2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
94 #include <asm/uaccess.h>
95 #include <asm/unistd.h>
97 #include <net/compat.h>
99 #include <net/cls_cgroup.h>
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <linux/atalk.h>
109 #include <net/busy_poll.h>
110 #include <linux/errqueue.h>
112 #ifdef CONFIG_NET_RX_BUSY_POLL
113 unsigned int sysctl_net_busy_read __read_mostly
;
114 unsigned int sysctl_net_busy_poll __read_mostly
;
117 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
118 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
119 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
121 static int sock_close(struct inode
*inode
, struct file
*file
);
122 static unsigned int sock_poll(struct file
*file
,
123 struct poll_table_struct
*wait
);
124 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
126 static long compat_sock_ioctl(struct file
*file
,
127 unsigned int cmd
, unsigned long arg
);
129 static int sock_fasync(int fd
, struct file
*filp
, int on
);
130 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
131 int offset
, size_t size
, loff_t
*ppos
, int more
);
132 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
133 struct pipe_inode_info
*pipe
, size_t len
,
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
141 static const struct file_operations socket_file_ops
= {
142 .owner
= THIS_MODULE
,
144 .read_iter
= sock_read_iter
,
145 .write_iter
= sock_write_iter
,
147 .unlocked_ioctl
= sock_ioctl
,
149 .compat_ioctl
= compat_sock_ioctl
,
152 .release
= sock_close
,
153 .fasync
= sock_fasync
,
154 .sendpage
= sock_sendpage
,
155 .splice_write
= generic_splice_sendpage
,
156 .splice_read
= sock_splice_read
,
160 * The protocol list. Each protocol is registered in here.
163 static DEFINE_SPINLOCK(net_family_lock
);
164 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
167 * Statistics counters of the socket lists
170 static DEFINE_PER_CPU(int, sockets_in_use
);
174 * Move socket addresses back and forth across the kernel/user
175 * divide and look after the messy bits.
179 * move_addr_to_kernel - copy a socket address into kernel space
180 * @uaddr: Address in user space
181 * @kaddr: Address in kernel space
182 * @ulen: Length in user space
184 * The address is copied into kernel space. If the provided address is
185 * too long an error code of -EINVAL is returned. If the copy gives
186 * invalid addresses -EFAULT is returned. On a success 0 is returned.
189 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
191 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
195 if (copy_from_user(kaddr
, uaddr
, ulen
))
197 return audit_sockaddr(ulen
, kaddr
);
201 * move_addr_to_user - copy an address to user space
202 * @kaddr: kernel space address
203 * @klen: length of address in kernel
204 * @uaddr: user space address
205 * @ulen: pointer to user length field
207 * The value pointed to by ulen on entry is the buffer length available.
208 * This is overwritten with the buffer space used. -EINVAL is returned
209 * if an overlong buffer is specified or a negative buffer size. -EFAULT
210 * is returned if either the buffer or the length field are not
212 * After copying the data up to the limit the user specifies, the true
213 * length of the data is written over the length limit the user
214 * specified. Zero is returned for a success.
217 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
218 void __user
*uaddr
, int __user
*ulen
)
223 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
224 err
= get_user(len
, ulen
);
232 if (audit_sockaddr(klen
, kaddr
))
234 if (copy_to_user(uaddr
, kaddr
, len
))
238 * "fromlen shall refer to the value before truncation.."
241 return __put_user(klen
, ulen
);
244 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
246 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
248 struct socket_alloc
*ei
;
249 struct socket_wq
*wq
;
251 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
254 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
256 kmem_cache_free(sock_inode_cachep
, ei
);
259 init_waitqueue_head(&wq
->wait
);
260 wq
->fasync_list
= NULL
;
262 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
264 ei
->socket
.state
= SS_UNCONNECTED
;
265 ei
->socket
.flags
= 0;
266 ei
->socket
.ops
= NULL
;
267 ei
->socket
.sk
= NULL
;
268 ei
->socket
.file
= NULL
;
270 return &ei
->vfs_inode
;
273 static void sock_destroy_inode(struct inode
*inode
)
275 struct socket_alloc
*ei
;
276 struct socket_wq
*wq
;
278 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
279 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
281 kmem_cache_free(sock_inode_cachep
, ei
);
284 static void init_once(void *foo
)
286 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
288 inode_init_once(&ei
->vfs_inode
);
291 static int init_inodecache(void)
293 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc
),
296 (SLAB_HWCACHE_ALIGN
|
297 SLAB_RECLAIM_ACCOUNT
|
298 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
300 if (sock_inode_cachep
== NULL
)
305 static const struct super_operations sockfs_ops
= {
306 .alloc_inode
= sock_alloc_inode
,
307 .destroy_inode
= sock_destroy_inode
,
308 .statfs
= simple_statfs
,
312 * sockfs_dname() is called from d_path().
