2 * x86 instruction analysis
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004, 2009
22 #include <linux/string.h>
29 /* Verify next sizeof(t) bytes can be on the same instruction */
30 #define validate_next(t, insn, n) \
31 ((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
33 #define __get_next(t, insn) \
34 ({ t r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
36 #define __peek_nbyte_next(t, insn, n) \
37 ({ t r = *(t*)((insn)->next_byte + n); r; })
39 #define get_next(t, insn) \
40 ({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
42 #define peek_nbyte_next(t, insn, n) \
43 ({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
45 #define peek_next(t, insn) peek_nbyte_next(t, insn, 0)
48 * insn_init() - initialize struct insn
49 * @insn: &struct insn to be initialized
50 * @kaddr: address (in kernel memory) of instruction (or copy thereof)
51 * @x86_64: !0 for 64-bit kernel or 64-bit app
53 void insn_init(struct insn
*insn
, const void *kaddr
, int buf_len
, int x86_64
)
56 * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
57 * even if the input buffer is long enough to hold them.
59 if (buf_len
> MAX_INSN_SIZE
)
60 buf_len
= MAX_INSN_SIZE
;
62 memset(insn
, 0, sizeof(*insn
));
64 insn
->end_kaddr
= kaddr
+ buf_len
;
65 insn
->next_byte
= kaddr
;
66 insn
->x86_64
= x86_64
? 1 : 0;
75 * insn_get_prefixes - scan x86 instruction prefix bytes
76 * @insn: &struct insn containing instruction
78 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
79 * to point to the (first) opcode. No effect if @insn->prefixes.got
82 void insn_get_prefixes(struct insn
*insn
)
84 struct insn_field
*prefixes
= &insn
->prefixes
;
94 b
= peek_next(insn_byte_t
, insn
);
95 attr
= inat_get_opcode_attribute(b
);
96 while (inat_is_legacy_prefix(attr
)) {
97 /* Skip if same prefix */
98 for (i
= 0; i
< nb
; i
++)
99 if (prefixes
->bytes
[i
] == b
)
102 /* Invalid instruction */
104 prefixes
->bytes
[nb
++] = b
;
105 if (inat_is_address_size_prefix(attr
)) {
106 /* address size switches 2/4 or 4/8 */
108 insn
->addr_bytes
^= 12;
110 insn
->addr_bytes
^= 6;
111 } else if (inat_is_operand_size_prefix(attr
)) {
112 /* oprand size switches 2/4 */
113 insn
->opnd_bytes
^= 6;
119 b
= peek_next(insn_byte_t
, insn
);
120 attr
= inat_get_opcode_attribute(b
);
122 /* Set the last prefix */
123 if (lb
&& lb
!= insn
->prefixes
.bytes
[3]) {
124 if (unlikely(insn
->prefixes
.bytes
[3])) {
125 /* Swap the last prefix */
126 b
= insn
->prefixes
.bytes
[3];
127 for (i
= 0; i
< nb
; i
++)
128 if (prefixes
->bytes
[i
] == lb
)
129 prefixes
->bytes
[i
] = b
;
131 insn
->prefixes
.bytes
[3] = lb
;
134 /* Decode REX prefix */
136 b
= peek_next(insn_byte_t
, insn
);
137 attr
= inat_get_opcode_attribute(b
);
138 if (inat_is_rex_prefix(attr
)) {
139 insn
->rex_prefix
.value
= b
;
140 insn
->rex_prefix
.nbytes
= 1;
143 /* REX.W overrides opnd_size */
144 insn
->opnd_bytes
= 8;
147 insn
->rex_prefix
.got
= 1;
149 /* Decode VEX prefix */
150 b
= peek_next(insn_byte_t
, insn
);
151 attr
= inat_get_opcode_attribute(b
);
152 if (inat_is_vex_prefix(attr
)) {
153 insn_byte_t b2
= peek_nbyte_next(insn_byte_t
, insn
, 1);
156 * In 32-bits mode, if the [7:6] bits (mod bits of
157 * ModRM) on the second byte are not 11b, it is
158 * LDS or LES or BOUND.
