2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/memblock.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28 #include <linux/numa.h>
31 #include <asm/pgtable.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/node.h>
38 #include <linux/userfaultfd_k.h>
39 #include <linux/page_owner.h>
42 int hugetlb_max_hstate __read_mostly
;
43 unsigned int default_hstate_idx
;
44 struct hstate hstates
[HUGE_MAX_HSTATE
];
46 * Minimum page order among possible hugepage sizes, set to a proper value
49 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
51 __initdata
LIST_HEAD(huge_boot_pages
);
53 /* for command line parsing */
54 static struct hstate
* __initdata parsed_hstate
;
55 static unsigned long __initdata default_hstate_max_huge_pages
;
56 static unsigned long __initdata default_hstate_size
;
57 static bool __initdata parsed_valid_hugepagesz
= true;
60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61 * free_huge_pages, and surplus_huge_pages.
63 DEFINE_SPINLOCK(hugetlb_lock
);
66 * Serializes faults on the same logical page. This is used to
67 * prevent spurious OOMs when the hugepage pool is fully utilized.
69 static int num_fault_mutexes
;
70 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
72 /* Forward declaration */
73 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
75 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
77 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
79 spin_unlock(&spool
->lock
);
81 /* If no pages are used, and no other handles to the subpool
82 * remain, give up any reservations mased on minimum size and
85 if (spool
->min_hpages
!= -1)
86 hugetlb_acct_memory(spool
->hstate
,
92 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
95 struct hugepage_subpool
*spool
;
97 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
101 spin_lock_init(&spool
->lock
);
103 spool
->max_hpages
= max_hpages
;
105 spool
->min_hpages
= min_hpages
;
107 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
111 spool
->rsv_hpages
= min_hpages
;
116 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
118 spin_lock(&spool
->lock
);
119 BUG_ON(!spool
->count
);
121 unlock_or_release_subpool(spool
);
125 * Subpool accounting for allocating and reserving pages.
126 * Return -ENOMEM if there are not enough resources to satisfy the
127 * the request. Otherwise, return the number of pages by which the
128 * global pools must be adjusted (upward). The returned value may
129 * only be different than the passed value (delta) in the case where
130 * a subpool minimum size must be manitained.
132 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
140 spin_lock(&spool
->lock
);
142 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
143 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
144 spool
->used_hpages
+= delta
;
151 /* minimum size accounting */
152 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
153 if (delta
> spool
->rsv_hpages
) {
155 * Asking for more reserves than those already taken on
156 * behalf of subpool. Return difference.
158 ret
= delta
- spool
->rsv_hpages
;
159 spool
->rsv_hpages
= 0;
161 ret
= 0; /* reserves already accounted for */
162 spool
->rsv_hpages
-= delta
;
167 spin_unlock(&spool
->lock
);
172 * Subpool accounting for freeing and unreserving pages.
173 * Return the number of global page reservations that must be dropped.
174 * The return value may only be different than the passed value (delta)
175 * in the case where a subpool minimum size must be maintained.
177 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
185 spin_lock(&spool
->lock
);
187 if (spool
->max_hpages
!= -1) /* maximum size accounting */
188 spool
->used_hpages
-= delta
;
190 /* minimum size accounting */
191 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
192 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
195 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
197 spool
->rsv_hpages
+= delta
;
198 if (spool
->rsv_hpages
> spool
->min_hpages
)
199 spool
->rsv_hpages
= spool
->min_hpages
;
203 * If hugetlbfs_put_super couldn't free spool due to an outstanding
204 * quota reference, free it now.
206 unlock_or_release_subpool(spool
);
211 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
213 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
216 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
218 return subpool_inode(file_inode(vma
->vm_file
));
222 * Region tracking -- allows tracking of reservations and instantiated pages
223 * across the pages in a mapping.
225 * The region data structures are embedded into a resv_map and protected
226 * by a resv_map's lock. The set of regions within the resv_map represent
227 * reservations for huge pages, or huge pages that have already been
228 * instantiated within the map. The from and to elements are huge page
229 * indicies into the associated mapping. from indicates the starting index
230 * of the region. to represents the first index past the end of the region.
232 * For example, a file region structure with from == 0 and to == 4 represents
233 * four huge pages in a mapping. It is important to note that the to element
234 * represents the first element past the end of the region. This is used in
235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237 * Interval notation of the form [from, to) will be used to indicate that
238 * the endpoint from is inclusive and to is exclusive.
241 struct list_head link
;
247 * Add the huge page range represented by [f, t) to the reserve
248 * map. In the normal case, existing regions will be expanded
249 * to accommodate the specified range. Sufficient regions should
250 * exist for expansion due to the previous call to region_chg
251 * with the same range. However, it is possible that region_del
252 * could have been called after region_chg and modifed the map
253 * in such a way that no region exists to be expanded. In this
254 * case, pull a region descriptor from the cache associated with
255 * the map and use that for the new range.
257 * Return the number of new huge pages added to the map. This
258 * number is greater than or equal to zero.
260 static long region_add(struct resv_map
*resv
, long f
, long t
)
262 struct list_head
*head
= &resv
->regions
;
263 struct file_region
*rg
, *nrg
, *trg
;
266 spin_lock(&resv
->lock
);
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg
, head
, link
)
273 * If no region exists which can be expanded to include the
274 * specified range, the list must have been modified by an
275 * interleving call to region_del(). Pull a region descriptor
276 * from the cache and use it for this range.
278 if (&rg
->link
== head
|| t
< rg
->from
) {
279 VM_BUG_ON(resv
->region_cache_count
<= 0);
281 resv
->region_cache_count
--;
282 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
,
284 list_del(&nrg
->link
);
288 list_add(&nrg
->link
, rg
->link
.prev
);
294 /* Round our left edge to the current segment if it encloses us. */
298 /* Check for and consume any regions we now overlap with. */
300 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
301 if (&rg
->link
== head
)
306 /* If this area reaches higher then extend our area to
307 * include it completely. If this is not the first area
308 * which we intend to reuse, free it. */
312 /* Decrement return value by the deleted range.
313 * Another range will span this area so that by
314 * end of routine add will be >= zero
316 add
-= (rg
->to
- rg
->from
);
322 add
+= (nrg
->from
- f
); /* Added to beginning of region */
324 add
+= t
- nrg
->to
; /* Added to end of region */
328 resv
->adds_in_progress
--;
329 spin_unlock(&resv
->lock
);
335 * Examine the existing reserve map and determine how many
336 * huge pages in the specified range [f, t) are NOT currently
337 * represented. This routine is called before a subsequent
338 * call to region_add that will actually modify the reserve
339 * map to add the specified range [f, t). region_chg does
340 * not change the number of huge pages represented by the
341 * map. However, if the existing regions in the map can not
342 * be expanded to represent the new range, a new file_region
343 * structure is added to the map as a placeholder. This is
344 * so that the subsequent region_add call will have all the
345 * regions it needs and will not fail.
347 * Upon entry, region_chg will also examine the cache of region descriptors
348 * associated with the map. If there are not enough descriptors cached, one
349 * will be allocated for the in progress add operation.
351 * Returns the number of huge pages that need to be added to the existing
352 * reservation map for the range [f, t). This number is greater or equal to
353 * zero. -ENOMEM is returned if a new file_region structure or cache entry
354 * is needed and can not be allocated.
356 static long region_chg(struct resv_map
*resv
, long f
, long t
)
358 struct list_head
*head
= &resv
->regions
;
359 struct file_region
*rg
, *nrg
= NULL
;
363 spin_lock(&resv
->lock
);
365 resv
->adds_in_progress
++;
368 * Check for sufficient descriptors in the cache to accommodate
369 * the number of in progress add operations.
371 if (resv
->adds_in_progress
> resv
->region_cache_count
) {
372 struct file_region
*trg
;
374 VM_BUG_ON(resv
->adds_in_progress
- resv
->region_cache_count
> 1);
375 /* Must drop lock to allocate a new descriptor. */
376 resv
->adds_in_progress
--;
377 spin_unlock(&resv
->lock
);
379 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
385 spin_lock(&resv
->lock
);
386 list_add(&trg
->link
, &resv
->region_cache
);
387 resv
->region_cache_count
++;
391 /* Locate the region we are before or in. */
392 list_for_each_entry(rg
, head
, link
)
396 /* If we are below the current region then a new region is required.
397 * Subtle, allocate a new region at the position but make it zero
398 * size such that we can guarantee to record the reservation. */
399 if (&rg
->link
== head
|| t
< rg
->from
) {
401 resv
->adds_in_progress
--;
402 spin_unlock(&resv
->lock
);
403 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
409 INIT_LIST_HEAD(&nrg
->link
);
413 list_add(&nrg
->link
, rg
->link
.prev
);
418 /* Round our left edge to the current segment if it encloses us. */
423 /* Check for and consume any regions we now overlap with. */
424 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
425 if (&rg
->link
== head
)
430 /* We overlap with this area, if it extends further than
431 * us then we must extend ourselves. Account for its
432 * existing reservation. */
437 chg
-= rg
->to
- rg
->from
;
441 spin_unlock(&resv
->lock
);
442 /* We already know we raced and no longer need the new region */
446 spin_unlock(&resv
->lock
);
451 * Abort the in progress add operation. The adds_in_progress field
452 * of the resv_map keeps track of the operations in progress between
453 * calls to region_chg and region_add. Operations are sometimes
454 * aborted after the call to region_chg. In such cases, region_abort
455 * is called to decrement the adds_in_progress counter.
457 * NOTE: The range arguments [f, t) are not needed or used in this
458 * routine. They are kept to make reading the calling code easier as
459 * arguments will match the associated region_chg call.
461 static void region_abort(struct resv_map
*resv
, long f
, long t
)
463 spin_lock(&resv
->lock
);
464 VM_BUG_ON(!resv
->region_cache_count
);
465 resv
->adds_in_progress
--;
466 spin_unlock(&resv
->lock
);
470 * Delete the specified range [f, t) from the reserve map. If the
471 * t parameter is LONG_MAX, this indicates that ALL regions after f
472 * should be deleted. Locate the regions which intersect [f, t)
473 * and either trim, delete or split the existing regions.
475 * Returns the number of huge pages deleted from the reserve map.
476 * In the normal case, the return value is zero or more. In the
477 * case where a region must be split, a new region descriptor must
478 * be allocated. If the allocation fails, -ENOMEM will be returned.
479 * NOTE: If the parameter t == LONG_MAX, then we will never split
480 * a region and possibly return -ENOMEM. Callers specifying
481 * t == LONG_MAX do not need to check for -ENOMEM error.
483 static long region_del(struct resv_map
*resv
, long f
, long t
)
485 struct list_head
*head
= &resv
->regions
;
486 struct file_region
*rg
, *trg
;
487 struct file_region
*nrg
= NULL
;
491 spin_lock(&resv
->lock
);
492 list_for_each_entry_safe(rg
, trg
, head
, link
) {
494 * Skip regions before the range to be deleted. file_region
495 * ranges are normally of the form [from, to). However, there
496 * may be a "placeholder" entry in the map which is of the form
497 * (from, to) with from == to. Check for placeholder entries
498 * at the beginning of the range to be deleted.
500 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
506 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
508 * Check for an entry in the cache before dropping
509 * lock and attempting allocation.
512 resv
->region_cache_count
> resv
->adds_in_progress
) {
513 nrg
= list_first_entry(&resv
->region_cache
,
516 list_del(&nrg
->link
);
517 resv
->region_cache_count
--;
521 spin_unlock(&resv
->lock
);
522 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
530 /* New entry for end of split region */
533 INIT_LIST_HEAD(&nrg
->link
);
535 /* Original entry is trimmed */
538 list_add(&nrg
->link
, &rg
->link
);
543 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
544 del
+= rg
->to
- rg
->from
;
550 if (f
<= rg
->from
) { /* Trim beginning of region */
553 } else { /* Trim end of region */
559 spin_unlock(&resv
->lock
);
565 * A rare out of memory error was encountered which prevented removal of
566 * the reserve map region for a page. The huge page itself was free'ed
567 * and removed from the page cache. This routine will adjust the subpool
568 * usage count, and the global reserve count if needed. By incrementing
569 * these counts, the reserve map entry which could not be deleted will
570 * appear as a "reserved" entry instead of simply dangling with incorrect
573 void hugetlb_fix_reserve_counts(struct inode
*inode
)
575 struct hugepage_subpool
*spool
= subpool_inode(inode
);
578 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
580 struct hstate
*h
= hstate_inode(inode
);
582 hugetlb_acct_memory(h
, 1);
587 * Count and return the number of huge pages in the reserve map
588 * that intersect with the range [f, t).
590 static long region_count(struct resv_map
*resv
, long f
, long t
)
592 struct list_head
*head
= &resv
->regions
;
593 struct file_region
*rg
;
596 spin_lock(&resv
->lock
);
597 /* Locate each segment we overlap with, and count that overlap. */
598 list_for_each_entry(rg
, head
, link
) {
607 seg_from
= max(rg
->from
, f
);
608 seg_to
= min(rg
->to
, t
);
610 chg
+= seg_to
- seg_from
;
612 spin_unlock(&resv
->lock
);
618 * Convert the address within this vma to the page offset within
619 * the mapping, in pagecache page units; huge pages here.
621 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
622 struct vm_area_struct
*vma
, unsigned long address
)
624 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
625 (vma
->vm_pgoff
>> huge_page_order(h
));
628 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
629 unsigned long address
)
631 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
633 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
636 * Return the size of the pages allocated when backing a VMA. In the majority
637 * cases this will be same size as used by the page table entries.
639 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
641 if (vma
->vm_ops
&& vma
->vm_ops
->pagesize
)
642 return vma
->vm_ops
->pagesize(vma
);
645 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
648 * Return the page size being used by the MMU to back a VMA. In the majority
649 * of cases, the page size used by the kernel matches the MMU size. On
650 * architectures where it differs, an architecture-specific 'strong'
651 * version of this symbol is required.
653 __weak
unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
655 return vma_kernel_pagesize(vma
);
659 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
660 * bits of the reservation map pointer, which are always clear due to
663 #define HPAGE_RESV_OWNER (1UL << 0)
664 #define HPAGE_RESV_UNMAPPED (1UL << 1)
665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
668 * These helpers are used to track how many pages are reserved for
669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670 * is guaranteed to have their future faults succeed.