314 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
316 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
317 d_inode(dentry
)->i_ino
);
320 static const struct dentry_operations sockfs_dentry_operations
= {
321 .d_dname
= sockfs_dname
,
324 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
325 struct dentry
*dentry
, struct inode
*inode
,
326 const char *suffix
, void *value
, size_t size
)
329 if (dentry
->d_name
.len
+ 1 > size
)
331 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
333 return dentry
->d_name
.len
+ 1;
336 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
337 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
338 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
340 static const struct xattr_handler sockfs_xattr_handler
= {
341 .name
= XATTR_NAME_SOCKPROTONAME
,
342 .get
= sockfs_xattr_get
,
345 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
346 struct dentry
*dentry
, struct inode
*inode
,
347 const char *suffix
, const void *value
,
348 size_t size
, int flags
)
350 /* Handled by LSM. */
354 static const struct xattr_handler sockfs_security_xattr_handler
= {
355 .prefix
= XATTR_SECURITY_PREFIX
,
356 .set
= sockfs_security_xattr_set
,
359 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
360 &sockfs_xattr_handler
,
361 &sockfs_security_xattr_handler
,
365 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
366 int flags
, const char *dev_name
, void *data
)
368 return mount_pseudo_xattr(fs_type
, "socket:", &sockfs_ops
,
369 sockfs_xattr_handlers
,
370 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
373 static struct vfsmount
*sock_mnt __read_mostly
;
375 static struct file_system_type sock_fs_type
= {
377 .mount
= sockfs_mount
,
378 .kill_sb
= kill_anon_super
,
382 * Obtains the first available file descriptor and sets it up for use.
384 * These functions create file structures and maps them to fd space
385 * of the current process. On success it returns file descriptor
386 * and file struct implicitly stored in sock->file.
387 * Note that another thread may close file descriptor before we return
388 * from this function. We use the fact that now we do not refer
389 * to socket after mapping. If one day we will need it, this
390 * function will increment ref. count on file by 1.
392 * In any case returned fd MAY BE not valid!
393 * This race condition is unavoidable
394 * with shared fd spaces, we cannot solve it inside kernel,
395 * but we take care of internal coherence yet.
398 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
400 struct qstr name
= { .name
= "" };
406 name
.len
= strlen(name
.name
);
407 } else if (sock
->sk
) {
408 name
.name
= sock
->sk
->sk_prot_creator
->name
;
409 name
.len
= strlen(name
.name
);
411 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
412 if (unlikely(!path
.dentry
))
413 return ERR_PTR(-ENOMEM
);
414 path
.mnt
= mntget(sock_mnt
);
416 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
418 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
421 /* drop dentry, keep inode */
422 ihold(d_inode(path
.dentry
));
428 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
429 file
->private_data
= sock
;
432 EXPORT_SYMBOL(sock_alloc_file
);
434 static int sock_map_fd(struct socket
*sock
, int flags
)
436 struct file
*newfile
;
437 int fd
= get_unused_fd_flags(flags
);
438 if (unlikely(fd
< 0))
441 newfile
= sock_alloc_file(sock
, flags
, NULL
);
442 if (likely(!IS_ERR(newfile
))) {
443 fd_install(fd
, newfile
);
448 return PTR_ERR(newfile
);
451 struct socket
*sock_from_file(struct file
*file
, int *err
)
453 if (file
->f_op
== &socket_file_ops
)
454 return file
->private_data
; /* set in sock_map_fd */
459 EXPORT_SYMBOL(sock_from_file
);
462 * sockfd_lookup - Go from a file number to its socket slot
464 * @err: pointer to an error code return
466 * The file handle passed in is locked and the socket it is bound
467 * too is returned. If an error occurs the err pointer is overwritten
468 * with a negative errno code and NULL is returned. The function checks
469 * for both invalid handles and passing a handle which is not a socket.
471 * On a success the socket object pointer is returned.
