2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
39 #include <asm/pgalloc.h>
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
50 unsigned long transparent_hugepage_flags __read_mostly
=
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
)|
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
61 static struct shrinker deferred_split_shrinker
;
63 static atomic_t huge_zero_refcount
;
64 struct page
*huge_zero_page __read_mostly
;
66 bool transparent_hugepage_enabled(struct vm_area_struct
*vma
)
68 if (vma_is_anonymous(vma
))
69 return __transparent_hugepage_enabled(vma
);
70 if (vma_is_shmem(vma
) && shmem_huge_enabled(vma
))
71 return __transparent_hugepage_enabled(vma
);
76 static struct page
*get_huge_zero_page(void)
78 struct page
*zero_page
;
80 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
81 return READ_ONCE(huge_zero_page
);
83 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
86 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
89 count_vm_event(THP_ZERO_PAGE_ALLOC
);
91 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
93 __free_pages(zero_page
, compound_order(zero_page
));
97 /* We take additional reference here. It will be put back by shrinker */
98 atomic_set(&huge_zero_refcount
, 2);
100 return READ_ONCE(huge_zero_page
);
103 static void put_huge_zero_page(void)
106 * Counter should never go to zero here. Only shrinker can put
109 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
112 struct page
*mm_get_huge_zero_page(struct mm_struct
*mm
)
114 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
115 return READ_ONCE(huge_zero_page
);
117 if (!get_huge_zero_page())
120 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
121 put_huge_zero_page();
123 return READ_ONCE(huge_zero_page
);
126 void mm_put_huge_zero_page(struct mm_struct
*mm
)
128 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
129 put_huge_zero_page();
132 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
133 struct shrink_control
*sc
)
135 /* we can free zero page only if last reference remains */
136 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
139 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
140 struct shrink_control
*sc
)
142 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
143 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
144 BUG_ON(zero_page
== NULL
);
145 __free_pages(zero_page
, compound_order(zero_page
));
152 static struct shrinker huge_zero_page_shrinker
= {
153 .count_objects
= shrink_huge_zero_page_count
,
154 .scan_objects
= shrink_huge_zero_page_scan
,
155 .seeks
= DEFAULT_SEEKS
,
159 static ssize_t
enabled_show(struct kobject
*kobj
,
160 struct kobj_attribute
*attr
, char *buf
)
162 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
))
163 return sprintf(buf
, "[always] madvise never\n");
164 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
165 return sprintf(buf
, "always [madvise] never\n");
167 return sprintf(buf
, "always madvise [never]\n");
170 static ssize_t
enabled_store(struct kobject
*kobj
,
171 struct kobj_attribute
*attr
,
172 const char *buf
, size_t count
)
176 if (!memcmp("always", buf
,
177 min(sizeof("always")-1, count
))) {
178 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
179 set_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
180 } else if (!memcmp("madvise", buf
,
181 min(sizeof("madvise")-1, count
))) {
182 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
183 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
184 } else if (!memcmp("never", buf
,
185 min(sizeof("never")-1, count
))) {
186 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
187 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
192 int err
= start_stop_khugepaged();
198 static struct kobj_attribute enabled_attr
=
199 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
201 ssize_t
single_hugepage_flag_show(struct kobject
*kobj
,
202 struct kobj_attribute
*attr
, char *buf
,
203 enum transparent_hugepage_flag flag
)
205 return sprintf(buf
, "%d\n",
206 !!test_bit(flag
, &transparent_hugepage_flags
));
209 ssize_t
single_hugepage_flag_store(struct kobject
*kobj
,
210 struct kobj_attribute
*attr
,
211 const char *buf
, size_t count
,
212 enum transparent_hugepage_flag flag
)
217 ret
= kstrtoul(buf
, 10, &value
);
224 set_bit(flag
, &transparent_hugepage_flags
);
226 clear_bit(flag
, &transparent_hugepage_flags
);
231 static ssize_t
defrag_show(struct kobject
*kobj
,
232 struct kobj_attribute
*attr
, char *buf
)
234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
235 return sprintf(buf
, "[always] defer defer+madvise madvise never\n");
236 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
237 return sprintf(buf
, "always [defer] defer+madvise madvise never\n");
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
239 return sprintf(buf
, "always defer [defer+madvise] madvise never\n");
240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
241 return sprintf(buf
, "always defer defer+madvise [madvise] never\n");
242 return sprintf(buf
, "always defer defer+madvise madvise [never]\n");
245 static ssize_t
defrag_store(struct kobject
*kobj
,
246 struct kobj_attribute
*attr
,
247 const char *buf
, size_t count
)
249 if (!memcmp("always", buf
,
250 min(sizeof("always")-1, count
))) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
255 } else if (!memcmp("defer+madvise", buf
,
256 min(sizeof("defer+madvise")-1, count
))) {
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
260 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
261 } else if (!memcmp("defer", buf
,
262 min(sizeof("defer")-1, count
))) {
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
266 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
267 } else if (!memcmp("madvise", buf
,
268 min(sizeof("madvise")-1, count
))) {
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
272 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
273 } else if (!memcmp("never", buf
,
274 min(sizeof("never")-1, count
))) {
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
284 static struct kobj_attribute defrag_attr
=
285 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
287 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
288 struct kobj_attribute
*attr
, char *buf
)
290 return single_hugepage_flag_show(kobj
, attr
, buf
,
291 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
293 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
294 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
296 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
297 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
299 static struct kobj_attribute use_zero_page_attr
=
300 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
302 static ssize_t
hpage_pmd_size_show(struct kobject
*kobj
,
303 struct kobj_attribute
*attr
, char *buf
)
305 return sprintf(buf
, "%lu\n", HPAGE_PMD_SIZE
);
307 static struct kobj_attribute hpage_pmd_size_attr
=
308 __ATTR_RO(hpage_pmd_size
);
310 #ifdef CONFIG_DEBUG_VM
311 static ssize_t
debug_cow_show(struct kobject
*kobj
,
312 struct kobj_attribute
*attr
, char *buf
)
314 return single_hugepage_flag_show(kobj
, attr
, buf
,
315 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
317 static ssize_t
debug_cow_store(struct kobject
*kobj
,
318 struct kobj_attribute
*attr
,
319 const char *buf
, size_t count
)
321 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
322 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
324 static struct kobj_attribute debug_cow_attr
=
325 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
326 #endif /* CONFIG_DEBUG_VM */
328 static struct attribute
*hugepage_attr
[] = {
331 &use_zero_page_attr
.attr
,
332 &hpage_pmd_size_attr
.attr
,
333 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
334 &shmem_enabled_attr
.attr
,
336 #ifdef CONFIG_DEBUG_VM
337 &debug_cow_attr
.attr
,
342 static const struct attribute_group hugepage_attr_group
= {
343 .attrs
= hugepage_attr
,
346 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
350 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
351 if (unlikely(!*hugepage_kobj
)) {
352 pr_err("failed to create transparent hugepage kobject\n");
356 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
358 pr_err("failed to register transparent hugepage group\n");
362 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
364 pr_err("failed to register transparent hugepage group\n");
365 goto remove_hp_group
;
371 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
373 kobject_put(*hugepage_kobj
);
377 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
379 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
380 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
381 kobject_put(hugepage_kobj
);
384 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
389 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
392 #endif /* CONFIG_SYSFS */
394 static int __init
hugepage_init(void)
397 struct kobject
*hugepage_kobj
;
399 if (!has_transparent_hugepage()) {
400 transparent_hugepage_flags
= 0;
405 * hugepages can't be allocated by the buddy allocator
407 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
>= MAX_ORDER
);
409 * we use page->mapping and page->index in second tail page
410 * as list_head: assuming THP order >= 2
412 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
< 2);
414 err
= hugepage_init_sysfs(&hugepage_kobj
);
418 err
= khugepaged_init();
422 err
= register_shrinker(&huge_zero_page_shrinker
);
424 goto err_hzp_shrinker
;
425 err
= register_shrinker(&deferred_split_shrinker
);
427 goto err_split_shrinker
;
430 * By default disable transparent hugepages on smaller systems,
431 * where the extra memory used could hurt more than TLB overhead
432 * is likely to save. The admin can still enable it through /sys.
