2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37 #include <linux/ratelimit.h>
42 static void rds_iw_send_rdma_complete(struct rds_message
*rm
,
48 case IB_WC_WR_FLUSH_ERR
:
52 notify_status
= RDS_RDMA_SUCCESS
;
55 case IB_WC_REM_ACCESS_ERR
:
56 notify_status
= RDS_RDMA_REMOTE_ERROR
;
60 notify_status
= RDS_RDMA_OTHER_ERROR
;
63 rds_rdma_send_complete(rm
, notify_status
);
66 static void rds_iw_send_unmap_rdma(struct rds_iw_connection
*ic
,
67 struct rm_rdma_op
*op
)
70 ib_dma_unmap_sg(ic
->i_cm_id
->device
,
71 op
->op_sg
, op
->op_nents
,
72 op
->op_write
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
77 static void rds_iw_send_unmap_rm(struct rds_iw_connection
*ic
,
78 struct rds_iw_send_work
*send
,
81 struct rds_message
*rm
= send
->s_rm
;
83 rdsdebug("ic %p send %p rm %p\n", ic
, send
, rm
);
85 ib_dma_unmap_sg(ic
->i_cm_id
->device
,
86 rm
->data
.op_sg
, rm
->data
.op_nents
,
89 if (rm
->rdma
.op_active
) {
90 rds_iw_send_unmap_rdma(ic
, &rm
->rdma
);
92 /* If the user asked for a completion notification on this
93 * message, we can implement three different semantics:
94 * 1. Notify when we received the ACK on the RDS message
95 * that was queued with the RDMA. This provides reliable
96 * notification of RDMA status at the expense of a one-way
98 * 2. Notify when the IB stack gives us the completion event for
100 * 3. Notify when the IB stack gives us the completion event for
101 * the accompanying RDS messages.
102 * Here, we implement approach #3. To implement approach #2,
103 * call rds_rdma_send_complete from the cq_handler. To implement #1,
104 * don't call rds_rdma_send_complete at all, and fall back to the notify
105 * handling in the ACK processing code.
107 * Note: There's no need to explicitly sync any RDMA buffers using
108 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
109 * operation itself unmapped the RDMA buffers, which takes care
112 rds_iw_send_rdma_complete(rm
, wc_status
);
114 if (rm
->rdma
.op_write
)
115 rds_stats_add(s_send_rdma_bytes
, rm
->rdma
.op_bytes
);
117 rds_stats_add(s_recv_rdma_bytes
, rm
->rdma
.op_bytes
);
120 /* If anyone waited for this message to get flushed out, wake
122 rds_message_unmapped(rm
);
128 void rds_iw_send_init_ring(struct rds_iw_connection
*ic
)
130 struct rds_iw_send_work
*send
;
133 for (i
= 0, send
= ic
->i_sends
; i
< ic
->i_send_ring
.w_nr
; i
++, send
++) {
138 send
->s_mapping
= NULL
;
140 send
->s_wr
.next
= NULL
;
141 send
->s_wr
.wr_id
= i
;
142 send
->s_wr
.sg_list
= send
->s_sge
;
143 send
->s_wr
.num_sge
= 1;
144 send
->s_wr
.opcode
= IB_WR_SEND
;
145 send
->s_wr
.send_flags
= 0;
146 send
->s_wr
.ex
.imm_data
= 0;
148 sge
= rds_iw_data_sge(ic
, send
->s_sge
);
151 sge
= rds_iw_header_sge(ic
, send
->s_sge
);
152 sge
->addr
= ic
->i_send_hdrs_dma
+ (i
* sizeof(struct rds_header
));
153 sge
->length
= sizeof(struct rds_header
);
156 send
->s_mr
= ib_alloc_fast_reg_mr(ic
->i_pd
, fastreg_message_size
);
157 if (IS_ERR(send
->s_mr
)) {
158 printk(KERN_WARNING
"RDS/IW: ib_alloc_fast_reg_mr failed\n");
162 send
->s_page_list
= ib_alloc_fast_reg_page_list(
163 ic
->i_cm_id
->device
, fastreg_message_size
);
164 if (IS_ERR(send
->s_page_list
)) {
165 printk(KERN_WARNING
"RDS/IW: ib_alloc_fast_reg_page_list failed\n");
171 void rds_iw_send_clear_ring(struct rds_iw_connection
*ic
)
173 struct rds_iw_send_work
*send
;
176 for (i
= 0, send
= ic
->i_sends
; i
< ic
->i_send_ring
.w_nr
; i
++, send
++) {
178 ib_dereg_mr(send
->s_mr
);
179 BUG_ON(!send
->s_page_list
);
180 ib_free_fast_reg_page_list(send
->s_page_list
);
181 if (send
->s_wr
.opcode
== 0xdead)
184 rds_iw_send_unmap_rm(ic
, send
, IB_WC_WR_FLUSH_ERR
);
186 rds_iw_send_unmap_rdma(ic
, send
->s_op
);
191 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
192 * operations performed in the send path. As the sender allocs and potentially
193 * unallocs the next free entry in the ring it doesn't alter which is
194 * the next to be freed, which is what this is concerned with.