474 struct socket
*sockfd_lookup(int fd
, int *err
)
485 sock
= sock_from_file(file
, err
);
490 EXPORT_SYMBOL(sockfd_lookup
);
492 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
494 struct fd f
= fdget(fd
);
499 sock
= sock_from_file(f
.file
, err
);
501 *fput_needed
= f
.flags
;
509 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
515 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
525 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
530 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
537 static const struct inode_operations sockfs_inode_ops
= {
538 .listxattr
= sockfs_listxattr
,
542 * sock_alloc - allocate a socket
544 * Allocate a new inode and socket object. The two are bound together
545 * and initialised. The socket is then returned. If we are out of inodes
549 struct socket
*sock_alloc(void)
554 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
558 sock
= SOCKET_I(inode
);
560 kmemcheck_annotate_bitfield(sock
, type
);
561 inode
->i_ino
= get_next_ino();
562 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
563 inode
->i_uid
= current_fsuid();
564 inode
->i_gid
= current_fsgid();
565 inode
->i_op
= &sockfs_inode_ops
;
567 this_cpu_add(sockets_in_use
, 1);
570 EXPORT_SYMBOL(sock_alloc
);
573 * sock_release - close a socket
574 * @sock: socket to close
576 * The socket is released from the protocol stack if it has a release
577 * callback, and the inode is then released if the socket is bound to
578 * an inode not a file.
581 void sock_release(struct socket
*sock
)
584 struct module
*owner
= sock
->ops
->owner
;
586 sock
->ops
->release(sock
);
591 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
592 pr_err("%s: fasync list not empty!\n", __func__
);
594 this_cpu_sub(sockets_in_use
, 1);
596 iput(SOCK_INODE(sock
));
601 EXPORT_SYMBOL(sock_release
);
603 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
605 u8 flags
= *tx_flags
;
607 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
608 flags
|= SKBTX_HW_TSTAMP
;
610 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
611 flags
|= SKBTX_SW_TSTAMP
;
613 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
614 flags
|= SKBTX_SCHED_TSTAMP
;
618 EXPORT_SYMBOL(__sock_tx_timestamp
);
620 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
622 int ret
= sock
->ops
->sendmsg(sock
, msg
, msg_data_left(msg
));
623 BUG_ON(ret
== -EIOCBQUEUED
);
627 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
629 int err
= security_socket_sendmsg(sock
, msg
,
632 return err
?: sock_sendmsg_nosec(sock
, msg
);
634 EXPORT_SYMBOL(sock_sendmsg
);
636 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
637 struct kvec
*vec
, size_t num
, size_t size
)
639 iov_iter_kvec(&msg
->msg_iter
, WRITE
| ITER_KVEC
, vec
, num
, size
);
640 return sock_sendmsg(sock
, msg
);
642 EXPORT_SYMBOL(kernel_sendmsg
);
645 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
647 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
650 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
651 struct scm_timestamping tss
;
653 struct skb_shared_hwtstamps
*shhwtstamps
=
656 /* Race occurred between timestamp enabling and packet
657 receiving. Fill in the current time for now. */
658 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
659 __net_timestamp(skb
);
661 if (need_software_tstamp
) {
662 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
664 skb_get_timestamp(skb
, &tv
);
665 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
669 skb_get_timestampns(skb
, &ts
);
670 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
675 memset(&tss
, 0, sizeof(tss
));
676 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
677 ktime_to_timespec_cond(skb
->tstamp
, tss
.ts
+ 0))
680 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
681 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2))
684 put_cmsg(msg
, SOL_SOCKET
,
685 SCM_TIMESTAMPING
, sizeof(tss
), &tss
);
687 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
689 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
694 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
696 if (!skb
->wifi_acked_valid
)
699 ack
= skb
->wifi_acked
;
701 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
703 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
705 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
708 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
709 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
710 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
713 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
716 sock_recv_timestamp(msg
, sk
, skb
);
717 sock_recv_drops(msg
, sk
, skb
);
719 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
721 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
724 return sock
->ops
->recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
727 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
729 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
731 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
733 EXPORT_SYMBOL(sock_recvmsg
);
736 * kernel_recvmsg - Receive a message from a socket (kernel space)
737 * @sock: The socket to receive the message from
738 * @msg: Received message
739 * @vec: Input s/g array for message data
740 * @num: Size of input s/g array
741 * @size: Number of bytes to read
742 * @flags: Message flags (MSG_DONTWAIT, etc...)
744 * On return the msg structure contains the scatter/gather array passed in the
745 * vec argument. The array is modified so that it consists of the unfilled
746 * portion of the original array.
748 * The returned value is the total number of bytes received, or an error.