434 if (totalram_pages() < (512 << (20 - PAGE_SHIFT
))) {
435 transparent_hugepage_flags
= 0;
439 err
= start_stop_khugepaged();
445 unregister_shrinker(&deferred_split_shrinker
);
447 unregister_shrinker(&huge_zero_page_shrinker
);
449 khugepaged_destroy();
451 hugepage_exit_sysfs(hugepage_kobj
);
455 subsys_initcall(hugepage_init
);
457 static int __init
setup_transparent_hugepage(char *str
)
462 if (!strcmp(str
, "always")) {
463 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
464 &transparent_hugepage_flags
);
465 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
466 &transparent_hugepage_flags
);
468 } else if (!strcmp(str
, "madvise")) {
469 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
470 &transparent_hugepage_flags
);
471 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
472 &transparent_hugepage_flags
);
474 } else if (!strcmp(str
, "never")) {
475 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
476 &transparent_hugepage_flags
);
477 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
478 &transparent_hugepage_flags
);
483 pr_warn("transparent_hugepage= cannot parse, ignored\n");
486 __setup("transparent_hugepage=", setup_transparent_hugepage
);
488 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
490 if (likely(vma
->vm_flags
& VM_WRITE
))
491 pmd
= pmd_mkwrite(pmd
);
495 static inline struct list_head
*page_deferred_list(struct page
*page
)
497 /* ->lru in the tail pages is occupied by compound_head. */
498 return &page
[2].deferred_list
;
501 void prep_transhuge_page(struct page
*page
)
504 * we use page->mapping and page->indexlru in second tail page
505 * as list_head: assuming THP order >= 2
508 INIT_LIST_HEAD(page_deferred_list(page
));
509 set_compound_page_dtor(page
, TRANSHUGE_PAGE_DTOR
);
512 unsigned long __thp_get_unmapped_area(struct file
*filp
, unsigned long len
,
513 loff_t off
, unsigned long flags
, unsigned long size
)
516 loff_t off_end
= off
+ len
;
517 loff_t off_align
= round_up(off
, size
);
518 unsigned long len_pad
;
520 if (off_end
<= off_align
|| (off_end
- off_align
) < size
)
523 len_pad
= len
+ size
;
524 if (len_pad
< len
|| (off
+ len_pad
) < off
)
527 addr
= current
->mm
->get_unmapped_area(filp
, 0, len_pad
,
528 off
>> PAGE_SHIFT
, flags
);
529 if (IS_ERR_VALUE(addr
))
532 addr
+= (off
- addr
) & (size
- 1);
536 unsigned long thp_get_unmapped_area(struct file
*filp
, unsigned long addr
,
537 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
539 loff_t off
= (loff_t
)pgoff
<< PAGE_SHIFT
;
543 if (!IS_DAX(filp
->f_mapping
->host
) || !IS_ENABLED(CONFIG_FS_DAX_PMD
))
546 addr
= __thp_get_unmapped_area(filp
, len
, off
, flags
, PMD_SIZE
);
551 return current
->mm
->get_unmapped_area(filp
, addr
, len
, pgoff
, flags
);
553 EXPORT_SYMBOL_GPL(thp_get_unmapped_area
);
555 static vm_fault_t
__do_huge_pmd_anonymous_page(struct vm_fault
*vmf
,
556 struct page
*page
, gfp_t gfp
)
558 struct vm_area_struct
*vma
= vmf
->vma
;
559 struct mem_cgroup
*memcg
;
561 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
564 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
566 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, gfp
, &memcg
, true)) {
568 count_vm_event(THP_FAULT_FALLBACK
);
569 return VM_FAULT_FALLBACK
;
572 pgtable
= pte_alloc_one(vma
->vm_mm
);
573 if (unlikely(!pgtable
)) {
578 clear_huge_page(page
, vmf
->address
, HPAGE_PMD_NR
);
580 * The memory barrier inside __SetPageUptodate makes sure that
581 * clear_huge_page writes become visible before the set_pmd_at()
584 __SetPageUptodate(page
);
586 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
587 if (unlikely(!pmd_none(*vmf
->pmd
))) {
592 ret
= check_stable_address_space(vma
->vm_mm
);
596 /* Deliver the page fault to userland */
597 if (userfaultfd_missing(vma
)) {
600 spin_unlock(vmf
->ptl
);
601 mem_cgroup_cancel_charge(page
, memcg
, true);
603 pte_free(vma
->vm_mm
, pgtable
);
604 ret2
= handle_userfault(vmf
, VM_UFFD_MISSING
);
605 VM_BUG_ON(ret2
& VM_FAULT_FALLBACK
);
609 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
610 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
611 page_add_new_anon_rmap(page
, vma
, haddr
, true);
612 mem_cgroup_commit_charge(page
, memcg
, false, true);
613 lru_cache_add_active_or_unevictable(page
, vma
);
614 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, pgtable
);
615 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
616 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
617 mm_inc_nr_ptes(vma
->vm_mm
);
618 spin_unlock(vmf
->ptl
);
619 count_vm_event(THP_FAULT_ALLOC
);
620 count_memcg_events(memcg
, THP_FAULT_ALLOC
, 1);
625 spin_unlock(vmf
->ptl
);
628 pte_free(vma
->vm_mm
, pgtable
);
629 mem_cgroup_cancel_charge(page
, memcg
, true);
636 * always: directly stall for all thp allocations
637 * defer: wake kswapd and fail if not immediately available
638 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
639 * fail if not immediately available
640 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
642 * never: never stall for any thp allocation
644 static inline gfp_t
alloc_hugepage_direct_gfpmask(struct vm_area_struct
*vma
)
646 const bool vma_madvised
= !!(vma
->vm_flags
& VM_HUGEPAGE
);
648 /* Always do synchronous compaction */
649 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
650 return GFP_TRANSHUGE
| (vma_madvised
? 0 : __GFP_NORETRY
);
652 /* Kick kcompactd and fail quickly */
653 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
654 return GFP_TRANSHUGE_LIGHT
| __GFP_KSWAPD_RECLAIM
;
656 /* Synchronous compaction if madvised, otherwise kick kcompactd */
657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
658 return GFP_TRANSHUGE_LIGHT
|
659 (vma_madvised
? __GFP_DIRECT_RECLAIM
:
660 __GFP_KSWAPD_RECLAIM
);
662 /* Only do synchronous compaction if madvised */
663 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
664 return GFP_TRANSHUGE_LIGHT
|
665 (vma_madvised
? __GFP_DIRECT_RECLAIM
: 0);
667 return GFP_TRANSHUGE_LIGHT
;
670 /* Caller must hold page table lock. */
671 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
672 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
673 struct page
*zero_page
)
678 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
679 entry
= pmd_mkhuge(entry
);
681 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
682 set_pmd_at(mm
, haddr
, pmd
, entry
);
687 vm_fault_t
do_huge_pmd_anonymous_page(struct vm_fault
*vmf
)
689 struct vm_area_struct
*vma
= vmf
->vma
;
692 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
694 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
695 return VM_FAULT_FALLBACK
;
696 if (unlikely(anon_vma_prepare(vma
)))
698 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
700 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
701 !mm_forbids_zeropage(vma
->vm_mm
) &&
702 transparent_hugepage_use_zero_page()) {
704 struct page
*zero_page
;
707 pgtable
= pte_alloc_one(vma
->vm_mm
);
708 if (unlikely(!pgtable
))
710 zero_page
= mm_get_huge_zero_page(vma
->vm_mm
);
711 if (unlikely(!zero_page
)) {
712 pte_free(vma
->vm_mm
, pgtable
);
713 count_vm_event(THP_FAULT_FALLBACK
);
714 return VM_FAULT_FALLBACK
;
716 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
719 if (pmd_none(*vmf
->pmd
)) {
720 ret
= check_stable_address_space(vma
->vm_mm
);
722 spin_unlock(vmf
->ptl
);
723 } else if (userfaultfd_missing(vma
)) {
724 spin_unlock(vmf
->ptl
);
725 ret
= handle_userfault(vmf
, VM_UFFD_MISSING
);
726 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
728 set_huge_zero_page(pgtable
, vma
->vm_mm
, vma
,
729 haddr
, vmf
->pmd
, zero_page
);
730 spin_unlock(vmf
->ptl
);
734 spin_unlock(vmf
->ptl
);
736 pte_free(vma
->vm_mm
, pgtable
);
739 gfp
= alloc_hugepage_direct_gfpmask(vma
);
740 page
= alloc_hugepage_vma(gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
741 if (unlikely(!page
)) {
742 count_vm_event(THP_FAULT_FALLBACK
);
743 return VM_FAULT_FALLBACK
;
745 prep_transhuge_page(page
);
746 return __do_huge_pmd_anonymous_page(vmf
, page
, gfp
);
749 static void insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
750 pmd_t
*pmd
, pfn_t pfn
, pgprot_t prot
, bool write
,
753 struct mm_struct
*mm
= vma
->vm_mm
;
757 ptl
= pmd_lock(mm
, pmd
);
758 entry
= pmd_mkhuge(pfn_t_pmd(pfn
, prot
));
759 if (pfn_t_devmap(pfn
))
760 entry
= pmd_mkdevmap(entry
);
762 entry
= pmd_mkyoung(pmd_mkdirty(entry
));
763 entry
= maybe_pmd_mkwrite(entry
, vma
);
767 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
771 set_pmd_at(mm
, addr
, pmd
, entry
);
772 update_mmu_cache_pmd(vma
, addr
, pmd
);
776 vm_fault_t
vmf_insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
777 pmd_t
*pmd
, pfn_t pfn
, bool write
)
779 pgprot_t pgprot
= vma
->vm_page_prot
;
780 pgtable_t pgtable
= NULL
;
782 * If we had pmd_special, we could avoid all these restrictions,
783 * but we need to be consistent with PTEs and architectures that
784 * can't support a 'special' bit.
786 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
788 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
789 (VM_PFNMAP
|VM_MIXEDMAP
));
790 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
792 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
793 return VM_FAULT_SIGBUS
;
795 if (arch_needs_pgtable_deposit()) {
796 pgtable
= pte_alloc_one(vma
->vm_mm
);
801 track_pfn_insert(vma
, &pgprot
, pfn
);
803 insert_pfn_pmd(vma
, addr
, pmd
, pfn
, pgprot
, write
, pgtable
);
804 return VM_FAULT_NOPAGE
;
806 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd
);
808 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
809 static pud_t
maybe_pud_mkwrite(pud_t pud
, struct vm_area_struct
*vma
)
811 if (likely(vma
->vm_flags
& VM_WRITE
))
812 pud
= pud_mkwrite(pud
);
816 static void insert_pfn_pud(struct vm_area_struct
*vma
, unsigned long addr
,
817 pud_t
*pud
, pfn_t pfn
, pgprot_t prot
, bool write
)
819 struct mm_struct
*mm
= vma
->vm_mm
;
823 ptl
= pud_lock(mm
, pud
);
824 entry
= pud_mkhuge(pfn_t_pud(pfn
, prot
));
825 if (pfn_t_devmap(pfn
))
826 entry
= pud_mkdevmap(entry
);
828 entry
= pud_mkyoung(pud_mkdirty(entry
));
829 entry
= maybe_pud_mkwrite(entry
, vma
);
831 set_pud_at(mm
, addr
, pud
, entry
);
832 update_mmu_cache_pud(vma
, addr
, pud
);
836 vm_fault_t
vmf_insert_pfn_pud(struct vm_area_struct
*vma
, unsigned long addr
,
837 pud_t
*pud
, pfn_t pfn
, bool write
)
839 pgprot_t pgprot
= vma
->vm_page_prot
;
841 * If we had pud_special, we could avoid all these restrictions,
842 * but we need to be consistent with PTEs and architectures that
843 * can't support a 'special' bit.
