic"))
1103 c
->assert_action
= ASSACT_PANIC
;
1105 ubifs_err(c
, "unknown assert action \"%s\"", act
);
1114 c
->auth_key_name
= kstrdup(args
[0].from
,
1116 if (!c
->auth_key_name
)
1120 case Opt_auth_hash_name
:
1122 c
->auth_hash_name
= kstrdup(args
[0].from
,
1124 if (!c
->auth_hash_name
)
1133 struct super_block
*sb
= c
->vfs_sb
;
1135 flag
= parse_standard_option(p
);
1137 ubifs_err(c
, "unrecognized mount option \"%s\" or missing value",
1141 sb
->s_flags
|= flag
;
1151 * ubifs_release_options - release mount parameters which have been dumped.
1152 * @c: UBIFS file-system description object
1154 static void ubifs_release_options(struct ubifs_info
*c
)
1156 kfree(c
->auth_key_name
);
1157 c
->auth_key_name
= NULL
;
1158 kfree(c
->auth_hash_name
);
1159 c
->auth_hash_name
= NULL
;
1163 * destroy_journal - destroy journal data structures.
1164 * @c: UBIFS file-system description object
1166 * This function destroys journal data structures including those that may have
1167 * been created by recovery functions.
1169 static void destroy_journal(struct ubifs_info
*c
)
1171 while (!list_empty(&c
->unclean_leb_list
)) {
1172 struct ubifs_unclean_leb
*ucleb
;
1174 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1175 struct ubifs_unclean_leb
, list
);
1176 list_del(&ucleb
->list
);
1179 while (!list_empty(&c
->old_buds
)) {
1180 struct ubifs_bud
*bud
;
1182 bud
= list_entry(c
->old_buds
.next
, struct ubifs_bud
, list
);
1183 list_del(&bud
->list
);
1186 ubifs_destroy_idx_gc(c
);
1187 ubifs_destroy_size_tree(c
);
1193 * bu_init - initialize bulk-read information.
1194 * @c: UBIFS file-system description object
1196 static void bu_init(struct ubifs_info
*c
)
1198 ubifs_assert(c
, c
->bulk_read
== 1);
1201 return; /* Already initialized */
1204 c
->bu
.buf
= kmalloc(c
->max_bu_buf_len
, GFP_KERNEL
| __GFP_NOWARN
);
1206 if (c
->max_bu_buf_len
> UBIFS_KMALLOC_OK
) {
1207 c
->max_bu_buf_len
= UBIFS_KMALLOC_OK
;
1211 /* Just disable bulk-read */
1212 ubifs_warn(c
, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1214 c
->mount_opts
.bulk_read
= 1;
1221 * check_free_space - check if there is enough free space to mount.
1222 * @c: UBIFS file-system description object
1224 * This function makes sure UBIFS has enough free space to be mounted in
1225 * read/write mode. UBIFS must always have some free space to allow deletions.
1227 static int check_free_space(struct ubifs_info
*c
)
1229 ubifs_assert(c
, c
->dark_wm
> 0);
1230 if (c
->lst
.total_free
+ c
->lst
.total_dirty
< c
->dark_wm
) {
1231 ubifs_err(c
, "insufficient free space to mount in R/W mode");
1232 ubifs_dump_budg(c
, &c
->bi
);
1233 ubifs_dump_lprops(c
);
1240 * mount_ubifs - mount UBIFS file-system.
1241 * @c: UBIFS file-system description object
1243 * This function mounts UBIFS file system. Returns zero in case of success and
1244 * a negative error code in case of failure.
1246 static int mount_ubifs(struct ubifs_info
*c
)
1252 c
->ro_mount
= !!sb_rdonly(c
->vfs_sb
);
1253 /* Suppress error messages while probing if SB_SILENT is set */
1254 c
->probing
= !!(c
->vfs_sb
->s_flags
& SB_SILENT
);
1256 err
= init_constants_early(c
);
1260 err
= ubifs_debugging_init(c
);
1264 err
= check_volume_empty(c
);
1268 if (c
->empty
&& (c
->ro_mount
|| c
->ro_media
)) {
1270 * This UBI volume is empty, and read-only, or the file system
1271 * is mounted read-only - we cannot format it.