196 void rds_iw_send_cq_comp_handler(struct ib_cq
*cq
, void *context
)
198 struct rds_connection
*conn
= context
;
199 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
201 struct rds_iw_send_work
*send
;
207 rdsdebug("cq %p conn %p\n", cq
, conn
);
208 rds_iw_stats_inc(s_iw_tx_cq_call
);
209 ret
= ib_req_notify_cq(cq
, IB_CQ_NEXT_COMP
);
211 rdsdebug("ib_req_notify_cq send failed: %d\n", ret
);
213 while (ib_poll_cq(cq
, 1, &wc
) > 0) {
214 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
215 (unsigned long long)wc
.wr_id
, wc
.status
, wc
.byte_len
,
216 be32_to_cpu(wc
.ex
.imm_data
));
217 rds_iw_stats_inc(s_iw_tx_cq_event
);
219 if (wc
.status
!= IB_WC_SUCCESS
) {
220 printk(KERN_ERR
"WC Error: status = %d opcode = %d\n", wc
.status
, wc
.opcode
);
224 if (wc
.opcode
== IB_WC_LOCAL_INV
&& wc
.wr_id
== RDS_IW_LOCAL_INV_WR_ID
) {
225 ic
->i_fastreg_posted
= 0;
229 if (wc
.opcode
== IB_WC_FAST_REG_MR
&& wc
.wr_id
== RDS_IW_FAST_REG_WR_ID
) {
230 ic
->i_fastreg_posted
= 1;
234 if (wc
.wr_id
== RDS_IW_ACK_WR_ID
) {
235 if (time_after(jiffies
, ic
->i_ack_queued
+ HZ
/2))
236 rds_iw_stats_inc(s_iw_tx_stalled
);
237 rds_iw_ack_send_complete(ic
);
241 oldest
= rds_iw_ring_oldest(&ic
->i_send_ring
);
243 completed
= rds_iw_ring_completed(&ic
->i_send_ring
, wc
.wr_id
, oldest
);
245 for (i
= 0; i
< completed
; i
++) {
246 send
= &ic
->i_sends
[oldest
];
248 /* In the error case, wc.opcode sometimes contains garbage */
249 switch (send
->s_wr
.opcode
) {
252 rds_iw_send_unmap_rm(ic
, send
, wc
.status
);
254 case IB_WR_FAST_REG_MR
:
255 case IB_WR_RDMA_WRITE
:
256 case IB_WR_RDMA_READ
:
257 case IB_WR_RDMA_READ_WITH_INV
:
258 /* Nothing to be done - the SG list will be unmapped
259 * when the SEND completes. */
262 printk_ratelimited(KERN_NOTICE
263 "RDS/IW: %s: unexpected opcode 0x%x in WR!\n",
264 __func__
, send
->s_wr
.opcode
);
268 send
->s_wr
.opcode
= 0xdead;
269 send
->s_wr
.num_sge
= 1;
270 if (time_after(jiffies
, send
->s_queued
+ HZ
/2))
271 rds_iw_stats_inc(s_iw_tx_stalled
);
273 /* If a RDMA operation produced an error, signal this right
274 * away. If we don't, the subsequent SEND that goes with this
275 * RDMA will be canceled with ERR_WFLUSH, and the application
276 * never learn that the RDMA failed. */
277 if (unlikely(wc
.status
== IB_WC_REM_ACCESS_ERR
&& send
->s_op
)) {
278 struct rds_message
*rm
;
280 rm
= rds_send_get_message(conn
, send
->s_op
);
282 rds_iw_send_rdma_complete(rm
, wc
.status
);
285 oldest
= (oldest
+ 1) % ic
->i_send_ring
.w_nr
;
288 rds_iw_ring_free(&ic
->i_send_ring
, completed
);
290 if (test_and_clear_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
) ||
291 test_bit(0, &conn
->c_map_queued
))
292 queue_delayed_work(rds_wq
, &conn
->c_send_w
, 0);
294 /* We expect errors as the qp is drained during shutdown */
295 if (wc
.status
!= IB_WC_SUCCESS
&& rds_conn_up(conn
)) {
296 rds_iw_conn_error(conn
,
297 "send completion on %pI4 "
298 "had status %u, disconnecting and reconnecting\n",
299 &conn
->c_faddr
, wc
.status
);
305 * This is the main function for allocating credits when sending
308 * Conceptually, we have two counters:
309 * - send credits: this tells us how many WRs we're allowed
310 * to submit without overruning the receiver's queue. For
311 * each SEND WR we post, we decrement this by one.