672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673 * the reserve counters are updated with the hugetlb_lock held. It is safe
674 * to reset the VMA at fork() time as it is not in use yet and there is no
675 * chance of the global counters getting corrupted as a result of the values.
677 * The private mapping reservation is represented in a subtly different
678 * manner to a shared mapping. A shared mapping has a region map associated
679 * with the underlying file, this region map represents the backing file
680 * pages which have ever had a reservation assigned which this persists even
681 * after the page is instantiated. A private mapping has a region map
682 * associated with the original mmap which is attached to all VMAs which
683 * reference it, this region map represents those offsets which have consumed
684 * reservation ie. where pages have been instantiated.
686 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
688 return (unsigned long)vma
->vm_private_data
;
691 static void set_vma_private_data(struct vm_area_struct
*vma
,
694 vma
->vm_private_data
= (void *)value
;
697 struct resv_map
*resv_map_alloc(void)
699 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
700 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
702 if (!resv_map
|| !rg
) {
708 kref_init(&resv_map
->refs
);
709 spin_lock_init(&resv_map
->lock
);
710 INIT_LIST_HEAD(&resv_map
->regions
);
712 resv_map
->adds_in_progress
= 0;
714 INIT_LIST_HEAD(&resv_map
->region_cache
);
715 list_add(&rg
->link
, &resv_map
->region_cache
);
716 resv_map
->region_cache_count
= 1;
721 void resv_map_release(struct kref
*ref
)
723 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
724 struct list_head
*head
= &resv_map
->region_cache
;
725 struct file_region
*rg
, *trg
;
727 /* Clear out any active regions before we release the map. */
728 region_del(resv_map
, 0, LONG_MAX
);
730 /* ... and any entries left in the cache */
731 list_for_each_entry_safe(rg
, trg
, head
, link
) {
736 VM_BUG_ON(resv_map
->adds_in_progress
);
741 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
743 return inode
->i_mapping
->private_data
;
746 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
748 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
749 if (vma
->vm_flags
& VM_MAYSHARE
) {
750 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
751 struct inode
*inode
= mapping
->host
;
753 return inode_resv_map(inode
);
756 return (struct resv_map
*)(get_vma_private_data(vma
) &
761 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
764 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
766 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
767 HPAGE_RESV_MASK
) | (unsigned long)map
);
770 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
773 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
775 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
778 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
780 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
782 return (get_vma_private_data(vma
) & flag
) != 0;
785 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
789 if (!(vma
->vm_flags
& VM_MAYSHARE
))
790 vma
->vm_private_data
= (void *)0;
793 /* Returns true if the VMA has associated reserve pages */
794 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
796 if (vma
->vm_flags
& VM_NORESERVE
) {
798 * This address is already reserved by other process(chg == 0),
799 * so, we should decrement reserved count. Without decrementing,
800 * reserve count remains after releasing inode, because this
801 * allocated page will go into page cache and is regarded as
802 * coming from reserved pool in releasing step. Currently, we
803 * don't have any other solution to deal with this situation
804 * properly, so add work-around here.
806 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
812 /* Shared mappings always use reserves */
813 if (vma
->vm_flags
& VM_MAYSHARE
) {
815 * We know VM_NORESERVE is not set. Therefore, there SHOULD
816 * be a region map for all pages. The only situation where
817 * there is no region map is if a hole was punched via
818 * fallocate. In this case, there really are no reverves to
819 * use. This situation is indicated if chg != 0.
828 * Only the process that called mmap() has reserves for
831 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
833 * Like the shared case above, a hole punch or truncate
834 * could have been performed on the private mapping.
835 * Examine the value of chg to determine if reserves
836 * actually exist or were previously consumed.
837 * Very Subtle - The value of chg comes from a previous
838 * call to vma_needs_reserves(). The reserve map for
839 * private mappings has different (opposite) semantics
840 * than that of shared mappings. vma_needs_reserves()
841 * has already taken this difference in semantics into
842 * account. Therefore, the meaning of chg is the same
843 * as in the shared case above. Code could easily be
844 * combined, but keeping it separate draws attention to
845 * subtle differences.
856 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
858 int nid
= page_to_nid(page
);
859 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
860 h
->free_huge_pages
++;
861 h
->free_huge_pages_node
[nid
]++;
864 static struct page
*dequeue_huge_page_node_exact(struct hstate
*h
, int nid
)
868 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
869 if (!PageHWPoison(page
))
872 * if 'non-isolated free hugepage' not found on the list,
873 * the allocation fails.
875 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
877 list_move(&page
->lru
, &h
->hugepage_activelist
);
878 set_page_refcounted(page
);
879 h
->free_huge_pages
--;
880 h
->free_huge_pages_node
[nid
]--;
884 static struct page
*dequeue_huge_page_nodemask(struct hstate
*h
, gfp_t gfp_mask
, int nid
,
887 unsigned int cpuset_mems_cookie
;
888 struct zonelist
*zonelist
;
891 int node
= NUMA_NO_NODE
;
893 zonelist
= node_zonelist(nid
, gfp_mask
);
896 cpuset_mems_cookie
= read_mems_allowed_begin();
897 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nmask
) {
900 if (!cpuset_zone_allowed(zone
, gfp_mask
))
903 * no need to ask again on the same node. Pool is node rather than
906 if (zone_to_nid(zone
) == node
)
908 node
= zone_to_nid(zone
);
910 page
= dequeue_huge_page_node_exact(h
, node
);
914 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie
)))
920 /* Movability of hugepages depends on migration support. */
921 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
923 if (hugepage_movable_supported(h
))
924 return GFP_HIGHUSER_MOVABLE
;
929 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
930 struct vm_area_struct
*vma
,
931 unsigned long address
, int avoid_reserve
,
935 struct mempolicy
*mpol
;
937 nodemask_t
*nodemask
;
941 * A child process with MAP_PRIVATE mappings created by their parent
942 * have no page reserves. This check ensures that reservations are
943 * not "stolen". The child may still get SIGKILLed
945 if (!vma_has_reserves(vma
, chg
) &&
946 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
949 /* If reserves cannot be used, ensure enough pages are in the pool */
950 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
953 gfp_mask
= htlb_alloc_mask(h
);
954 nid
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
955 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, nodemask
);
956 if (page
&& !avoid_reserve
&& vma_has_reserves(vma
, chg
)) {
957 SetPagePrivate(page
);
958 h
->resv_huge_pages
--;
969 * common helper functions for hstate_next_node_to_{alloc|free}.
970 * We may have allocated or freed a huge page based on a different
971 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
972 * be outside of *nodes_allowed. Ensure that we use an allowed
973 * node for alloc or free.
975 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
977 nid
= next_node_in(nid
, *nodes_allowed
);
978 VM_BUG_ON(nid
>= MAX_NUMNODES
);
983 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
985 if (!node_isset(nid
, *nodes_allowed
))
986 nid
= next_node_allowed(nid
, nodes_allowed
);
991 * returns the previously saved node ["this node"] from which to
992 * allocate a persistent huge page for the pool and advance the
993 * next node from which to allocate, handling wrap at end of node
996 static int hstate_next_node_to_alloc(struct hstate
*h
,
997 nodemask_t
*nodes_allowed
)
1001 VM_BUG_ON(!nodes_allowed
);
1003 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
1004 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
1010 * helper for free_pool_huge_page() - return the previously saved
1011 * node ["this node"] from which to free a huge page. Advance the
1012 * next node id whether or not we find a free huge page to free so
1013 * that the next attempt to free addresses the next node.
1015 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1019 VM_BUG_ON(!nodes_allowed
);
1021 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
1022 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
1027 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1028 for (nr_nodes = nodes_weight(*mask); \
1030 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1033 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1034 for (nr_nodes = nodes_weight(*mask); \
1036 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1039 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1040 static void destroy_compound_gigantic_page(struct page
*page
,
1044 int nr_pages
= 1 << order
;
1045 struct page
*p
= page
+ 1;
1047 atomic_set(compound_mapcount_ptr(page
), 0);
1048 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1049 clear_compound_head(p
);
1050 set_page_refcounted(p
);
1053 set_compound_order(page
, 0);
1054 __ClearPageHead(page
);
1057 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1059 free_contig_range(page_to_pfn(page
), 1 << order
);
1062 static int __alloc_gigantic_page(unsigned long start_pfn
,
1063 unsigned long nr_pages
, gfp_t gfp_mask
)
1065 unsigned long end_pfn
= start_pfn
+ nr_pages
;
1066 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
1070 static bool pfn_range_valid_gigantic(struct zone
*z
,
1071 unsigned long start_pfn
, unsigned long nr_pages
)
1073 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
1076 for (i
= start_pfn
; i
< end_pfn
; i
++) {
1080 page
= pfn_to_page(i
);
1082 if (page_zone(page
) != z
)
1085 if (PageReserved(page
))
1088 if (page_count(page
) > 0)
1098 static bool zone_spans_last_pfn(const struct zone
*zone
,
1099 unsigned long start_pfn
, unsigned long nr_pages
)
1101 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
1102 return zone_spans_pfn(zone
, last_pfn
);
1105 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1106 int nid
, nodemask_t
*nodemask
)
1108 unsigned int order
= huge_page_order(h
);
1109 unsigned long nr_pages
= 1 << order
;
1110 unsigned long ret
, pfn
, flags
;
1111 struct zonelist
*zonelist
;
1115 zonelist
= node_zonelist(nid
, gfp_mask
);
1116 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nodemask
) {
1117 spin_lock_irqsave(&zone
->lock
, flags
);
1119 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
1120 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
1121 if (pfn_range_valid_gigantic(zone
, pfn
, nr_pages
)) {
1123 * We release the zone lock here because
1124 * alloc_contig_range() will also lock the zone
1125 * at some point. If there's an allocation
1126 * spinning on this lock, it may win the race
1127 * and cause alloc_contig_range() to fail...
1129 spin_unlock_irqrestore(&zone
->lock
, flags
);
1130 ret
= __alloc_gigantic_page(pfn
, nr_pages
, gfp_mask
);
1132 return pfn_to_page(pfn
);
1133 spin_lock_irqsave(&zone
->lock
, flags
);
1138 spin_unlock_irqrestore(&zone
->lock
, flags
);
1144 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1145 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1147 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1148 static inline bool gigantic_page_supported(void) { return false; }
1149 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1150 int nid
, nodemask_t
*nodemask
) { return NULL
; }
1151 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1152 static inline void destroy_compound_gigantic_page(struct page
*page
,
1153 unsigned int order
) { }
1156 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1160 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1164 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1165 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1166 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1167 1 << PG_referenced
| 1 << PG_dirty
|
1168 1 << PG_active
| 1 << PG_private
|
1171 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1172 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1173 set_page_refcounted(page
);
1174 if (hstate_is_gigantic(h
)) {
1175 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1176 free_gigantic_page(page
, huge_page_order(h
));
1178 __free_pages(page
, huge_page_order(h
));
1182 struct hstate
*size_to_hstate(unsigned long size
)
1186 for_each_hstate(h
) {
1187 if (huge_page_size(h
) == size
)
1194 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1195 * to hstate->hugepage_activelist.)
1197 * This function can be called for tail pages, but never returns true for them.
1199 bool page_huge_active(struct page
*page
)
1201 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1202 return PageHead(page
) && PagePrivate(&page
[1]);
1205 /* never called for tail page */
1206 static void set_page_huge_active(struct page
*page
)
1208 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1209 SetPagePrivate(&page
[1]);
1212 static void clear_page_huge_active(struct page
*page
)
1214 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1215 ClearPagePrivate(&page
[1]);
1219 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1222 static inline bool PageHugeTemporary(struct page
*page
)
1224 if (!PageHuge(page
))
1227 return (unsigned long)page
[2].mapping
== -1U;
1230 static inline void SetPageHugeTemporary(struct page
*page
)
1232 page
[2].mapping
= (void *)-1U;
1235 static inline void ClearPageHugeTemporary(struct page
*page
)
1237 page
[2].mapping
= NULL
;
1240 void free_huge_page(struct page
*page
)
1243 * Can't pass hstate in here because it is called from the
1244 * compound page destructor.
1246 struct hstate
*h
= page_hstate(page
);
1247 int nid
= page_to_nid(page
);
1248 struct hugepage_subpool
*spool
=
1249 (struct hugepage_subpool
*)page_private(page
);
1250 bool restore_reserve
;
1252 VM_BUG_ON_PAGE(page_count(page
), page
);
1253 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1255 set_page_private(page
, 0);
1256 page
->mapping
= NULL
;
1257 restore_reserve
= PagePrivate(page
);
1258 ClearPagePrivate(page
);
1261 * A return code of zero implies that the subpool will be under its
1262 * minimum size if the reservation is not restored after page is free.
1263 * Therefore, force restore_reserve operation.
1265 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1266 restore_reserve
= true;
1268 spin_lock(&hugetlb_lock
);
1269 clear_page_huge_active(page
);
1270 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1271 pages_per_huge_page(h
), page
);
1272 if (restore_reserve
)
1273 h
->resv_huge_pages
++;
1275 if (PageHugeTemporary(page
)) {
1276 list_del(&page
->lru
);
1277 ClearPageHugeTemporary(page
);
1278 update_and_free_page(h
, page
);
1279 } else if (h
->surplus_huge_pages_node
[nid
]) {
1280 /* remove the page from active list */
1281 list_del(&page
->lru
);
1282 update_and_free_page(h
, page
);
1283 h
->surplus_huge_pages
--;
1284 h
->surplus_huge_pages_node
[nid
]--;
1286 arch_clear_hugepage_flags(page
);
1287 enqueue_huge_page(h
, page
);
1289 spin_unlock(&hugetlb_lock
);
1292 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1294 INIT_LIST_HEAD(&page
->lru
);
1295 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1296 spin_lock(&hugetlb_lock
);
1297 set_hugetlb_cgroup(page
, NULL
);
1299 h
->nr_huge_pages_node
[nid
]++;
1300 spin_unlock(&hugetlb_lock
);
1303 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1306 int nr_pages
= 1 << order
;
1307 struct page
*p
= page
+ 1;
1309 /* we rely on prep_new_huge_page to set the destructor */
1310 set_compound_order(page
, order
);
1311 __ClearPageReserved(page
);
1312 __SetPageHead(page
);
1313 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1315 * For gigantic hugepages allocated through bootmem at
1316 * boot, it's safer to be consistent with the not-gigantic
1317 * hugepages and clear the PG_reserved bit from all tail pages
1318 * too. Otherwse drivers using get_user_pages() to access tail
1319 * pages may get the reference counting wrong if they see
1320 * PG_reserved set on a tail page (despite the head page not
1321 * having PG_reserved set). Enforcing this consistency between
1322 * head and tail pages allows drivers to optimize away a check
1323 * on the head page when they need know if put_page() is needed
1324 * after get_user_pages().
