2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
32 * far_offset (stored in bit 16 of layout )
34 * The data to be stored is divided into chunks using chunksize.
35 * Each device is divided into far_copies sections.
36 * In each section, chunks are laid out in a style similar to raid0, but
37 * near_copies copies of each chunk is stored (each on a different drive).
38 * The starting device for each section is offset near_copies from the starting
39 * device of the previous section.
40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
42 * near_copies and far_copies must be at least one, and their product is at most
45 * If far_offset is true, then the far_copies are handled a bit differently.
46 * The copies are still in different stripes, but instead of be very far apart
47 * on disk, there are adjacent stripes.
51 * Number of guaranteed r10bios in case of extreme VM load:
53 #define NR_RAID10_BIOS 256
55 static void unplug_slaves(mddev_t
*mddev
);
57 static void allow_barrier(conf_t
*conf
);
58 static void lower_barrier(conf_t
*conf
);
60 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
64 int size
= offsetof(struct r10bio_s
, devs
[conf
->copies
]);
66 /* allocate a r10bio with room for raid_disks entries in the bios array */
67 r10_bio
= kzalloc(size
, gfp_flags
);
69 unplug_slaves(conf
->mddev
);
74 static void r10bio_pool_free(void *r10_bio
, void *data
)
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
92 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
101 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
103 unplug_slaves(conf
->mddev
);
107 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
108 nalloc
= conf
->copies
; /* resync */
110 nalloc
= 2; /* recovery */
115 for (j
= nalloc
; j
-- ; ) {
116 bio
= bio_alloc(gfp_flags
, RESYNC_PAGES
);
119 r10_bio
->devs
[j
].bio
= bio
;
122 * Allocate RESYNC_PAGES data pages and attach them
125 for (j
= 0 ; j
< nalloc
; j
++) {
126 bio
= r10_bio
->devs
[j
].bio
;
127 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
128 page
= alloc_page(gfp_flags
);
132 bio
->bi_io_vec
[i
].bv_page
= page
;
140 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
142 for (i
= 0; i
< RESYNC_PAGES
; i
++)
143 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
146 while ( ++j
< nalloc
)
147 bio_put(r10_bio
->devs
[j
].bio
);
148 r10bio_pool_free(r10_bio
, conf
);
152 static void r10buf_pool_free(void *__r10_bio
, void *data
)
156 r10bio_t
*r10bio
= __r10_bio
;
159 for (j
=0; j
< conf
->copies
; j
++) {
160 struct bio
*bio
= r10bio
->devs
[j
].bio
;
162 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
163 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
164 bio
->bi_io_vec
[i
].bv_page
= NULL
;
169 r10bio_pool_free(r10bio
, conf
);
172 static void put_all_bios(conf_t
*conf
, r10bio_t
*r10_bio
)
176 for (i
= 0; i
< conf
->copies
; i
++) {
177 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
178 if (*bio
&& *bio
!= IO_BLOCKED
)
184 static void free_r10bio(r10bio_t
*r10_bio
)
186 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
189 * Wake up any possible resync thread that waits for the device
194 put_all_bios(conf
, r10_bio
);
195 mempool_free(r10_bio
, conf
->r10bio_pool
);
198 static void put_buf(r10bio_t
*r10_bio
)
200 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
202 mempool_free(r10_bio
, conf
->r10buf_pool
);
207 static void reschedule_retry(r10bio_t
*r10_bio
)
210 mddev_t
*mddev
= r10_bio
->mddev
;
211 conf_t
*conf
= mddev_to_conf(mddev
);
213 spin_lock_irqsave(&conf
->device_lock
, flags
);
214 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
216 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
218 md_wakeup_thread(mddev
->thread
);
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
226 static void raid_end_bio_io(r10bio_t
*r10_bio
)
228 struct bio
*bio
= r10_bio
->master_bio
;
230 bio_endio(bio
, bio
->bi_size
,
231 test_bit(R10BIO_Uptodate
, &r10_bio
->state
) ? 0 : -EIO
);
232 free_r10bio(r10_bio
);
236 * Update disk head position estimator based on IRQ completion info.
238 static inline void update_head_pos(int slot
, r10bio_t
*r10_bio
)
240 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
242 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
243 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
246 static int raid10_end_read_request(struct bio
*bio
, unsigned int bytes_done
, int error
)
248 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
249 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
251 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
256 slot
= r10_bio
->read_slot
;
257 dev
= r10_bio
->devs
[slot
].devnum
;
259 * this branch is our 'one mirror IO has finished' event handler:
261 update_head_pos(slot
, r10_bio
);
265 * Set R10BIO_Uptodate in our master bio, so that
266 * we will return a good error code to the higher
267 * levels even if IO on some other mirrored buffer fails.
269 * The 'master' represents the composite IO operation to
270 * user-side. So if something waits for IO, then it will
271 * wait for the 'master' bio.
273 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
274 raid_end_bio_io(r10_bio
);
279 char b
[BDEVNAME_SIZE
];
280 if (printk_ratelimit())
281 printk(KERN_ERR
"raid10: %s: rescheduling sector %llu\n",
282 bdevname(conf
->mirrors
[dev
].rdev
->bdev
,b
), (unsigned long long)r10_bio
->sector
);
283 reschedule_retry(r10_bio
);
286 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
290 static int raid10_end_write_request(struct bio
*bio
, unsigned int bytes_done
, int error
)
292 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
293 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
295 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
300 for (slot
= 0; slot
< conf
->copies
; slot
++)
301 if (r10_bio
->devs
[slot
].bio
== bio
)
303 dev
= r10_bio
->devs
[slot
].devnum
;
306 * this branch is our 'one mirror IO has finished' event handler:
309 md_error(r10_bio
->mddev
, conf
->mirrors
[dev
].rdev
);
310 /* an I/O failed, we can't clear the bitmap */
311 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
314 * Set R10BIO_Uptodate in our master bio, so that
315 * we will return a good error code for to the higher
316 * levels even if IO on some other mirrored buffer fails.
318 * The 'master' represents the composite IO operation to
319 * user-side. So if something waits for IO, then it will
320 * wait for the 'master' bio.
322 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
324 update_head_pos(slot
, r10_bio
);
328 * Let's see if all mirrored write operations have finished
331 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
332 /* clear the bitmap if all writes complete successfully */
333 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
335 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
337 md_write_end(r10_bio
->mddev
);
338 raid_end_bio_io(r10_bio
);
341 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
347 * RAID10 layout manager
348 * Aswell as the chunksize and raid_disks count, there are two
349 * parameters: near_copies and far_copies.
350 * near_copies * far_copies must be <= raid_disks.
351 * Normally one of these will be 1.
352 * If both are 1, we get raid0.
353 * If near_copies == raid_disks, we get raid1.
355 * Chunks are layed out in raid0 style with near_copies copies of the
356 * first chunk, followed by near_copies copies of the next chunk and
358 * If far_copies > 1, then after 1/far_copies of the array has been assigned
359 * as described above, we start again with a device offset of near_copies.