313 * - posted credits: this tells us how many WRs we recently
314 * posted to the receive queue. This value is transferred
315 * to the peer as a "credit update" in a RDS header field.
316 * Every time we transmit credits to the peer, we subtract
317 * the amount of transferred credits from this counter.
319 * It is essential that we avoid situations where both sides have
320 * exhausted their send credits, and are unable to send new credits
321 * to the peer. We achieve this by requiring that we send at least
322 * one credit update to the peer before exhausting our credits.
323 * When new credits arrive, we subtract one credit that is withheld
324 * until we've posted new buffers and are ready to transmit these
325 * credits (see rds_iw_send_add_credits below).
327 * The RDS send code is essentially single-threaded; rds_send_xmit
328 * grabs c_send_lock to ensure exclusive access to the send ring.
329 * However, the ACK sending code is independent and can race with
332 * In the send path, we need to update the counters for send credits
333 * and the counter of posted buffers atomically - when we use the
334 * last available credit, we cannot allow another thread to race us
335 * and grab the posted credits counter. Hence, we have to use a
336 * spinlock to protect the credit counter, or use atomics.
338 * Spinlocks shared between the send and the receive path are bad,
339 * because they create unnecessary delays. An early implementation
340 * using a spinlock showed a 5% degradation in throughput at some
343 * This implementation avoids spinlocks completely, putting both
344 * counters into a single atomic, and updating that atomic using
345 * atomic_add (in the receive path, when receiving fresh credits),
346 * and using atomic_cmpxchg when updating the two counters.
348 int rds_iw_send_grab_credits(struct rds_iw_connection
*ic
,
349 u32 wanted
, u32
*adv_credits
, int need_posted
, int max_posted
)
351 unsigned int avail
, posted
, got
= 0, advertise
;
360 oldval
= newval
= atomic_read(&ic
->i_credits
);
361 posted
= IB_GET_POST_CREDITS(oldval
);
362 avail
= IB_GET_SEND_CREDITS(oldval
);
364 rdsdebug("wanted=%u credits=%u posted=%u\n",
365 wanted
, avail
, posted
);
367 /* The last credit must be used to send a credit update. */
368 if (avail
&& !posted
)
371 if (avail
< wanted
) {
372 struct rds_connection
*conn
= ic
->i_cm_id
->context
;
374 /* Oops, there aren't that many credits left! */
375 set_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
);
378 /* Sometimes you get what you want, lalala. */
381 newval
-= IB_SET_SEND_CREDITS(got
);
384 * If need_posted is non-zero, then the caller wants
385 * the posted regardless of whether any send credits are
388 if (posted
&& (got
|| need_posted
)) {
389 advertise
= min_t(unsigned int, posted
, max_posted
);
390 newval
-= IB_SET_POST_CREDITS(advertise
);
393 /* Finally bill everything */
394 if (atomic_cmpxchg(&ic
->i_credits
, oldval
, newval
) != oldval
)
397 *adv_credits
= advertise
;
401 void rds_iw_send_add_credits(struct rds_connection
*conn
, unsigned int credits
)
403 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
408 rdsdebug("credits=%u current=%u%s\n",
410 IB_GET_SEND_CREDITS(atomic_read(&ic
->i_credits
)),
411 test_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
) ? ", ll_send_full" : "");
413 atomic_add(IB_SET_SEND_CREDITS(credits
), &ic
->i_credits
);
414 if (test_and_clear_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
))
415 queue_delayed_work(rds_wq
, &conn
->c_send_w
, 0);
417 WARN_ON(IB_GET_SEND_CREDITS(credits
) >= 16384);
419 rds_iw_stats_inc(s_iw_rx_credit_updates
);
422 void rds_iw_advertise_credits(struct rds_connection
*conn
, unsigned int posted
)
424 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
429 atomic_add(IB_SET_POST_CREDITS(posted
), &ic
->i_credits
);
431 /* Decide whether to send an update to the peer now.