1326 __ClearPageReserved(p
);
1327 set_page_count(p
, 0);
1328 set_compound_head(p
, page
);
1330 atomic_set(compound_mapcount_ptr(page
), -1);
1334 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1335 * transparent huge pages. See the PageTransHuge() documentation for more
1338 int PageHuge(struct page
*page
)
1340 if (!PageCompound(page
))
1343 page
= compound_head(page
);
1344 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1346 EXPORT_SYMBOL_GPL(PageHuge
);
1349 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1350 * normal or transparent huge pages.
1352 int PageHeadHuge(struct page
*page_head
)
1354 if (!PageHead(page_head
))
1357 return get_compound_page_dtor(page_head
) == free_huge_page
;
1360 pgoff_t
__basepage_index(struct page
*page
)
1362 struct page
*page_head
= compound_head(page
);
1363 pgoff_t index
= page_index(page_head
);
1364 unsigned long compound_idx
;
1366 if (!PageHuge(page_head
))
1367 return page_index(page
);
1369 if (compound_order(page_head
) >= MAX_ORDER
)
1370 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1372 compound_idx
= page
- page_head
;
1374 return (index
<< compound_order(page_head
)) + compound_idx
;
1377 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
1378 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
1380 int order
= huge_page_order(h
);
1383 gfp_mask
|= __GFP_COMP
|__GFP_RETRY_MAYFAIL
|__GFP_NOWARN
;
1384 if (nid
== NUMA_NO_NODE
)
1385 nid
= numa_mem_id();
1386 page
= __alloc_pages_nodemask(gfp_mask
, order
, nid
, nmask
);
1388 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1390 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1396 * Common helper to allocate a fresh hugetlb page. All specific allocators
1397 * should use this function to get new hugetlb pages
1399 static struct page
*alloc_fresh_huge_page(struct hstate
*h
,
1400 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
1404 if (hstate_is_gigantic(h
))
1405 page
= alloc_gigantic_page(h
, gfp_mask
, nid
, nmask
);
1407 page
= alloc_buddy_huge_page(h
, gfp_mask
,
1412 if (hstate_is_gigantic(h
))
1413 prep_compound_gigantic_page(page
, huge_page_order(h
));
1414 prep_new_huge_page(h
, page
, page_to_nid(page
));
1420 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1423 static int alloc_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1427 gfp_t gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
1429 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1430 page
= alloc_fresh_huge_page(h
, gfp_mask
, node
, nodes_allowed
);
1438 put_page(page
); /* free it into the hugepage allocator */
1444 * Free huge page from pool from next node to free.
1445 * Attempt to keep persistent huge pages more or less
1446 * balanced over allowed nodes.
1447 * Called with hugetlb_lock locked.
1449 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1455 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1457 * If we're returning unused surplus pages, only examine
1458 * nodes with surplus pages.
1460 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1461 !list_empty(&h
->hugepage_freelists
[node
])) {
1463 list_entry(h
->hugepage_freelists
[node
].next
,
1465 list_del(&page
->lru
);
1466 h
->free_huge_pages
--;
1467 h
->free_huge_pages_node
[node
]--;
1469 h
->surplus_huge_pages
--;
1470 h
->surplus_huge_pages_node
[node
]--;
1472 update_and_free_page(h
, page
);
1482 * Dissolve a given free hugepage into free buddy pages. This function does
1483 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1484 * dissolution fails because a give page is not a free hugepage, or because
1485 * free hugepages are fully reserved.
1487 int dissolve_free_huge_page(struct page
*page
)
1491 spin_lock(&hugetlb_lock
);
1492 if (PageHuge(page
) && !page_count(page
)) {
1493 struct page
*head
= compound_head(page
);
1494 struct hstate
*h
= page_hstate(head
);
1495 int nid
= page_to_nid(head
);
1496 if (h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1499 * Move PageHWPoison flag from head page to the raw error page,
1500 * which makes any subpages rather than the error page reusable.
1502 if (PageHWPoison(head
) && page
!= head
) {
1503 SetPageHWPoison(page
);
1504 ClearPageHWPoison(head
);
1506 list_del(&head
->lru
);
1507 h
->free_huge_pages
--;
1508 h
->free_huge_pages_node
[nid
]--;
1509 h
->max_huge_pages
--;
1510 update_and_free_page(h
, head
);
1514 spin_unlock(&hugetlb_lock
);
1519 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1520 * make specified memory blocks removable from the system.
1521 * Note that this will dissolve a free gigantic hugepage completely, if any
1522 * part of it lies within the given range.
1523 * Also note that if dissolve_free_huge_page() returns with an error, all
1524 * free hugepages that were dissolved before that error are lost.
1526 int dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1532 if (!hugepages_supported())
1535 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
) {
1536 page
= pfn_to_page(pfn
);
1537 if (PageHuge(page
) && !page_count(page
)) {
1538 rc
= dissolve_free_huge_page(page
);
1548 * Allocates a fresh surplus page from the page allocator.
1550 static struct page
*alloc_surplus_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1551 int nid
, nodemask_t
*nmask
)
1553 struct page
*page
= NULL
;
1555 if (hstate_is_gigantic(h
))
1558 spin_lock(&hugetlb_lock
);
1559 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
)
1561 spin_unlock(&hugetlb_lock
);
1563 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
);
1567 spin_lock(&hugetlb_lock
);
1569 * We could have raced with the pool size change.
1570 * Double check that and simply deallocate the new page
1571 * if we would end up overcommiting the surpluses. Abuse
1572 * temporary page to workaround the nasty free_huge_page
1575 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1576 SetPageHugeTemporary(page
);
1580 h
->surplus_huge_pages
++;
1581 h
->surplus_huge_pages_node
[page_to_nid(page
)]++;
1585 spin_unlock(&hugetlb_lock
);
1590 struct page
*alloc_migrate_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1591 int nid
, nodemask_t
*nmask
)
1595 if (hstate_is_gigantic(h
))
1598 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
);
1603 * We do not account these pages as surplus because they are only
1604 * temporary and will be released properly on the last reference
1606 SetPageHugeTemporary(page
);
1612 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1615 struct page
*alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1616 struct vm_area_struct
*vma
, unsigned long addr
)
1619 struct mempolicy
*mpol
;
1620 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1622 nodemask_t
*nodemask
;
1624 nid
= huge_node(vma
, addr
, gfp_mask
, &mpol
, &nodemask
);
1625 page
= alloc_surplus_huge_page(h
, gfp_mask
, nid
, nodemask
);
1626 mpol_cond_put(mpol
);
1631 /* page migration callback function */
1632 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1634 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1635 struct page
*page
= NULL
;
1637 if (nid
!= NUMA_NO_NODE
)
1638 gfp_mask
|= __GFP_THISNODE
;
1640 spin_lock(&hugetlb_lock
);
1641 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1642 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, NULL
);
1643 spin_unlock(&hugetlb_lock
);
1646 page
= alloc_migrate_huge_page(h
, gfp_mask
, nid
, NULL
);
1651 /* page migration callback function */
1652 struct page
*alloc_huge_page_nodemask(struct hstate
*h
, int preferred_nid
,
1655 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1657 spin_lock(&hugetlb_lock
);
1658 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0) {
1661 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, preferred_nid
, nmask
);
1663 spin_unlock(&hugetlb_lock
);
1667 spin_unlock(&hugetlb_lock
);
1669 return alloc_migrate_huge_page(h
, gfp_mask
, preferred_nid
, nmask
);
1672 /* mempolicy aware migration callback */
1673 struct page
*alloc_huge_page_vma(struct hstate
*h
, struct vm_area_struct
*vma
,
1674 unsigned long address
)
1676 struct mempolicy
*mpol
;
1677 nodemask_t
*nodemask
;
1682 gfp_mask
= htlb_alloc_mask(h
);
1683 node
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
1684 page
= alloc_huge_page_nodemask(h
, node
, nodemask
);
1685 mpol_cond_put(mpol
);
1691 * Increase the hugetlb pool such that it can accommodate a reservation
1694 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1696 struct list_head surplus_list
;
1697 struct page
*page
, *tmp
;
1699 int needed
, allocated
;
1700 bool alloc_ok
= true;
1702 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1704 h
->resv_huge_pages
+= delta
;
1709 INIT_LIST_HEAD(&surplus_list
);
1713 spin_unlock(&hugetlb_lock
);
1714 for (i
= 0; i
< needed
; i
++) {
1715 page
= alloc_surplus_huge_page(h
, htlb_alloc_mask(h
),
1716 NUMA_NO_NODE
, NULL
);
1721 list_add(&page
->lru
, &surplus_list
);
1727 * After retaking hugetlb_lock, we need to recalculate 'needed'
1728 * because either resv_huge_pages or free_huge_pages may have changed.
1730 spin_lock(&hugetlb_lock
);
1731 needed
= (h
->resv_huge_pages
+ delta
) -
1732 (h
->free_huge_pages
+ allocated
);
1737 * We were not able to allocate enough pages to
1738 * satisfy the entire reservation so we free what
1739 * we've allocated so far.
1744 * The surplus_list now contains _at_least_ the number of extra pages
1745 * needed to accommodate the reservation. Add the appropriate number
1746 * of pages to the hugetlb pool and free the extras back to the buddy
1747 * allocator. Commit the entire reservation here to prevent another
1748 * process from stealing the pages as they are added to the pool but
1749 * before they are reserved.
1751 needed
+= allocated
;
1752 h
->resv_huge_pages
+= delta
;
1755 /* Free the needed pages to the hugetlb pool */
1756 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1760 * This page is now managed by the hugetlb allocator and has
1761 * no users -- drop the buddy allocator's reference.
1763 put_page_testzero(page
);
1764 VM_BUG_ON_PAGE(page_count(page
), page
);
1765 enqueue_huge_page(h
, page
);
1768 spin_unlock(&hugetlb_lock
);
1770 /* Free unnecessary surplus pages to the buddy allocator */
1771 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1773 spin_lock(&hugetlb_lock
);
1779 * This routine has two main purposes:
1780 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1781 * in unused_resv_pages. This corresponds to the prior adjustments made
1782 * to the associated reservation map.
1783 * 2) Free any unused surplus pages that may have been allocated to satisfy
1784 * the reservation. As many as unused_resv_pages may be freed.
1786 * Called with hugetlb_lock held. However, the lock could be dropped (and
1787 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1788 * we must make sure nobody else can claim pages we are in the process of
1789 * freeing. Do this by ensuring resv_huge_page always is greater than the
1790 * number of huge pages we plan to free when dropping the lock.
1792 static void return_unused_surplus_pages(struct hstate
*h
,
1793 unsigned long unused_resv_pages
)
1795 unsigned long nr_pages
;
1797 /* Cannot return gigantic pages currently */
1798 if (hstate_is_gigantic(h
))
1802 * Part (or even all) of the reservation could have been backed
1803 * by pre-allocated pages. Only free surplus pages.
1805 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1808 * We want to release as many surplus pages as possible, spread
1809 * evenly across all nodes with memory. Iterate across these nodes
1810 * until we can no longer free unreserved surplus pages. This occurs
1811 * when the nodes with surplus pages have no free pages.
1812 * free_pool_huge_page() will balance the the freed pages across the
1813 * on-line nodes with memory and will handle the hstate accounting.
1815 * Note that we decrement resv_huge_pages as we free the pages. If
1816 * we drop the lock, resv_huge_pages will still be sufficiently large
1817 * to cover subsequent pages we may free.
1819 while (nr_pages
--) {
1820 h
->resv_huge_pages
--;
1821 unused_resv_pages
--;
1822 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1824 cond_resched_lock(&hugetlb_lock
);
1828 /* Fully uncommit the reservation */
1829 h
->resv_huge_pages
-= unused_resv_pages
;
1834 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1835 * are used by the huge page allocation routines to manage reservations.
1837 * vma_needs_reservation is called to determine if the huge page at addr
1838 * within the vma has an associated reservation. If a reservation is
1839 * needed, the value 1 is returned. The caller is then responsible for
1840 * managing the global reservation and subpool usage counts. After
1841 * the huge page has been allocated, vma_commit_reservation is called
1842 * to add the page to the reservation map. If the page allocation fails,
1843 * the reservation must be ended instead of committed. vma_end_reservation
1844 * is called in such cases.
1846 * In the normal case, vma_commit_reservation returns the same value
1847 * as the preceding vma_needs_reservation call. The only time this
1848 * is not the case is if a reserve map was changed between calls. It
1849 * is the responsibility of the caller to notice the difference and
1850 * take appropriate action.
1852 * vma_add_reservation is used in error paths where a reservation must
1853 * be restored when a newly allocated huge page must be freed. It is
1854 * to be called after calling vma_needs_reservation to determine if a
1855 * reservation exists.
1857 enum vma_resv_mode
{
1863 static long __vma_reservation_common(struct hstate
*h
,
1864 struct vm_area_struct
*vma
, unsigned long addr
,
1865 enum vma_resv_mode mode
)
1867 struct resv_map
*resv
;
1871 resv
= vma_resv_map(vma
);
1875 idx
= vma_hugecache_offset(h
, vma
, addr
);
1877 case VMA_NEEDS_RESV
:
1878 ret
= region_chg(resv
, idx
, idx
+ 1);
1880 case VMA_COMMIT_RESV
:
1881 ret
= region_add(resv
, idx
, idx
+ 1);
1884 region_abort(resv
, idx
, idx
+ 1);
1888 if (vma
->vm_flags
& VM_MAYSHARE
)
1889 ret
= region_add(resv
, idx
, idx
+ 1);
1891 region_abort(resv
, idx
, idx
+ 1);
1892 ret
= region_del(resv
, idx
, idx
+ 1);
1899 if (vma
->vm_flags
& VM_MAYSHARE
)
1901 else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) && ret
>= 0) {
1903 * In most cases, reserves always exist for private mappings.
1904 * However, a file associated with mapping could have been
1905 * hole punched or truncated after reserves were consumed.
1906 * As subsequent fault on such a range will not use reserves.
1907 * Subtle - The reserve map for private mappings has the
1908 * opposite meaning than that of shared mappings. If NO
1909 * entry is in the reserve map, it means a reservation exists.