360 * So we effectively have another copy of the whole array further down all
361 * the drives, but with blocks on different drives.
362 * With this layout, and block is never stored twice on the one device.
364 * raid10_find_phys finds the sector offset of a given virtual sector
365 * on each device that it is on.
367 * raid10_find_virt does the reverse mapping, from a device and a
368 * sector offset to a virtual address
371 static void raid10_find_phys(conf_t
*conf
, r10bio_t
*r10bio
)
381 /* now calculate first sector/dev */
382 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
383 sector
= r10bio
->sector
& conf
->chunk_mask
;
385 chunk
*= conf
->near_copies
;
387 dev
= sector_div(stripe
, conf
->raid_disks
);
388 if (conf
->far_offset
)
389 stripe
*= conf
->far_copies
;
391 sector
+= stripe
<< conf
->chunk_shift
;
393 /* and calculate all the others */
394 for (n
=0; n
< conf
->near_copies
; n
++) {
397 r10bio
->devs
[slot
].addr
= sector
;
398 r10bio
->devs
[slot
].devnum
= d
;
401 for (f
= 1; f
< conf
->far_copies
; f
++) {
402 d
+= conf
->near_copies
;
403 if (d
>= conf
->raid_disks
)
404 d
-= conf
->raid_disks
;
406 r10bio
->devs
[slot
].devnum
= d
;
407 r10bio
->devs
[slot
].addr
= s
;
411 if (dev
>= conf
->raid_disks
) {
413 sector
+= (conf
->chunk_mask
+ 1);
416 BUG_ON(slot
!= conf
->copies
);
419 static sector_t
raid10_find_virt(conf_t
*conf
, sector_t sector
, int dev
)
421 sector_t offset
, chunk
, vchunk
;
423 offset
= sector
& conf
->chunk_mask
;
424 if (conf
->far_offset
) {
426 chunk
= sector
>> conf
->chunk_shift
;
427 fc
= sector_div(chunk
, conf
->far_copies
);
428 dev
-= fc
* conf
->near_copies
;
430 dev
+= conf
->raid_disks
;
432 while (sector
> conf
->stride
) {
433 sector
-= conf
->stride
;
434 if (dev
< conf
->near_copies
)
435 dev
+= conf
->raid_disks
- conf
->near_copies
;
437 dev
-= conf
->near_copies
;
439 chunk
= sector
>> conf
->chunk_shift
;
441 vchunk
= chunk
* conf
->raid_disks
+ dev
;
442 sector_div(vchunk
, conf
->near_copies
);
443 return (vchunk
<< conf
->chunk_shift
) + offset
;
447 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449 * @bio: the buffer head that's been built up so far
450 * @biovec: the request that could be merged to it.
452 * Return amount of bytes we can accept at this offset
453 * If near_copies == raid_disk, there are no striping issues,
454 * but in that case, the function isn't called at all.
456 static int raid10_mergeable_bvec(request_queue_t
*q
, struct bio
*bio
,
457 struct bio_vec
*bio_vec
)
459 mddev_t
*mddev
= q
->queuedata
;
460 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
462 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
463 unsigned int bio_sectors
= bio
->bi_size
>> 9;
465 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
466 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
467 if (max
<= bio_vec
->bv_len
&& bio_sectors
== 0)
468 return bio_vec
->bv_len
;
474 * This routine returns the disk from which the requested read should
475 * be done. There is a per-array 'next expected sequential IO' sector
476 * number - if this matches on the next IO then we use the last disk.
477 * There is also a per-disk 'last know head position' sector that is
478 * maintained from IRQ contexts, both the normal and the resync IO
479 * completion handlers update this position correctly. If there is no
480 * perfect sequential match then we pick the disk whose head is closest.
482 * If there are 2 mirrors in the same 2 devices, performance degrades
483 * because position is mirror, not device based.
485 * The rdev for the device selected will have nr_pending incremented.
489 * FIXME: possibly should rethink readbalancing and do it differently
490 * depending on near_copies / far_copies geometry.
492 static int read_balance(conf_t
*conf
, r10bio_t
*r10_bio
)
494 const unsigned long this_sector
= r10_bio
->sector
;
495 int disk
, slot
, nslot
;
496 const int sectors
= r10_bio
->sectors
;
497 sector_t new_distance
, current_distance
;
500 raid10_find_phys(conf
, r10_bio
);
503 * Check if we can balance. We can balance on the whole
504 * device if no resync is going on (recovery is ok), or below
505 * the resync window. We take the first readable disk when
506 * above the resync window.
508 if (conf
->mddev
->recovery_cp
< MaxSector
509 && (this_sector
+ sectors
>= conf
->next_resync
)) {
510 /* make sure that disk is operational */
512 disk
= r10_bio
->devs
[slot
].devnum
;
514 while ((rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
515 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
516 !test_bit(In_sync
, &rdev
->flags
)) {
518 if (slot
== conf
->copies
) {
523 disk
= r10_bio
->devs
[slot
].devnum
;
529 /* make sure the disk is operational */
531 disk
= r10_bio
->devs
[slot
].devnum
;
532 while ((rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
533 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
534 !test_bit(In_sync
, &rdev
->flags
)) {
536 if (slot
== conf
->copies
) {
540 disk
= r10_bio
->devs
[slot
].devnum
;
544 current_distance
= abs(r10_bio
->devs
[slot
].addr
-
545 conf
->mirrors
[disk
].head_position
);
547 /* Find the disk whose head is closest */
549 for (nslot
= slot
; nslot
< conf
->copies
; nslot
++) {
550 int ndisk
= r10_bio
->devs
[nslot
].devnum
;
553 if ((rdev
=rcu_dereference(conf
->mirrors
[ndisk
].rdev
)) == NULL
||
554 r10_bio
->devs
[nslot
].bio
== IO_BLOCKED
||
555 !test_bit(In_sync
, &rdev
->flags
))
558 /* This optimisation is debatable, and completely destroys
559 * sequential read speed for 'far copies' arrays. So only
560 * keep it for 'near' arrays, and review those later.