160 if (X86_MODRM_MOD(b2
) != 3)
163 insn
->vex_prefix
.bytes
[0] = b
;
164 insn
->vex_prefix
.bytes
[1] = b2
;
165 if (inat_is_evex_prefix(attr
)) {
166 b2
= peek_nbyte_next(insn_byte_t
, insn
, 2);
167 insn
->vex_prefix
.bytes
[2] = b2
;
168 b2
= peek_nbyte_next(insn_byte_t
, insn
, 3);
169 insn
->vex_prefix
.bytes
[3] = b2
;
170 insn
->vex_prefix
.nbytes
= 4;
171 insn
->next_byte
+= 4;
172 if (insn
->x86_64
&& X86_VEX_W(b2
))
173 /* VEX.W overrides opnd_size */
174 insn
->opnd_bytes
= 8;
175 } else if (inat_is_vex3_prefix(attr
)) {
176 b2
= peek_nbyte_next(insn_byte_t
, insn
, 2);
177 insn
->vex_prefix
.bytes
[2] = b2
;
178 insn
->vex_prefix
.nbytes
= 3;
179 insn
->next_byte
+= 3;
180 if (insn
->x86_64
&& X86_VEX_W(b2
))
181 /* VEX.W overrides opnd_size */
182 insn
->opnd_bytes
= 8;
185 * For VEX2, fake VEX3-like byte#2.
186 * Makes it easier to decode vex.W, vex.vvvv,
187 * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
189 insn
->vex_prefix
.bytes
[2] = b2
& 0x7f;
190 insn
->vex_prefix
.nbytes
= 2;
191 insn
->next_byte
+= 2;
195 insn
->vex_prefix
.got
= 1;
204 * insn_get_opcode - collect opcode(s)
205 * @insn: &struct insn containing instruction
207 * Populates @insn->opcode, updates @insn->next_byte to point past the
208 * opcode byte(s), and set @insn->attr (except for groups).
209 * If necessary, first collects any preceding (prefix) bytes.
210 * Sets @insn->opcode.value = opcode1. No effect if @insn->opcode.got
213 void insn_get_opcode(struct insn
*insn
)
215 struct insn_field
*opcode
= &insn
->opcode
;
220 if (!insn
->prefixes
.got
)
221 insn_get_prefixes(insn
);
223 /* Get first opcode */
224 op
= get_next(insn_byte_t
, insn
);
225 opcode
->bytes
[0] = op
;
228 /* Check if there is VEX prefix or not */
229 if (insn_is_avx(insn
)) {
231 m
= insn_vex_m_bits(insn
);
232 p
= insn_vex_p_bits(insn
);
233 insn
->attr
= inat_get_avx_attribute(op
, m
, p
);
234 if ((inat_must_evex(insn
->attr
) && !insn_is_evex(insn
)) ||
235 (!inat_accept_vex(insn
->attr
) &&
236 !inat_is_group(insn
->attr
)))
237 insn
->attr
= 0; /* This instruction is bad */
238 goto end
; /* VEX has only 1 byte for opcode */
241 insn
->attr
= inat_get_opcode_attribute(op
);
242 while (inat_is_escape(insn
->attr
)) {
243 /* Get escaped opcode */
244 op
= get_next(insn_byte_t
, insn
);
245 opcode
->bytes
[opcode
->nbytes
++] = op
;
246 pfx_id
= insn_last_prefix_id(insn
);
247 insn
->attr
= inat_get_escape_attribute(op
, pfx_id
, insn
->attr
);
249 if (inat_must_vex(insn
->attr
))
250 insn
->attr
= 0; /* This instruction is bad */
259 * insn_get_modrm - collect ModRM byte, if any
260 * @insn: &struct insn containing instruction
262 * Populates @insn->modrm and updates @insn->next_byte to point past the
263 * ModRM byte, if any. If necessary, first collects the preceding bytes
264 * (prefixes and opcode(s)). No effect if @insn->modrm.got is already 1.