1910 * If an entry exists in the reserve map, it means the
1911 * reservation has already been consumed. As a result, the
1912 * return value of this routine is the opposite of the
1913 * value returned from reserve map manipulation routines above.
1921 return ret
< 0 ? ret
: 0;
1924 static long vma_needs_reservation(struct hstate
*h
,
1925 struct vm_area_struct
*vma
, unsigned long addr
)
1927 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
1930 static long vma_commit_reservation(struct hstate
*h
,
1931 struct vm_area_struct
*vma
, unsigned long addr
)
1933 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
1936 static void vma_end_reservation(struct hstate
*h
,
1937 struct vm_area_struct
*vma
, unsigned long addr
)
1939 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
1942 static long vma_add_reservation(struct hstate
*h
,
1943 struct vm_area_struct
*vma
, unsigned long addr
)
1945 return __vma_reservation_common(h
, vma
, addr
, VMA_ADD_RESV
);
1949 * This routine is called to restore a reservation on error paths. In the
1950 * specific error paths, a huge page was allocated (via alloc_huge_page)
1951 * and is about to be freed. If a reservation for the page existed,
1952 * alloc_huge_page would have consumed the reservation and set PagePrivate
1953 * in the newly allocated page. When the page is freed via free_huge_page,
1954 * the global reservation count will be incremented if PagePrivate is set.
1955 * However, free_huge_page can not adjust the reserve map. Adjust the
1956 * reserve map here to be consistent with global reserve count adjustments
1957 * to be made by free_huge_page.
1959 static void restore_reserve_on_error(struct hstate
*h
,
1960 struct vm_area_struct
*vma
, unsigned long address
,
1963 if (unlikely(PagePrivate(page
))) {
1964 long rc
= vma_needs_reservation(h
, vma
, address
);
1966 if (unlikely(rc
< 0)) {
1968 * Rare out of memory condition in reserve map
1969 * manipulation. Clear PagePrivate so that
1970 * global reserve count will not be incremented
1971 * by free_huge_page. This will make it appear
1972 * as though the reservation for this page was
1973 * consumed. This may prevent the task from
1974 * faulting in the page at a later time. This
1975 * is better than inconsistent global huge page
1976 * accounting of reserve counts.
1978 ClearPagePrivate(page
);
1980 rc
= vma_add_reservation(h
, vma
, address
);
1981 if (unlikely(rc
< 0))
1983 * See above comment about rare out of
1986 ClearPagePrivate(page
);
1988 vma_end_reservation(h
, vma
, address
);
1992 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1993 unsigned long addr
, int avoid_reserve
)
1995 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1996 struct hstate
*h
= hstate_vma(vma
);
1998 long map_chg
, map_commit
;
2001 struct hugetlb_cgroup
*h_cg
;
2003 idx
= hstate_index(h
);
2005 * Examine the region/reserve map to determine if the process
2006 * has a reservation for the page to be allocated. A return
2007 * code of zero indicates a reservation exists (no change).
2009 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
2011 return ERR_PTR(-ENOMEM
);
2014 * Processes that did not create the mapping will have no
2015 * reserves as indicated by the region/reserve map. Check
2016 * that the allocation will not exceed the subpool limit.
2017 * Allocations for MAP_NORESERVE mappings also need to be
2018 * checked against any subpool limit.
2020 if (map_chg
|| avoid_reserve
) {
2021 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
2023 vma_end_reservation(h
, vma
, addr
);
2024 return ERR_PTR(-ENOSPC
);
2028 * Even though there was no reservation in the region/reserve
2029 * map, there could be reservations associated with the
2030 * subpool that can be used. This would be indicated if the
2031 * return value of hugepage_subpool_get_pages() is zero.
2032 * However, if avoid_reserve is specified we still avoid even
2033 * the subpool reservations.
2039 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
2041 goto out_subpool_put
;
2043 spin_lock(&hugetlb_lock
);
2045 * glb_chg is passed to indicate whether or not a page must be taken
2046 * from the global free pool (global change). gbl_chg == 0 indicates
2047 * a reservation exists for the allocation.
2049 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
2051 spin_unlock(&hugetlb_lock
);
2052 page
= alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
2054 goto out_uncharge_cgroup
;
2055 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
2056 SetPagePrivate(page
);
2057 h
->resv_huge_pages
--;
2059 spin_lock(&hugetlb_lock
);
2060 list_move(&page
->lru
, &h
->hugepage_activelist
);
2063 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
2064 spin_unlock(&hugetlb_lock
);
2066 set_page_private(page
, (unsigned long)spool
);
2068 map_commit
= vma_commit_reservation(h
, vma
, addr
);
2069 if (unlikely(map_chg
> map_commit
)) {
2071 * The page was added to the reservation map between
2072 * vma_needs_reservation and vma_commit_reservation.
2073 * This indicates a race with hugetlb_reserve_pages.
2074 * Adjust for the subpool count incremented above AND
2075 * in hugetlb_reserve_pages for the same page. Also,
2076 * the reservation count added in hugetlb_reserve_pages
2077 * no longer applies.
2081 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
2082 hugetlb_acct_memory(h
, -rsv_adjust
);
2086 out_uncharge_cgroup
:
2087 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
2089 if (map_chg
|| avoid_reserve
)
2090 hugepage_subpool_put_pages(spool
, 1);
2091 vma_end_reservation(h
, vma
, addr
);
2092 return ERR_PTR(-ENOSPC
);
2095 int alloc_bootmem_huge_page(struct hstate
*h
)
2096 __attribute__ ((weak
, alias("__alloc_bootmem_huge_page")));
2097 int __alloc_bootmem_huge_page(struct hstate
*h
)
2099 struct huge_bootmem_page
*m
;
2102 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
2105 addr
= memblock_alloc_try_nid_raw(
2106 huge_page_size(h
), huge_page_size(h
),
2107 0, MEMBLOCK_ALLOC_ACCESSIBLE
, node
);
2110 * Use the beginning of the huge page to store the
2111 * huge_bootmem_page struct (until gather_bootmem
2112 * puts them into the mem_map).
2121 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
2122 /* Put them into a private list first because mem_map is not up yet */
2123 INIT_LIST_HEAD(&m
->list
);
2124 list_add(&m
->list
, &huge_boot_pages
);
2129 static void __init
prep_compound_huge_page(struct page
*page
,
2132 if (unlikely(order
> (MAX_ORDER
- 1)))
2133 prep_compound_gigantic_page(page
, order
);
2135 prep_compound_page(page
, order
);
2138 /* Put bootmem huge pages into the standard lists after mem_map is up */
2139 static void __init
gather_bootmem_prealloc(void)
2141 struct huge_bootmem_page
*m
;
2143 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2144 struct page
*page
= virt_to_page(m
);
2145 struct hstate
*h
= m
->hstate
;
2147 WARN_ON(page_count(page
) != 1);
2148 prep_compound_huge_page(page
, h
->order
);
2149 WARN_ON(PageReserved(page
));
2150 prep_new_huge_page(h
, page
, page_to_nid(page
));
2151 put_page(page
); /* free it into the hugepage allocator */
2154 * If we had gigantic hugepages allocated at boot time, we need
2155 * to restore the 'stolen' pages to totalram_pages in order to
2156 * fix confusing memory reports from free(1) and another
2157 * side-effects, like CommitLimit going negative.
2159 if (hstate_is_gigantic(h
))
2160 adjust_managed_page_count(page
, 1 << h
->order
);
2165 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2169 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2170 if (hstate_is_gigantic(h
)) {
2171 if (!alloc_bootmem_huge_page(h
))
2173 } else if (!alloc_pool_huge_page(h
,
2174 &node_states
[N_MEMORY
]))
2178 if (i
< h
->max_huge_pages
) {
2181 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2182 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2183 h
->max_huge_pages
, buf
, i
);
2184 h
->max_huge_pages
= i
;
2188 static void __init
hugetlb_init_hstates(void)
2192 for_each_hstate(h
) {
2193 if (minimum_order
> huge_page_order(h
))
2194 minimum_order
= huge_page_order(h
);
2196 /* oversize hugepages were init'ed in early boot */
2197 if (!hstate_is_gigantic(h
))
2198 hugetlb_hstate_alloc_pages(h
);
2200 VM_BUG_ON(minimum_order
== UINT_MAX
);
2203 static void __init
report_hugepages(void)
2207 for_each_hstate(h
) {
2210 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2211 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2212 buf
, h
->free_huge_pages
);
2216 #ifdef CONFIG_HIGHMEM
2217 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2218 nodemask_t
*nodes_allowed
)
2222 if (hstate_is_gigantic(h
))
2225 for_each_node_mask(i
, *nodes_allowed
) {
2226 struct page
*page
, *next
;
2227 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2228 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2229 if (count
>= h
->nr_huge_pages
)
2231 if (PageHighMem(page
))
2233 list_del(&page
->lru
);
2234 update_and_free_page(h
, page
);
2235 h
->free_huge_pages
--;
2236 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2241 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2242 nodemask_t
*nodes_allowed
)
2248 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2249 * balanced by operating on them in a round-robin fashion.
2250 * Returns 1 if an adjustment was made.
2252 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2257 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2260 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2261 if (h
->surplus_huge_pages_node
[node
])
2265 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2266 if (h
->surplus_huge_pages_node
[node
] <
2267 h
->nr_huge_pages_node
[node
])
2274 h
->surplus_huge_pages
+= delta
;
2275 h
->surplus_huge_pages_node
[node
] += delta
;
2279 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2280 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
2281 nodemask_t
*nodes_allowed
)
2283 unsigned long min_count
, ret
;
2285 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
2286 return h
->max_huge_pages
;
2289 * Increase the pool size
2290 * First take pages out of surplus state. Then make up the
2291 * remaining difference by allocating fresh huge pages.
2293 * We might race with alloc_surplus_huge_page() here and be unable
2294 * to convert a surplus huge page to a normal huge page. That is
2295 * not critical, though, it just means the overall size of the
2296 * pool might be one hugepage larger than it needs to be, but
2297 * within all the constraints specified by the sysctls.
2299 spin_lock(&hugetlb_lock
);
2300 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2301 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2305 while (count
> persistent_huge_pages(h
)) {
2307 * If this allocation races such that we no longer need the
2308 * page, free_huge_page will handle it by freeing the page
2309 * and reducing the surplus.
2311 spin_unlock(&hugetlb_lock
);
2313 /* yield cpu to avoid soft lockup */
2316 ret
= alloc_pool_huge_page(h
, nodes_allowed
);
2317 spin_lock(&hugetlb_lock
);
2321 /* Bail for signals. Probably ctrl-c from user */
2322 if (signal_pending(current
))
2327 * Decrease the pool size
2328 * First return free pages to the buddy allocator (being careful
2329 * to keep enough around to satisfy reservations). Then place
2330 * pages into surplus state as needed so the pool will shrink
2331 * to the desired size as pages become free.
2333 * By placing pages into the surplus state independent of the
2334 * overcommit value, we are allowing the surplus pool size to
2335 * exceed overcommit. There are few sane options here. Since
2336 * alloc_surplus_huge_page() is checking the global counter,
2337 * though, we'll note that we're not allowed to exceed surplus
2338 * and won't grow the pool anywhere else. Not until one of the
2339 * sysctls are changed, or the surplus pages go out of use.
2341 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2342 min_count
= max(count
, min_count
);
2343 try_to_free_low(h
, min_count
, nodes_allowed
);
2344 while (min_count
< persistent_huge_pages(h
)) {
2345 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2347 cond_resched_lock(&hugetlb_lock
);
2349 while (count
< persistent_huge_pages(h
)) {
2350 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2354 ret
= persistent_huge_pages(h
);
2355 spin_unlock(&hugetlb_lock
);
2359 #define HSTATE_ATTR_RO(_name) \
2360 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2362 #define HSTATE_ATTR(_name) \
2363 static struct kobj_attribute _name##_attr = \
2364 __ATTR(_name, 0644, _name##_show, _name##_store)
2366 static struct kobject
*hugepages_kobj
;
2367 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2369 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2371 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2375 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2376 if (hstate_kobjs
[i
] == kobj
) {
2378 *nidp
= NUMA_NO_NODE
;
2382 return kobj_to_node_hstate(kobj
, nidp
);
2385 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2386 struct kobj_attribute
*attr
, char *buf
)
2389 unsigned long nr_huge_pages
;
2392 h
= kobj_to_hstate(kobj
, &nid
);
2393 if (nid
== NUMA_NO_NODE
)
2394 nr_huge_pages
= h
->nr_huge_pages
;
2396 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2398 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2401 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2402 struct hstate
*h
, int nid
,
2403 unsigned long count
, size_t len
)
2406 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
2408 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
2413 if (nid
== NUMA_NO_NODE
) {
2415 * global hstate attribute
2417 if (!(obey_mempolicy
&&
2418 init_nodemask_of_mempolicy(nodes_allowed
))) {
2419 NODEMASK_FREE(nodes_allowed
);
2420 nodes_allowed
= &node_states
[N_MEMORY
];
2422 } else if (nodes_allowed
) {
2424 * per node hstate attribute: adjust count to global,
2425 * but restrict alloc/free to the specified node.
2427 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2428 init_nodemask_of_node(nodes_allowed
, nid
);
2430 nodes_allowed
= &node_states
[N_MEMORY
];
2432 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
2434 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2435 NODEMASK_FREE(nodes_allowed
);
2439 NODEMASK_FREE(nodes_allowed
);
2443 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2444 struct kobject
*kobj
, const char *buf
,
2448 unsigned long count
;
2452 err
= kstrtoul(buf
, 10, &count
);
2456 h
= kobj_to_hstate(kobj
, &nid
);
2457 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2460 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2461 struct kobj_attribute
*attr
, char *buf
)
2463 return nr_hugepages_show_common(kobj
, attr
, buf
);
2466 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2467 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2469 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2471 HSTATE_ATTR(nr_hugepages
);
2476 * hstate attribute for optionally mempolicy-based constraint on persistent
2477 * huge page alloc/free.