562 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
)) {
567 new_distance
= abs(r10_bio
->devs
[nslot
].addr
-
568 conf
->mirrors
[ndisk
].head_position
);
569 if (new_distance
< current_distance
) {
570 current_distance
= new_distance
;
577 r10_bio
->read_slot
= slot
;
578 /* conf->next_seq_sect = this_sector + sectors;*/
580 if (disk
>= 0 && (rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
))!= NULL
)
581 atomic_inc(&conf
->mirrors
[disk
].rdev
->nr_pending
);
589 static void unplug_slaves(mddev_t
*mddev
)
591 conf_t
*conf
= mddev_to_conf(mddev
);
595 for (i
=0; i
<mddev
->raid_disks
; i
++) {
596 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
597 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
598 request_queue_t
*r_queue
= bdev_get_queue(rdev
->bdev
);
600 atomic_inc(&rdev
->nr_pending
);
603 if (r_queue
->unplug_fn
)
604 r_queue
->unplug_fn(r_queue
);
606 rdev_dec_pending(rdev
, mddev
);
613 static void raid10_unplug(request_queue_t
*q
)
615 mddev_t
*mddev
= q
->queuedata
;
617 unplug_slaves(q
->queuedata
);
618 md_wakeup_thread(mddev
->thread
);
621 static int raid10_issue_flush(request_queue_t
*q
, struct gendisk
*disk
,
622 sector_t
*error_sector
)
624 mddev_t
*mddev
= q
->queuedata
;
625 conf_t
*conf
= mddev_to_conf(mddev
);
629 for (i
=0; i
<mddev
->raid_disks
&& ret
== 0; i
++) {
630 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
631 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
632 struct block_device
*bdev
= rdev
->bdev
;
633 request_queue_t
*r_queue
= bdev_get_queue(bdev
);
635 if (!r_queue
->issue_flush_fn
)
638 atomic_inc(&rdev
->nr_pending
);
640 ret
= r_queue
->issue_flush_fn(r_queue
, bdev
->bd_disk
,
642 rdev_dec_pending(rdev
, mddev
);
652 * Sometimes we need to suspend IO while we do something else,
653 * either some resync/recovery, or reconfigure the array.
654 * To do this we raise a 'barrier'.
655 * The 'barrier' is a counter that can be raised multiple times
656 * to count how many activities are happening which preclude
658 * We can only raise the barrier if there is no pending IO.
659 * i.e. if nr_pending == 0.
660 * We choose only to raise the barrier if no-one is waiting for the
661 * barrier to go down. This means that as soon as an IO request
662 * is ready, no other operations which require a barrier will start
663 * until the IO request has had a chance.
665 * So: regular IO calls 'wait_barrier'. When that returns there
666 * is no backgroup IO happening, It must arrange to call
667 * allow_barrier when it has finished its IO.
668 * backgroup IO calls must call raise_barrier. Once that returns
669 * there is no normal IO happeing. It must arrange to call
670 * lower_barrier when the particular background IO completes.
672 #define RESYNC_DEPTH 32
674 static void raise_barrier(conf_t
*conf
, int force
)
676 BUG_ON(force
&& !conf
->barrier
);
677 spin_lock_irq(&conf
->resync_lock
);
679 /* Wait until no block IO is waiting (unless 'force') */
680 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
682 raid10_unplug(conf
->mddev
->queue
));
684 /* block any new IO from starting */
687 /* No wait for all pending IO to complete */
688 wait_event_lock_irq(conf
->wait_barrier
,
689 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
691 raid10_unplug(conf
->mddev
->queue
));
693 spin_unlock_irq(&conf
->resync_lock
);
696 static void lower_barrier(conf_t
*conf
)
699 spin_lock_irqsave(&conf
->resync_lock
, flags
);
701 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
702 wake_up(&conf
->wait_barrier
);
705 static void wait_barrier(conf_t
*conf
)
707 spin_lock_irq(&conf
->resync_lock
);
710 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
712 raid10_unplug(conf
->mddev
->queue
));
716 spin_unlock_irq(&conf
->resync_lock
);
719 static void allow_barrier(conf_t
*conf
)
722 spin_lock_irqsave(&conf
->resync_lock
, flags
);
724 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
725 wake_up(&conf
->wait_barrier
);
728 static void freeze_array(conf_t
*conf
)
730 /* stop syncio and normal IO and wait for everything to
732 * We increment barrier and nr_waiting, and then
733 * wait until barrier+nr_pending match nr_queued+2
735 spin_lock_irq(&conf
->resync_lock
);
738 wait_event_lock_irq(conf
->wait_barrier
,
739 conf
->barrier
+conf
->nr_pending
== conf
->nr_queued
+2,
741 raid10_unplug(conf
->mddev
->queue
));
742 spin_unlock_irq(&conf
->resync_lock
);
745 static void unfreeze_array(conf_t
*conf
)
747 /* reverse the effect of the freeze */
748 spin_lock_irq(&conf
->resync_lock
);
751 wake_up(&conf
->wait_barrier
);
752 spin_unlock_irq(&conf
->resync_lock
);
755 static int make_request(request_queue_t
*q
, struct bio
* bio
)
757 mddev_t
*mddev
= q
->queuedata
;
758 conf_t
*conf
= mddev_to_conf(mddev
);
759 mirror_info_t
*mirror
;
761 struct bio
*read_bio
;
763 int chunk_sects
= conf
->chunk_mask
+ 1;
764 const int rw
= bio_data_dir(bio
);
768 if (unlikely(bio_barrier(bio
))) {
769 bio_endio(bio
, bio
->bi_size
, -EOPNOTSUPP
);
773 /* If this request crosses a chunk boundary, we need to
774 * split it. This will only happen for 1 PAGE (or less) requests.
776 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
778 conf
->near_copies
< conf
->raid_disks
)) {
780 /* Sanity check -- queue functions should prevent this happening */
781 if (bio
->bi_vcnt
!= 1 ||
784 /* This is a one page bio that upper layers
785 * refuse to split for us, so we need to split it.
787 bp
= bio_split(bio
, bio_split_pool
,
788 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
789 if (make_request(q
, &bp
->bio1
))
790 generic_make_request(&bp
->bio1
);
791 if (make_request(q
, &bp
->bio2
))
792 generic_make_request(&bp
->bio2
);
794 bio_pair_release(bp
);
797 printk("raid10_make_request bug: can't convert block across chunks"
798 " or bigger than %dk %llu %d\n", chunk_sects
/2,
799 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
801 bio_io_error(bio
, bio
->bi_size
);
805 md_write_start(mddev
, bio
);
808 * Register the new request and wait if the reconstruction
809 * thread has put up a bar for new requests.
810 * Continue immediately if no resync is active currently.