266 void insn_get_modrm(struct insn
*insn
)
268 struct insn_field
*modrm
= &insn
->modrm
;
269 insn_byte_t pfx_id
, mod
;
272 if (!insn
->opcode
.got
)
273 insn_get_opcode(insn
);
275 if (inat_has_modrm(insn
->attr
)) {
276 mod
= get_next(insn_byte_t
, insn
);
279 if (inat_is_group(insn
->attr
)) {
280 pfx_id
= insn_last_prefix_id(insn
);
281 insn
->attr
= inat_get_group_attribute(mod
, pfx_id
,
283 if (insn_is_avx(insn
) && !inat_accept_vex(insn
->attr
))
284 insn
->attr
= 0; /* This is bad */
288 if (insn
->x86_64
&& inat_is_force64(insn
->attr
))
289 insn
->opnd_bytes
= 8;
298 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
299 * @insn: &struct insn containing instruction
301 * If necessary, first collects the instruction up to and including the
302 * ModRM byte. No effect if @insn->x86_64 is 0.
304 int insn_rip_relative(struct insn
*insn
)
306 struct insn_field
*modrm
= &insn
->modrm
;
311 insn_get_modrm(insn
);
313 * For rip-relative instructions, the mod field (top 2 bits)
314 * is zero and the r/m field (bottom 3 bits) is 0x5.
316 return (modrm
->nbytes
&& (modrm
->value
& 0xc7) == 0x5);
320 * insn_get_sib() - Get the SIB byte of instruction
321 * @insn: &struct insn containing instruction
323 * If necessary, first collects the instruction up to and including the
326 void insn_get_sib(struct insn
*insn
)
332 if (!insn
->modrm
.got
)
333 insn_get_modrm(insn
);
334 if (insn
->modrm
.nbytes
) {
335 modrm
= (insn_byte_t
)insn
->modrm
.value
;
336 if (insn
->addr_bytes
!= 2 &&
337 X86_MODRM_MOD(modrm
) != 3 && X86_MODRM_RM(modrm
) == 4) {
338 insn
->sib
.value
= get_next(insn_byte_t
, insn
);
339 insn
->sib
.nbytes
= 1;
350 * insn_get_displacement() - Get the displacement of instruction
351 * @insn: &struct insn containing instruction
353 * If necessary, first collects the instruction up to and including the
355 * Displacement value is sign-expanded.
357 void insn_get_displacement(struct insn
*insn
)
359 insn_byte_t mod
, rm
, base
;
361 if (insn
->displacement
.got
)
365 if (insn
->modrm
.nbytes
) {
367 * Interpreting the modrm byte:
368 * mod = 00 - no displacement fields (exceptions below)
369 * mod = 01 - 1-byte displacement field
370 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
371 * address size = 2 (0x67 prefix in 32-bit mode)
372 * mod = 11 - no memory operand
374 * If address size = 2...
375 * mod = 00, r/m = 110 - displacement field is 2 bytes
377 * If address size != 2...
378 * mod != 11, r/m = 100 - SIB byte exists
379 * mod = 00, SIB base = 101 - displacement field is 4 bytes
380 * mod = 00, r/m = 101 - rip-relative addressing, displacement
383 mod
= X86_MODRM_MOD(insn
->modrm
.value
);
384 rm
= X86_MODRM_RM(insn
->modrm
.value
);
385 base
= X86_SIB_BASE(insn
->sib
.value
);
389 insn
->displacement
.value
= get_next(signed char, insn
);
390 insn
->displacement
.nbytes
= 1;
391 } else if (insn
->addr_bytes
== 2) {
392 if ((mod
== 0 && rm
== 6) || mod
== 2) {
393 insn
->displacement
.value
=
394 get_next(short, insn
);
395 insn
->displacement
.nbytes
= 2;
398 if ((mod
== 0 && rm
== 5) || mod
== 2 ||
399 (mod
== 0 && base
== 5)) {
400 insn
->displacement
.value
= get_next(int, insn
);
401 insn
->displacement
.nbytes
= 4;
406 insn
->displacement
.got
= 1;
412 /* Decode moffset16/32/64. Return 0 if failed */
413 static int __get_moffset(struct insn
*insn
)
415 switch (insn
->addr_bytes
) {
417 insn
->moffset1
.value
= get_next(short, insn
);
418 insn
->moffset1
.nbytes
= 2;
421 insn
->moffset1
.value
= get_next(int, insn
);
422 insn
->moffset1
.nbytes
= 4;
425 insn
->moffset1
.value
= get_next(int, insn