2479 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2480 struct kobj_attribute
*attr
, char *buf
)
2482 return nr_hugepages_show_common(kobj
, attr
, buf
);
2485 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2486 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2488 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2490 HSTATE_ATTR(nr_hugepages_mempolicy
);
2494 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2495 struct kobj_attribute
*attr
, char *buf
)
2497 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2498 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2501 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2502 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2505 unsigned long input
;
2506 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2508 if (hstate_is_gigantic(h
))
2511 err
= kstrtoul(buf
, 10, &input
);
2515 spin_lock(&hugetlb_lock
);
2516 h
->nr_overcommit_huge_pages
= input
;
2517 spin_unlock(&hugetlb_lock
);
2521 HSTATE_ATTR(nr_overcommit_hugepages
);
2523 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2524 struct kobj_attribute
*attr
, char *buf
)
2527 unsigned long free_huge_pages
;
2530 h
= kobj_to_hstate(kobj
, &nid
);
2531 if (nid
== NUMA_NO_NODE
)
2532 free_huge_pages
= h
->free_huge_pages
;
2534 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2536 return sprintf(buf
, "%lu\n", free_huge_pages
);
2538 HSTATE_ATTR_RO(free_hugepages
);
2540 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2541 struct kobj_attribute
*attr
, char *buf
)
2543 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2544 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2546 HSTATE_ATTR_RO(resv_hugepages
);
2548 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2549 struct kobj_attribute
*attr
, char *buf
)
2552 unsigned long surplus_huge_pages
;
2555 h
= kobj_to_hstate(kobj
, &nid
);
2556 if (nid
== NUMA_NO_NODE
)
2557 surplus_huge_pages
= h
->surplus_huge_pages
;
2559 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2561 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2563 HSTATE_ATTR_RO(surplus_hugepages
);
2565 static struct attribute
*hstate_attrs
[] = {
2566 &nr_hugepages_attr
.attr
,
2567 &nr_overcommit_hugepages_attr
.attr
,
2568 &free_hugepages_attr
.attr
,
2569 &resv_hugepages_attr
.attr
,
2570 &surplus_hugepages_attr
.attr
,
2572 &nr_hugepages_mempolicy_attr
.attr
,
2577 static const struct attribute_group hstate_attr_group
= {
2578 .attrs
= hstate_attrs
,
2581 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2582 struct kobject
**hstate_kobjs
,
2583 const struct attribute_group
*hstate_attr_group
)
2586 int hi
= hstate_index(h
);
2588 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2589 if (!hstate_kobjs
[hi
])
2592 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2594 kobject_put(hstate_kobjs
[hi
]);
2599 static void __init
hugetlb_sysfs_init(void)
2604 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2605 if (!hugepages_kobj
)
2608 for_each_hstate(h
) {
2609 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2610 hstate_kobjs
, &hstate_attr_group
);
2612 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2619 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2620 * with node devices in node_devices[] using a parallel array. The array
2621 * index of a node device or _hstate == node id.
2622 * This is here to avoid any static dependency of the node device driver, in
2623 * the base kernel, on the hugetlb module.
2625 struct node_hstate
{
2626 struct kobject
*hugepages_kobj
;
2627 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2629 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2632 * A subset of global hstate attributes for node devices
2634 static struct attribute
*per_node_hstate_attrs
[] = {
2635 &nr_hugepages_attr
.attr
,
2636 &free_hugepages_attr
.attr
,
2637 &surplus_hugepages_attr
.attr
,
2641 static const struct attribute_group per_node_hstate_attr_group
= {
2642 .attrs
= per_node_hstate_attrs
,
2646 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2647 * Returns node id via non-NULL nidp.
2649 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2653 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2654 struct node_hstate
*nhs
= &node_hstates
[nid
];
2656 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2657 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2669 * Unregister hstate attributes from a single node device.
2670 * No-op if no hstate attributes attached.
2672 static void hugetlb_unregister_node(struct node
*node
)
2675 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2677 if (!nhs
->hugepages_kobj
)
2678 return; /* no hstate attributes */
2680 for_each_hstate(h
) {
2681 int idx
= hstate_index(h
);
2682 if (nhs
->hstate_kobjs
[idx
]) {
2683 kobject_put(nhs
->hstate_kobjs
[idx
]);
2684 nhs
->hstate_kobjs
[idx
] = NULL
;
2688 kobject_put(nhs
->hugepages_kobj
);
2689 nhs
->hugepages_kobj
= NULL
;
2694 * Register hstate attributes for a single node device.
2695 * No-op if attributes already registered.
2697 static void hugetlb_register_node(struct node
*node
)
2700 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2703 if (nhs
->hugepages_kobj
)
2704 return; /* already allocated */
2706 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2708 if (!nhs
->hugepages_kobj
)
2711 for_each_hstate(h
) {
2712 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2714 &per_node_hstate_attr_group
);
2716 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2717 h
->name
, node
->dev
.id
);
2718 hugetlb_unregister_node(node
);
2725 * hugetlb init time: register hstate attributes for all registered node
2726 * devices of nodes that have memory. All on-line nodes should have
2727 * registered their associated device by this time.
2729 static void __init
hugetlb_register_all_nodes(void)
2733 for_each_node_state(nid
, N_MEMORY
) {
2734 struct node
*node
= node_devices
[nid
];
2735 if (node
->dev
.id
== nid
)
2736 hugetlb_register_node(node
);
2740 * Let the node device driver know we're here so it can
2741 * [un]register hstate attributes on node hotplug.
2743 register_hugetlbfs_with_node(hugetlb_register_node
,
2744 hugetlb_unregister_node
);
2746 #else /* !CONFIG_NUMA */
2748 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2756 static void hugetlb_register_all_nodes(void) { }
2760 static int __init
hugetlb_init(void)
2764 if (!hugepages_supported())
2767 if (!size_to_hstate(default_hstate_size
)) {
2768 if (default_hstate_size
!= 0) {
2769 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2770 default_hstate_size
, HPAGE_SIZE
);
2773 default_hstate_size
= HPAGE_SIZE
;
2774 if (!size_to_hstate(default_hstate_size
))
2775 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2777 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2778 if (default_hstate_max_huge_pages
) {
2779 if (!default_hstate
.max_huge_pages
)
2780 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2783 hugetlb_init_hstates();
2784 gather_bootmem_prealloc();
2787 hugetlb_sysfs_init();
2788 hugetlb_register_all_nodes();
2789 hugetlb_cgroup_file_init();
2792 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2794 num_fault_mutexes
= 1;
2796 hugetlb_fault_mutex_table
=
2797 kmalloc_array(num_fault_mutexes
, sizeof(struct mutex
),
2799 BUG_ON(!hugetlb_fault_mutex_table
);
2801 for (i
= 0; i
< num_fault_mutexes
; i
++)
2802 mutex_init(&hugetlb_fault_mutex_table
[i
]);
2805 subsys_initcall(hugetlb_init
);
2807 /* Should be called on processing a hugepagesz=... option */
2808 void __init
hugetlb_bad_size(void)
2810 parsed_valid_hugepagesz
= false;
2813 void __init
hugetlb_add_hstate(unsigned int order
)
2818 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2819 pr_warn("hugepagesz= specified twice, ignoring\n");
2822 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2824 h
= &hstates
[hugetlb_max_hstate
++];
2826 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2827 h
->nr_huge_pages
= 0;
2828 h
->free_huge_pages
= 0;
2829 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2830 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2831 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2832 h
->next_nid_to_alloc
= first_memory_node
;
2833 h
->next_nid_to_free
= first_memory_node
;
2834 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2835 huge_page_size(h
)/1024);
2840 static int __init
hugetlb_nrpages_setup(char *s
)
2843 static unsigned long *last_mhp
;
2845 if (!parsed_valid_hugepagesz
) {
2846 pr_warn("hugepages = %s preceded by "
2847 "an unsupported hugepagesz, ignoring\n", s
);
2848 parsed_valid_hugepagesz
= true;
2852 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2853 * so this hugepages= parameter goes to the "default hstate".
2855 else if (!hugetlb_max_hstate
)
2856 mhp
= &default_hstate_max_huge_pages
;
2858 mhp
= &parsed_hstate
->max_huge_pages
;
2860 if (mhp
== last_mhp
) {
2861 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2865 if (sscanf(s
, "%lu", mhp
) <= 0)
2869 * Global state is always initialized later in hugetlb_init.
2870 * But we need to allocate >= MAX_ORDER hstates here early to still
2871 * use the bootmem allocator.
2873 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2874 hugetlb_hstate_alloc_pages(parsed_hstate
);
2880 __setup("hugepages=", hugetlb_nrpages_setup
);
2882 static int __init
hugetlb_default_setup(char *s
)
2884 default_hstate_size
= memparse(s
, &s
);
2887 __setup("default_hugepagesz=", hugetlb_default_setup
);
2889 static unsigned int cpuset_mems_nr(unsigned int *array
)
2892 unsigned int nr
= 0;
2894 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2900 #ifdef CONFIG_SYSCTL
2901 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2902 struct ctl_table
*table
, int write
,
2903 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2905 struct hstate
*h
= &default_hstate
;
2906 unsigned long tmp
= h
->max_huge_pages
;
2909 if (!hugepages_supported())
2913 table
->maxlen
= sizeof(unsigned long);
2914 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2919 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2920 NUMA_NO_NODE
, tmp
, *length
);
2925 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2926 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2929 return hugetlb_sysctl_handler_common(false, table
, write
,
2930 buffer
, length
, ppos
);
2934 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2935 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2937 return hugetlb_sysctl_handler_common(true, table
, write
,
2938 buffer
, length
, ppos
);
2940 #endif /* CONFIG_NUMA */
2942 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2943 void __user
*buffer
,
2944 size_t *length
, loff_t
*ppos
)
2946 struct hstate
*h
= &default_hstate
;
2950 if (!hugepages_supported())
2953 tmp
= h
->nr_overcommit_huge_pages
;
2955 if (write
&& hstate_is_gigantic(h
))
2959 table
->maxlen
= sizeof(unsigned long);
2960 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2965 spin_lock(&hugetlb_lock
);
2966 h
->nr_overcommit_huge_pages
= tmp
;
2967 spin_unlock(&hugetlb_lock
);
2973 #endif /* CONFIG_SYSCTL */
2975 void hugetlb_report_meminfo(struct seq_file
*m
)
2978 unsigned long total
= 0;
2980 if (!hugepages_supported())
2983 for_each_hstate(h
) {
2984 unsigned long count
= h
->nr_huge_pages
;
2986 total
+= (PAGE_SIZE
<< huge_page_order(h
)) * count
;
2988 if (h
== &default_hstate
)
2990 "HugePages_Total: %5lu\n"
2991 "HugePages_Free: %5lu\n"
2992 "HugePages_Rsvd: %5lu\n"
2993 "HugePages_Surp: %5lu\n"
2994 "Hugepagesize: %8lu kB\n",
2998 h
->surplus_huge_pages
,
2999 (PAGE_SIZE
<< huge_page_order(h
)) / 1024);
3002 seq_printf(m
, "Hugetlb: %8lu kB\n", total
/ 1024);
3005 int hugetlb_report_node_meminfo(int nid
, char *buf
)
3007 struct hstate
*h
= &default_hstate
;
3008 if (!hugepages_supported())
3011 "Node %d HugePages_Total: %5u\n"
3012 "Node %d HugePages_Free: %5u\n"
3013 "Node %d HugePages_Surp: %5u\n",
3014 nid
, h
->nr_huge_pages_node
[nid
],
3015 nid
, h
->free_huge_pages_node
[nid
],
3016 nid
, h
->surplus_huge_pages_node
[nid
]);
3019 void hugetlb_show_meminfo(void)
3024 if (!hugepages_supported())
3027 for_each_node_state(nid
, N_MEMORY
)
3029 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3031 h
->nr_huge_pages_node
[nid
],
3032 h
->free_huge_pages_node
[nid
],
3033 h
->surplus_huge_pages_node
[nid
],
3034 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
3037 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
3039 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
3040 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
3043 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3044 unsigned long hugetlb_total_pages(void)
3047 unsigned long nr_total_pages
= 0;
3050 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
3051 return nr_total_pages
;
3054 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
3058 spin_lock(&hugetlb_lock
);
3060 * When cpuset is configured, it breaks the strict hugetlb page
3061 * reservation as the accounting is done on a global variable. Such
3062 * reservation is completely rubbish in the presence of cpuset because
3063 * the reservation is not checked against page availability for the
3064 * current cpuset. Application can still potentially OOM'ed by kernel
3065 * with lack of free htlb page in cpuset that the task is in.
3066 * Attempt to enforce strict accounting with cpuset is almost
3067 * impossible (or too ugly) because cpuset is too fluid that
3068 * task or memory node can be dynamically moved between cpusets.
3070 * The change of semantics for shared hugetlb mapping with cpuset is
3071 * undesirable. However, in order to preserve some of the semantics,
3072 * we fall back to check against current free page availability as
3073 * a best attempt and hopefully to minimize the impact of changing
3074 * semantics that cpuset has.
3077 if (gather_surplus_pages(h
, delta
) < 0)
3080 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
3081 return_unused_surplus_pages(h
, delta
);
3088 return_unused_surplus_pages(h
, (unsigned long) -delta
);
3091 spin_unlock(&hugetlb_lock
);
3095 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
3097 struct resv_map
*resv
= vma_resv_map(vma
);
3100 * This new VMA should share its siblings reservation map if present.
3101 * The VMA will only ever have a valid reservation map pointer where
3102 * it is being copied for another still existing VMA. As that VMA
3103 * has a reference to the reservation map it cannot disappear until
3104 * after this open call completes. It is therefore safe to take a
3105 * new reference here without additional locking.
3107 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3108 kref_get(&resv
->refs
);
3111 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
3113 struct hstate
*h
= hstate_vma(vma
);
3114 struct resv_map
*resv
= vma_resv_map(vma
);
3115 struct hugepage_subpool
*spool
= subpool_vma(vma
);
3116 unsigned long reserve
, start
, end
;
3119 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3122 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
3123 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
3125 reserve
= (end
- start
) - region_count(resv
, start
, end
);
3127 kref_put(&resv
->refs
, resv_map_release
);
3131 * Decrement reserve counts. The global reserve count may be
3132 * adjusted if the subpool has a minimum size.
3134 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3135 hugetlb_acct_memory(h
, -gbl_reserve
);
3139 static int hugetlb_vm_op_split(struct vm_area_struct
*vma
, unsigned long addr
)
3141 if (addr
& ~(huge_page_mask(hstate_vma(vma
))))
3146 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct
*vma
)
3148 struct hstate
*hstate
= hstate_vma(vma
);
3150 return 1UL << huge_page_shift(hstate
);
3154 * We cannot handle pagefaults against hugetlb pages at all. They cause
3155 * handle_mm_fault() to try to instantiate regular-sized pages in the
3156 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3159 static vm_fault_t
hugetlb_vm_op_fault(struct vm_fault
*vmf
)
3166 * When a new function is introduced to vm_operations_struct and added
3167 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3168 * This is because under System V memory model, mappings created via
3169 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3170 * their original vm_ops are overwritten with shm_vm_ops.