814 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
815 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bio
));
817 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
819 r10_bio
->master_bio
= bio
;
820 r10_bio
->sectors
= bio
->bi_size
>> 9;
822 r10_bio
->mddev
= mddev
;
823 r10_bio
->sector
= bio
->bi_sector
;
828 * read balancing logic:
830 int disk
= read_balance(conf
, r10_bio
);
831 int slot
= r10_bio
->read_slot
;
833 raid_end_bio_io(r10_bio
);
836 mirror
= conf
->mirrors
+ disk
;
838 read_bio
= bio_clone(bio
, GFP_NOIO
);
840 r10_bio
->devs
[slot
].bio
= read_bio
;
842 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
843 mirror
->rdev
->data_offset
;
844 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
845 read_bio
->bi_end_io
= raid10_end_read_request
;
846 read_bio
->bi_rw
= READ
;
847 read_bio
->bi_private
= r10_bio
;
849 generic_make_request(read_bio
);
856 /* first select target devices under spinlock and
857 * inc refcount on their rdev. Record them by setting
860 raid10_find_phys(conf
, r10_bio
);
862 for (i
= 0; i
< conf
->copies
; i
++) {
863 int d
= r10_bio
->devs
[i
].devnum
;
864 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
866 !test_bit(Faulty
, &rdev
->flags
)) {
867 atomic_inc(&rdev
->nr_pending
);
868 r10_bio
->devs
[i
].bio
= bio
;
870 r10_bio
->devs
[i
].bio
= NULL
;
871 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
876 atomic_set(&r10_bio
->remaining
, 0);
879 for (i
= 0; i
< conf
->copies
; i
++) {
881 int d
= r10_bio
->devs
[i
].devnum
;
882 if (!r10_bio
->devs
[i
].bio
)
885 mbio
= bio_clone(bio
, GFP_NOIO
);
886 r10_bio
->devs
[i
].bio
= mbio
;
888 mbio
->bi_sector
= r10_bio
->devs
[i
].addr
+
889 conf
->mirrors
[d
].rdev
->data_offset
;
890 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
891 mbio
->bi_end_io
= raid10_end_write_request
;
893 mbio
->bi_private
= r10_bio
;
895 atomic_inc(&r10_bio
->remaining
);
896 bio_list_add(&bl
, mbio
);
899 bitmap_startwrite(mddev
->bitmap
, bio
->bi_sector
, r10_bio
->sectors
, 0);
900 spin_lock_irqsave(&conf
->device_lock
, flags
);
901 bio_list_merge(&conf
->pending_bio_list
, &bl
);
902 blk_plug_device(mddev
->queue
);
903 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
908 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
910 conf_t
*conf
= mddev_to_conf(mddev
);
913 if (conf
->near_copies
< conf
->raid_disks
)
914 seq_printf(seq
, " %dK chunks", mddev
->chunk_size
/1024);
915 if (conf
->near_copies
> 1)
916 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
917 if (conf
->far_copies
> 1) {
918 if (conf
->far_offset
)
919 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
921 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
923 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
924 conf
->working_disks
);
925 for (i
= 0; i
< conf
->raid_disks
; i
++)
926 seq_printf(seq
, "%s",
927 conf
->mirrors
[i
].rdev
&&
928 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
929 seq_printf(seq
, "]");
932 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
934 char b
[BDEVNAME_SIZE
];
935 conf_t
*conf
= mddev_to_conf(mddev
);
938 * If it is not operational, then we have already marked it as dead
939 * else if it is the last working disks, ignore the error, let the
940 * next level up know.
941 * else mark the drive as failed
943 if (test_bit(In_sync
, &rdev
->flags
)
944 && conf
->working_disks
== 1)
946 * Don't fail the drive, just return an IO error.
947 * The test should really be more sophisticated than
948 * "working_disks == 1", but it isn't critical, and
949 * can wait until we do more sophisticated "is the drive
950 * really dead" tests...
953 if (test_bit(In_sync
, &rdev
->flags
)) {
955 conf
->working_disks
--;
957 * if recovery is running, make sure it aborts.
959 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
961 clear_bit(In_sync
, &rdev
->flags
);
962 set_bit(Faulty
, &rdev
->flags
);
964 printk(KERN_ALERT
"raid10: Disk failure on %s, disabling device. \n"
965 " Operation continuing on %d devices\n",
966 bdevname(rdev
->bdev
,b
), conf
->working_disks
);
969 static void print_conf(conf_t
*conf
)
974 printk("RAID10 conf printout:\n");
979 printk(" --- wd:%d rd:%d\n", conf
->working_disks
,
982 for (i
= 0; i
< conf
->raid_disks
; i
++) {
983 char b
[BDEVNAME_SIZE
];
984 tmp
= conf
->mirrors
+ i
;
986 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
987 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
988 !test_bit(Faulty
, &tmp
->rdev
->flags
),
989 bdevname(tmp
->rdev
->bdev
,b
));
993 static void close_sync(conf_t
*conf
)
998 mempool_destroy(conf
->r10buf_pool
);
999 conf
->r10buf_pool
= NULL
;
1002 /* check if there are enough drives for
1003 * every block to appear on atleast one
1005 static int enough(conf_t
*conf
)
1010 int n
= conf
->copies
;
1013 if (conf
->mirrors
[first
].rdev
)
1015 first
= (first
+1) % conf
->raid_disks
;
1019 } while (first
!= 0);
1023 static int raid10_spare_active(mddev_t
*mddev
)
1026 conf_t
*conf
= mddev
->private;
1030 * Find all non-in_sync disks within the RAID10 configuration
1031 * and mark them in_sync
1033 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1034 tmp
= conf
->mirrors
+ i
;
1036 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1037 && !test_bit(In_sync
, &tmp
->rdev
->flags
)) {
1038 conf
->working_disks
++;
1040 set_bit(In_sync
, &tmp
->rdev
->flags
);
1049 static int raid10_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1051 conf_t
*conf
= mddev
->private;
1056 if (mddev
->recovery_cp
< MaxSector
)
1057 /* only hot-add to in-sync arrays, as recovery is
1058 * very different from resync
1064 if (rdev
->saved_raid_disk
>= 0 &&
1065 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1066 mirror
= rdev
->saved_raid_disk
;
1069 for ( ; mirror
< mddev
->raid_disks
; mirror
++)
1070 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1072 blk_queue_stack_limits(mddev
->queue
,
1073 rdev
->bdev
->bd_disk
->queue
);
1074 /* as we don't honour merge_bvec_fn, we must never risk
1075 * violating it, so limit ->max_sector to one PAGE, as
1076 * a one page request is never in violation.
1078 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
1079 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
1080 mddev
->queue
->max_sectors
= (PAGE_SIZE
>>9);
1082 p
->head_position
= 0;
1083 rdev
->raid_disk
= mirror
;
1085 if (rdev
->saved_raid_disk
!= mirror
)
1087 rcu_assign_pointer(p
->rdev
, rdev
);
1095 static int raid10_remove_disk(mddev_t
*mddev
, int number
)
1097 conf_t
*conf
= mddev
->private;
1100 mirror_info_t
*p
= conf
->mirrors
+ number
;
1105 if (test_bit(In_sync
, &rdev
->flags
) ||
1106 atomic_read(&rdev
->nr_pending
)) {
1112 if (atomic_read(&rdev
->nr_pending
)) {
1113 /* lost the race, try later */
1125 static int end_sync_read(struct bio
*bio
, unsigned int bytes_done
, int error
)
1127 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1128 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
1134 for (i
=0; i
<conf
->copies
; i
++)
1135 if (r10_bio
->devs
[i
].bio
== bio
)
1137 BUG_ON(i
== conf
->copies
);
1138 update_head_pos(i
, r10_bio
);
1139 d
= r10_bio
->devs
[i
].devnum
;
1141 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1142 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1144 atomic_add(r10_bio
->sectors
,
1145 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1146 if (!test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
1147 md_error(r10_bio
->mddev
,
1148 conf
->mirrors
[d
].rdev
);
1151 /* for reconstruct, we always reschedule after a read.