1273 ubifs_err(c
, "can't format empty UBI volume: read-only %s",
1274 c
->ro_media
? "UBI volume" : "mount");
1279 if (c
->ro_media
&& !c
->ro_mount
) {
1280 ubifs_err(c
, "cannot mount read-write - read-only media");
1286 * The requirement for the buffer is that it should fit indexing B-tree
1287 * height amount of integers. We assume the height if the TNC tree will
1291 c
->bottom_up_buf
= kmalloc_array(BOTTOM_UP_HEIGHT
, sizeof(int),
1293 if (!c
->bottom_up_buf
)
1296 c
->sbuf
= vmalloc(c
->leb_size
);
1301 c
->ileb_buf
= vmalloc(c
->leb_size
);
1306 if (c
->bulk_read
== 1)
1310 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
+ \
1311 UBIFS_CIPHER_BLOCK_SIZE
,
1313 if (!c
->write_reserve_buf
)
1319 if (c
->auth_key_name
) {
1320 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION
)) {
1321 err
= ubifs_init_authentication(c
);
1325 ubifs_err(c
, "auth_key_name, but UBIFS is built without"
1326 " authentication support");
1332 err
= ubifs_read_superblock(c
);
1339 * Make sure the compressor which is set as default in the superblock
1340 * or overridden by mount options is actually compiled in.
1342 if (!ubifs_compr_present(c
, c
->default_compr
)) {
1343 ubifs_err(c
, "'compressor \"%s\" is not compiled in",
1344 ubifs_compr_name(c
, c
->default_compr
));
1349 err
= init_constants_sb(c
);
1353 sz
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
) * 2;
1354 c
->cbuf
= kmalloc(sz
, GFP_NOFS
);
1360 err
= alloc_wbufs(c
);
1364 sprintf(c
->bgt_name
, BGT_NAME_PATTERN
, c
->vi
.ubi_num
, c
->vi
.vol_id
);
1366 /* Create background thread */
1367 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1368 if (IS_ERR(c
->bgt
)) {
1369 err
= PTR_ERR(c
->bgt
);
1371 ubifs_err(c
, "cannot spawn \"%s\", error %d",
1375 wake_up_process(c
->bgt
);
1378 err
= ubifs_read_master(c
);
1382 init_constants_master(c
);
1384 if ((c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
)) != 0) {
1385 ubifs_msg(c
, "recovery needed");
1386 c
->need_recovery
= 1;
1389 if (c
->need_recovery
&& !c
->ro_mount
) {
1390 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1395 err
= ubifs_lpt_init(c
, 1, !c
->ro_mount
);
1399 if (!c
->ro_mount
&& c
->space_fixup
) {
1400 err
= ubifs_fixup_free_space(c
);
1405 if (!c
->ro_mount
&& !c
->need_recovery
) {
1407 * Set the "dirty" flag so that if we reboot uncleanly we
1408 * will notice this immediately on the next mount.
1410 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1411 err
= ubifs_write_master(c
);
1417 * Handle offline signed images: Now that the master node is
1418 * written and its validation no longer depends on the hash
1419 * in the superblock, we can update the offline signed
1420 * superblock with a HMAC version,
1422 if (ubifs_authenticated(c
) && ubifs_hmac_zero(c
, c
->sup_node
->hmac
)) {
1423 err
= ubifs_hmac_wkm(c
, c
->sup_node
->hmac_wkm
);
1426 c
->superblock_need_write
= 1;
1429 if (!c
->ro_mount
&& c
->superblock_need_write
) {
1430 err
= ubifs_write_sb_node(c
, c
->sup_node
);
1433 c
->superblock_need_write
= 0;
1436 err
= dbg_check_idx_size(c
, c
->bi
.old_idx_sz
);
1440 err
= ubifs_replay_journal(c
);
1444 /* Calculate 'min_idx_lebs' after journal replay */
1445 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
1447 err
= ubifs_mount_orphans(c
, c
->need_recovery
, c
->ro_mount
);
1454 err
= check_free_space(c
);
1458 /* Check for enough log space */
1459 lnum
= c
->lhead_lnum
+ 1;
1460 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1461 lnum
= UBIFS_LOG_LNUM
;
1462 if (lnum
== c
->ltail_lnum
) {
1463 err
= ubifs_consolidate_log(c
);
1468 if (c
->need_recovery
) {
1469 if (!ubifs_authenticated(c
)) {
1470 err
= ubifs_recover_size(c
, true);
1475 err
= ubifs_rcvry_gc_commit(c
);
1479 if (ubifs_authenticated(c
)) {
1480 err
= ubifs_recover_size(c
, false);
1485 err
= take_gc_lnum(c
);
1490 * GC LEB may contain garbage if there was an unclean
1491 * reboot, and it should be un-mapped.
1493 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1498 err
= dbg_check_lprops(c
);
1501 } else if (c
->need_recovery
) {
1502 err
= ubifs_recover_size(c
, false);
1507 * Even if we mount read-only, we have to set space in GC LEB
1508 * to proper value because this affects UBIFS free space
1509 * reporting. We do not want to have a situation when
1510 * re-mounting from R/O to R/W changes amount of free space.
1512 err
= take_gc_lnum(c
);
1517 spin_lock(&ubifs_infos_lock
);
1518 list_add_tail(&c
->infos_list
, &ubifs_infos
);
1519 spin_unlock(&ubifs_infos_lock
);
1521 if (c
->need_recovery
) {
1523 ubifs_msg(c
, "recovery deferred");
1525 c
->need_recovery
= 0;
1526 ubifs_msg(c
, "recovery completed");
1528 * GC LEB has to be empty and taken at this point. But
1529 * the journal head LEBs may also be accounted as
1530 * "empty taken" if they are empty.