432 * If we would send a credit update for every single buffer we
433 * post, we would end up with an ACK storm (ACK arrives,
434 * consumes buffer, we refill the ring, send ACK to remote
435 * advertising the newly posted buffer... ad inf)
437 * Performance pretty much depends on how often we send
438 * credit updates - too frequent updates mean lots of ACKs.
439 * Too infrequent updates, and the peer will run out of
440 * credits and has to throttle.
441 * For the time being, 16 seems to be a good compromise.
443 if (IB_GET_POST_CREDITS(atomic_read(&ic
->i_credits
)) >= 16)
444 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
448 rds_iw_xmit_populate_wr(struct rds_iw_connection
*ic
,
449 struct rds_iw_send_work
*send
, unsigned int pos
,
450 unsigned long buffer
, unsigned int length
,
455 WARN_ON(pos
!= send
- ic
->i_sends
);
457 send
->s_wr
.send_flags
= send_flags
;
458 send
->s_wr
.opcode
= IB_WR_SEND
;
459 send
->s_wr
.num_sge
= 2;
460 send
->s_wr
.next
= NULL
;
461 send
->s_queued
= jiffies
;
465 sge
= rds_iw_data_sge(ic
, send
->s_sge
);
467 sge
->length
= length
;
468 sge
->lkey
= rds_iw_local_dma_lkey(ic
);
470 sge
= rds_iw_header_sge(ic
, send
->s_sge
);
472 /* We're sending a packet with no payload. There is only
474 send
->s_wr
.num_sge
= 1;
475 sge
= &send
->s_sge
[0];
478 sge
->addr
= ic
->i_send_hdrs_dma
+ (pos
* sizeof(struct rds_header
));
479 sge
->length
= sizeof(struct rds_header
);
480 sge
->lkey
= rds_iw_local_dma_lkey(ic
);
484 * This can be called multiple times for a given message. The first time
485 * we see a message we map its scatterlist into the IB device so that
486 * we can provide that mapped address to the IB scatter gather entries
487 * in the IB work requests. We translate the scatterlist into a series
488 * of work requests that fragment the message. These work requests complete
489 * in order so we pass ownership of the message to the completion handler
490 * once we send the final fragment.
492 * The RDS core uses the c_send_lock to only enter this function once
493 * per connection. This makes sure that the tx ring alloc/unalloc pairs
494 * don't get out of sync and confuse the ring.