1152 * for resync, only after all reads
1154 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1155 atomic_dec_and_test(&r10_bio
->remaining
)) {
1156 /* we have read all the blocks,
1157 * do the comparison in process context in raid10d
1159 reschedule_retry(r10_bio
);
1161 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1165 static int end_sync_write(struct bio
*bio
, unsigned int bytes_done
, int error
)
1167 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1168 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1169 mddev_t
*mddev
= r10_bio
->mddev
;
1170 conf_t
*conf
= mddev_to_conf(mddev
);
1176 for (i
= 0; i
< conf
->copies
; i
++)
1177 if (r10_bio
->devs
[i
].bio
== bio
)
1179 d
= r10_bio
->devs
[i
].devnum
;
1182 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1183 update_head_pos(i
, r10_bio
);
1185 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1186 if (r10_bio
->master_bio
== NULL
) {
1187 /* the primary of several recovery bios */
1188 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1192 r10bio_t
*r10_bio2
= (r10bio_t
*)r10_bio
->master_bio
;
1197 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1202 * Note: sync and recover and handled very differently for raid10
1203 * This code is for resync.
1204 * For resync, we read through virtual addresses and read all blocks.
1205 * If there is any error, we schedule a write. The lowest numbered
1206 * drive is authoritative.
1207 * However requests come for physical address, so we need to map.
1208 * For every physical address there are raid_disks/copies virtual addresses,
1209 * which is always are least one, but is not necessarly an integer.
1210 * This means that a physical address can span multiple chunks, so we may
1211 * have to submit multiple io requests for a single sync request.
1214 * We check if all blocks are in-sync and only write to blocks that
1217 static void sync_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1219 conf_t
*conf
= mddev_to_conf(mddev
);
1221 struct bio
*tbio
, *fbio
;
1223 atomic_set(&r10_bio
->remaining
, 1);
1225 /* find the first device with a block */
1226 for (i
=0; i
<conf
->copies
; i
++)
1227 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1230 if (i
== conf
->copies
)
1234 fbio
= r10_bio
->devs
[i
].bio
;
1236 /* now find blocks with errors */
1237 for (i
=0 ; i
< conf
->copies
; i
++) {
1239 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1241 tbio
= r10_bio
->devs
[i
].bio
;
1243 if (tbio
->bi_end_io
!= end_sync_read
)
1247 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1248 /* We know that the bi_io_vec layout is the same for
1249 * both 'first' and 'i', so we just compare them.
1250 * All vec entries are PAGE_SIZE;
1252 for (j
= 0; j
< vcnt
; j
++)
1253 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1254 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1259 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1261 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1262 /* Don't fix anything. */
1264 /* Ok, we need to write this bio
1265 * First we need to fixup bv_offset, bv_len and
1266 * bi_vecs, as the read request might have corrupted these
1268 tbio
->bi_vcnt
= vcnt
;
1269 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1271 tbio
->bi_phys_segments
= 0;
1272 tbio
->bi_hw_segments
= 0;
1273 tbio
->bi_hw_front_size
= 0;
1274 tbio
->bi_hw_back_size
= 0;
1275 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1276 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1277 tbio
->bi_next
= NULL
;
1278 tbio
->bi_rw
= WRITE
;
1279 tbio
->bi_private
= r10_bio
;
1280 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1282 for (j
=0; j
< vcnt
; j
++) {
1283 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1284 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1286 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1287 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1290 tbio
->bi_end_io
= end_sync_write
;
1292 d
= r10_bio
->devs
[i
].devnum
;
1293 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1294 atomic_inc(&r10_bio
->remaining
);
1295 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1297 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1298 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1299 generic_make_request(tbio
);
1303 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1304 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1310 * Now for the recovery code.
1311 * Recovery happens across physical sectors.
1312 * We recover all non-is_sync drives by finding the virtual address of
1313 * each, and then choose a working drive that also has that virt address.
1314 * There is a separate r10_bio for each non-in_sync drive.
1315 * Only the first two slots are in use. The first for reading,
1316 * The second for writing.
1320 static void recovery_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1322 conf_t
*conf
= mddev_to_conf(mddev
);
1324 struct bio
*bio
, *wbio
;
1327 /* move the pages across to the second bio
1328 * and submit the write request
1330 bio
= r10_bio
->devs
[0].bio
;
1331 wbio
= r10_bio
->devs
[1].bio
;
1332 for (i
=0; i
< wbio
->bi_vcnt
; i
++) {
1333 struct page
*p
= bio
->bi_io_vec
[i
].bv_page
;
1334 bio
->bi_io_vec
[i
].bv_page
= wbio
->bi_io_vec
[i
].bv_page
;
1335 wbio
->bi_io_vec
[i
].bv_page
= p
;
1337 d
= r10_bio
->devs
[1].devnum
;
1339 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1340 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
1341 if (test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
1342 generic_make_request(wbio
);
1344 bio_endio(wbio
, wbio
->bi_size
, -EIO
);
1349 * This is a kernel thread which:
1351 * 1. Retries failed read operations on working mirrors.
1352 * 2. Updates the raid superblock when problems encounter.
1353 * 3. Performs writes following reads for array syncronising.
1356 static void raid10d(mddev_t
*mddev
)
1360 unsigned long flags
;
1361 conf_t
*conf
= mddev_to_conf(mddev
);
1362 struct list_head
*head
= &conf
->retry_list
;
1366 md_check_recovery(mddev
);
1369 char b
[BDEVNAME_SIZE
];
1370 spin_lock_irqsave(&conf
->device_lock
, flags
);
1372 if (conf
->pending_bio_list
.head
) {
1373 bio
= bio_list_get(&conf
->pending_bio_list
);
1374 blk_remove_plug(mddev
->queue
);
1375 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1376 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1377 if (bitmap_unplug(mddev
->bitmap
) != 0)
1378 printk("%s: bitmap file write failed!\n", mdname(mddev
));
1380 while (bio
) { /* submit pending writes */
1381 struct bio
*next
= bio
->bi_next
;
1382 bio
->bi_next
= NULL
;
1383 generic_make_request(bio
);
1391 if (list_empty(head
))
1393 r10_bio
= list_entry(head
->prev
, r10bio_t
, retry_list
);
1394 list_del(head
->prev
);
1396 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1398 mddev
= r10_bio
->mddev
;
1399 conf
= mddev_to_conf(mddev
);
1400 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
)) {
1401 sync_request_write(mddev
, r10_bio
);
1403 } else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
1404 recovery_request_write(mddev
, r10_bio
);
1408 /* we got a read error. Maybe the drive is bad. Maybe just
1409 * the block and we can fix it.
1410 * We freeze all other IO, and try reading the block from
1411 * other devices. When we find one, we re-write
1412 * and check it that fixes the read error.