1532 ubifs_assert(c
, c
->lst
.taken_empty_lebs
> 0);
1535 ubifs_assert(c
, c
->lst
.taken_empty_lebs
> 0);
1537 err
= dbg_check_filesystem(c
);
1541 dbg_debugfs_init_fs(c
);
1545 ubifs_msg(c
, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1546 c
->vi
.ubi_num
, c
->vi
.vol_id
, c
->vi
.name
,
1547 c
->ro_mount
? ", R/O mode" : "");
1548 x
= (long long)c
->main_lebs
* c
->leb_size
;
1549 y
= (long long)c
->log_lebs
* c
->leb_size
+ c
->max_bud_bytes
;
1550 ubifs_msg(c
, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1551 c
->leb_size
, c
->leb_size
>> 10, c
->min_io_size
,
1553 ubifs_msg(c
, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1554 x
, x
>> 20, c
->main_lebs
,
1555 y
, y
>> 20, c
->log_lebs
+ c
->max_bud_cnt
);
1556 ubifs_msg(c
, "reserved for root: %llu bytes (%llu KiB)",
1557 c
->report_rp_size
, c
->report_rp_size
>> 10);
1558 ubifs_msg(c
, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1559 c
->fmt_version
, c
->ro_compat_version
,
1560 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
, c
->uuid
,
1561 c
->big_lpt
? ", big LPT model" : ", small LPT model");
1563 dbg_gen("default compressor: %s", ubifs_compr_name(c
, c
->default_compr
));
1564 dbg_gen("data journal heads: %d",
1565 c
->jhead_cnt
- NONDATA_JHEADS_CNT
);
1566 dbg_gen("log LEBs: %d (%d - %d)",
1567 c
->log_lebs
, UBIFS_LOG_LNUM
, c
->log_last
);
1568 dbg_gen("LPT area LEBs: %d (%d - %d)",
1569 c
->lpt_lebs
, c
->lpt_first
, c
->lpt_last
);
1570 dbg_gen("orphan area LEBs: %d (%d - %d)",
1571 c
->orph_lebs
, c
->orph_first
, c
->orph_last
);
1572 dbg_gen("main area LEBs: %d (%d - %d)",
1573 c
->main_lebs
, c
->main_first
, c
->leb_cnt
- 1);
1574 dbg_gen("index LEBs: %d", c
->lst
.idx_lebs
);
1575 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1576 c
->bi
.old_idx_sz
, c
->bi
.old_idx_sz
>> 10,
1577 c
->bi
.old_idx_sz
>> 20);
1578 dbg_gen("key hash type: %d", c
->key_hash_type
);
1579 dbg_gen("tree fanout: %d", c
->fanout
);
1580 dbg_gen("reserved GC LEB: %d", c
->gc_lnum
);
1581 dbg_gen("max. znode size %d", c
->max_znode_sz
);
1582 dbg_gen("max. index node size %d", c
->max_idx_node_sz
);
1583 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1584 UBIFS_DATA_NODE_SZ
, UBIFS_INO_NODE_SZ
, UBIFS_DENT_NODE_SZ
);
1585 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1586 UBIFS_TRUN_NODE_SZ
, UBIFS_SB_NODE_SZ
, UBIFS_MST_NODE_SZ
);
1587 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1588 UBIFS_REF_NODE_SZ
, UBIFS_CS_NODE_SZ
, UBIFS_ORPH_NODE_SZ
);
1589 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1590 UBIFS_MAX_DATA_NODE_SZ
, UBIFS_MAX_INO_NODE_SZ
,
1591 UBIFS_MAX_DENT_NODE_SZ
, ubifs_idx_node_sz(c
, c
->fanout
));
1592 dbg_gen("dead watermark: %d", c
->dead_wm
);
1593 dbg_gen("dark watermark: %d", c
->dark_wm
);
1594 dbg_gen("LEB overhead: %d", c
->leb_overhead
);
1595 x
= (long long)c
->main_lebs
* c
->dark_wm
;
1596 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1597 x
, x
>> 10, x
>> 20);
1598 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1599 c
->max_bud_bytes
, c
->max_bud_bytes
>> 10,
1600 c
->max_bud_bytes
>> 20);
1601 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1602 c
->bg_bud_bytes
, c
->bg_bud_bytes
>> 10,
1603 c
->bg_bud_bytes
>> 20);
1604 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1605 c
->bud_bytes
, c
->bud_bytes
>> 10, c
->bud_bytes
>> 20);
1606 dbg_gen("max. seq. number: %llu", c
->max_sqnum
);
1607 dbg_gen("commit number: %llu", c
->cmt_no
);
1608 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c
));
1609 dbg_gen("max orphans: %d", c
->max_orphans
);
1614 spin_lock(&ubifs_infos_lock
);
1615 list_del(&c
->infos_list
);
1616 spin_unlock(&ubifs_infos_lock
);
1622 ubifs_lpt_free(c
, 0);
1625 kfree(c
->rcvrd_mst_node
);
1627 kthread_stop(c
->bgt
);
1633 ubifs_exit_authentication(c
);
1635 kfree(c
->write_reserve_buf
);
1639 kfree(c
->bottom_up_buf
);
1641 ubifs_debugging_exit(c
);
1646 * ubifs_umount - un-mount UBIFS file-system.