496 int rds_iw_xmit(struct rds_connection
*conn
, struct rds_message
*rm
,
497 unsigned int hdr_off
, unsigned int sg
, unsigned int off
)
499 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
500 struct ib_device
*dev
= ic
->i_cm_id
->device
;
501 struct rds_iw_send_work
*send
= NULL
;
502 struct rds_iw_send_work
*first
;
503 struct rds_iw_send_work
*prev
;
504 struct ib_send_wr
*failed_wr
;
505 struct scatterlist
*scat
;
515 int flow_controlled
= 0;
517 BUG_ON(off
% RDS_FRAG_SIZE
);
518 BUG_ON(hdr_off
!= 0 && hdr_off
!= sizeof(struct rds_header
));
520 /* Fastreg support */
521 if (rds_rdma_cookie_key(rm
->m_rdma_cookie
) && !ic
->i_fastreg_posted
) {
526 /* FIXME we may overallocate here */
527 if (be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
) == 0)
530 i
= ceil(be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
), RDS_FRAG_SIZE
);
532 work_alloc
= rds_iw_ring_alloc(&ic
->i_send_ring
, i
, &pos
);
533 if (work_alloc
== 0) {
534 set_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
);
535 rds_iw_stats_inc(s_iw_tx_ring_full
);
540 credit_alloc
= work_alloc
;
542 credit_alloc
= rds_iw_send_grab_credits(ic
, work_alloc
, &posted
, 0, RDS_MAX_ADV_CREDIT
);
543 adv_credits
+= posted
;
544 if (credit_alloc
< work_alloc
) {
545 rds_iw_ring_unalloc(&ic
->i_send_ring
, work_alloc
- credit_alloc
);
546 work_alloc
= credit_alloc
;
549 if (work_alloc
== 0) {
550 set_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
);
551 rds_iw_stats_inc(s_iw_tx_throttle
);
557 /* map the message the first time we see it */
560 printk(KERN_NOTICE "rds_iw_xmit prep msg dport=%u flags=0x%x len=%d\n",
561 be16_to_cpu(rm->m_inc.i_hdr.h_dport),
562 rm->m_inc.i_hdr.h_flags,
563 be32_to_cpu(rm->m_inc.i_hdr.h_len));
565 if (rm
->data
.op_nents
) {
566 rm
->data
.op_count
= ib_dma_map_sg(dev
,
570 rdsdebug("ic %p mapping rm %p: %d\n", ic
, rm
, rm
->data
.op_count
);
571 if (rm
->data
.op_count
== 0) {
572 rds_iw_stats_inc(s_iw_tx_sg_mapping_failure
);
573 rds_iw_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
574 ret
= -ENOMEM
; /* XXX ? */
578 rm
->data
.op_count
= 0;
581 ic
->i_unsignaled_wrs
= rds_iw_sysctl_max_unsig_wrs
;
582 ic
->i_unsignaled_bytes
= rds_iw_sysctl_max_unsig_bytes
;
583 rds_message_addref(rm
);
586 /* Finalize the header */
587 if (test_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
))
588 rm
->m_inc
.i_hdr
.h_flags
|= RDS_FLAG_ACK_REQUIRED
;
589 if (test_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
))
590 rm
->m_inc
.i_hdr
.h_flags
|= RDS_FLAG_RETRANSMITTED
;
592 /* If it has a RDMA op, tell the peer we did it. This is
593 * used by the peer to release use-once RDMA MRs. */
594 if (rm
->rdma
.op_active
) {
595 struct rds_ext_header_rdma ext_hdr
;
597 ext_hdr
.h_rdma_rkey
= cpu_to_be32(rm
->rdma
.op_rkey
);
598 rds_message_add_extension(&rm
->m_inc
.i_hdr
,
599 RDS_EXTHDR_RDMA
, &ext_hdr
, sizeof(ext_hdr
));
601 if (rm
->m_rdma_cookie
) {
602 rds_message_add_rdma_dest_extension(&rm
->m_inc
.i_hdr
,
603 rds_rdma_cookie_key(rm
->m_rdma_cookie
),
604 rds_rdma_cookie_offset(rm
->m_rdma_cookie
));
607 /* Note - rds_iw_piggyb_ack clears the ACK_REQUIRED bit, so
608 * we should not do this unless we have a chance of at least
609 * sticking the header into the send ring. Which is why we
610 * should call rds_iw_ring_alloc first. */
611 rm
->m_inc
.i_hdr
.h_ack
= cpu_to_be64(rds_iw_piggyb_ack(ic
));
612 rds_message_make_checksum(&rm
->m_inc
.i_hdr
);
615 * Update adv_credits since we reset the ACK_REQUIRED bit.
617 rds_iw_send_grab_credits(ic
, 0, &posted
, 1, RDS_MAX_ADV_CREDIT
- adv_credits
);
618 adv_credits
+= posted
;
619 BUG_ON(adv_credits
> 255);
622 send
= &ic
->i_sends
[pos
];
625 scat
= &rm
->data
.op_sg
[sg
];
629 /* Sometimes you want to put a fence between an RDMA
630 * READ and the following SEND.
631 * We could either do this all the time
632 * or when requested by the user. Right now, we let
633 * the application choose.
635 if (rm
->rdma
.op_active
&& rm
->rdma
.op_fence
)
636 send_flags
= IB_SEND_FENCE
;
639 * We could be copying the header into the unused tail of the page.