845 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
847 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
848 (VM_PFNMAP
|VM_MIXEDMAP
));
849 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
851 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
852 return VM_FAULT_SIGBUS
;
854 track_pfn_insert(vma
, &pgprot
, pfn
);
856 insert_pfn_pud(vma
, addr
, pud
, pfn
, pgprot
, write
);
857 return VM_FAULT_NOPAGE
;
859 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud
);
860 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
862 static void touch_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
863 pmd_t
*pmd
, int flags
)
867 _pmd
= pmd_mkyoung(*pmd
);
868 if (flags
& FOLL_WRITE
)
869 _pmd
= pmd_mkdirty(_pmd
);
870 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
871 pmd
, _pmd
, flags
& FOLL_WRITE
))
872 update_mmu_cache_pmd(vma
, addr
, pmd
);
875 struct page
*follow_devmap_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
876 pmd_t
*pmd
, int flags
, struct dev_pagemap
**pgmap
)
878 unsigned long pfn
= pmd_pfn(*pmd
);
879 struct mm_struct
*mm
= vma
->vm_mm
;
882 assert_spin_locked(pmd_lockptr(mm
, pmd
));
885 * When we COW a devmap PMD entry, we split it into PTEs, so we should
886 * not be in this function with `flags & FOLL_COW` set.
888 WARN_ONCE(flags
& FOLL_COW
, "mm: In follow_devmap_pmd with FOLL_COW set");
890 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
893 if (pmd_present(*pmd
) && pmd_devmap(*pmd
))
898 if (flags
& FOLL_TOUCH
)
899 touch_pmd(vma
, addr
, pmd
, flags
);
902 * device mapped pages can only be returned if the
903 * caller will manage the page reference count.
905 if (!(flags
& FOLL_GET
))
906 return ERR_PTR(-EEXIST
);
908 pfn
+= (addr
& ~PMD_MASK
) >> PAGE_SHIFT
;
909 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
911 return ERR_PTR(-EFAULT
);
912 page
= pfn_to_page(pfn
);
918 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
919 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
920 struct vm_area_struct
*vma
)
922 spinlock_t
*dst_ptl
, *src_ptl
;
923 struct page
*src_page
;
925 pgtable_t pgtable
= NULL
;
928 /* Skip if can be re-fill on fault */
929 if (!vma_is_anonymous(vma
))
932 pgtable
= pte_alloc_one(dst_mm
);
933 if (unlikely(!pgtable
))
936 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
937 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
938 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
943 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
944 if (unlikely(is_swap_pmd(pmd
))) {
945 swp_entry_t entry
= pmd_to_swp_entry(pmd
);
947 VM_BUG_ON(!is_pmd_migration_entry(pmd
));
948 if (is_write_migration_entry(entry
)) {
949 make_migration_entry_read(&entry
);
950 pmd
= swp_entry_to_pmd(entry
);
951 if (pmd_swp_soft_dirty(*src_pmd
))
952 pmd
= pmd_swp_mksoft_dirty(pmd
);
953 set_pmd_at(src_mm
, addr
, src_pmd
, pmd
);
955 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
956 mm_inc_nr_ptes(dst_mm
);
957 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
958 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
964 if (unlikely(!pmd_trans_huge(pmd
))) {
965 pte_free(dst_mm
, pgtable
);
969 * When page table lock is held, the huge zero pmd should not be
970 * under splitting since we don't split the page itself, only pmd to
973 if (is_huge_zero_pmd(pmd
)) {
974 struct page
*zero_page
;
976 * get_huge_zero_page() will never allocate a new page here,
977 * since we already have a zero page to copy. It just takes a
980 zero_page
= mm_get_huge_zero_page(dst_mm
);
981 set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
987 src_page
= pmd_page(pmd
);
988 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
990 page_dup_rmap(src_page
, true);
991 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
992 mm_inc_nr_ptes(dst_mm
);
993 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
995 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
996 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
997 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1001 spin_unlock(src_ptl
);
1002 spin_unlock(dst_ptl
);
1007 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1008 static void touch_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1009 pud_t
*pud
, int flags
)
1013 _pud
= pud_mkyoung(*pud
);
1014 if (flags
& FOLL_WRITE
)
1015 _pud
= pud_mkdirty(_pud
);
1016 if (pudp_set_access_flags(vma
, addr
& HPAGE_PUD_MASK
,
1017 pud
, _pud
, flags
& FOLL_WRITE
))
1018 update_mmu_cache_pud(vma
, addr
, pud
);
1021 struct page
*follow_devmap_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1022 pud_t
*pud
, int flags
, struct dev_pagemap
**pgmap
)
1024 unsigned long pfn
= pud_pfn(*pud
);
1025 struct mm_struct
*mm
= vma
->vm_mm
;
1028 assert_spin_locked(pud_lockptr(mm
, pud
));
1030 if (flags
& FOLL_WRITE
&& !pud_write(*pud
))
1033 if (pud_present(*pud
) && pud_devmap(*pud
))
1038 if (flags
& FOLL_TOUCH
)
1039 touch_pud(vma
, addr
, pud
, flags
);
1042 * device mapped pages can only be returned if the
1043 * caller will manage the page reference count.
1045 if (!(flags
& FOLL_GET
))
1046 return ERR_PTR(-EEXIST
);
1048 pfn
+= (addr
& ~PUD_MASK
) >> PAGE_SHIFT
;
1049 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
1051 return ERR_PTR(-EFAULT
);
1052 page
= pfn_to_page(pfn
);
1058 int copy_huge_pud(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1059 pud_t
*dst_pud
, pud_t
*src_pud
, unsigned long addr
,
1060 struct vm_area_struct
*vma
)
1062 spinlock_t
*dst_ptl
, *src_ptl
;
1066 dst_ptl
= pud_lock(dst_mm
, dst_pud
);
1067 src_ptl
= pud_lockptr(src_mm
, src_pud
);
1068 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1072 if (unlikely(!pud_trans_huge(pud
) && !pud_devmap(pud
)))
1076 * When page table lock is held, the huge zero pud should not be
1077 * under splitting since we don't split the page itself, only pud to
1080 if (is_huge_zero_pud(pud
)) {
1081 /* No huge zero pud yet */
1084 pudp_set_wrprotect(src_mm
, addr
, src_pud
);
1085 pud
= pud_mkold(pud_wrprotect(pud
));
1086 set_pud_at(dst_mm
, addr
, dst_pud
, pud
);
1090 spin_unlock(src_ptl
);
1091 spin_unlock(dst_ptl
);
1095 void huge_pud_set_accessed(struct vm_fault
*vmf
, pud_t orig_pud
)
1098 unsigned long haddr
;
1099 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1101 vmf
->ptl
= pud_lock(vmf
->vma
->vm_mm
, vmf
->pud
);
1102 if (unlikely(!pud_same(*vmf
->pud
, orig_pud
)))
1105 entry
= pud_mkyoung(orig_pud
);
1107 entry
= pud_mkdirty(entry
);
1108 haddr
= vmf
->address
& HPAGE_PUD_MASK
;
1109 if (pudp_set_access_flags(vmf
->vma
, haddr
, vmf
->pud
, entry
, write
))
1110 update_mmu_cache_pud(vmf
->vma
, vmf
->address
, vmf
->pud
);
1113 spin_unlock(vmf
->ptl
);
1115 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1117 void huge_pmd_set_accessed(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1120 unsigned long haddr
;
1121 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1123 vmf
->ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1124 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1127 entry
= pmd_mkyoung(orig_pmd
);
1129 entry
= pmd_mkdirty(entry
);
1130 haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1131 if (pmdp_set_access_flags(vmf
->vma
, haddr
, vmf
->pmd
, entry
, write
))
1132 update_mmu_cache_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
);
1135 spin_unlock(vmf
->ptl
);
1138 static vm_fault_t
do_huge_pmd_wp_page_fallback(struct vm_fault
*vmf
,
1139 pmd_t orig_pmd
, struct page
*page
)
1141 struct vm_area_struct
*vma
= vmf
->vma
;
1142 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1143 struct mem_cgroup
*memcg
;
1148 struct page
**pages
;
1149 struct mmu_notifier_range range
;
1151 pages
= kmalloc_array(HPAGE_PMD_NR
, sizeof(struct page
*),
1153 if (unlikely(!pages
)) {
1154 ret
|= VM_FAULT_OOM
;
1158 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1159 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
, vma
,
1160 vmf
->address
, page_to_nid(page
));
1161 if (unlikely(!pages
[i
] ||
1162 mem_cgroup_try_charge_delay(pages
[i
], vma
->vm_mm
,
1163 GFP_KERNEL
, &memcg
, false))) {
1167 memcg
= (void *)page_private(pages
[i
]);
1168 set_page_private(pages
[i
], 0);
1169 mem_cgroup_cancel_charge(pages
[i
], memcg
,
1174 ret
|= VM_FAULT_OOM
;
1177 set_page_private(pages
[i
], (unsigned long)memcg
);
1180 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1181 copy_user_highpage(pages
[i
], page
+ i
,
1182 haddr
+ PAGE_SIZE
* i
, vma
);
1183 __SetPageUptodate(pages
[i
]);
1187 mmu_notifier_range_init(&range
, vma
->vm_mm
, haddr
,
1188 haddr
+ HPAGE_PMD_SIZE
);
1189 mmu_notifier_invalidate_range_start(&range
);
1191 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1192 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1193 goto out_free_pages
;
1194 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1197 * Leave pmd empty until pte is filled note we must notify here as
1198 * concurrent CPU thread might write to new page before the call to
1199 * mmu_notifier_invalidate_range_end() happens which can lead to a
1200 * device seeing memory write in different order than CPU.
1202 * See Documentation/vm/mmu_notifier.rst
1204 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1206 pgtable
= pgtable_trans_huge_withdraw(vma
->vm_mm
, vmf
->pmd
);
1207 pmd_populate(vma
->vm_mm
, &_pmd
, pgtable
);
1209 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1211 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
1212 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1213 memcg
= (void *)page_private(pages
[i
]);
1214 set_page_private(pages
[i
], 0);
1215 page_add_new_anon_rmap(pages
[i
], vmf
->vma
, haddr
, false);
1216 mem_cgroup_commit_charge(pages
[i
], memcg
, false, false);
1217 lru_cache_add_active_or_unevictable(pages
[i
], vma
);
1218 vmf
->pte
= pte_offset_map(&_pmd
, haddr
);
1219 VM_BUG_ON(!pte_none(*vmf
->pte
));
1220 set_pte_at(vma
->vm_mm
, haddr
, vmf
->pte
, entry
);
1221 pte_unmap(vmf
->pte
);
1225 smp_wmb(); /* make pte visible before pmd */
1226 pmd_populate(vma
->vm_mm
, vmf
->pmd
, pgtable
);
1227 page_remove_rmap(page
, true);
1228 spin_unlock(vmf
->ptl
);
1231 * No need to double call mmu_notifier->invalidate_range() callback as
1232 * the above pmdp_huge_clear_flush_notify() did already call it.