1647 * @c: UBIFS file-system description object
1649 * Note, this function is called to free allocated resourced when un-mounting,
1650 * as well as free resources when an error occurred while we were half way
1651 * through mounting (error path cleanup function). So it has to make sure the
1652 * resource was actually allocated before freeing it.
1654 static void ubifs_umount(struct ubifs_info
*c
)
1656 dbg_gen("un-mounting UBI device %d, volume %d", c
->vi
.ubi_num
,
1659 dbg_debugfs_exit_fs(c
);
1660 spin_lock(&ubifs_infos_lock
);
1661 list_del(&c
->infos_list
);
1662 spin_unlock(&ubifs_infos_lock
);
1665 kthread_stop(c
->bgt
);
1670 ubifs_lpt_free(c
, 0);
1671 ubifs_exit_authentication(c
);
1673 ubifs_release_options(c
);
1675 kfree(c
->rcvrd_mst_node
);
1677 kfree(c
->write_reserve_buf
);
1681 kfree(c
->bottom_up_buf
);
1683 ubifs_debugging_exit(c
);
1687 * ubifs_remount_rw - re-mount in read-write mode.
1688 * @c: UBIFS file-system description object
1690 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1691 * mode. This function allocates the needed resources and re-mounts UBIFS in
1694 static int ubifs_remount_rw(struct ubifs_info
*c
)
1698 if (c
->rw_incompat
) {
1699 ubifs_err(c
, "the file-system is not R/W-compatible");
1700 ubifs_msg(c
, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1701 c
->fmt_version
, c
->ro_compat_version
,
1702 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
);
1706 mutex_lock(&c
->umount_mutex
);
1707 dbg_save_space_info(c
);
1708 c
->remounting_rw
= 1;
1711 if (c
->space_fixup
) {
1712 err
= ubifs_fixup_free_space(c
);
1717 err
= check_free_space(c
);
1721 if (c
->need_recovery
) {
1722 ubifs_msg(c
, "completing deferred recovery");
1723 err
= ubifs_write_rcvrd_mst_node(c
);
1726 if (!ubifs_authenticated(c
)) {
1727 err
= ubifs_recover_size(c
, true);
1731 err
= ubifs_clean_lebs(c
, c
->sbuf
);
1734 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1738 /* A readonly mount is not allowed to have orphans */
1739 ubifs_assert(c
, c
->tot_orphans
== 0);
1740 err
= ubifs_clear_orphans(c
);
1745 if (!(c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
))) {
1746 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1747 err
= ubifs_write_master(c
);
1752 if (c
->superblock_need_write
) {
1753 struct ubifs_sb_node
*sup
= c
->sup_node
;
1755 err
= ubifs_write_sb_node(c
, sup
);
1759 c
->superblock_need_write
= 0;
1762 c
->ileb_buf
= vmalloc(c
->leb_size
);
1768 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
+ \
1769 UBIFS_CIPHER_BLOCK_SIZE
, GFP_KERNEL
);
1770 if (!c
->write_reserve_buf
) {
1775 err
= ubifs_lpt_init(c
, 0, 1);
1779 /* Create background thread */
1780 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1781 if (IS_ERR(c
->bgt
)) {
1782 err
= PTR_ERR(c
->bgt
);
1784 ubifs_err(c
, "cannot spawn \"%s\", error %d",
1788 wake_up_process(c
->bgt
);
1790 c
->orph_buf
= vmalloc(c
->leb_size
);
1796 /* Check for enough log space */
1797 lnum
= c
->lhead_lnum
+ 1;
1798 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1799 lnum
= UBIFS_LOG_LNUM
;
1800 if (lnum
== c
->ltail_lnum
) {
1801 err
= ubifs_consolidate_log(c
);
1806 if (c
->need_recovery
) {
1807 err
= ubifs_rcvry_gc_commit(c
);
1811 if (ubifs_authenticated(c
)) {
1812 err
= ubifs_recover_size(c
, false);
1817 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1822 dbg_gen("re-mounted read-write");
1823 c
->remounting_rw
= 0;
1825 if (c
->need_recovery
) {
1826 c
->need_recovery
= 0;
1827 ubifs_msg(c
, "deferred recovery completed");
1830 * Do not run the debugging space check if the were doing
1831 * recovery, because when we saved the information we had the
1832 * file-system in a state where the TNC and lprops has been
1833 * modified in memory, but all the I/O operations (including a
1834 * commit) were deferred. So the file-system was in
1835 * "non-committed" state. Now the file-system is in committed
1836 * state, and of course the amount of free space will change
1837 * because, for example, the old index size was imprecise.