1413 * This is all done synchronously while the array is
1416 int sect
= 0; /* Offset from r10_bio->sector */
1417 int sectors
= r10_bio
->sectors
;
1419 if (mddev
->ro
== 0) while(sectors
) {
1421 int sl
= r10_bio
->read_slot
;
1424 if (s
> (PAGE_SIZE
>>9))
1429 int d
= r10_bio
->devs
[sl
].devnum
;
1430 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1432 test_bit(In_sync
, &rdev
->flags
)) {
1433 atomic_inc(&rdev
->nr_pending
);
1435 success
= sync_page_io(rdev
->bdev
,
1436 r10_bio
->devs
[sl
].addr
+
1437 sect
+ rdev
->data_offset
,
1439 conf
->tmppage
, READ
);
1440 rdev_dec_pending(rdev
, mddev
);
1446 if (sl
== conf
->copies
)
1448 } while (!success
&& sl
!= r10_bio
->read_slot
);
1453 /* write it back and re-read */
1455 while (sl
!= r10_bio
->read_slot
) {
1460 d
= r10_bio
->devs
[sl
].devnum
;
1461 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1463 test_bit(In_sync
, &rdev
->flags
)) {
1464 atomic_inc(&rdev
->nr_pending
);
1466 atomic_add(s
, &rdev
->corrected_errors
);
1467 if (sync_page_io(rdev
->bdev
,
1468 r10_bio
->devs
[sl
].addr
+
1469 sect
+ rdev
->data_offset
,
1470 s
<<9, conf
->tmppage
, WRITE
) == 0)
1471 /* Well, this device is dead */
1472 md_error(mddev
, rdev
);
1473 rdev_dec_pending(rdev
, mddev
);
1478 while (sl
!= r10_bio
->read_slot
) {
1483 d
= r10_bio
->devs
[sl
].devnum
;
1484 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1486 test_bit(In_sync
, &rdev
->flags
)) {
1487 atomic_inc(&rdev
->nr_pending
);
1489 if (sync_page_io(rdev
->bdev
,
1490 r10_bio
->devs
[sl
].addr
+
1491 sect
+ rdev
->data_offset
,
1492 s
<<9, conf
->tmppage
, READ
) == 0)
1493 /* Well, this device is dead */
1494 md_error(mddev
, rdev
);
1495 rdev_dec_pending(rdev
, mddev
);
1501 /* Cannot read from anywhere -- bye bye array */
1502 md_error(mddev
, conf
->mirrors
[r10_bio
->devs
[r10_bio
->read_slot
].devnum
].rdev
);
1509 unfreeze_array(conf
);
1511 bio
= r10_bio
->devs
[r10_bio
->read_slot
].bio
;
1512 r10_bio
->devs
[r10_bio
->read_slot
].bio
=
1513 mddev
->ro
? IO_BLOCKED
: NULL
;
1515 mirror
= read_balance(conf
, r10_bio
);
1517 printk(KERN_ALERT
"raid10: %s: unrecoverable I/O"
1518 " read error for block %llu\n",
1519 bdevname(bio
->bi_bdev
,b
),
1520 (unsigned long long)r10_bio
->sector
);
1521 raid_end_bio_io(r10_bio
);
1523 rdev
= conf
->mirrors
[mirror
].rdev
;
1524 if (printk_ratelimit())
1525 printk(KERN_ERR
"raid10: %s: redirecting sector %llu to"
1526 " another mirror\n",
1527 bdevname(rdev
->bdev
,b
),
1528 (unsigned long long)r10_bio
->sector
);
1529 bio
= bio_clone(r10_bio
->master_bio
, GFP_NOIO
);
1530 r10_bio
->devs
[r10_bio
->read_slot
].bio
= bio
;
1531 bio
->bi_sector
= r10_bio
->devs
[r10_bio
->read_slot
].addr
1532 + rdev
->data_offset
;
1533 bio
->bi_bdev
= rdev
->bdev
;
1535 bio
->bi_private
= r10_bio
;
1536 bio
->bi_end_io
= raid10_end_read_request
;
1538 generic_make_request(bio
);
1542 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1544 unplug_slaves(mddev
);
1548 static int init_resync(conf_t
*conf
)
1552 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
1553 BUG_ON(conf
->r10buf_pool
);
1554 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
1555 if (!conf
->r10buf_pool
)
1557 conf
->next_resync
= 0;
1562 * perform a "sync" on one "block"
1564 * We need to make sure that no normal I/O request - particularly write
1565 * requests - conflict with active sync requests.
1567 * This is achieved by tracking pending requests and a 'barrier' concept
1568 * that can be installed to exclude normal IO requests.
1570 * Resync and recovery are handled very differently.
1571 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1573 * For resync, we iterate over virtual addresses, read all copies,
1574 * and update if there are differences. If only one copy is live,
1576 * For recovery, we iterate over physical addresses, read a good
1577 * value for each non-in_sync drive, and over-write.
1579 * So, for recovery we may have several outstanding complex requests for a
1580 * given address, one for each out-of-sync device. We model this by allocating
1581 * a number of r10_bio structures, one for each out-of-sync device.
1582 * As we setup these structures, we collect all bio's together into a list
1583 * which we then process collectively to add pages, and then process again
1584 * to pass to generic_make_request.
1586 * The r10_bio structures are linked using a borrowed master_bio pointer.
1587 * This link is counted in ->remaining. When the r10_bio that points to NULL
1588 * has its remaining count decremented to 0, the whole complex operation
1593 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1595 conf_t
*conf
= mddev_to_conf(mddev
);
1597 struct bio
*biolist
= NULL
, *bio
;
1598 sector_t max_sector
, nr_sectors
;
1604 sector_t sectors_skipped
= 0;
1605 int chunks_skipped
= 0;
1607 if (!conf
->r10buf_pool
)
1608 if (init_resync(conf
))
1612 max_sector
= mddev
->size
<< 1;
1613 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1614 max_sector
= mddev
->resync_max_sectors
;
1615 if (sector_nr
>= max_sector
) {
1616 /* If we aborted, we need to abort the
1617 * sync on the 'current' bitmap chucks (there can
1618 * be several when recovering multiple devices).
1619 * as we may have started syncing it but not finished.
1620 * We can find the current address in
1621 * mddev->curr_resync, but for recovery,
1622 * we need to convert that to several
1623 * virtual addresses.
1625 if (mddev
->curr_resync
< max_sector
) { /* aborted */
1626 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1627 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
1629 else for (i
=0; i
<conf
->raid_disks
; i
++) {
1631 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
1632 bitmap_end_sync(mddev
->bitmap
, sect
,
1635 } else /* completed sync */
1638 bitmap_close_sync(mddev
->bitmap
);
1641 return sectors_skipped
;
1643 if (chunks_skipped
>= conf
->raid_disks
) {
1644 /* if there has been nothing to do on any drive,
1645 * then there is nothing to do at all..
1648 return (max_sector
- sector_nr
) + sectors_skipped
;
1651 /* make sure whole request will fit in a chunk - if chunks
1654 if (conf
->near_copies
< conf
->raid_disks
&&
1655 max_sector
> (sector_nr
| conf
->chunk_mask
))
1656 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
1658 * If there is non-resync activity waiting for us then
1659 * put in a delay to throttle resync.
1661 if (!go_faster
&& conf
->nr_waiting
)
1662 msleep_interruptible(1000);
1664 /* Again, very different code for resync and recovery.
1665 * Both must result in an r10bio with a list of bios that
1666 * have bi_end_io, bi_sector, bi_bdev set,
1667 * and bi_private set to the r10bio.