1234 mmu_notifier_invalidate_range_only_end(&range
);
1236 ret
|= VM_FAULT_WRITE
;
1243 spin_unlock(vmf
->ptl
);
1244 mmu_notifier_invalidate_range_end(&range
);
1245 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1246 memcg
= (void *)page_private(pages
[i
]);
1247 set_page_private(pages
[i
], 0);
1248 mem_cgroup_cancel_charge(pages
[i
], memcg
, false);
1255 vm_fault_t
do_huge_pmd_wp_page(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1257 struct vm_area_struct
*vma
= vmf
->vma
;
1258 struct page
*page
= NULL
, *new_page
;
1259 struct mem_cgroup
*memcg
;
1260 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1261 struct mmu_notifier_range range
;
1262 gfp_t huge_gfp
; /* for allocation and charge */
1265 vmf
->ptl
= pmd_lockptr(vma
->vm_mm
, vmf
->pmd
);
1266 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
1267 if (is_huge_zero_pmd(orig_pmd
))
1269 spin_lock(vmf
->ptl
);
1270 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1273 page
= pmd_page(orig_pmd
);
1274 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1276 * We can only reuse the page if nobody else maps the huge page or it's
1279 if (!trylock_page(page
)) {
1281 spin_unlock(vmf
->ptl
);
1283 spin_lock(vmf
->ptl
);
1284 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1291 if (reuse_swap_page(page
, NULL
)) {
1293 entry
= pmd_mkyoung(orig_pmd
);
1294 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1295 if (pmdp_set_access_flags(vma
, haddr
, vmf
->pmd
, entry
, 1))
1296 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1297 ret
|= VM_FAULT_WRITE
;
1303 spin_unlock(vmf
->ptl
);
1305 if (__transparent_hugepage_enabled(vma
) &&
1306 !transparent_hugepage_debug_cow()) {
1307 huge_gfp
= alloc_hugepage_direct_gfpmask(vma
);
1308 new_page
= alloc_hugepage_vma(huge_gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
1312 if (likely(new_page
)) {
1313 prep_transhuge_page(new_page
);
1316 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1317 ret
|= VM_FAULT_FALLBACK
;
1319 ret
= do_huge_pmd_wp_page_fallback(vmf
, orig_pmd
, page
);
1320 if (ret
& VM_FAULT_OOM
) {
1321 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1322 ret
|= VM_FAULT_FALLBACK
;
1326 count_vm_event(THP_FAULT_FALLBACK
);
1330 if (unlikely(mem_cgroup_try_charge_delay(new_page
, vma
->vm_mm
,
1331 huge_gfp
, &memcg
, true))) {
1333 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1336 ret
|= VM_FAULT_FALLBACK
;
1337 count_vm_event(THP_FAULT_FALLBACK
);
1341 count_vm_event(THP_FAULT_ALLOC
);
1342 count_memcg_events(memcg
, THP_FAULT_ALLOC
, 1);
1345 clear_huge_page(new_page
, vmf
->address
, HPAGE_PMD_NR
);
1347 copy_user_huge_page(new_page
, page
, vmf
->address
,
1349 __SetPageUptodate(new_page
);
1351 mmu_notifier_range_init(&range
, vma
->vm_mm
, haddr
,
1352 haddr
+ HPAGE_PMD_SIZE
);
1353 mmu_notifier_invalidate_range_start(&range
);
1355 spin_lock(vmf
->ptl
);
1358 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1359 spin_unlock(vmf
->ptl
);
1360 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1365 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1366 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1367 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1368 page_add_new_anon_rmap(new_page
, vma
, haddr
, true);
1369 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1370 lru_cache_add_active_or_unevictable(new_page
, vma
);
1371 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
1372 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1374 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1376 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1377 page_remove_rmap(page
, true);
1380 ret
|= VM_FAULT_WRITE
;
1382 spin_unlock(vmf
->ptl
);
1385 * No need to double call mmu_notifier->invalidate_range() callback as
1386 * the above pmdp_huge_clear_flush_notify() did already call it.
1388 mmu_notifier_invalidate_range_only_end(&range
);
1392 spin_unlock(vmf
->ptl
);
1397 * FOLL_FORCE can write to even unwritable pmd's, but only
1398 * after we've gone through a COW cycle and they are dirty.
1400 static inline bool can_follow_write_pmd(pmd_t pmd
, unsigned int flags
)
1402 return pmd_write(pmd
) ||
1403 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pmd_dirty(pmd
));
1406 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1411 struct mm_struct
*mm
= vma
->vm_mm
;
1412 struct page
*page
= NULL
;
1414 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1416 if (flags
& FOLL_WRITE
&& !can_follow_write_pmd(*pmd
, flags
))
1419 /* Avoid dumping huge zero page */
1420 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1421 return ERR_PTR(-EFAULT
);
1423 /* Full NUMA hinting faults to serialise migration in fault paths */
1424 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
1427 page
= pmd_page(*pmd
);
1428 VM_BUG_ON_PAGE(!PageHead(page
) && !is_zone_device_page(page
), page
);
1429 if (flags
& FOLL_TOUCH
)
1430 touch_pmd(vma
, addr
, pmd
, flags
);
1431 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1433 * We don't mlock() pte-mapped THPs. This way we can avoid
1434 * leaking mlocked pages into non-VM_LOCKED VMAs.
1438 * In most cases the pmd is the only mapping of the page as we
1439 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1440 * writable private mappings in populate_vma_page_range().
1442 * The only scenario when we have the page shared here is if we
1443 * mlocking read-only mapping shared over fork(). We skip
1444 * mlocking such pages.
1448 * We can expect PageDoubleMap() to be stable under page lock:
1449 * for file pages we set it in page_add_file_rmap(), which
1450 * requires page to be locked.
1453 if (PageAnon(page
) && compound_mapcount(page
) != 1)
1455 if (PageDoubleMap(page
) || !page
->mapping
)
1457 if (!trylock_page(page
))
1460 if (page
->mapping
&& !PageDoubleMap(page
))
1461 mlock_vma_page(page
);
1465 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1466 VM_BUG_ON_PAGE(!PageCompound(page
) && !is_zone_device_page(page
), page
);
1467 if (flags
& FOLL_GET
)
1474 /* NUMA hinting page fault entry point for trans huge pmds */
1475 vm_fault_t
do_huge_pmd_numa_page(struct vm_fault
*vmf
, pmd_t pmd
)
1477 struct vm_area_struct
*vma
= vmf
->vma
;
1478 struct anon_vma
*anon_vma
= NULL
;
1480 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1481 int page_nid
= NUMA_NO_NODE
, this_nid
= numa_node_id();
1482 int target_nid
, last_cpupid
= -1;
1484 bool migrated
= false;
1488 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1489 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
)))
1493 * If there are potential migrations, wait for completion and retry
1494 * without disrupting NUMA hinting information. Do not relock and
1495 * check_same as the page may no longer be mapped.
1497 if (unlikely(pmd_trans_migrating(*vmf
->pmd
))) {
1498 page
= pmd_page(*vmf
->pmd
);
1499 if (!get_page_unless_zero(page
))
1501 spin_unlock(vmf
->ptl
);
1502 put_and_wait_on_page_locked(page
);
1506 page
= pmd_page(pmd
);
1507 BUG_ON(is_huge_zero_page(page
));
1508 page_nid
= page_to_nid(page
);
1509 last_cpupid
= page_cpupid_last(page
);
1510 count_vm_numa_event(NUMA_HINT_FAULTS
);
1511 if (page_nid
== this_nid
) {
1512 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1513 flags
|= TNF_FAULT_LOCAL
;
1516 /* See similar comment in do_numa_page for explanation */
1517 if (!pmd_savedwrite(pmd
))
1518 flags
|= TNF_NO_GROUP
;
1521 * Acquire the page lock to serialise THP migrations but avoid dropping
1522 * page_table_lock if at all possible
1524 page_locked
= trylock_page(page
);
1525 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1526 if (target_nid
== NUMA_NO_NODE
) {
1527 /* If the page was locked, there are no parallel migrations */
1532 /* Migration could have started since the pmd_trans_migrating check */
1534 page_nid
= NUMA_NO_NODE
;
1535 if (!get_page_unless_zero(page
))
1537 spin_unlock(vmf
->ptl
);
1538 put_and_wait_on_page_locked(page
);
1543 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1544 * to serialises splits
1547 spin_unlock(vmf
->ptl
);
1548 anon_vma
= page_lock_anon_vma_read(page
);
1550 /* Confirm the PMD did not change while page_table_lock was released */
1551 spin_lock(vmf
->ptl
);
1552 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
))) {
1555 page_nid
= NUMA_NO_NODE
;
1559 /* Bail if we fail to protect against THP splits for any reason */
1560 if (unlikely(!anon_vma
)) {
1562 page_nid
= NUMA_NO_NODE
;
1567 * Since we took the NUMA fault, we must have observed the !accessible
1568 * bit. Make sure all other CPUs agree with that, to avoid them
1569 * modifying the page we're about to migrate.
1571 * Must be done under PTL such that we'll observe the relevant
1572 * inc_tlb_flush_pending().
1574 * We are not sure a pending tlb flush here is for a huge page
1575 * mapping or not. Hence use the tlb range variant
1577 if (mm_tlb_flush_pending(vma
->vm_mm
)) {
1578 flush_tlb_range(vma
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1580 * change_huge_pmd() released the pmd lock before
1581 * invalidating the secondary MMUs sharing the primary
1582 * MMU pagetables (with ->invalidate_range()). The
1583 * mmu_notifier_invalidate_range_end() (which
1584 * internally calls ->invalidate_range()) in
1585 * change_pmd_range() will run after us, so we can't
1586 * rely on it here and we need an explicit invalidate.