1839 err
= dbg_check_space_info(c
);
1842 mutex_unlock(&c
->umount_mutex
);
1850 kthread_stop(c
->bgt
);
1854 kfree(c
->write_reserve_buf
);
1855 c
->write_reserve_buf
= NULL
;
1858 ubifs_lpt_free(c
, 1);
1859 c
->remounting_rw
= 0;
1860 mutex_unlock(&c
->umount_mutex
);
1865 * ubifs_remount_ro - re-mount in read-only mode.
1866 * @c: UBIFS file-system description object
1868 * We assume VFS has stopped writing. Possibly the background thread could be
1869 * running a commit, however kthread_stop will wait in that case.
1871 static void ubifs_remount_ro(struct ubifs_info
*c
)
1875 ubifs_assert(c
, !c
->need_recovery
);
1876 ubifs_assert(c
, !c
->ro_mount
);
1878 mutex_lock(&c
->umount_mutex
);
1880 kthread_stop(c
->bgt
);
1884 dbg_save_space_info(c
);
1886 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1887 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1889 ubifs_ro_mode(c
, err
);
1892 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1893 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1894 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1895 err
= ubifs_write_master(c
);
1897 ubifs_ro_mode(c
, err
);
1901 kfree(c
->write_reserve_buf
);
1902 c
->write_reserve_buf
= NULL
;
1905 ubifs_lpt_free(c
, 1);
1907 err
= dbg_check_space_info(c
);
1909 ubifs_ro_mode(c
, err
);
1910 mutex_unlock(&c
->umount_mutex
);
1913 static void ubifs_put_super(struct super_block
*sb
)
1916 struct ubifs_info
*c
= sb
->s_fs_info
;
1918 ubifs_msg(c
, "un-mount UBI device %d", c
->vi
.ubi_num
);
1921 * The following asserts are only valid if there has not been a failure
1922 * of the media. For example, there will be dirty inodes if we failed
1923 * to write them back because of I/O errors.
1926 ubifs_assert(c
, c
->bi
.idx_growth
== 0);
1927 ubifs_assert(c
, c
->bi
.dd_growth
== 0);
1928 ubifs_assert(c
, c
->bi
.data_growth
== 0);
1932 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1933 * and file system un-mount. Namely, it prevents the shrinker from
1934 * picking this superblock for shrinking - it will be just skipped if
1935 * the mutex is locked.
1937 mutex_lock(&c
->umount_mutex
);
1940 * First of all kill the background thread to make sure it does
1941 * not interfere with un-mounting and freeing resources.
1944 kthread_stop(c
->bgt
);
1949 * On fatal errors c->ro_error is set to 1, in which case we do
1950 * not write the master node.
1955 /* Synchronize write-buffers */
1956 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1957 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1959 ubifs_ro_mode(c
, err
);
1963 * We are being cleanly unmounted which means the
1964 * orphans were killed - indicate this in the master
1965 * node. Also save the reserved GC LEB number.
1967 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1968 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1969 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1970 err
= ubifs_write_master(c
);
1973 * Recovery will attempt to fix the master area
1974 * next mount, so we just print a message and
1975 * continue to unmount normally.
1977 ubifs_err(c
, "failed to write master node, error %d",
1980 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1981 /* Make sure write-buffer timers are canceled */
1982 hrtimer_cancel(&c
->jheads
[i
].wbuf
.timer
);
1987 ubi_close_volume(c
->ubi
);
1988 mutex_unlock(&c
->umount_mutex
);
1991 static int ubifs_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
1994 struct ubifs_info
*c
= sb
->s_fs_info
;
1996 sync_filesystem(sb
);
1997 dbg_gen("old flags %#lx, new flags %#x", sb
->s_flags
, *flags
);
1999 err
= ubifs_parse_options(c
, data
, 1);
2001 ubifs_err(c
, "invalid or unknown remount parameter");
2005 if (c
->ro_mount
&& !(*flags
& SB_RDONLY
)) {
2007 ubifs_msg(c
, "cannot re-mount R/W due to prior errors");
2011 ubifs_msg(c
, "cannot re-mount R/W - UBI volume is R/O");
2014 err
= ubifs_remount_rw(c
);
2017 } else if (!c
->ro_mount
&& (*flags
& SB_RDONLY
)) {
2019 ubifs_msg(c
, "cannot re-mount R/O due to prior errors");
2022 ubifs_remount_ro(c
);
2025 if (c
->bulk_read
== 1)
2028 dbg_gen("disable bulk-read");
2029 mutex_lock(&c
->bu_mutex
);
2032 mutex_unlock(&c
->bu_mutex
);
2035 if (!c
->need_recovery
)
2036 ubifs_assert(c
, c
->lst
.taken_empty_lebs
> 0);
2041 const struct super_operations ubifs_super_operations
= {
2042 .alloc_inode
= ubifs_alloc_inode
,
2043 .free_inode
= ubifs_free_inode
,
2044 .put_super
= ubifs_put_super
,
2045 .write_inode
= ubifs_write_inode
,
2046 .drop_inode
= ubifs_drop_inode
,
2047 .evict_inode
= ubifs_evict_inode
,
2048 .statfs
= ubifs_statfs
,
2049 .dirty_inode
= ubifs_dirty_inode
,
2050 .remount_fs
= ubifs_remount_fs
,
2051 .show_options
= ubifs_show_options
,
2052 .sync_fs
= ubifs_sync_fs
,
2056 * open_ubi - parse UBI device name string and open the UBI device.