1668 * For recovery, we may actually create several r10bios
1669 * with 2 bios in each, that correspond to the bios in the main one.
1670 * In this case, the subordinate r10bios link back through a
1671 * borrowed master_bio pointer, and the counter in the master
1672 * includes a ref from each subordinate.
1674 /* First, we decide what to do and set ->bi_end_io
1675 * To end_sync_read if we want to read, and
1676 * end_sync_write if we will want to write.
1679 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
1680 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
1681 /* recovery... the complicated one */
1685 for (i
=0 ; i
<conf
->raid_disks
; i
++)
1686 if (conf
->mirrors
[i
].rdev
&&
1687 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
)) {
1688 int still_degraded
= 0;
1689 /* want to reconstruct this device */
1690 r10bio_t
*rb2
= r10_bio
;
1691 sector_t sect
= raid10_find_virt(conf
, sector_nr
, i
);
1693 /* Unless we are doing a full sync, we only need
1694 * to recover the block if it is set in the bitmap
1696 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1698 if (sync_blocks
< max_sync
)
1699 max_sync
= sync_blocks
;
1702 /* yep, skip the sync_blocks here, but don't assume
1703 * that there will never be anything to do here
1705 chunks_skipped
= -1;
1709 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1710 raise_barrier(conf
, rb2
!= NULL
);
1711 atomic_set(&r10_bio
->remaining
, 0);
1713 r10_bio
->master_bio
= (struct bio
*)rb2
;
1715 atomic_inc(&rb2
->remaining
);
1716 r10_bio
->mddev
= mddev
;
1717 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
1718 r10_bio
->sector
= sect
;
1720 raid10_find_phys(conf
, r10_bio
);
1721 /* Need to check if this section will still be
1724 for (j
=0; j
<conf
->copies
;j
++) {
1725 int d
= r10_bio
->devs
[j
].devnum
;
1726 if (conf
->mirrors
[d
].rdev
== NULL
||
1727 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
)) {
1732 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1733 &sync_blocks
, still_degraded
);
1735 for (j
=0; j
<conf
->copies
;j
++) {
1736 int d
= r10_bio
->devs
[j
].devnum
;
1737 if (conf
->mirrors
[d
].rdev
&&
1738 test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
)) {
1739 /* This is where we read from */
1740 bio
= r10_bio
->devs
[0].bio
;
1741 bio
->bi_next
= biolist
;
1743 bio
->bi_private
= r10_bio
;
1744 bio
->bi_end_io
= end_sync_read
;
1746 bio
->bi_sector
= r10_bio
->devs
[j
].addr
+
1747 conf
->mirrors
[d
].rdev
->data_offset
;
1748 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1749 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1750 atomic_inc(&r10_bio
->remaining
);
1751 /* and we write to 'i' */
1753 for (k
=0; k
<conf
->copies
; k
++)
1754 if (r10_bio
->devs
[k
].devnum
== i
)
1756 bio
= r10_bio
->devs
[1].bio
;
1757 bio
->bi_next
= biolist
;
1759 bio
->bi_private
= r10_bio
;
1760 bio
->bi_end_io
= end_sync_write
;
1762 bio
->bi_sector
= r10_bio
->devs
[k
].addr
+
1763 conf
->mirrors
[i
].rdev
->data_offset
;
1764 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1766 r10_bio
->devs
[0].devnum
= d
;
1767 r10_bio
->devs
[1].devnum
= i
;
1772 if (j
== conf
->copies
) {
1773 /* Cannot recover, so abort the recovery */
1776 if (!test_and_set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
))
1777 printk(KERN_INFO
"raid10: %s: insufficient working devices for recovery.\n",
1782 if (biolist
== NULL
) {
1784 r10bio_t
*rb2
= r10_bio
;
1785 r10_bio
= (r10bio_t
*) rb2
->master_bio
;
1786 rb2
->master_bio
= NULL
;
1792 /* resync. Schedule a read for every block at this virt offset */
1795 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
1796 &sync_blocks
, mddev
->degraded
) &&
1797 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1798 /* We can skip this block */
1800 return sync_blocks
+ sectors_skipped
;
1802 if (sync_blocks
< max_sync
)
1803 max_sync
= sync_blocks
;
1804 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1806 r10_bio
->mddev
= mddev
;
1807 atomic_set(&r10_bio
->remaining
, 0);
1808 raise_barrier(conf
, 0);
1809 conf
->next_resync
= sector_nr
;
1811 r10_bio
->master_bio
= NULL
;
1812 r10_bio
->sector
= sector_nr
;
1813 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
1814 raid10_find_phys(conf
, r10_bio
);
1815 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
1817 for (i
=0; i
<conf
->copies
; i
++) {
1818 int d
= r10_bio
->devs
[i
].devnum
;
1819 bio
= r10_bio
->devs
[i
].bio
;
1820 bio
->bi_end_io
= NULL
;
1821 if (conf
->mirrors
[d
].rdev
== NULL
||
1822 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
1824 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1825 atomic_inc(&r10_bio
->remaining
);
1826 bio
->bi_next
= biolist
;
1828 bio
->bi_private
= r10_bio
;
1829 bio
->bi_end_io
= end_sync_read
;
1831 bio
->bi_sector
= r10_bio
->devs
[i
].addr
+
1832 conf
->mirrors
[d
].rdev
->data_offset
;
1833 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1838 for (i
=0; i
<conf
->copies
; i
++) {
1839 int d
= r10_bio
->devs
[i
].devnum
;
1840 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
1841 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1849 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
1851 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1853 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
1856 bio
->bi_phys_segments
= 0;
1857 bio
->bi_hw_segments
= 0;
1862 if (sector_nr
+ max_sync
< max_sector
)
1863 max_sector
= sector_nr
+ max_sync
;
1866 int len
= PAGE_SIZE
;
1868 if (sector_nr
+ (len
>>9) > max_sector
)
1869 len
= (max_sector
- sector_nr
) << 9;
1872 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
1873 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
1874 if (bio_add_page(bio
, page
, len
, 0) == 0) {
1877 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
1878 for (bio2
= biolist
; bio2
&& bio2
!= bio
; bio2
= bio2
->bi_next
) {
1879 /* remove last page from this bio */
1881 bio2
->bi_size
-= len
;
1882 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
1888 nr_sectors
+= len
>>9;
1889 sector_nr
+= len
>>9;
1890 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
1892 r10_bio
->sectors
= nr_sectors
;
1896 biolist
= biolist
->bi_next
;
1898 bio
->bi_next
= NULL
;
1899 r10_bio
= bio
->bi_private
;
1900 r10_bio
->sectors
= nr_sectors
;
1902 if (bio
->bi_end_io
== end_sync_read
) {
1903 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
1904 generic_make_request(bio
);
1908 if (sectors_skipped
)
1909 /* pretend they weren't skipped, it makes
1910 * no important difference in this case
1912 md_done_sync(mddev
, sectors_skipped
, 1);
1914 return sectors_skipped
+ nr_sectors
;
1916 /* There is nowhere to write, so all non-sync
1917 * drives must be failed, so try the next chunk...