1588 mmu_notifier_invalidate_range(vma
->vm_mm
, haddr
,
1589 haddr
+ HPAGE_PMD_SIZE
);
1593 * Migrate the THP to the requested node, returns with page unlocked
1594 * and access rights restored.
1596 spin_unlock(vmf
->ptl
);
1598 migrated
= migrate_misplaced_transhuge_page(vma
->vm_mm
, vma
,
1599 vmf
->pmd
, pmd
, vmf
->address
, page
, target_nid
);
1601 flags
|= TNF_MIGRATED
;
1602 page_nid
= target_nid
;
1604 flags
|= TNF_MIGRATE_FAIL
;
1608 BUG_ON(!PageLocked(page
));
1609 was_writable
= pmd_savedwrite(pmd
);
1610 pmd
= pmd_modify(pmd
, vma
->vm_page_prot
);
1611 pmd
= pmd_mkyoung(pmd
);
1613 pmd
= pmd_mkwrite(pmd
);
1614 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, pmd
);
1615 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1618 spin_unlock(vmf
->ptl
);
1622 page_unlock_anon_vma_read(anon_vma
);
1624 if (page_nid
!= NUMA_NO_NODE
)
1625 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
,
1632 * Return true if we do MADV_FREE successfully on entire pmd page.
1633 * Otherwise, return false.
1635 bool madvise_free_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1636 pmd_t
*pmd
, unsigned long addr
, unsigned long next
)
1641 struct mm_struct
*mm
= tlb
->mm
;
1644 tlb_remove_check_page_size_change(tlb
, HPAGE_PMD_SIZE
);
1646 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1651 if (is_huge_zero_pmd(orig_pmd
))
1654 if (unlikely(!pmd_present(orig_pmd
))) {
1655 VM_BUG_ON(thp_migration_supported() &&
1656 !is_pmd_migration_entry(orig_pmd
));
1660 page
= pmd_page(orig_pmd
);
1662 * If other processes are mapping this page, we couldn't discard
1663 * the page unless they all do MADV_FREE so let's skip the page.
1665 if (page_mapcount(page
) != 1)
1668 if (!trylock_page(page
))
1672 * If user want to discard part-pages of THP, split it so MADV_FREE
1673 * will deactivate only them.
1675 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1678 split_huge_page(page
);
1684 if (PageDirty(page
))
1685 ClearPageDirty(page
);
1688 if (pmd_young(orig_pmd
) || pmd_dirty(orig_pmd
)) {
1689 pmdp_invalidate(vma
, addr
, pmd
);
1690 orig_pmd
= pmd_mkold(orig_pmd
);
1691 orig_pmd
= pmd_mkclean(orig_pmd
);
1693 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
1694 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1697 mark_page_lazyfree(page
);
1705 static inline void zap_deposited_table(struct mm_struct
*mm
, pmd_t
*pmd
)
1709 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1710 pte_free(mm
, pgtable
);
1714 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1715 pmd_t
*pmd
, unsigned long addr
)
1720 tlb_remove_check_page_size_change(tlb
, HPAGE_PMD_SIZE
);
1722 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1726 * For architectures like ppc64 we look at deposited pgtable
1727 * when calling pmdp_huge_get_and_clear. So do the
1728 * pgtable_trans_huge_withdraw after finishing pmdp related
1731 orig_pmd
= pmdp_huge_get_and_clear_full(tlb
->mm
, addr
, pmd
,
1733 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1734 if (vma_is_dax(vma
)) {
1735 if (arch_needs_pgtable_deposit())
1736 zap_deposited_table(tlb
->mm
, pmd
);
1738 if (is_huge_zero_pmd(orig_pmd
))
1739 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1740 } else if (is_huge_zero_pmd(orig_pmd
)) {
1741 zap_deposited_table(tlb
->mm
, pmd
);
1743 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1745 struct page
*page
= NULL
;
1746 int flush_needed
= 1;
1748 if (pmd_present(orig_pmd
)) {
1749 page
= pmd_page(orig_pmd
);
1750 page_remove_rmap(page
, true);
1751 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1752 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1753 } else if (thp_migration_supported()) {
1756 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd
));
1757 entry
= pmd_to_swp_entry(orig_pmd
);
1758 page
= pfn_to_page(swp_offset(entry
));
1761 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1763 if (PageAnon(page
)) {
1764 zap_deposited_table(tlb
->mm
, pmd
);
1765 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1767 if (arch_needs_pgtable_deposit())
1768 zap_deposited_table(tlb
->mm
, pmd
);
1769 add_mm_counter(tlb
->mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
1774 tlb_remove_page_size(tlb
, page
, HPAGE_PMD_SIZE
);
1779 #ifndef pmd_move_must_withdraw
1780 static inline int pmd_move_must_withdraw(spinlock_t
*new_pmd_ptl
,
1781 spinlock_t
*old_pmd_ptl
,
1782 struct vm_area_struct
*vma
)
1785 * With split pmd lock we also need to move preallocated
1786 * PTE page table if new_pmd is on different PMD page table.
1788 * We also don't deposit and withdraw tables for file pages.
1790 return (new_pmd_ptl
!= old_pmd_ptl
) && vma_is_anonymous(vma
);
1794 static pmd_t
move_soft_dirty_pmd(pmd_t pmd
)
1796 #ifdef CONFIG_MEM_SOFT_DIRTY
1797 if (unlikely(is_pmd_migration_entry(pmd
)))
1798 pmd
= pmd_swp_mksoft_dirty(pmd
);
1799 else if (pmd_present(pmd
))
1800 pmd
= pmd_mksoft_dirty(pmd
);
1805 bool move_huge_pmd(struct vm_area_struct
*vma
, unsigned long old_addr
,
1806 unsigned long new_addr
, unsigned long old_end
,
1807 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1809 spinlock_t
*old_ptl
, *new_ptl
;
1811 struct mm_struct
*mm
= vma
->vm_mm
;
1812 bool force_flush
= false;
1814 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1815 (new_addr
& ~HPAGE_PMD_MASK
) ||
1816 old_end
- old_addr
< HPAGE_PMD_SIZE
)
1820 * The destination pmd shouldn't be established, free_pgtables()
1821 * should have release it.
1823 if (WARN_ON(!pmd_none(*new_pmd
))) {
1824 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1829 * We don't have to worry about the ordering of src and dst
1830 * ptlocks because exclusive mmap_sem prevents deadlock.
1832 old_ptl
= __pmd_trans_huge_lock(old_pmd
, vma
);
1834 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1835 if (new_ptl
!= old_ptl
)
1836 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1837 pmd
= pmdp_huge_get_and_clear(mm
, old_addr
, old_pmd
);
1838 if (pmd_present(pmd
))
1840 VM_BUG_ON(!pmd_none(*new_pmd
));
1842 if (pmd_move_must_withdraw(new_ptl
, old_ptl
, vma
)) {
1844 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1845 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1847 pmd
= move_soft_dirty_pmd(pmd
);
1848 set_pmd_at(mm
, new_addr
, new_pmd
, pmd
);
1850 flush_tlb_range(vma
, old_addr
, old_addr
+ PMD_SIZE
);
1851 if (new_ptl
!= old_ptl
)
1852 spin_unlock(new_ptl
);
1853 spin_unlock(old_ptl
);
1861 * - 0 if PMD could not be locked
1862 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1863 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1865 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1866 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1868 struct mm_struct
*mm
= vma
->vm_mm
;
1871 bool preserve_write
;
1874 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1878 preserve_write
= prot_numa
&& pmd_write(*pmd
);
1881 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1882 if (is_swap_pmd(*pmd
)) {
1883 swp_entry_t entry
= pmd_to_swp_entry(*pmd
);
1885 VM_BUG_ON(!is_pmd_migration_entry(*pmd
));
1886 if (is_write_migration_entry(entry
)) {
1889 * A protection check is difficult so
1890 * just be safe and disable write
1892 make_migration_entry_read(&entry
);
1893 newpmd
= swp_entry_to_pmd(entry
);
1894 if (pmd_swp_soft_dirty(*pmd
))
1895 newpmd
= pmd_swp_mksoft_dirty(newpmd
);
1896 set_pmd_at(mm
, addr
, pmd
, newpmd
);
1903 * Avoid trapping faults against the zero page. The read-only
1904 * data is likely to be read-cached on the local CPU and
1905 * local/remote hits to the zero page are not interesting.
1907 if (prot_numa
&& is_huge_zero_pmd(*pmd
))
1910 if (prot_numa
&& pmd_protnone(*pmd
))
1914 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1915 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1916 * which is also under down_read(mmap_sem):
1919 * change_huge_pmd(prot_numa=1)
1920 * pmdp_huge_get_and_clear_notify()
1921 * madvise_dontneed()
1923 * pmd_trans_huge(*pmd) == 0 (without ptl)
1926 * // pmd is re-established
1928 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1929 * which may break userspace.
1931 * pmdp_invalidate() is required to make sure we don't miss
1932 * dirty/young flags set by hardware.
1934 entry
= pmdp_invalidate(vma
, addr
, pmd
);
1936 entry
= pmd_modify(entry
, newprot
);
1938 entry
= pmd_mk_savedwrite(entry
);
1940 set_pmd_at(mm
, addr
, pmd
, entry
);
1941 BUG_ON(vma_is_anonymous(vma
) && !preserve_write
&& pmd_write(entry
));
1948 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1950 * Note that if it returns page table lock pointer, this routine returns without
1951 * unlocking page table lock. So callers must unlock it.
1953 spinlock_t
*__pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
1956 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1957 if (likely(is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) ||
1965 * Returns true if a given pud maps a thp, false otherwise.
1967 * Note that if it returns true, this routine returns without unlocking page
1968 * table lock. So callers must unlock it.