640 * That would need to be changed in the future when those pages might
641 * be mapped userspace pages or page cache pages. So instead we always
642 * use a second sge and our long-lived ring of mapped headers. We send
643 * the header after the data so that the data payload can be aligned on
647 /* handle a 0-len message */
648 if (be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
) == 0) {
649 rds_iw_xmit_populate_wr(ic
, send
, pos
, 0, 0, send_flags
);
653 /* if there's data reference it with a chain of work reqs */
654 for (; i
< work_alloc
&& scat
!= &rm
->data
.op_sg
[rm
->data
.op_count
]; i
++) {
657 send
= &ic
->i_sends
[pos
];
659 len
= min(RDS_FRAG_SIZE
, ib_sg_dma_len(dev
, scat
) - off
);
660 rds_iw_xmit_populate_wr(ic
, send
, pos
,
661 ib_sg_dma_address(dev
, scat
) + off
, len
,
665 * We want to delay signaling completions just enough to get
666 * the batching benefits but not so much that we create dead time
669 if (ic
->i_unsignaled_wrs
-- == 0) {
670 ic
->i_unsignaled_wrs
= rds_iw_sysctl_max_unsig_wrs
;
671 send
->s_wr
.send_flags
|= IB_SEND_SIGNALED
| IB_SEND_SOLICITED
;
674 ic
->i_unsignaled_bytes
-= len
;
675 if (ic
->i_unsignaled_bytes
<= 0) {
676 ic
->i_unsignaled_bytes
= rds_iw_sysctl_max_unsig_bytes
;
677 send
->s_wr
.send_flags
|= IB_SEND_SIGNALED
| IB_SEND_SOLICITED
;
681 * Always signal the last one if we're stopping due to flow control.
683 if (flow_controlled
&& i
== (work_alloc
-1))
684 send
->s_wr
.send_flags
|= IB_SEND_SIGNALED
| IB_SEND_SOLICITED
;
686 rdsdebug("send %p wr %p num_sge %u next %p\n", send
,
687 &send
->s_wr
, send
->s_wr
.num_sge
, send
->s_wr
.next
);
691 if (off
== ib_sg_dma_len(dev
, scat
)) {
697 /* Tack on the header after the data. The header SGE should already
698 * have been set up to point to the right header buffer. */
699 memcpy(&ic
->i_send_hdrs
[pos
], &rm
->m_inc
.i_hdr
, sizeof(struct rds_header
));
702 struct rds_header
*hdr
= &ic
->i_send_hdrs
[pos
];
704 printk(KERN_NOTICE
"send WR dport=%u flags=0x%x len=%d\n",
705 be16_to_cpu(hdr
->h_dport
),
707 be32_to_cpu(hdr
->h_len
));
710 struct rds_header
*hdr
= &ic
->i_send_hdrs
[pos
];
712 /* add credit and redo the header checksum */
713 hdr
->h_credit
= adv_credits
;
714 rds_message_make_checksum(hdr
);
716 rds_iw_stats_inc(s_iw_tx_credit_updates
);
720 prev
->s_wr
.next
= &send
->s_wr
;
723 pos
= (pos
+ 1) % ic
->i_send_ring
.w_nr
;
726 /* Account the RDS header in the number of bytes we sent, but just once.
727 * The caller has no concept of fragmentation. */
729 sent
+= sizeof(struct rds_header
);
731 /* if we finished the message then send completion owns it */
732 if (scat
== &rm
->data
.op_sg
[rm
->data
.op_count
]) {
733 prev
->s_rm
= ic
->i_rm
;
734 prev
->s_wr
.send_flags
|= IB_SEND_SIGNALED
| IB_SEND_SOLICITED
;
738 if (i
< work_alloc
) {
739 rds_iw_ring_unalloc(&ic
->i_send_ring
, work_alloc
- i
);
742 if (ic
->i_flowctl
&& i
< credit_alloc
)
743 rds_iw_send_add_credits(conn
, credit_alloc
- i
);
745 /* XXX need to worry about failed_wr and partial sends. */
746 failed_wr
= &first
->s_wr
;
747 ret
= ib_post_send(ic
->i_cm_id
->qp
, &first
->s_wr
, &failed_wr
);
748 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic
,
749 first
, &first
->s_wr
, ret
, failed_wr
);
750 BUG_ON(failed_wr
!= &first
->s_wr
);
752 printk(KERN_WARNING
"RDS/IW: ib_post_send to %pI4 "
753 "returned %d\n", &conn
->c_faddr
, ret
);
754 rds_iw_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
756 ic
->i_rm
= prev
->s_rm
;
768 static void rds_iw_build_send_fastreg(struct rds_iw_device
*rds_iwdev
, struct rds_iw_connection
*ic
, struct rds_iw_send_work
*send
, int nent
, int len
, u64 sg_addr
)
770 BUG_ON(nent
> send
->s_page_list
->max_page_list_len
);
772 * Perform a WR for the fast_reg_mr. Each individual page
773 * in the sg list is added to the fast reg page list and placed
774 * inside the fast_reg_mr WR.