2057 * @name: UBI volume name
2058 * @mode: UBI volume open mode
2060 * The primary method of mounting UBIFS is by specifying the UBI volume
2061 * character device node path. However, UBIFS may also be mounted withoug any
2062 * character device node using one of the following methods:
2064 * o ubiX_Y - mount UBI device number X, volume Y;
2065 * o ubiY - mount UBI device number 0, volume Y;
2066 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2067 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2069 * Alternative '!' separator may be used instead of ':' (because some shells
2070 * like busybox may interpret ':' as an NFS host name separator). This function
2071 * returns UBI volume description object in case of success and a negative
2072 * error code in case of failure.
2074 static struct ubi_volume_desc
*open_ubi(const char *name
, int mode
)
2076 struct ubi_volume_desc
*ubi
;
2080 if (!name
|| !*name
)
2081 return ERR_PTR(-EINVAL
);
2083 /* First, try to open using the device node path method */
2084 ubi
= ubi_open_volume_path(name
, mode
);
2088 /* Try the "nodev" method */
2089 if (name
[0] != 'u' || name
[1] != 'b' || name
[2] != 'i')
2090 return ERR_PTR(-EINVAL
);
2092 /* ubi:NAME method */
2093 if ((name
[3] == ':' || name
[3] == '!') && name
[4] != '\0')
2094 return ubi_open_volume_nm(0, name
+ 4, mode
);
2096 if (!isdigit(name
[3]))
2097 return ERR_PTR(-EINVAL
);
2099 dev
= simple_strtoul(name
+ 3, &endptr
, 0);
2102 if (*endptr
== '\0')
2103 return ubi_open_volume(0, dev
, mode
);
2106 if (*endptr
== '_' && isdigit(endptr
[1])) {
2107 vol
= simple_strtoul(endptr
+ 1, &endptr
, 0);
2108 if (*endptr
!= '\0')
2109 return ERR_PTR(-EINVAL
);
2110 return ubi_open_volume(dev
, vol
, mode
);
2113 /* ubiX:NAME method */
2114 if ((*endptr
== ':' || *endptr
== '!') && endptr
[1] != '\0')
2115 return ubi_open_volume_nm(dev
, ++endptr
, mode
);
2117 return ERR_PTR(-EINVAL
);
2120 static struct ubifs_info
*alloc_ubifs_info(struct ubi_volume_desc
*ubi
)
2122 struct ubifs_info
*c
;
2124 c
= kzalloc(sizeof(struct ubifs_info
), GFP_KERNEL
);
2126 spin_lock_init(&c
->cnt_lock
);
2127 spin_lock_init(&c
->cs_lock
);
2128 spin_lock_init(&c
->buds_lock
);
2129 spin_lock_init(&c
->space_lock
);
2130 spin_lock_init(&c
->orphan_lock
);
2131 init_rwsem(&c
->commit_sem
);
2132 mutex_init(&c
->lp_mutex
);
2133 mutex_init(&c
->tnc_mutex
);
2134 mutex_init(&c
->log_mutex
);
2135 mutex_init(&c
->umount_mutex
);
2136 mutex_init(&c
->bu_mutex
);
2137 mutex_init(&c
->write_reserve_mutex
);
2138 init_waitqueue_head(&c
->cmt_wq
);
2140 c
->old_idx
= RB_ROOT
;
2141 c
->size_tree
= RB_ROOT
;
2142 c
->orph_tree
= RB_ROOT
;
2143 INIT_LIST_HEAD(&c
->infos_list
);
2144 INIT_LIST_HEAD(&c
->idx_gc
);
2145 INIT_LIST_HEAD(&c
->replay_list
);
2146 INIT_LIST_HEAD(&c
->replay_buds
);
2147 INIT_LIST_HEAD(&c
->uncat_list
);
2148 INIT_LIST_HEAD(&c
->empty_list
);
2149 INIT_LIST_HEAD(&c
->freeable_list
);
2150 INIT_LIST_HEAD(&c