1970 spinlock_t
*__pud_trans_huge_lock(pud_t
*pud
, struct vm_area_struct
*vma
)
1974 ptl
= pud_lock(vma
->vm_mm
, pud
);
1975 if (likely(pud_trans_huge(*pud
) || pud_devmap(*pud
)))
1981 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1982 int zap_huge_pud(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1983 pud_t
*pud
, unsigned long addr
)
1987 ptl
= __pud_trans_huge_lock(pud
, vma
);
1991 * For architectures like ppc64 we look at deposited pgtable
1992 * when calling pudp_huge_get_and_clear. So do the
1993 * pgtable_trans_huge_withdraw after finishing pudp related
1996 pudp_huge_get_and_clear_full(tlb
->mm
, addr
, pud
, tlb
->fullmm
);
1997 tlb_remove_pud_tlb_entry(tlb
, pud
, addr
);
1998 if (vma_is_dax(vma
)) {
2000 /* No zero page support yet */
2002 /* No support for anonymous PUD pages yet */
2008 static void __split_huge_pud_locked(struct vm_area_struct
*vma
, pud_t
*pud
,
2009 unsigned long haddr
)
2011 VM_BUG_ON(haddr
& ~HPAGE_PUD_MASK
);
2012 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2013 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PUD_SIZE
, vma
);
2014 VM_BUG_ON(!pud_trans_huge(*pud
) && !pud_devmap(*pud
));
2016 count_vm_event(THP_SPLIT_PUD
);
2018 pudp_huge_clear_flush_notify(vma
, haddr
, pud
);
2021 void __split_huge_pud(struct vm_area_struct
*vma
, pud_t
*pud
,
2022 unsigned long address
)
2025 struct mmu_notifier_range range
;
2027 mmu_notifier_range_init(&range
, vma
->vm_mm
, address
& HPAGE_PUD_MASK
,
2028 (address
& HPAGE_PUD_MASK
) + HPAGE_PUD_SIZE
);
2029 mmu_notifier_invalidate_range_start(&range
);
2030 ptl
= pud_lock(vma
->vm_mm
, pud
);
2031 if (unlikely(!pud_trans_huge(*pud
) && !pud_devmap(*pud
)))
2033 __split_huge_pud_locked(vma
, pud
, range
.start
);
2038 * No need to double call mmu_notifier->invalidate_range() callback as
2039 * the above pudp_huge_clear_flush_notify() did already call it.
2041 mmu_notifier_invalidate_range_only_end(&range
);
2043 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2045 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
2046 unsigned long haddr
, pmd_t
*pmd
)
2048 struct mm_struct
*mm
= vma
->vm_mm
;
2054 * Leave pmd empty until pte is filled note that it is fine to delay
2055 * notification until mmu_notifier_invalidate_range_end() as we are
2056 * replacing a zero pmd write protected page with a zero pte write
2059 * See Documentation/vm/mmu_notifier.rst
2061 pmdp_huge_clear_flush(vma
, haddr
, pmd
);
2063 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2064 pmd_populate(mm
, &_pmd
, pgtable
);
2066 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2068 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2069 entry
= pte_mkspecial(entry
);
2070 pte
= pte_offset_map(&_pmd
, haddr
);
2071 VM_BUG_ON(!pte_none(*pte
));
2072 set_pte_at(mm
, haddr
, pte
, entry
);
2075 smp_wmb(); /* make pte visible before pmd */
2076 pmd_populate(mm
, pmd
, pgtable
);
2079 static void __split_huge_pmd_locked(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2080 unsigned long haddr
, bool freeze
)
2082 struct mm_struct
*mm
= vma
->vm_mm
;
2085 pmd_t old_pmd
, _pmd
;
2086 bool young
, write
, soft_dirty
, pmd_migration
= false;
2090 VM_BUG_ON(haddr
& ~HPAGE_PMD_MASK
);
2091 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2092 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
, vma
);
2093 VM_BUG_ON(!is_pmd_migration_entry(*pmd
) && !pmd_trans_huge(*pmd
)
2094 && !pmd_devmap(*pmd
));
2096 count_vm_event(THP_SPLIT_PMD
);
2098 if (!vma_is_anonymous(vma
)) {
2099 _pmd
= pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
2101 * We are going to unmap this huge page. So
2102 * just go ahead and zap it
2104 if (arch_needs_pgtable_deposit())
2105 zap_deposited_table(mm
, pmd
);
2106 if (vma_is_dax(vma
))
2108 page
= pmd_page(_pmd
);
2109 if (!PageDirty(page
) && pmd_dirty(_pmd
))
2110 set_page_dirty(page
);
2111 if (!PageReferenced(page
) && pmd_young(_pmd
))
2112 SetPageReferenced(page
);
2113 page_remove_rmap(page
, true);
2115 add_mm_counter(mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
2117 } else if (is_huge_zero_pmd(*pmd
)) {
2119 * FIXME: Do we want to invalidate secondary mmu by calling
2120 * mmu_notifier_invalidate_range() see comments below inside
2121 * __split_huge_pmd() ?
2123 * We are going from a zero huge page write protected to zero
2124 * small page also write protected so it does not seems useful
2125 * to invalidate secondary mmu at this time.
2127 return __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2131 * Up to this point the pmd is present and huge and userland has the
2132 * whole access to the hugepage during the split (which happens in
2133 * place). If we overwrite the pmd with the not-huge version pointing
2134 * to the pte here (which of course we could if all CPUs were bug
2135 * free), userland could trigger a small page size TLB miss on the
2136 * small sized TLB while the hugepage TLB entry is still established in
2137 * the huge TLB. Some CPU doesn't like that.
2138 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2139 * 383 on page 93. Intel should be safe but is also warns that it's
2140 * only safe if the permission and cache attributes of the two entries
2141 * loaded in the two TLB is identical (which should be the case here).
2142 * But it is generally safer to never allow small and huge TLB entries
2143 * for the same virtual address to be loaded simultaneously. So instead
2144 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2145 * current pmd notpresent (atomically because here the pmd_trans_huge
2146 * must remain set at all times on the pmd until the split is complete
2147 * for this pmd), then we flush the SMP TLB and finally we write the
2148 * non-huge version of the pmd entry with pmd_populate.
2150 old_pmd
= pmdp_invalidate(vma
, haddr
, pmd
);
2152 pmd_migration
= is_pmd_migration_entry(old_pmd
);
2153 if (unlikely(pmd_migration
)) {
2156 entry
= pmd_to_swp_entry(old_pmd
);
2157 page
= pfn_to_page(swp_offset(entry
));
2158 write
= is_write_migration_entry(entry
);
2160 soft_dirty
= pmd_swp_soft_dirty(old_pmd
);
2162 page
= pmd_page(old_pmd
);
2163 if (pmd_dirty(old_pmd
))
2165 write
= pmd_write(old_pmd
);
2166 young
= pmd_young(old_pmd
);
2167 soft_dirty
= pmd_soft_dirty(old_pmd
);
2169 VM_BUG_ON_PAGE(!page_count(page
), page
);
2170 page_ref_add(page
, HPAGE_PMD_NR
- 1);
2173 * Withdraw the table only after we mark the pmd entry invalid.
2174 * This's critical for some architectures (Power).
2176 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2177 pmd_populate(mm
, &_pmd
, pgtable
);
2179 for (i
= 0, addr
= haddr
; i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
) {
2182 * Note that NUMA hinting access restrictions are not
2183 * transferred to avoid any possibility of altering
2184 * permissions across VMAs.
2186 if (freeze
|| pmd_migration
) {
2187 swp_entry_t swp_entry
;
2188 swp_entry
= make_migration_entry(page
+ i
, write
);
2189 entry
= swp_entry_to_pte(swp_entry
);
2191 entry
= pte_swp_mksoft_dirty(entry
);
2193 entry
= mk_pte(page
+ i
, READ_ONCE(vma
->vm_page_prot
));
2194 entry
= maybe_mkwrite(entry
, vma
);
2196 entry
= pte_wrprotect(entry
);
2198 entry
= pte_mkold(entry
);
2200 entry
= pte_mksoft_dirty(entry
);
2202 pte
= pte_offset_map(&_pmd
, addr
);
2203 BUG_ON(!pte_none(*pte
));
2204 set_pte_at(mm
, addr
, pte
, entry
);
2205 atomic_inc(&page
[i
]._mapcount
);
2210 * Set PG_double_map before dropping compound_mapcount to avoid
2211 * false-negative page_mapped().
2213 if (compound_mapcount(page
) > 1 && !TestSetPageDoubleMap(page
)) {
2214 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2215 atomic_inc(&page
[i
]._mapcount
);
2218 if (atomic_add_negative(-1, compound_mapcount_ptr(page
))) {
2219 /* Last compound_mapcount is gone. */
2220 __dec_node_page_state(page
, NR_ANON_THPS
);
2221 if (TestClearPageDoubleMap(page
)) {
2222 /* No need in mapcount reference anymore */
2223 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2224 atomic_dec(&page
[i
]._mapcount
);
2228 smp_wmb(); /* make pte visible before pmd */
2229 pmd_populate(mm
, pmd
, pgtable
);
2232 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2233 page_remove_rmap(page
+ i
, false);
2239 void __split_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2240 unsigned long address
, bool freeze
, struct page
*page
)
2243 struct mmu_notifier_range range
;
2245 mmu_notifier_range_init(&range
, vma
->vm_mm
, address
& HPAGE_PMD_MASK
,
2246 (address
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
);
2247 mmu_notifier_invalidate_range_start(&range
);
2248 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
2251 * If caller asks to setup a migration entries, we need a page to check
2252 * pmd against. Otherwise we can end up replacing wrong page.
2254 VM_BUG_ON(freeze
&& !page
);
2255 if (page
&& page
!= pmd_page(*pmd
))
2258 if (pmd_trans_huge(*pmd
)) {
2259 page
= pmd_page(*pmd
);
2260 if (PageMlocked(page
))
2261 clear_page_mlock(page
);
2262 } else if (!(pmd_devmap(*pmd
) || is_pmd_migration_entry(*pmd
)))
2264 __split_huge_pmd_locked(vma
, pmd
, range
.start
, freeze
);
2268 * No need to double call mmu_notifier->invalidate_range() callback.