776 send
->s_wr
.opcode
= IB_WR_FAST_REG_MR
;
777 send
->s_wr
.wr
.fast_reg
.length
= len
;
778 send
->s_wr
.wr
.fast_reg
.rkey
= send
->s_mr
->rkey
;
779 send
->s_wr
.wr
.fast_reg
.page_list
= send
->s_page_list
;
780 send
->s_wr
.wr
.fast_reg
.page_list_len
= nent
;
781 send
->s_wr
.wr
.fast_reg
.page_shift
= PAGE_SHIFT
;
782 send
->s_wr
.wr
.fast_reg
.access_flags
= IB_ACCESS_REMOTE_WRITE
;
783 send
->s_wr
.wr
.fast_reg
.iova_start
= sg_addr
;
785 ib_update_fast_reg_key(send
->s_mr
, send
->s_remap_count
++);
788 int rds_iw_xmit_rdma(struct rds_connection
*conn
, struct rm_rdma_op
*op
)
790 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
791 struct rds_iw_send_work
*send
= NULL
;
792 struct rds_iw_send_work
*first
;
793 struct rds_iw_send_work
*prev
;
794 struct ib_send_wr
*failed_wr
;
795 struct rds_iw_device
*rds_iwdev
;
796 struct scatterlist
*scat
;
798 u64 remote_addr
= op
->op_remote_addr
;
807 rds_iwdev
= ib_get_client_data(ic
->i_cm_id
->device
, &rds_iw_client
);
809 /* map the message the first time we see it */
810 if (!op
->op_mapped
) {
811 op
->op_count
= ib_dma_map_sg(ic
->i_cm_id
->device
,
812 op
->op_sg
, op
->op_nents
, (op
->op_write
) ?
813 DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
814 rdsdebug("ic %p mapping op %p: %d\n", ic
, op
, op
->op_count
);
815 if (op
->op_count
== 0) {
816 rds_iw_stats_inc(s_iw_tx_sg_mapping_failure
);
817 ret
= -ENOMEM
; /* XXX ? */
825 /* Alloc space on the send queue for the fastreg */
826 work_alloc
= rds_iw_ring_alloc(&ic
->i_send_ring
, 1, &fr_pos
);
827 if (work_alloc
!= 1) {
828 rds_iw_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
829 rds_iw_stats_inc(s_iw_tx_ring_full
);
836 * Instead of knowing how to return a partial rdma read/write we insist that there
837 * be enough work requests to send the entire message.
839 i
= ceil(op
->op_count
, rds_iwdev
->max_sge
);
841 work_alloc
= rds_iw_ring_alloc(&ic
->i_send_ring
, i
, &pos
);
842 if (work_alloc
!= i
) {
843 rds_iw_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
844 rds_iw_stats_inc(s_iw_tx_ring_full
);
849 send
= &ic
->i_sends
[pos
];
851 first
= prev
= &ic
->i_sends
[fr_pos
];
856 scat
= &op
->op_sg
[0];
858 num_sge
= op
->op_count
;
860 for (i
= 0; i
< work_alloc
&& scat
!= &op
->op_sg
[op
->op_count
]; i
++) {
861 send
->s_wr
.send_flags
= 0;
862 send
->s_queued
= jiffies
;
865 * We want to delay signaling completions just enough to get
866 * the batching benefits but not so much that we create dead time on the wire.
868 if (ic
->i_unsignaled_wrs
-- == 0) {
869 ic
->i_unsignaled_wrs
= rds_iw_sysctl_max_unsig_wrs
;
870 send
->s_wr
.send_flags
= IB_SEND_SIGNALED
;
873 /* To avoid the need to have the plumbing to invalidate the fastreg_mr used
874 * for local access after RDS is finished with it, using
875 * IB_WR_RDMA_READ_WITH_INV will invalidate it after the read has completed.