3172 const struct vm_operations_struct hugetlb_vm_ops
= {
3173 .fault
= hugetlb_vm_op_fault
,
3174 .open
= hugetlb_vm_op_open
,
3175 .close
= hugetlb_vm_op_close
,
3176 .split
= hugetlb_vm_op_split
,
3177 .pagesize
= hugetlb_vm_op_pagesize
,
3180 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3186 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3187 vma
->vm_page_prot
)));
3189 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3190 vma
->vm_page_prot
));
3192 entry
= pte_mkyoung(entry
);
3193 entry
= pte_mkhuge(entry
);
3194 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3199 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3200 unsigned long address
, pte_t
*ptep
)
3204 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3205 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3206 update_mmu_cache(vma
, address
, ptep
);
3209 bool is_hugetlb_entry_migration(pte_t pte
)
3213 if (huge_pte_none(pte
) || pte_present(pte
))
3215 swp
= pte_to_swp_entry(pte
);
3216 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3222 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3226 if (huge_pte_none(pte
) || pte_present(pte
))
3228 swp
= pte_to_swp_entry(pte
);
3229 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3235 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3236 struct vm_area_struct
*vma
)
3238 pte_t
*src_pte
, *dst_pte
, entry
, dst_entry
;
3239 struct page
*ptepage
;
3242 struct hstate
*h
= hstate_vma(vma
);
3243 unsigned long sz
= huge_page_size(h
);
3244 struct mmu_notifier_range range
;
3247 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3250 mmu_notifier_range_init(&range
, src
, vma
->vm_start
,
3252 mmu_notifier_invalidate_range_start(&range
);
3255 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3256 spinlock_t
*src_ptl
, *dst_ptl
;
3257 src_pte
= huge_pte_offset(src
, addr
, sz
);
3260 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3267 * If the pagetables are shared don't copy or take references.
3268 * dst_pte == src_pte is the common case of src/dest sharing.
3270 * However, src could have 'unshared' and dst shares with
3271 * another vma. If dst_pte !none, this implies sharing.
3272 * Check here before taking page table lock, and once again
3273 * after taking the lock below.
3275 dst_entry
= huge_ptep_get(dst_pte
);
3276 if ((dst_pte
== src_pte
) || !huge_pte_none(dst_entry
))
3279 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3280 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3281 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3282 entry
= huge_ptep_get(src_pte
);
3283 dst_entry
= huge_ptep_get(dst_pte
);
3284 if (huge_pte_none(entry
) || !huge_pte_none(dst_entry
)) {
3286 * Skip if src entry none. Also, skip in the
3287 * unlikely case dst entry !none as this implies
3288 * sharing with another vma.
3291 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3292 is_hugetlb_entry_hwpoisoned(entry
))) {
3293 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3295 if (is_write_migration_entry(swp_entry
) && cow
) {
3297 * COW mappings require pages in both
3298 * parent and child to be set to read.
3300 make_migration_entry_read(&swp_entry
);
3301 entry
= swp_entry_to_pte(swp_entry
);
3302 set_huge_swap_pte_at(src
, addr
, src_pte
,
3305 set_huge_swap_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
3309 * No need to notify as we are downgrading page
3310 * table protection not changing it to point
3313 * See Documentation/vm/mmu_notifier.rst
3315 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3317 entry
= huge_ptep_get(src_pte
);
3318 ptepage
= pte_page(entry
);
3320 page_dup_rmap(ptepage
, true);
3321 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3322 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3324 spin_unlock(src_ptl
);
3325 spin_unlock(dst_ptl
);
3329 mmu_notifier_invalidate_range_end(&range
);
3334 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3335 unsigned long start
, unsigned long end
,
3336 struct page
*ref_page
)
3338 struct mm_struct
*mm
= vma
->vm_mm
;
3339 unsigned long address
;
3344 struct hstate
*h
= hstate_vma(vma
);
3345 unsigned long sz
= huge_page_size(h
);
3346 struct mmu_notifier_range range
;
3348 WARN_ON(!is_vm_hugetlb_page(vma
));
3349 BUG_ON(start
& ~huge_page_mask(h
));
3350 BUG_ON(end
& ~huge_page_mask(h
));
3353 * This is a hugetlb vma, all the pte entries should point
3356 tlb_remove_check_page_size_change(tlb
, sz
);
3357 tlb_start_vma(tlb
, vma
);
3360 * If sharing possible, alert mmu notifiers of worst case.
3362 mmu_notifier_range_init(&range
, mm
, start
, end
);
3363 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
3364 mmu_notifier_invalidate_range_start(&range
);
3366 for (; address
< end
; address
+= sz
) {
3367 ptep
= huge_pte_offset(mm
, address
, sz
);
3371 ptl
= huge_pte_lock(h
, mm
, ptep
);
3372 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3375 * We just unmapped a page of PMDs by clearing a PUD.
3376 * The caller's TLB flush range should cover this area.
3381 pte
= huge_ptep_get(ptep
);
3382 if (huge_pte_none(pte
)) {
3388 * Migrating hugepage or HWPoisoned hugepage is already
3389 * unmapped and its refcount is dropped, so just clear pte here.
3391 if (unlikely(!pte_present(pte
))) {
3392 huge_pte_clear(mm
, address
, ptep
, sz
);
3397 page
= pte_page(pte
);
3399 * If a reference page is supplied, it is because a specific
3400 * page is being unmapped, not a range. Ensure the page we
3401 * are about to unmap is the actual page of interest.
3404 if (page
!= ref_page
) {
3409 * Mark the VMA as having unmapped its page so that
3410 * future faults in this VMA will fail rather than
3411 * looking like data was lost
3413 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3416 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3417 tlb_remove_huge_tlb_entry(h
, tlb
, ptep
, address
);
3418 if (huge_pte_dirty(pte
))
3419 set_page_dirty(page
);
3421 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3422 page_remove_rmap(page
, true);
3425 tlb_remove_page_size(tlb
, page
, huge_page_size(h
));
3427 * Bail out after unmapping reference page if supplied
3432 mmu_notifier_invalidate_range_end(&range
);
3433 tlb_end_vma(tlb
, vma
);
3436 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3437 struct vm_area_struct
*vma
, unsigned long start
,
3438 unsigned long end
, struct page
*ref_page
)
3440 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3443 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3444 * test will fail on a vma being torn down, and not grab a page table
3445 * on its way out. We're lucky that the flag has such an appropriate
3446 * name, and can in fact be safely cleared here. We could clear it
3447 * before the __unmap_hugepage_range above, but all that's necessary
3448 * is to clear it before releasing the i_mmap_rwsem. This works
3449 * because in the context this is called, the VMA is about to be
3450 * destroyed and the i_mmap_rwsem is held.
3452 vma
->vm_flags
&= ~VM_MAYSHARE
;
3455 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3456 unsigned long end
, struct page
*ref_page
)
3458 struct mm_struct
*mm
;
3459 struct mmu_gather tlb
;
3460 unsigned long tlb_start
= start
;
3461 unsigned long tlb_end
= end
;
3464 * If shared PMDs were possibly used within this vma range, adjust
3465 * start/end for worst case tlb flushing.
3466 * Note that we can not be sure if PMDs are shared until we try to
3467 * unmap pages. However, we want to make sure TLB flushing covers
3468 * the largest possible range.
3470 adjust_range_if_pmd_sharing_possible(vma
, &tlb_start
, &tlb_end
);
3474 tlb_gather_mmu(&tlb
, mm
, tlb_start
, tlb_end
);
3475 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3476 tlb_finish_mmu(&tlb
, tlb_start
, tlb_end
);
3480 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3481 * mappping it owns the reserve page for. The intention is to unmap the page
3482 * from other VMAs and let the children be SIGKILLed if they are faulting the
3485 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3486 struct page
*page
, unsigned long address
)
3488 struct hstate
*h
= hstate_vma(vma
);
3489 struct vm_area_struct
*iter_vma
;
3490 struct address_space
*mapping
;
3494 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3495 * from page cache lookup which is in HPAGE_SIZE units.
3497 address
= address
& huge_page_mask(h
);
3498 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
3500 mapping
= vma
->vm_file
->f_mapping
;
3503 * Take the mapping lock for the duration of the table walk. As
3504 * this mapping should be shared between all the VMAs,
3505 * __unmap_hugepage_range() is called as the lock is already held
3507 i_mmap_lock_write(mapping
);
3508 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
3509 /* Do not unmap the current VMA */
3510 if (iter_vma
== vma
)
3514 * Shared VMAs have their own reserves and do not affect
3515 * MAP_PRIVATE accounting but it is possible that a shared
3516 * VMA is using the same page so check and skip such VMAs.
3518 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
3522 * Unmap the page from other VMAs without their own reserves.
3523 * They get marked to be SIGKILLed if they fault in these
3524 * areas. This is because a future no-page fault on this VMA
3525 * could insert a zeroed page instead of the data existing
3526 * from the time of fork. This would look like data corruption
3528 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
3529 unmap_hugepage_range(iter_vma
, address
,
3530 address
+ huge_page_size(h
), page
);
3532 i_mmap_unlock_write(mapping
);
3536 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3537 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3538 * cannot race with other handlers or page migration.
3539 * Keep the pte_same checks anyway to make transition from the mutex easier.
3541 static vm_fault_t
hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3542 unsigned long address
, pte_t
*ptep
,
3543 struct page
*pagecache_page
, spinlock_t
*ptl
)
3546 struct hstate
*h
= hstate_vma(vma
);
3547 struct page
*old_page
, *new_page
;
3548 int outside_reserve
= 0;
3550 unsigned long haddr
= address
& huge_page_mask(h
);
3551 struct mmu_notifier_range range
;
3553 pte
= huge_ptep_get(ptep
);
3554 old_page
= pte_page(pte
);
3557 /* If no-one else is actually using this page, avoid the copy
3558 * and just make the page writable */
3559 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
3560 page_move_anon_rmap(old_page
, vma
);
3561 set_huge_ptep_writable(vma
, haddr
, ptep
);
3566 * If the process that created a MAP_PRIVATE mapping is about to
3567 * perform a COW due to a shared page count, attempt to satisfy
3568 * the allocation without using the existing reserves. The pagecache
3569 * page is used to determine if the reserve at this address was
3570 * consumed or not. If reserves were used, a partial faulted mapping
3571 * at the time of fork() could consume its reserves on COW instead
3572 * of the full address range.
3574 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
3575 old_page
!= pagecache_page
)
3576 outside_reserve
= 1;
3581 * Drop page table lock as buddy allocator may be called. It will
3582 * be acquired again before returning to the caller, as expected.
3585 new_page
= alloc_huge_page(vma
, haddr
, outside_reserve
);
3587 if (IS_ERR(new_page
)) {
3589 * If a process owning a MAP_PRIVATE mapping fails to COW,
3590 * it is due to references held by a child and an insufficient
3591 * huge page pool. To guarantee the original mappers
3592 * reliability, unmap the page from child processes. The child
3593 * may get SIGKILLed if it later faults.
3595 if (outside_reserve
) {
3597 BUG_ON(huge_pte_none(pte
));
3598 unmap_ref_private(mm
, vma
, old_page
, haddr
);
3599 BUG_ON(huge_pte_none(pte
));
3601 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3603 pte_same(huge_ptep_get(ptep
), pte
)))
3604 goto retry_avoidcopy
;
3606 * race occurs while re-acquiring page table
3607 * lock, and our job is done.
3612 ret
= vmf_error(PTR_ERR(new_page
));
3613 goto out_release_old
;
3617 * When the original hugepage is shared one, it does not have
3618 * anon_vma prepared.
3620 if (unlikely(anon_vma_prepare(vma
))) {
3622 goto out_release_all
;
3625 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3626 pages_per_huge_page(h
));
3627 __SetPageUptodate(new_page
);
3629 mmu_notifier_range_init(&range
, mm
, haddr
, haddr
+ huge_page_size(h
));
3630 mmu_notifier_invalidate_range_start(&range
);
3633 * Retake the page table lock to check for racing updates
3634 * before the page tables are altered
3637 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3638 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3639 ClearPagePrivate(new_page
);
3642 huge_ptep_clear_flush(vma
, haddr
, ptep
);
3643 mmu_notifier_invalidate_range(mm
, range
.start
, range
.end
);
3644 set_huge_pte_at(mm
, haddr
, ptep
,
3645 make_huge_pte(vma
, new_page
, 1));
3646 page_remove_rmap(old_page
, true);
3647 hugepage_add_new_anon_rmap(new_page
, vma
, haddr
);
3648 set_page_huge_active(new_page
);
3649 /* Make the old page be freed below */
3650 new_page
= old_page
;
3653 mmu_notifier_invalidate_range_end(&range
);
3655 restore_reserve_on_error(h
, vma
, haddr
, new_page
);
3660 spin_lock(ptl
); /* Caller expects lock to be held */
3664 /* Return the pagecache page at a given address within a VMA */
3665 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3666 struct vm_area_struct
*vma
, unsigned long address
)
3668 struct address_space
*mapping
;
3671 mapping
= vma
->vm_file
->f_mapping
;
3672 idx
= vma_hugecache_offset(h
, vma
, address
);
3674 return find_lock_page(mapping
, idx
);
3678 * Return whether there is a pagecache page to back given address within VMA.
3679 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3681 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3682 struct vm_area_struct
*vma
, unsigned long address
)
3684 struct address_space
*mapping
;
3688 mapping
= vma
->vm_file
->f_mapping
;
3689 idx
= vma_hugecache_offset(h
, vma
, address
);
3691 page
= find_get_page(mapping
, idx
);
3694 return page
!= NULL
;
3697 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
3700 struct inode
*inode
= mapping
->host
;
3701 struct hstate
*h
= hstate_inode(inode
);
3702 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3706 ClearPagePrivate(page
);
3709 * set page dirty so that it will not be removed from cache/file
3710 * by non-hugetlbfs specific code paths.