->frdi_idx_list
);
2151 INIT_LIST_HEAD(&c
->unclean_leb_list
);
2152 INIT_LIST_HEAD(&c
->old_buds
);
2153 INIT_LIST_HEAD(&c
->orph_list
);
2154 INIT_LIST_HEAD(&c
->orph_new
);
2155 c
->no_chk_data_crc
= 1;
2156 c
->assert_action
= ASSACT_RO
;
2158 c
->highest_inum
= UBIFS_FIRST_INO
;
2159 c
->lhead_lnum
= c
->ltail_lnum
= UBIFS_LOG_LNUM
;
2161 ubi_get_volume_info(ubi
, &c
->vi
);
2162 ubi_get_device_info(c
->vi
.ubi_num
, &c
->di
);
2167 static int ubifs_fill_super(struct super_block
*sb
, void *data
, int silent
)
2169 struct ubifs_info
*c
= sb
->s_fs_info
;
2174 /* Re-open the UBI device in read-write mode */
2175 c
->ubi
= ubi_open_volume(c
->vi
.ubi_num
, c
->vi
.vol_id
, UBI_READWRITE
);
2176 if (IS_ERR(c
->ubi
)) {
2177 err
= PTR_ERR(c
->ubi
);
2181 err
= ubifs_parse_options(c
, data
, 0);
2186 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2187 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2188 * which means the user would have to wait not just for their own I/O
2189 * but the read-ahead I/O as well i.e. completely pointless.
2191 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2192 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2193 * writeback happening.
2195 err
= super_setup_bdi_name(sb
, "ubifs_%d_%d", c
->vi
.ubi_num
,
2199 sb
->s_bdi
->ra_pages
= 0;
2200 sb
->s_bdi
->io_pages
= 0;
2203 sb
->s_magic
= UBIFS_SUPER_MAGIC
;
2204 sb
->s_blocksize
= UBIFS_BLOCK_SIZE
;
2205 sb
->s_blocksize_bits
= UBIFS_BLOCK_SHIFT
;
2206 sb
->s_maxbytes
= c
->max_inode_sz
= key_max_inode_size(c
);
2207 if (c
->max_inode_sz
> MAX_LFS_FILESIZE
)
2208 sb
->s_maxbytes
= c
->max_inode_sz
= MAX_LFS_FILESIZE
;
2209 sb
->s_op
= &ubifs_super_operations
;
2210 #ifdef CONFIG_UBIFS_FS_XATTR
2211 sb
->s_xattr
= ubifs_xattr_handlers
;
2213 fscrypt_set_ops(sb
, &ubifs_crypt_operations
);
2215 mutex_lock(&c
->umount_mutex
);
2216 err
= mount_ubifs(c
);
2218 ubifs_assert(c
, err
< 0);
2222 /* Read the root inode */
2223 root
= ubifs_iget(sb
, UBIFS_ROOT_INO
);
2225 err
= PTR_ERR(root
);
2229 sb
->s_root
= d_make_root(root
);
2235 mutex_unlock(&c
->umount_mutex
);
2241 mutex_unlock(&c
->umount_mutex
);
2243 ubifs_release_options(c
);
2244 ubi_close_volume(c
->ubi
);
2249 static int sb_test(struct super_block
*sb
, void *data
)
2251 struct ubifs_info
*c1
= data
;
2252 struct ubifs_info
*c
= sb
->s_fs_info
;
2254 return c
->vi
.cdev
== c1
->vi
.cdev
;
2257 static int sb_set(struct super_block
*sb
, void *data
)
2259 sb
->s_fs_info
= data
;
2260 return set_anon_super(sb
, NULL
);
2263 static struct dentry
*ubifs_mount(struct file_system_type
*fs_type
, int flags
,
2264 const char *name
, void *data
)
2266 struct ubi_volume_desc
*ubi
;
2267 struct ubifs_info
*c
;
2268 struct super_block
*sb
;
2271 dbg_gen("name %s, flags %#x", name
, flags
);
2274 * Get UBI device number and volume ID. Mount it read-only so far
2275 * because this might be a new mount point, and UBI allows only one
2276 * read-write user at a time.