878 send
->s_wr
.opcode
= IB_WR_RDMA_WRITE
;
880 send
->s_wr
.opcode
= IB_WR_RDMA_READ_WITH_INV
;
882 send
->s_wr
.wr
.rdma
.remote_addr
= remote_addr
;
883 send
->s_wr
.wr
.rdma
.rkey
= op
->op_rkey
;
886 if (num_sge
> rds_iwdev
->max_sge
) {
887 send
->s_wr
.num_sge
= rds_iwdev
->max_sge
;
888 num_sge
-= rds_iwdev
->max_sge
;
890 send
->s_wr
.num_sge
= num_sge
;
892 send
->s_wr
.next
= NULL
;
895 prev
->s_wr
.next
= &send
->s_wr
;
897 for (j
= 0; j
< send
->s_wr
.num_sge
&& scat
!= &op
->op_sg
[op
->op_count
]; j
++) {
898 len
= ib_sg_dma_len(ic
->i_cm_id
->device
, scat
);
900 if (send
->s_wr
.opcode
== IB_WR_RDMA_READ_WITH_INV
)
901 send
->s_page_list
->page_list
[j
] = ib_sg_dma_address(ic
->i_cm_id
->device
, scat
);
903 send
->s_sge
[j
].addr
= ib_sg_dma_address(ic
->i_cm_id
->device
, scat
);
904 send
->s_sge
[j
].length
= len
;
905 send
->s_sge
[j
].lkey
= rds_iw_local_dma_lkey(ic
);
909 rdsdebug("ic %p sent %d remote_addr %llu\n", ic
, sent
, remote_addr
);
915 if (send
->s_wr
.opcode
== IB_WR_RDMA_READ_WITH_INV
) {
916 send
->s_wr
.num_sge
= 1;
917 send
->s_sge
[0].addr
= conn
->c_xmit_rm
->m_rs
->rs_user_addr
;
918 send
->s_sge
[0].length
= conn
->c_xmit_rm
->m_rs
->rs_user_bytes
;
919 send
->s_sge
[0].lkey
= ic
->i_sends
[fr_pos
].s_mr
->lkey
;
922 rdsdebug("send %p wr %p num_sge %u next %p\n", send
,
923 &send
->s_wr
, send
->s_wr
.num_sge
, send
->s_wr
.next
);
926 if (++send
== &ic
->i_sends
[ic
->i_send_ring
.w_nr
])
930 /* if we finished the message then send completion owns it */
931 if (scat
== &op
->op_sg
[op
->op_count
])
932 first
->s_wr
.send_flags
= IB_SEND_SIGNALED
;
934 if (i
< work_alloc
) {
935 rds_iw_ring_unalloc(&ic
->i_send_ring
, work_alloc
- i
);
939 /* On iWARP, local memory access by a remote system (ie, RDMA Read) is not
940 * recommended. Putting the lkey on the wire is a security hole, as it can
941 * allow for memory access to all of memory on the remote system. Some
942 * adapters do not allow using the lkey for this at all. To bypass this use a
943 * fastreg_mr (or possibly a dma_mr)
946 rds_iw_build_send_fastreg(rds_iwdev
, ic
, &ic
->i_sends
[fr_pos
],
947 op
->op_count
, sent
, conn
->c_xmit_rm
->m_rs
->rs_user_addr
);
951 failed_wr
= &first
->s_wr
;
952 ret
= ib_post_send(ic
->i_cm_id
->qp
, &first
->s_wr
, &failed_wr
);
953 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic
,
954 first
, &first
->s_wr
, ret
, failed_wr
);
955 BUG_ON(failed_wr
!= &first
->s_wr
);
957 printk(KERN_WARNING
"RDS/IW: rdma ib_post_send to %pI4 "
958 "returned %d\n", &conn
->c_faddr
, ret
);
959 rds_iw_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
967 void rds_iw_xmit_complete(struct rds_connection
*conn
)
969 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
971 /* We may have a pending ACK or window update we were unable
972 * to send previously (due to flow control). Try again. */
973 rds_iw_attempt_ack(ic
);