3712 set_page_dirty(page
);
3714 spin_lock(&inode
->i_lock
);
3715 inode
->i_blocks
+= blocks_per_huge_page(h
);
3716 spin_unlock(&inode
->i_lock
);
3720 static vm_fault_t
hugetlb_no_page(struct mm_struct
*mm
,
3721 struct vm_area_struct
*vma
,
3722 struct address_space
*mapping
, pgoff_t idx
,
3723 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3725 struct hstate
*h
= hstate_vma(vma
);
3726 vm_fault_t ret
= VM_FAULT_SIGBUS
;
3732 unsigned long haddr
= address
& huge_page_mask(h
);
3733 bool new_page
= false;
3736 * Currently, we are forced to kill the process in the event the
3737 * original mapper has unmapped pages from the child due to a failed
3738 * COW. Warn that such a situation has occurred as it may not be obvious
3740 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3741 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3747 * Use page lock to guard against racing truncation
3748 * before we get page_table_lock.
3751 page
= find_lock_page(mapping
, idx
);
3753 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3758 * Check for page in userfault range
3760 if (userfaultfd_missing(vma
)) {
3762 struct vm_fault vmf
= {
3767 * Hard to debug if it ends up being
3768 * used by a callee that assumes
3769 * something about the other
3770 * uninitialized fields... same as in
3776 * hugetlb_fault_mutex must be dropped before
3777 * handling userfault. Reacquire after handling
3778 * fault to make calling code simpler.
3780 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
,
3782 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3783 ret
= handle_userfault(&vmf
, VM_UFFD_MISSING
);
3784 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3788 page
= alloc_huge_page(vma
, haddr
, 0);
3790 ret
= vmf_error(PTR_ERR(page
));
3793 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3794 __SetPageUptodate(page
);
3797 if (vma
->vm_flags
& VM_MAYSHARE
) {
3798 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
3807 if (unlikely(anon_vma_prepare(vma
))) {
3809 goto backout_unlocked
;
3815 * If memory error occurs between mmap() and fault, some process
3816 * don't have hwpoisoned swap entry for errored virtual address.
3817 * So we need to block hugepage fault by PG_hwpoison bit check.
3819 if (unlikely(PageHWPoison(page
))) {
3820 ret
= VM_FAULT_HWPOISON
|
3821 VM_FAULT_SET_HINDEX(hstate_index(h
));
3822 goto backout_unlocked
;
3827 * If we are going to COW a private mapping later, we examine the
3828 * pending reservations for this page now. This will ensure that
3829 * any allocations necessary to record that reservation occur outside
3832 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3833 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
3835 goto backout_unlocked
;
3837 /* Just decrements count, does not deallocate */
3838 vma_end_reservation(h
, vma
, haddr
);
3841 ptl
= huge_pte_lock(h
, mm
, ptep
);
3842 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3847 if (!huge_pte_none(huge_ptep_get(ptep
)))
3851 ClearPagePrivate(page
);
3852 hugepage_add_new_anon_rmap(page
, vma
, haddr
);
3854 page_dup_rmap(page
, true);
3855 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3856 && (vma
->vm_flags
& VM_SHARED
)));
3857 set_huge_pte_at(mm
, haddr
, ptep
, new_pte
);
3859 hugetlb_count_add(pages_per_huge_page(h
), mm
);
3860 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3861 /* Optimization, do the COW without a second fault */
3862 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, page
, ptl
);
3868 * Only make newly allocated pages active. Existing pages found
3869 * in the pagecache could be !page_huge_active() if they have been
3870 * isolated for migration.
3873 set_page_huge_active(page
);
3883 restore_reserve_on_error(h
, vma
, haddr
, page
);
3889 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3890 struct vm_area_struct
*vma
,
3891 struct address_space
*mapping
,
3892 pgoff_t idx
, unsigned long address
)
3894 unsigned long key
[2];
3897 if (vma
->vm_flags
& VM_SHARED
) {
3898 key
[0] = (unsigned long) mapping
;
3901 key
[0] = (unsigned long) mm
;
3902 key
[1] = address
>> huge_page_shift(h
);
3905 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3907 return hash
& (num_fault_mutexes
- 1);
3911 * For uniprocesor systems we always use a single mutex, so just
3912 * return 0 and avoid the hashing overhead.
3914 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3915 struct vm_area_struct
*vma
,
3916 struct address_space
*mapping
,
3917 pgoff_t idx
, unsigned long address
)
3923 vm_fault_t
hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3924 unsigned long address
, unsigned int flags
)
3931 struct page
*page
= NULL
;
3932 struct page
*pagecache_page
= NULL
;
3933 struct hstate
*h
= hstate_vma(vma
);
3934 struct address_space
*mapping
;
3935 int need_wait_lock
= 0;
3936 unsigned long haddr
= address
& huge_page_mask(h
);
3938 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3940 entry
= huge_ptep_get(ptep
);
3941 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3942 migration_entry_wait_huge(vma
, mm
, ptep
);
3944 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3945 return VM_FAULT_HWPOISON_LARGE
|
3946 VM_FAULT_SET_HINDEX(hstate_index(h
));
3948 ptep
= huge_pte_alloc(mm
, haddr
, huge_page_size(h
));
3950 return VM_FAULT_OOM
;
3953 mapping
= vma
->vm_file
->f_mapping
;
3954 idx
= vma_hugecache_offset(h
, vma
, haddr
);
3957 * Serialize hugepage allocation and instantiation, so that we don't
3958 * get spurious allocation failures if two CPUs race to instantiate
3959 * the same page in the page cache.
3961 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, haddr
);
3962 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3964 entry
= huge_ptep_get(ptep
);
3965 if (huge_pte_none(entry
)) {
3966 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3973 * entry could be a migration/hwpoison entry at this point, so this
3974 * check prevents the kernel from going below assuming that we have
3975 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3976 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3979 if (!pte_present(entry
))
3983 * If we are going to COW the mapping later, we examine the pending
3984 * reservations for this page now. This will ensure that any
3985 * allocations necessary to record that reservation occur outside the
3986 * spinlock. For private mappings, we also lookup the pagecache
3987 * page now as it is used to determine if a reservation has been
3990 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3991 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
3995 /* Just decrements count, does not deallocate */
3996 vma_end_reservation(h
, vma
, haddr
);
3998 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3999 pagecache_page
= hugetlbfs_pagecache_page(h
,
4003 ptl
= huge_pte_lock(h
, mm
, ptep
);
4005 /* Check for a racing update before calling hugetlb_cow */
4006 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
4010 * hugetlb_cow() requires page locks of pte_page(entry) and
4011 * pagecache_page, so here we need take the former one
4012 * when page != pagecache_page or !pagecache_page.
4014 page
= pte_page(entry
);
4015 if (page
!= pagecache_page
)
4016 if (!trylock_page(page
)) {
4023 if (flags
& FAULT_FLAG_WRITE
) {
4024 if (!huge_pte_write(entry
)) {
4025 ret
= hugetlb_cow(mm
, vma
, address
, ptep
,
4026 pagecache_page
, ptl
);
4029 entry
= huge_pte_mkdirty(entry
);
4031 entry
= pte_mkyoung(entry
);
4032 if (huge_ptep_set_access_flags(vma
, haddr
, ptep
, entry
,
4033 flags
& FAULT_FLAG_WRITE
))
4034 update_mmu_cache(vma
, haddr
, ptep
);
4036 if (page
!= pagecache_page
)
4042 if (pagecache_page
) {
4043 unlock_page(pagecache_page
);
4044 put_page(pagecache_page
);
4047 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
4049 * Generally it's safe to hold refcount during waiting page lock. But
4050 * here we just wait to defer the next page fault to avoid busy loop and
4051 * the page is not used after unlocked before returning from the current
4052 * page fault. So we are safe from accessing freed page, even if we wait
4053 * here without taking refcount.
4056 wait_on_page_locked(page
);
4061 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4062 * modifications for huge pages.
4064 int hugetlb_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
4066 struct vm_area_struct
*dst_vma
,
4067 unsigned long dst_addr
,
4068 unsigned long src_addr
,
4069 struct page
**pagep
)
4071 struct address_space
*mapping
;
4074 int vm_shared
= dst_vma
->vm_flags
& VM_SHARED
;
4075 struct hstate
*h
= hstate_vma(dst_vma
);
4083 page
= alloc_huge_page(dst_vma
, dst_addr
, 0);
4087 ret
= copy_huge_page_from_user(page
,
4088 (const void __user
*) src_addr
,
4089 pages_per_huge_page(h
), false);
4091 /* fallback to copy_from_user outside mmap_sem */
4092 if (unlikely(ret
)) {
4095 /* don't free the page */
4104 * The memory barrier inside __SetPageUptodate makes sure that
4105 * preceding stores to the page contents become visible before
4106 * the set_pte_at() write.
4108 __SetPageUptodate(page
);
4110 mapping
= dst_vma
->vm_file
->f_mapping
;
4111 idx
= vma_hugecache_offset(h
, dst_vma
, dst_addr
);
4114 * If shared, add to page cache
4117 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4120 goto out_release_nounlock
;
4123 * Serialization between remove_inode_hugepages() and
4124 * huge_add_to_page_cache() below happens through the
4125 * hugetlb_fault_mutex_table that here must be hold by
4128 ret
= huge_add_to_page_cache(page
, mapping
, idx
);
4130 goto out_release_nounlock
;
4133 ptl
= huge_pte_lockptr(h
, dst_mm
, dst_pte
);
4137 * Recheck the i_size after holding PT lock to make sure not
4138 * to leave any page mapped (as page_mapped()) beyond the end
4139 * of the i_size (remove_inode_hugepages() is strict about
4140 * enforcing that). If we bail out here, we'll also leave a
4141 * page in the radix tree in the vm_shared case beyond the end
4142 * of the i_size, but remove_inode_hugepages() will take care
4143 * of it as soon as we drop the hugetlb_fault_mutex_table.
4145 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4148 goto out_release_unlock
;
4151 if (!huge_pte_none(huge_ptep_get(dst_pte
)))
4152 goto out_release_unlock
;
4155 page_dup_rmap(page
, true);
4157 ClearPagePrivate(page
);
4158 hugepage_add_new_anon_rmap(page
, dst_vma
, dst_addr
);
4161 _dst_pte
= make_huge_pte(dst_vma
, page
, dst_vma
->vm_flags
& VM_WRITE
);
4162 if (dst_vma
->vm_flags
& VM_WRITE
)
4163 _dst_pte
= huge_pte_mkdirty(_dst_pte
);
4164 _dst_pte
= pte_mkyoung(_dst_pte
);
4166 set_huge_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
4168 (void)huge_ptep_set_access_flags(dst_vma
, dst_addr
, dst_pte
, _dst_pte
,
4169 dst_vma
->vm_flags
& VM_WRITE
);
4170 hugetlb_count_add(pages_per_huge_page(h
), dst_mm
);
4172 /* No need to invalidate - it was non-present before */
4173 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
4176 set_page_huge_active(page
);
4186 out_release_nounlock
:
4191 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4192 struct page
**pages
, struct vm_area_struct
**vmas
,
4193 unsigned long *position
, unsigned long *nr_pages
,
4194 long i
, unsigned int flags
, int *nonblocking
)
4196 unsigned long pfn_offset
;
4197 unsigned long vaddr
= *position
;
4198 unsigned long remainder
= *nr_pages
;
4199 struct hstate
*h
= hstate_vma(vma
);
4202 while (vaddr
< vma
->vm_end
&& remainder
) {
4204 spinlock_t
*ptl
= NULL
;
4209 * If we have a pending SIGKILL, don't keep faulting pages and
4210 * potentially allocating memory.
4212 if (fatal_signal_pending(current
)) {
4218 * Some archs (sparc64, sh*) have multiple pte_ts to
4219 * each hugepage. We have to make sure we get the
4220 * first, for the page indexing below to work.
4222 * Note that page table lock is not held when pte is null.
4224 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
),
4227 ptl
= huge_pte_lock(h
, mm
, pte
);
4228 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
4231 * When coredumping, it suits get_dump_page if we just return
4232 * an error where there's an empty slot with no huge pagecache
4233 * to back it. This way, we avoid allocating a hugepage, and
4234 * the sparse dumpfile avoids allocating disk blocks, but its
4235 * huge holes still show up with zeroes where they need to be.
4237 if (absent
&& (flags
& FOLL_DUMP
) &&
4238 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
4246 * We need call hugetlb_fault for both hugepages under migration
4247 * (in which case hugetlb_fault waits for the migration,) and
4248 * hwpoisoned hugepages (in which case we need to prevent the
4249 * caller from accessing to them.) In order to do this, we use
4250 * here is_swap_pte instead of is_hugetlb_entry_migration and
4251 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4252 * both cases, and because we can't follow correct pages
4253 * directly from any kind of swap entries.
4255 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
4256 ((flags
& FOLL_WRITE
) &&
4257 !huge_pte_write(huge_ptep_get(pte
)))) {
4259 unsigned int fault_flags
= 0;
4263 if (flags
& FOLL_WRITE
)
4264 fault_flags
|= FAULT_FLAG_WRITE
;
4266 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
4267 if (flags
& FOLL_NOWAIT
)
4268 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4269 FAULT_FLAG_RETRY_NOWAIT
;
4270 if (flags
& FOLL_TRIED
) {
4271 VM_WARN_ON_ONCE(fault_flags
&
4272 FAULT_FLAG_ALLOW_RETRY
);
4273 fault_flags
|= FAULT_FLAG_TRIED
;
4275 ret
= hugetlb_fault(mm
, vma
, vaddr
, fault_flags
);
4276 if (ret
& VM_FAULT_ERROR
) {
4277 err
= vm_fault_to_errno(ret
, flags
);
4281 if (ret
& VM_FAULT_RETRY
) {
4283 !(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
4287 * VM_FAULT_RETRY must not return an
4288 * error, it will return zero
4291 * No need to update "position" as the
4292 * caller will not check it after
4293 * *nr_pages is set to 0.
4300 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
4301 page
= pte_page(huge_ptep_get(pte
));
4304 pages
[i
] = mem_map_offset(page
, pfn_offset
);
4315 if (vaddr
< vma
->vm_end
&& remainder
&&
4316 pfn_offset
< pages_per_huge_page(h
)) {
4318 * We use pfn_offset to avoid touching the pageframes
4319 * of this compound page.