2269 * They are 3 cases to consider inside __split_huge_pmd_locked():
2270 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2271 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2272 * fault will trigger a flush_notify before pointing to a new page
2273 * (it is fine if the secondary mmu keeps pointing to the old zero
2274 * page in the meantime)
2275 * 3) Split a huge pmd into pte pointing to the same page. No need
2276 * to invalidate secondary tlb entry they are all still valid.
2277 * any further changes to individual pte will notify. So no need
2278 * to call mmu_notifier->invalidate_range()
2280 mmu_notifier_invalidate_range_only_end(&range
);
2283 void split_huge_pmd_address(struct vm_area_struct
*vma
, unsigned long address
,
2284 bool freeze
, struct page
*page
)
2291 pgd
= pgd_offset(vma
->vm_mm
, address
);
2292 if (!pgd_present(*pgd
))
2295 p4d
= p4d_offset(pgd
, address
);
2296 if (!p4d_present(*p4d
))
2299 pud
= pud_offset(p4d
, address
);
2300 if (!pud_present(*pud
))
2303 pmd
= pmd_offset(pud
, address
);
2305 __split_huge_pmd(vma
, pmd
, address
, freeze
, page
);
2308 void vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2309 unsigned long start
,
2314 * If the new start address isn't hpage aligned and it could
2315 * previously contain an hugepage: check if we need to split
2318 if (start
& ~HPAGE_PMD_MASK
&&
2319 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2320 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2321 split_huge_pmd_address(vma
, start
, false, NULL
);
2324 * If the new end address isn't hpage aligned and it could
2325 * previously contain an hugepage: check if we need to split
2328 if (end
& ~HPAGE_PMD_MASK
&&
2329 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2330 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2331 split_huge_pmd_address(vma
, end
, false, NULL
);
2334 * If we're also updating the vma->vm_next->vm_start, if the new
2335 * vm_next->vm_start isn't page aligned and it could previously
2336 * contain an hugepage: check if we need to split an huge pmd.
2338 if (adjust_next
> 0) {
2339 struct vm_area_struct
*next
= vma
->vm_next
;
2340 unsigned long nstart
= next
->vm_start
;
2341 nstart
+= adjust_next
<< PAGE_SHIFT
;
2342 if (nstart
& ~HPAGE_PMD_MASK
&&
2343 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2344 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2345 split_huge_pmd_address(next
, nstart
, false, NULL
);
2349 static void unmap_page(struct page
*page
)
2351 enum ttu_flags ttu_flags
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
|
2352 TTU_RMAP_LOCKED
| TTU_SPLIT_HUGE_PMD
;
2355 VM_BUG_ON_PAGE(!PageHead(page
), page
);
2358 ttu_flags
|= TTU_SPLIT_FREEZE
;
2360 unmap_success
= try_to_unmap(page
, ttu_flags
);
2361 VM_BUG_ON_PAGE(!unmap_success
, page
);
2364 static void remap_page(struct page
*page
)
2367 if (PageTransHuge(page
)) {
2368 remove_migration_ptes(page
, page
, true);
2370 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2371 remove_migration_ptes(page
+ i
, page
+ i
, true);
2375 static void __split_huge_page_tail(struct page
*head
, int tail
,
2376 struct lruvec
*lruvec
, struct list_head
*list
)
2378 struct page
*page_tail
= head
+ tail
;
2380 VM_BUG_ON_PAGE(atomic_read(&page_tail
->_mapcount
) != -1, page_tail
);
2383 * Clone page flags before unfreezing refcount.
2385 * After successful get_page_unless_zero() might follow flags change,
2386 * for exmaple lock_page() which set PG_waiters.
2388 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
2389 page_tail
->flags
|= (head
->flags
&
2390 ((1L << PG_referenced
) |
2391 (1L << PG_swapbacked
) |
2392 (1L << PG_swapcache
) |
2393 (1L << PG_mlocked
) |
2394 (1L << PG_uptodate
) |
2396 (1L << PG_workingset
) |
2398 (1L << PG_unevictable
) |
2401 /* ->mapping in first tail page is compound_mapcount */
2402 VM_BUG_ON_PAGE(tail
> 2 && page_tail
->mapping
!= TAIL_MAPPING
,
2404 page_tail
->mapping
= head
->mapping
;
2405 page_tail
->index
= head
->index
+ tail
;
2407 /* Page flags must be visible before we make the page non-compound. */
2411 * Clear PageTail before unfreezing page refcount.
2413 * After successful get_page_unless_zero() might follow put_page()
2414 * which needs correct compound_head().
2416 clear_compound_head(page_tail
);
2418 /* Finally unfreeze refcount. Additional reference from page cache. */
2419 page_ref_unfreeze(page_tail
, 1 + (!PageAnon(head
) ||
2420 PageSwapCache(head
)));
2422 if (page_is_young(head
))
2423 set_page_young(page_tail
);
2424 if (page_is_idle(head
))
2425 set_page_idle(page_tail
);
2427 page_cpupid_xchg_last(page_tail
, page_cpupid_last(head
));
2430 * always add to the tail because some iterators expect new
2431 * pages to show after the currently processed elements - e.g.
2434 lru_add_page_tail(head
, page_tail
, lruvec
, list
);
2437 static void __split_huge_page(struct page
*page
, struct list_head
*list
,
2438 pgoff_t end
, unsigned long flags
)
2440 struct page
*head
= compound_head(page
);
2441 pg_data_t
*pgdat
= page_pgdat(head
);
2442 struct lruvec
*lruvec
;
2445 lruvec
= mem_cgroup_page_lruvec(head
, pgdat
);
2447 /* complete memcg works before add pages to LRU */
2448 mem_cgroup_split_huge_fixup(head
);
2450 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
2451 __split_huge_page_tail(head
, i
, lruvec
, list
);
2452 /* Some pages can be beyond i_size: drop them from page cache */
2453 if (head
[i
].index
>= end
) {
2454 ClearPageDirty(head
+ i
);
2455 __delete_from_page_cache(head
+ i
, NULL
);
2456 if (IS_ENABLED(CONFIG_SHMEM
) && PageSwapBacked(head
))
2457 shmem_uncharge(head
->mapping
->host
, 1);
2462 ClearPageCompound(head
);
2463 /* See comment in __split_huge_page_tail() */
2464 if (PageAnon(head
)) {
2465 /* Additional pin to swap cache */
2466 if (PageSwapCache(head
))
2467 page_ref_add(head
, 2);
2471 /* Additional pin to page cache */
2472 page_ref_add(head
, 2);
2473 xa_unlock(&head
->mapping
->i_pages
);
2476 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
2480 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2481 struct page
*subpage
= head
+ i
;
2482 if (subpage
== page
)
2484 unlock_page(subpage
);
2487 * Subpages may be freed if there wasn't any mapping
2488 * like if add_to_swap() is running on a lru page that
2489 * had its mapping zapped. And freeing these pages
2490 * requires taking the lru_lock so we do the put_page
2491 * of the tail pages after the split is complete.
2497 int total_mapcount(struct page
*page
)
2499 int i
, compound
, ret
;
2501 VM_BUG_ON_PAGE(PageTail(page
), page
);
2503 if (likely(!PageCompound(page
)))
2504 return atomic_read(&page
->_mapcount
) + 1;
2506 compound
= compound_mapcount(page
);
2510 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2511 ret
+= atomic_read(&page
[i
]._mapcount
) + 1;
2512 /* File pages has compound_mapcount included in _mapcount */
2513 if (!PageAnon(page
))
2514 return ret
- compound
* HPAGE_PMD_NR
;
2515 if (PageDoubleMap(page
))
2516 ret
-= HPAGE_PMD_NR
;
2521 * This calculates accurately how many mappings a transparent hugepage
2522 * has (unlike page_mapcount() which isn't fully accurate). This full
2523 * accuracy is primarily needed to know if copy-on-write faults can
2524 * reuse the page and change the mapping to read-write instead of
2525 * copying them. At the same time this returns the total_mapcount too.
2527 * The function returns the highest mapcount any one of the subpages
2528 * has. If the return value is one, even if different processes are
2529 * mapping different subpages of the transparent hugepage, they can
2530 * all reuse it, because each process is reusing a different subpage.
2532 * The total_mapcount is instead counting all virtual mappings of the
2533 * subpages. If the total_mapcount is equal to "one", it tells the
2534 * caller all mappings belong to the same "mm" and in turn the
2535 * anon_vma of the transparent hugepage can become the vma->anon_vma
2536 * local one as no other process may be mapping any of the subpages.
2538 * It would be more accurate to replace page_mapcount() with
2539 * page_trans_huge_mapcount(), however we only use
2540 * page_trans_huge_mapcount() in the copy-on-write faults where we
2541 * need full accuracy to avoid breaking page pinning, because
2542 * page_trans_huge_mapcount() is slower than page_mapcount().
2544 int page_trans_huge_mapcount(struct page
*page
, int *total_mapcount
)
2546 int i
, ret
, _total_mapcount
, mapcount
;
2548 /* hugetlbfs shouldn't call it */
2549 VM_BUG_ON_PAGE(PageHuge(page
), page
);
2551 if (likely(!PageTransCompound(page
))) {
2552 mapcount
= atomic_read(&page
->_mapcount
) + 1;
2554 *total_mapcount
= mapcount
;
2558 page
= compound_head(page
);
2560 _total_mapcount
= ret
= 0;
2561 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2562 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
2563 ret
= max(ret
, mapcount
);
2564 _total_mapcount
+= mapcount
;
2566 if (PageDoubleMap(page
)) {
2568 _total_mapcount
-= HPAGE_PMD_NR
;
2570 mapcount
= compound_mapcount(page
);
2572 _total_mapcount
+= mapcount
;
2574 *total_mapcount
= _total_mapcount
;
2578 /* Racy check whether the huge page can be split */
2579 bool can_split_huge_page(struct page
*page
, int *pextra_pins
)
2583 /* Additional pins from page cache */
2585 extra_pins
= PageSwapCache(page
) ? HPAGE_PMD_NR
: 0;
2587 extra_pins
= HPAGE_PMD_NR
;
2589 *pextra_pins
= extra_pins
;
2590 return total_mapcount(page
) == page_count(page
) - extra_pins
- 1;
2594 * This function splits huge page into normal pages. @page can point to any
2595 * subpage of huge page to split. Split doesn't change the position of @page.