1920 sector_t sec
= max_sector
- sector_nr
;
1921 sectors_skipped
+= sec
;
1923 sector_nr
= max_sector
;
1928 static int run(mddev_t
*mddev
)
1932 mirror_info_t
*disk
;
1934 struct list_head
*tmp
;
1936 sector_t stride
, size
;
1938 if (mddev
->chunk_size
== 0) {
1939 printk(KERN_ERR
"md/raid10: non-zero chunk size required.\n");
1943 nc
= mddev
->layout
& 255;
1944 fc
= (mddev
->layout
>> 8) & 255;
1945 fo
= mddev
->layout
& (1<<16);
1946 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
1947 (mddev
->layout
>> 17)) {
1948 printk(KERN_ERR
"raid10: %s: unsupported raid10 layout: 0x%8x\n",
1949 mdname(mddev
), mddev
->layout
);
1953 * copy the already verified devices into our private RAID10
1954 * bookkeeping area. [whatever we allocate in run(),
1955 * should be freed in stop()]
1957 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
1958 mddev
->private = conf
;
1960 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
1964 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
1966 if (!conf
->mirrors
) {
1967 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
1972 conf
->tmppage
= alloc_page(GFP_KERNEL
);
1976 conf
->near_copies
= nc
;
1977 conf
->far_copies
= fc
;
1978 conf
->copies
= nc
*fc
;
1979 conf
->far_offset
= fo
;
1980 conf
->chunk_mask
= (sector_t
)(mddev
->chunk_size
>>9)-1;
1981 conf
->chunk_shift
= ffz(~mddev
->chunk_size
) - 9;
1983 conf
->stride
= 1 << conf
->chunk_shift
;
1985 stride
= mddev
->size
>> (conf
->chunk_shift
-1);
1986 sector_div(stride
, fc
);
1987 conf
->stride
= stride
<< conf
->chunk_shift
;
1989 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
1990 r10bio_pool_free
, conf
);
1991 if (!conf
->r10bio_pool
) {
1992 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
1997 ITERATE_RDEV(mddev
, rdev
, tmp
) {
1998 disk_idx
= rdev
->raid_disk
;
1999 if (disk_idx
>= mddev
->raid_disks
2002 disk
= conf
->mirrors
+ disk_idx
;
2006 blk_queue_stack_limits(mddev
->queue
,
2007 rdev
->bdev
->bd_disk
->queue
);
2008 /* as we don't honour merge_bvec_fn, we must never risk
2009 * violating it, so limit ->max_sector to one PAGE, as
2010 * a one page request is never in violation.
2012 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
2013 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
2014 mddev
->queue
->max_sectors
= (PAGE_SIZE
>>9);
2016 disk
->head_position
= 0;
2017 if (!test_bit(Faulty
, &rdev
->flags
) && test_bit(In_sync
, &rdev
->flags
))
2018 conf
->working_disks
++;
2020 conf
->raid_disks
= mddev
->raid_disks
;
2021 conf
->mddev
= mddev
;
2022 spin_lock_init(&conf
->device_lock
);
2023 INIT_LIST_HEAD(&conf
->retry_list
);
2025 spin_lock_init(&conf
->resync_lock
);
2026 init_waitqueue_head(&conf
->wait_barrier
);
2028 /* need to check that every block has at least one working mirror */
2029 if (!enough(conf
)) {
2030 printk(KERN_ERR
"raid10: not enough operational mirrors for %s\n",
2035 mddev
->degraded
= 0;
2036 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2038 disk
= conf
->mirrors
+ i
;
2041 !test_bit(In_sync
, &rdev
->flags
)) {
2042 disk
->head_position
= 0;
2048 mddev
->thread
= md_register_thread(raid10d
, mddev
, "%s_raid10");
2049 if (!mddev
->thread
) {
2051 "raid10: couldn't allocate thread for %s\n",
2057 "raid10: raid set %s active with %d out of %d devices\n",
2058 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2061 * Ok, everything is just fine now
2063 if (conf
->far_offset
) {
2064 size
= mddev
->size
>> (conf
->chunk_shift
-1);
2065 size
*= conf
->raid_disks
;
2066 size
<<= conf
->chunk_shift
;
2067 sector_div(size
, conf
->far_copies
);
2069 size
= conf
->stride
* conf
->raid_disks
;
2070 sector_div(size
, conf
->near_copies
);
2071 mddev
->array_size
= size
/2;
2072 mddev
->resync_max_sectors
= size
;
2074 mddev
->queue
->unplug_fn
= raid10_unplug
;
2075 mddev
->queue
->issue_flush_fn
= raid10_issue_flush
;
2077 /* Calculate max read-ahead size.
2078 * We need to readahead at least twice a whole stripe....
2082 int stripe
= conf
->raid_disks
* (mddev
->chunk_size
/ PAGE_SIZE
);
2083 stripe
/= conf
->near_copies
;
2084 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
2085 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
2088 if (conf
->near_copies
< mddev
->raid_disks
)
2089 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
2093 if (conf
->r10bio_pool
)
2094 mempool_destroy(conf
->r10bio_pool
);
2095 safe_put_page(conf
->tmppage
);
2096 kfree(conf
->mirrors
);
2098 mddev
->private = NULL
;
2103 static int stop(mddev_t
*mddev
)
2105 conf_t
*conf
= mddev_to_conf(mddev
);
2107 md_unregister_thread(mddev
->thread
);
2108 mddev
->thread
= NULL
;
2109 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2110 if (conf
->r10bio_pool
)
2111 mempool_destroy(conf
->r10bio_pool
);
2112 kfree(conf
->mirrors
);
2114 mddev
->private = NULL
;
2118 static void raid10_quiesce(mddev_t
*mddev
, int state
)
2120 conf_t
*conf
= mddev_to_conf(mddev
);
2124 raise_barrier(conf
, 0);
2127 lower_barrier(conf
);
2130 if (mddev
->thread
) {
2132 mddev
->thread
->timeout
= mddev
->bitmap
->daemon_sleep
* HZ
;
2134 mddev
->thread
->timeout
= MAX_SCHEDULE_TIMEOUT
;
2135 md_wakeup_thread(mddev
->thread
);
2139 static struct mdk_personality raid10_personality
=
2143 .owner
= THIS_MODULE
,
2144 .make_request
= make_request
,
2148 .error_handler
= error
,
2149 .hot_add_disk
= raid10_add_disk
,
2150 .hot_remove_disk
= raid10_remove_disk
,
2151 .spare_active
= raid10_spare_active
,
2152 .sync_request
= sync_request
,
2153 .quiesce
= raid10_quiesce
,
2156 static int __init
raid_init(void)
2158 return register_md_personality(&raid10_personality
);
2161 static void raid_exit(void)
2163 unregister_md_personality(&raid10_personality
);
2166 module_init(raid_init
);
2167 module_exit(raid_exit
);
2168 MODULE_LICENSE("GPL");
2169 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2170 MODULE_ALIAS("md-raid10");
2171 MODULE_ALIAS("md-level-10");