2278 ubi
= open_ubi(name
, UBI_READONLY
);
2280 if (!(flags
& SB_SILENT
))
2281 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2282 current
->pid
, name
, (int)PTR_ERR(ubi
));
2283 return ERR_CAST(ubi
);
2286 c
= alloc_ubifs_info(ubi
);
2292 dbg_gen("opened ubi%d_%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
2294 sb
= sget(fs_type
, sb_test
, sb_set
, flags
, c
);
2302 struct ubifs_info
*c1
= sb
->s_fs_info
;
2304 /* A new mount point for already mounted UBIFS */
2305 dbg_gen("this ubi volume is already mounted");
2306 if (!!(flags
& SB_RDONLY
) != c1
->ro_mount
) {
2311 err
= ubifs_fill_super(sb
, data
, flags
& SB_SILENT
? 1 : 0);
2314 /* We do not support atime */
2315 sb
->s_flags
|= SB_ACTIVE
;
2316 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT
))
2317 ubifs_msg(c
, "full atime support is enabled.");
2319 sb
->s_flags
|= SB_NOATIME
;
2322 /* 'fill_super()' opens ubi again so we must close it here */
2323 ubi_close_volume(ubi
);
2325 return dget(sb
->s_root
);
2328 deactivate_locked_super(sb
);
2330 ubi_close_volume(ubi
);
2331 return ERR_PTR(err
);
2334 static void kill_ubifs_super(struct super_block
*s
)
2336 struct ubifs_info
*c
= s
->s_fs_info
;
2341 static struct file_system_type ubifs_fs_type
= {
2343 .owner
= THIS_MODULE
,
2344 .mount
= ubifs_mount
,
2345 .kill_sb
= kill_ubifs_super
,
2347 MODULE_ALIAS_FS("ubifs");
2350 * Inode slab cache constructor.
2352 static void inode_slab_ctor(void *obj
)
2354 struct ubifs_inode
*ui
= obj
;
2355 inode_init_once(&ui
->vfs_inode
);
2358 static int __init
ubifs_init(void)
2362 BUILD_BUG_ON(sizeof(struct ubifs_ch
) != 24);
2364 /* Make sure node sizes are 8-byte aligned */
2365 BUILD_BUG_ON(UBIFS_CH_SZ
& 7);
2366 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
& 7);
2367 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
& 7);
2368 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
& 7);
2369 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ
& 7);
2370 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
& 7);
2371 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
& 7);
2372 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
& 7);
2373 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
& 7);
2374 BUILD_BUG_ON(UBIFS_CS_NODE_SZ
& 7);
2375 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ
& 7);
2377 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
& 7);
2378 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
& 7);
2379 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
& 7);
2380 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
& 7);
2381 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ
& 7);
2382 BUILD_BUG_ON(MIN_WRITE_SZ
& 7);
2384 /* Check min. node size */
2385 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
< MIN_WRITE_SZ
);
2386 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
< MIN_WRITE_SZ
);
2387 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
< MIN_WRITE_SZ
);
2388 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
< MIN_WRITE_SZ
);
2390 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2391 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2392 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2393 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2395 /* Defined node sizes */
2396 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
!= 4096);
2397 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
!= 512);
2398 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
!= 160);
2399 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
!= 64);
2402 * We use 2 bit wide bit-fields to store compression type, which should
2403 * be amended if more compressors are added. The bit-fields are:
2404 * @compr_type in 'struct ubifs_inode', @default_compr in
2405 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2407 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT
> 4);
2410 * We require that PAGE_SIZE is greater-than-or-equal-to
2411 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2413 if (PAGE_SIZE
< UBIFS_BLOCK_SIZE
) {
2414 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2415 current
->pid
, (unsigned int)PAGE_SIZE
);
2419 ubifs_inode_slab
= kmem_cache_create("ubifs_inode_slab",
2420 sizeof(struct ubifs_inode
), 0,
2421 SLAB_MEM_SPREAD
| SLAB_RECLAIM_ACCOUNT
|
2422 SLAB_ACCOUNT
, &inode_slab_ctor
);
2423 if (!ubifs_inode_slab
)
2426 err
= register_shrinker(&ubifs_shrinker_info
);
2430 err
= ubifs_compressors_init();
2436 err
= register_filesystem(&ubifs_fs_type
);
2438 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2446 ubifs_compressors_exit();
2448 unregister_shrinker(&ubifs_shrinker_info
);
2450 kmem_cache_destroy(ubifs_inode_slab
);
2453 /* late_initcall to let compressors initialize first */
2454 late_initcall(ubifs_init
);
2456 static void __exit
ubifs_exit(void)
2458 WARN_ON(!list_empty(&ubifs_infos
));
2459 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt
) != 0);
2462 ubifs_compressors_exit();
2463 unregister_shrinker(&ubifs_shrinker_info
);
2466 * Make sure all delayed rcu free inodes are flushed before we
2470 kmem_cache_destroy(ubifs_inode_slab
);
2471 unregister_filesystem(&ubifs_fs_type
);
2473 module_exit(ubifs_exit
);
2475 MODULE_LICENSE("GPL");
2476 MODULE_VERSION(__stringify(UBIFS_VERSION
));
2477 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2478 MODULE_DESCRIPTION("UBIFS - UBI File System");