2597 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2598 * The huge page must be locked.
2600 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2602 * Both head page and tail pages will inherit mapping, flags, and so on from
2605 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2606 * they are not mapped.
2608 * Returns 0 if the hugepage is split successfully.
2609 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2612 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
2614 struct page
*head
= compound_head(page
);
2615 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(head
));
2616 struct anon_vma
*anon_vma
= NULL
;
2617 struct address_space
*mapping
= NULL
;
2618 int count
, mapcount
, extra_pins
, ret
;
2620 unsigned long flags
;
2623 VM_BUG_ON_PAGE(is_huge_zero_page(page
), page
);
2624 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2625 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
2627 if (PageWriteback(page
))
2630 if (PageAnon(head
)) {
2632 * The caller does not necessarily hold an mmap_sem that would
2633 * prevent the anon_vma disappearing so we first we take a
2634 * reference to it and then lock the anon_vma for write. This
2635 * is similar to page_lock_anon_vma_read except the write lock
2636 * is taken to serialise against parallel split or collapse
2639 anon_vma
= page_get_anon_vma(head
);
2646 anon_vma_lock_write(anon_vma
);
2648 mapping
= head
->mapping
;
2657 i_mmap_lock_read(mapping
);
2660 *__split_huge_page() may need to trim off pages beyond EOF:
2661 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2662 * which cannot be nested inside the page tree lock. So note
2663 * end now: i_size itself may be changed at any moment, but
2664 * head page lock is good enough to serialize the trimming.
2666 end
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2670 * Racy check if we can split the page, before unmap_page() will
2673 if (!can_split_huge_page(head
, &extra_pins
)) {
2678 mlocked
= PageMlocked(page
);
2680 VM_BUG_ON_PAGE(compound_mapcount(head
), head
);
2682 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2686 /* prevent PageLRU to go away from under us, and freeze lru stats */
2687 spin_lock_irqsave(&pgdata
->lru_lock
, flags
);
2690 XA_STATE(xas
, &mapping
->i_pages
, page_index(head
));
2693 * Check if the head page is present in page cache.
2694 * We assume all tail are present too, if head is there.
2696 xa_lock(&mapping
->i_pages
);
2697 if (xas_load(&xas
) != head
)
2701 /* Prevent deferred_split_scan() touching ->_refcount */
2702 spin_lock(&pgdata
->split_queue_lock
);
2703 count
= page_count(head
);
2704 mapcount
= total_mapcount(head
);
2705 if (!mapcount
&& page_ref_freeze(head
, 1 + extra_pins
)) {
2706 if (!list_empty(page_deferred_list(head
))) {
2707 pgdata
->split_queue_len
--;
2708 list_del(page_deferred_list(head
));
2711 __dec_node_page_state(page
, NR_SHMEM_THPS
);
2712 spin_unlock(&pgdata
->split_queue_lock
);
2713 __split_huge_page(page
, list
, end
, flags
);
2714 if (PageSwapCache(head
)) {
2715 swp_entry_t entry
= { .val
= page_private(head
) };
2717 ret
= split_swap_cluster(entry
);
2721 if (IS_ENABLED(CONFIG_DEBUG_VM
) && mapcount
) {
2722 pr_alert("total_mapcount: %u, page_count(): %u\n",
2725 dump_page(head
, NULL
);
2726 dump_page(page
, "total_mapcount(head) > 0");
2729 spin_unlock(&pgdata
->split_queue_lock
);
2731 xa_unlock(&mapping
->i_pages
);
2732 spin_unlock_irqrestore(&pgdata
->lru_lock
, flags
);
2739 anon_vma_unlock_write(anon_vma
);
2740 put_anon_vma(anon_vma
);
2743 i_mmap_unlock_read(mapping
);
2745 count_vm_event(!ret
? THP_SPLIT_PAGE
: THP_SPLIT_PAGE_FAILED
);
2749 void free_transhuge_page(struct page
*page
)
2751 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(page
));
2752 unsigned long flags
;
2754 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2755 if (!list_empty(page_deferred_list(page
))) {
2756 pgdata
->split_queue_len
--;
2757 list_del(page_deferred_list(page
));
2759 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2760 free_compound_page(page
);
2763 void deferred_split_huge_page(struct page
*page
)
2765 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(page
));
2766 unsigned long flags
;
2768 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
2770 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2771 if (list_empty(page_deferred_list(page
))) {
2772 count_vm_event(THP_DEFERRED_SPLIT_PAGE
);
2773 list_add_tail(page_deferred_list(page
), &pgdata
->split_queue
);
2774 pgdata
->split_queue_len
++;
2776 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2779 static unsigned long deferred_split_count(struct shrinker
*shrink
,
2780 struct shrink_control
*sc
)
2782 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2783 return READ_ONCE(pgdata
->split_queue_len
);
2786 static unsigned long deferred_split_scan(struct shrinker
*shrink
,
2787 struct shrink_control
*sc
)
2789 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2790 unsigned long flags
;
2791 LIST_HEAD(list
), *pos
, *next
;
2795 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2796 /* Take pin on all head pages to avoid freeing them under us */
2797 list_for_each_safe(pos
, next
, &pgdata
->split_queue
) {
2798 page
= list_entry((void *)pos
, struct page
, mapping
);
2799 page
= compound_head(page
);
2800 if (get_page_unless_zero(page
)) {
2801 list_move(page_deferred_list(page
), &list
);
2803 /* We lost race with put_compound_page() */
2804 list_del_init(page_deferred_list(page
));
2805 pgdata
->split_queue_len
--;
2807 if (!--sc
->nr_to_scan
)
2810 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2812 list_for_each_safe(pos
, next
, &list
) {
2813 page
= list_entry((void *)pos
, struct page
, mapping
);
2814 if (!trylock_page(page
))
2816 /* split_huge_page() removes page from list on success */
2817 if (!split_huge_page(page
))
2824 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2825 list_splice_tail(&list
, &pgdata
->split_queue
);
2826 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2829 * Stop shrinker if we didn't split any page, but the queue is empty.
2830 * This can happen if pages were freed under us.
2832 if (!split
&& list_empty(&pgdata
->split_queue
))
2837 static struct shrinker deferred_split_shrinker
= {
2838 .count_objects
= deferred_split_count
,
2839 .scan_objects
= deferred_split_scan
,
2840 .seeks
= DEFAULT_SEEKS
,
2841 .flags
= SHRINKER_NUMA_AWARE
,
2844 #ifdef CONFIG_DEBUG_FS
2845 static int split_huge_pages_set(void *data
, u64 val
)
2849 unsigned long pfn
, max_zone_pfn
;
2850 unsigned long total
= 0, split
= 0;
2855 for_each_populated_zone(zone
) {
2856 max_zone_pfn
= zone_end_pfn(zone
);
2857 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++) {
2858 if (!pfn_valid(pfn
))
2861 page
= pfn_to_page(pfn
);
2862 if (!get_page_unless_zero(page
))
2865 if (zone
!= page_zone(page
))
2868 if (!PageHead(page
) || PageHuge(page
) || !PageLRU(page
))
2873 if (!split_huge_page(page
))
2881 pr_info("%lu of %lu THP split\n", split
, total
);
2885 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops
, NULL
, split_huge_pages_set
,
2888 static int __init
split_huge_pages_debugfs(void)
2890 debugfs_create_file("split_huge_pages", 0200, NULL
, NULL
,
2891 &split_huge_pages_fops
);
2894 late_initcall(split_huge_pages_debugfs
);
2897 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2898 void set_pmd_migration_entry(struct page_vma_mapped_walk
*pvmw
,
2901 struct vm_area_struct
*vma
= pvmw
->vma
;
2902 struct mm_struct
*mm
= vma
->vm_mm
;
2903 unsigned long address
= pvmw
->address
;
2908 if (!(pvmw
->pmd
&& !pvmw
->pte
))
2911 flush_cache_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
2912 pmdval
= *pvmw
->pmd
;
2913 pmdp_invalidate(vma
, address
, pvmw
->pmd
);
2914 if (pmd_dirty(pmdval
))
2915 set_page_dirty(page
);
2916 entry
= make_migration_entry(page
, pmd_write(pmdval
));
2917 pmdswp
= swp_entry_to_pmd(entry
);
2918 if (pmd_soft_dirty(pmdval
))
2919 pmdswp
= pmd_swp_mksoft_dirty(pmdswp
);
2920 set_pmd_at(mm
, address
, pvmw
->pmd
, pmdswp
);
2921 page_remove_rmap(page
, true);
2925 void remove_migration_pmd(struct page_vma_mapped_walk
*pvmw
, struct page
*new)
2927 struct vm_area_struct
*vma
= pvmw
->vma
;
2928 struct mm_struct
*mm
= vma
->vm_mm
;
2929 unsigned long address
= pvmw
->address
;
2930 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
2934 if (!(pvmw
->pmd
&& !pvmw
->pte
))
2937 entry
= pmd_to_swp_entry(*pvmw
->pmd
);
2939 pmde
= pmd_mkold(mk_huge_pmd(new, vma
->vm_page_prot
));
2940 if (pmd_swp_soft_dirty(*pvmw
->pmd
))
2941 pmde
= pmd_mksoft_dirty(pmde
);
2942 if (is_write_migration_entry(entry
))
2943 pmde
= maybe_pmd_mkwrite(pmde
, vma
);
2945 flush_cache_range(vma
, mmun_start
, mmun_start
+ HPAGE_PMD_SIZE
);
2947 page_add_anon_rmap(new, vma
, mmun_start
, true);
2949 page_add_file_rmap(new, true);
2950 set_pmd_at(mm
, mmun_start
, pvmw
->pmd
, pmde
);
2951 if ((vma
->vm_flags
& VM_LOCKED
) && !PageDoubleMap(new))
2952 mlock_vma_page(new);
2953 update_mmu_cache_pmd(vma
, address
, pvmw
->pmd
);