4325 *nr_pages
= remainder
;
4327 * setting position is actually required only if remainder is
4328 * not zero but it's faster not to add a "if (remainder)"
4336 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4338 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4341 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4344 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
4345 unsigned long address
, unsigned long end
, pgprot_t newprot
)
4347 struct mm_struct
*mm
= vma
->vm_mm
;
4348 unsigned long start
= address
;
4351 struct hstate
*h
= hstate_vma(vma
);
4352 unsigned long pages
= 0;
4353 bool shared_pmd
= false;
4354 struct mmu_notifier_range range
;
4357 * In the case of shared PMDs, the area to flush could be beyond
4358 * start/end. Set range.start/range.end to cover the maximum possible
4359 * range if PMD sharing is possible.
4361 mmu_notifier_range_init(&range
, mm
, start
, end
);
4362 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
4364 BUG_ON(address
>= end
);
4365 flush_cache_range(vma
, range
.start
, range
.end
);
4367 mmu_notifier_invalidate_range_start(&range
);
4368 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
4369 for (; address
< end
; address
+= huge_page_size(h
)) {
4371 ptep
= huge_pte_offset(mm
, address
, huge_page_size(h
));
4374 ptl
= huge_pte_lock(h
, mm
, ptep
);
4375 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
4381 pte
= huge_ptep_get(ptep
);
4382 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
4386 if (unlikely(is_hugetlb_entry_migration(pte
))) {
4387 swp_entry_t entry
= pte_to_swp_entry(pte
);
4389 if (is_write_migration_entry(entry
)) {
4392 make_migration_entry_read(&entry
);
4393 newpte
= swp_entry_to_pte(entry
);
4394 set_huge_swap_pte_at(mm
, address
, ptep
,
4395 newpte
, huge_page_size(h
));
4401 if (!huge_pte_none(pte
)) {
4404 old_pte
= huge_ptep_modify_prot_start(vma
, address
, ptep
);
4405 pte
= pte_mkhuge(huge_pte_modify(old_pte
, newprot
));
4406 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
4407 huge_ptep_modify_prot_commit(vma
, address
, ptep
, old_pte
, pte
);
4413 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4414 * may have cleared our pud entry and done put_page on the page table:
4415 * once we release i_mmap_rwsem, another task can do the final put_page
4416 * and that page table be reused and filled with junk. If we actually
4417 * did unshare a page of pmds, flush the range corresponding to the pud.
4420 flush_hugetlb_tlb_range(vma
, range
.start
, range
.end
);
4422 flush_hugetlb_tlb_range(vma
, start
, end
);
4424 * No need to call mmu_notifier_invalidate_range() we are downgrading
4425 * page table protection not changing it to point to a new page.
4427 * See Documentation/vm/mmu_notifier.rst
4429 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
4430 mmu_notifier_invalidate_range_end(&range
);
4432 return pages
<< h
->order
;
4435 int hugetlb_reserve_pages(struct inode
*inode
,
4437 struct vm_area_struct
*vma
,
4438 vm_flags_t vm_flags
)
4441 struct hstate
*h
= hstate_inode(inode
);
4442 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4443 struct resv_map
*resv_map
;
4446 /* This should never happen */
4448 VM_WARN(1, "%s called with a negative range\n", __func__
);
4453 * Only apply hugepage reservation if asked. At fault time, an
4454 * attempt will be made for VM_NORESERVE to allocate a page
4455 * without using reserves
4457 if (vm_flags
& VM_NORESERVE
)
4461 * Shared mappings base their reservation on the number of pages that
4462 * are already allocated on behalf of the file. Private mappings need
4463 * to reserve the full area even if read-only as mprotect() may be
4464 * called to make the mapping read-write. Assume !vma is a shm mapping
4466 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4467 resv_map
= inode_resv_map(inode
);
4469 chg
= region_chg(resv_map
, from
, to
);
4472 resv_map
= resv_map_alloc();
4478 set_vma_resv_map(vma
, resv_map
);
4479 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
4488 * There must be enough pages in the subpool for the mapping. If
4489 * the subpool has a minimum size, there may be some global
4490 * reservations already in place (gbl_reserve).
4492 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
4493 if (gbl_reserve
< 0) {
4499 * Check enough hugepages are available for the reservation.
4500 * Hand the pages back to the subpool if there are not
4502 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
4504 /* put back original number of pages, chg */
4505 (void)hugepage_subpool_put_pages(spool
, chg
);
4510 * Account for the reservations made. Shared mappings record regions
4511 * that have reservations as they are shared by multiple VMAs.
4512 * When the last VMA disappears, the region map says how much
4513 * the reservation was and the page cache tells how much of
4514 * the reservation was consumed. Private mappings are per-VMA and
4515 * only the consumed reservations are tracked. When the VMA
4516 * disappears, the original reservation is the VMA size and the
4517 * consumed reservations are stored in the map. Hence, nothing
4518 * else has to be done for private mappings here
4520 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4521 long add
= region_add(resv_map
, from
, to
);
4523 if (unlikely(chg
> add
)) {
4525 * pages in this range were added to the reserve
4526 * map between region_chg and region_add. This
4527 * indicates a race with alloc_huge_page. Adjust
4528 * the subpool and reserve counts modified above
4529 * based on the difference.
4533 rsv_adjust
= hugepage_subpool_put_pages(spool
,
4535 hugetlb_acct_memory(h
, -rsv_adjust
);
4540 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
4541 /* Don't call region_abort if region_chg failed */
4543 region_abort(resv_map
, from
, to
);
4544 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
4545 kref_put(&resv_map
->refs
, resv_map_release
);
4549 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
4552 struct hstate
*h
= hstate_inode(inode
);
4553 struct resv_map
*resv_map
= inode_resv_map(inode
);
4555 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4559 chg
= region_del(resv_map
, start
, end
);
4561 * region_del() can fail in the rare case where a region
4562 * must be split and another region descriptor can not be
4563 * allocated. If end == LONG_MAX, it will not fail.
4569 spin_lock(&inode
->i_lock
);
4570 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
4571 spin_unlock(&inode
->i_lock
);
4574 * If the subpool has a minimum size, the number of global
4575 * reservations to be released may be adjusted.
4577 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
4578 hugetlb_acct_memory(h
, -gbl_reserve
);
4583 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4584 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
4585 struct vm_area_struct
*vma
,
4586 unsigned long addr
, pgoff_t idx
)
4588 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
4590 unsigned long sbase
= saddr
& PUD_MASK
;
4591 unsigned long s_end
= sbase
+ PUD_SIZE
;
4593 /* Allow segments to share if only one is marked locked */
4594 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4595 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4598 * match the virtual addresses, permission and the alignment of the
4601 if (pmd_index(addr
) != pmd_index(saddr
) ||
4602 vm_flags
!= svm_flags
||
4603 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
4609 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
4611 unsigned long base
= addr
& PUD_MASK
;
4612 unsigned long end
= base
+ PUD_SIZE
;
4615 * check on proper vm_flags and page table alignment
4617 if (vma
->vm_flags
& VM_MAYSHARE
&& range_in_vma(vma
, base
, end
))
4623 * Determine if start,end range within vma could be mapped by shared pmd.
4624 * If yes, adjust start and end to cover range associated with possible
4625 * shared pmd mappings.
4627 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
4628 unsigned long *start
, unsigned long *end
)
4630 unsigned long check_addr
= *start
;
4632 if (!(vma
->vm_flags
& VM_MAYSHARE
))
4635 for (check_addr
= *start
; check_addr
< *end
; check_addr
+= PUD_SIZE
) {
4636 unsigned long a_start
= check_addr
& PUD_MASK
;
4637 unsigned long a_end
= a_start
+ PUD_SIZE
;
4640 * If sharing is possible, adjust start/end if necessary.
4642 if (range_in_vma(vma
, a_start
, a_end
)) {
4643 if (a_start
< *start
)
4652 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4653 * and returns the corresponding pte. While this is not necessary for the
4654 * !shared pmd case because we can allocate the pmd later as well, it makes the
4655 * code much cleaner. pmd allocation is essential for the shared case because
4656 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4657 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4658 * bad pmd for sharing.
4660 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4662 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
4663 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4664 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
4666 struct vm_area_struct
*svma
;
4667 unsigned long saddr
;
4672 if (!vma_shareable(vma
, addr
))
4673 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4675 i_mmap_lock_write(mapping
);
4676 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
4680 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
4682 spte
= huge_pte_offset(svma
->vm_mm
, saddr
,
4683 vma_mmu_pagesize(svma
));
4685 get_page(virt_to_page(spte
));
4694 ptl
= huge_pte_lock(hstate_vma(vma
), mm
, spte
);
4695 if (pud_none(*pud
)) {
4696 pud_populate(mm
, pud
,
4697 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
4700 put_page(virt_to_page(spte
));
4704 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4705 i_mmap_unlock_write(mapping
);
4710 * unmap huge page backed by shared pte.
4712 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4713 * indicated by page_count > 1, unmap is achieved by clearing pud and
4714 * decrementing the ref count. If count == 1, the pte page is not shared.
4716 * called with page table lock held.
4718 * returns: 1 successfully unmapped a shared pte page
4719 * 0 the underlying pte page is not shared, or it is the last user
4721 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4723 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
4724 p4d_t
*p4d
= p4d_offset(pgd
, *addr
);
4725 pud_t
*pud
= pud_offset(p4d
, *addr
);
4727 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
4728 if (page_count(virt_to_page(ptep
)) == 1)
4732 put_page(virt_to_page(ptep
));
4734 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
4737 #define want_pmd_share() (1)
4738 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4739 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4744 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4749 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
4750 unsigned long *start
, unsigned long *end
)
4753 #define want_pmd_share() (0)
4754 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4756 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4757 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
4758 unsigned long addr
, unsigned long sz
)
4765 pgd
= pgd_offset(mm
, addr
);
4766 p4d
= p4d_alloc(mm
, pgd
, addr
);
4769 pud
= pud_alloc(mm
, p4d
, addr
);
4771 if (sz
== PUD_SIZE
) {
4774 BUG_ON(sz
!= PMD_SIZE
);
4775 if (want_pmd_share() && pud_none(*pud
))
4776 pte
= huge_pmd_share(mm
, addr
, pud
);
4778 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4781 BUG_ON(pte
&& pte_present(*pte
) && !pte_huge(*pte
));
4787 * huge_pte_offset() - Walk the page table to resolve the hugepage
4788 * entry at address @addr
4790 * Return: Pointer to page table or swap entry (PUD or PMD) for
4791 * address @addr, or NULL if a p*d_none() entry is encountered and the
4792 * size @sz doesn't match the hugepage size at this level of the page
4795 pte_t
*huge_pte_offset(struct mm_struct
*mm
,
4796 unsigned long addr
, unsigned long sz
)
4803 pgd
= pgd_offset(mm
, addr
);
4804 if (!pgd_present(*pgd
))
4806 p4d
= p4d_offset(pgd
, addr
);
4807 if (!p4d_present(*p4d
))
4810 pud
= pud_offset(p4d
, addr
);
4811 if (sz
!= PUD_SIZE
&& pud_none(*pud
))
4813 /* hugepage or swap? */
4814 if (pud_huge(*pud
) || !pud_present(*pud
))
4815 return (pte_t
*)pud
;
4817 pmd
= pmd_offset(pud
, addr
);
4818 if (sz
!= PMD_SIZE
&& pmd_none(*pmd
))
4820 /* hugepage or swap? */
4821 if (pmd_huge(*pmd
) || !pmd_present(*pmd
))
4822 return (pte_t
*)pmd
;
4827 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4830 * These functions are overwritable if your architecture needs its own
4833 struct page
* __weak
4834 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
4837 return ERR_PTR(-EINVAL
);
4840 struct page
* __weak
4841 follow_huge_pd(struct vm_area_struct
*vma
,
4842 unsigned long address
, hugepd_t hpd
, int flags
, int pdshift
)
4844 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4848 struct page
* __weak
4849 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
4850 pmd_t
*pmd
, int flags
)
4852 struct page
*page
= NULL
;
4856 ptl
= pmd_lockptr(mm
, pmd
);
4859 * make sure that the address range covered by this pmd is not
4860 * unmapped from other threads.
4862 if (!pmd_huge(*pmd
))
4864 pte
= huge_ptep_get((pte_t
*)pmd
);
4865 if (pte_present(pte
)) {
4866 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
4867 if (flags
& FOLL_GET
)
4870 if (is_hugetlb_entry_migration(pte
)) {
4872 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
4876 * hwpoisoned entry is treated as no_page_table in
4877 * follow_page_mask().
4885 struct page
* __weak
4886 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
4887 pud_t
*pud
, int flags
)
4889 if (flags
& FOLL_GET
)
4892 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
4895 struct page
* __weak
4896 follow_huge_pgd(struct mm_struct
*mm
, unsigned long address
, pgd_t
*pgd
, int flags
)
4898 if (flags
& FOLL_GET
)
4901 return pte_page(*(pte_t
*)pgd
) + ((address
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
4904 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
4908 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4909 spin_lock(&hugetlb_lock
);
4910 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
4914 clear_page_huge_active(page
);
4915 list_move_tail(&page
->lru
, list
);
4917 spin_unlock(&hugetlb_lock
);
4921 void putback_active_hugepage(struct page
*page
)
4923 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4924 spin_lock(&hugetlb_lock
);
4925 set_page_huge_active(page
);
4926 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
4927 spin_unlock(&hugetlb_lock
);
4931 void move_hugetlb_state(struct page
*oldpage
, struct page
*newpage
, int reason
)
4933 struct hstate
*h
= page_hstate(oldpage
);
4935 hugetlb_cgroup_migrate(oldpage
, newpage
);
4936 set_page_owner_migrate_reason(newpage
, reason
);
4939 * transfer temporary state of the new huge page. This is
4940 * reverse to other transitions because the newpage is going to
4941 * be final while the old one will be freed so it takes over
4942 * the temporary status.
4944 * Also note that we have to transfer the per-node surplus state
4945 * here as well otherwise the global surplus count will not match
4948 if (PageHugeTemporary(newpage
)) {
4949 int old_nid
= page_to_nid(oldpage
);
4950 int new_nid
= page_to_nid(newpage
);
4952 SetPageHugeTemporary(oldpage
);
4953 ClearPageHugeTemporary(newpage
);
4955 spin_lock(&hugetlb_lock
);
4956 if (h
->surplus_huge_pages_node
[old_nid
]) {
4957 h
->surplus_huge_pages_node
[old_nid
]--;
4958 h
->surplus_huge_pages_node
[new_nid
]++;
4960 spin_unlock(&hugetlb_lock
);