);
426 insn
->moffset1
.nbytes
= 4;
427 insn
->moffset2
.value
= get_next(int, insn
);
428 insn
->moffset2
.nbytes
= 4;
430 default: /* opnd_bytes must be modified manually */
433 insn
->moffset1
.got
= insn
->moffset2
.got
= 1;
441 /* Decode imm v32(Iz). Return 0 if failed */
442 static int __get_immv32(struct insn
*insn
)
444 switch (insn
->opnd_bytes
) {
446 insn
->immediate
.value
= get_next(short, insn
);
447 insn
->immediate
.nbytes
= 2;
451 insn
->immediate
.value
= get_next(int, insn
);
452 insn
->immediate
.nbytes
= 4;
454 default: /* opnd_bytes must be modified manually */
464 /* Decode imm v64(Iv/Ov), Return 0 if failed */
465 static int __get_immv(struct insn
*insn
)
467 switch (insn
->opnd_bytes
) {
469 insn
->immediate1
.value
= get_next(short, insn
);
470 insn
->immediate1
.nbytes
= 2;
473 insn
->immediate1
.value
= get_next(int, insn
);
474 insn
->immediate1
.nbytes
= 4;
477 insn
->immediate1
.value
= get_next(int, insn
);
478 insn
->immediate1
.nbytes
= 4;
479 insn
->immediate2
.value
= get_next(int, insn
);
480 insn
->immediate2
.nbytes
= 4;
482 default: /* opnd_bytes must be modified manually */
485 insn
->immediate1
.got
= insn
->immediate2
.got
= 1;
492 /* Decode ptr16:16/32(Ap) */
493 static int __get_immptr(struct insn
*insn
)
495 switch (insn
->opnd_bytes
) {
497 insn
->immediate1
.value
= get_next(short, insn
);
498 insn
->immediate1
.nbytes
= 2;
501 insn
->immediate1
.value
= get_next(int, insn
);
502 insn
->immediate1
.nbytes
= 4;
505 /* ptr16:64 is not exist (no segment) */
507 default: /* opnd_bytes must be modified manually */
510 insn
->immediate2
.value
= get_next(unsigned short, insn
);
511 insn
->immediate2
.nbytes
= 2;
512 insn
->immediate1
.got
= insn
->immediate2
.got
= 1;
520 * insn_get_immediate() - Get the immediates of instruction
521 * @insn: &struct insn containing instruction
523 * If necessary, first collects the instruction up to and including the
524 * displacement bytes.
525 * Basically, most of immediates are sign-expanded. Unsigned-value can be
526 * get by bit masking with ((1 << (nbytes * 8)) - 1)
528 void insn_get_immediate(struct insn
*insn
)
530 if (insn
->immediate
.got
)
532 if (!insn
->displacement
.got
)
533 insn_get_displacement(insn
);
535 if (inat_has_moffset(insn
->attr
)) {
536 if (!__get_moffset(insn
))
541 if (!inat_has_immediate(insn
->attr
))
545 switch (inat_immediate_size(insn
->attr
)) {
547 insn
->immediate
.value
= get_next(signed char, insn
);
548 insn
->immediate
.nbytes
= 1;
551 insn
->immediate
.value
= get_next(short, insn
);
552 insn
->immediate
.nbytes
= 2;
555 insn
->immediate
.value
= get_next(int, insn
);
556 insn
->immediate
.nbytes
= 4;
559 insn
->immediate1
.value
= get_next(int, insn
);
560 insn
->immediate1
.nbytes
= 4;
561 insn
->immediate2
.value
= get_next(int, insn
);
562 insn
->immediate2
.nbytes
= 4;
565 if (!__get_immptr(insn
))
568 case INAT_IMM_VWORD32
:
569 if (!__get_immv32(insn
))
573 if (!__get_immv(insn
))
577 /* Here, insn must have an immediate, but failed */
580 if (inat_has_second_immediate(insn
->attr
)) {
581 insn
->immediate2
.value
= get_next(signed char, insn
);
582 insn
->immediate2
.nbytes
= 1;
585 insn
->immediate
.got
= 1;
592 * insn_get_length() - Get the length of instruction
593 * @insn: &struct insn containing instruction
595 * If necessary, first collects the instruction up to and including the
598 void insn_get_length(struct insn
*insn
)
602 if (!insn
->immediate
.got
)
603 insn_get_immediate(insn
);
604 insn
->length
= (unsigned char)((unsigned long)insn
->next_byte
605 - (unsigned long)insn
->kaddr
);