750 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
751 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
753 mm_segment_t oldfs
= get_fs();
756 iov_iter_kvec(&msg
->msg_iter
, READ
| ITER_KVEC
, vec
, num
, size
);
758 result
= sock_recvmsg(sock
, msg
, flags
);
762 EXPORT_SYMBOL(kernel_recvmsg
);
764 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
765 int offset
, size_t size
, loff_t
*ppos
, int more
)
770 sock
= file
->private_data
;
772 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
773 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
776 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
779 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
780 struct pipe_inode_info
*pipe
, size_t len
,
783 struct socket
*sock
= file
->private_data
;
785 if (unlikely(!sock
->ops
->splice_read
))
788 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
791 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
793 struct file
*file
= iocb
->ki_filp
;
794 struct socket
*sock
= file
->private_data
;
795 struct msghdr msg
= {.msg_iter
= *to
,
799 if (file
->f_flags
& O_NONBLOCK
)
800 msg
.msg_flags
= MSG_DONTWAIT
;
802 if (iocb
->ki_pos
!= 0)
805 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
808 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
813 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
815 struct file
*file
= iocb
->ki_filp
;
816 struct socket
*sock
= file
->private_data
;
817 struct msghdr msg
= {.msg_iter
= *from
,
821 if (iocb
->ki_pos
!= 0)
824 if (file
->f_flags
& O_NONBLOCK
)
825 msg
.msg_flags
= MSG_DONTWAIT
;
827 if (sock
->type
== SOCK_SEQPACKET
)
828 msg
.msg_flags
|= MSG_EOR
;
830 res
= sock_sendmsg(sock
, &msg
);
831 *from
= msg
.msg_iter
;
836 * Atomic setting of ioctl hooks to avoid race
837 * with module unload.
840 static DEFINE_MUTEX(br_ioctl_mutex
);
841 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
843 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
845 mutex_lock(&br_ioctl_mutex
);
846 br_ioctl_hook
= hook
;
847 mutex_unlock(&br_ioctl_mutex
);
849 EXPORT_SYMBOL(brioctl_set
);
851 static DEFINE_MUTEX(vlan_ioctl_mutex
);
852 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
854 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
856 mutex_lock(&vlan_ioctl_mutex
);
857 vlan_ioctl_hook
= hook
;
858 mutex_unlock(&vlan_ioctl_mutex
);
860 EXPORT_SYMBOL(vlan_ioctl_set
);
862 static DEFINE_MUTEX(dlci_ioctl_mutex
);
863 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
865 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
867 mutex_lock(&dlci_ioctl_mutex
);
868 dlci_ioctl_hook
= hook
;
869 mutex_unlock(&dlci_ioctl_mutex
);
871 EXPORT_SYMBOL(dlci_ioctl_set
);
873 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
874 unsigned int cmd
, unsigned long arg
)
877 void __user
*argp
= (void __user
*)arg
;
879 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
882 * If this ioctl is unknown try to hand it down
885 if (err
== -ENOIOCTLCMD
)
886 err
= dev_ioctl(net
, cmd
, argp
);
892 * With an ioctl, arg may well be a user mode pointer, but we don't know
893 * what to do with it - that's up to the protocol still.
896 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
900 void __user
*argp
= (void __user
*)arg
;
904 sock
= file
->private_data
;
907 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
908 err
= dev_ioctl(net
, cmd
, argp
);
910 #ifdef CONFIG_WEXT_CORE
911 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
912 err
= dev_ioctl(net
, cmd
, argp
);
919 if (get_user(pid
, (int __user
*)argp
))
921 f_setown(sock
->file
, pid
, 1);
926 err
= put_user(f_getown(sock
->file
),
935 request_module("bridge");
937 mutex_lock(&br_ioctl_mutex
);
939 err
= br_ioctl_hook(net
, cmd
, argp
);
940 mutex_unlock(&br_ioctl_mutex
);
945 if (!vlan_ioctl_hook
)
946 request_module("8021q");
948 mutex_lock(&vlan_ioctl_mutex
);
950 err
= vlan_ioctl_hook(net
, argp
);
951 mutex_unlock(&vlan_ioctl_mutex
);
956 if (!dlci_ioctl_hook
)
957 request_module("dlci");
959 mutex_lock(&dlci_ioctl_mutex
);
961 err
= dlci_ioctl_hook(cmd
, argp
);
962 mutex_unlock(&dlci_ioctl_mutex
);
965 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
971 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
974 struct socket
*sock
= NULL
;
976 err
= security_socket_create(family
, type
, protocol
, 1);
987 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
999 EXPORT_SYMBOL(sock_create_lite
);
1001 /* No kernel lock held - perfect */
1002 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1004 unsigned int busy_flag
= 0;
1005 struct socket
*sock
;
1008 * We can't return errors to poll, so it's either yes or no.
1010 sock
= file
->private_data
;
1012 if (sk_can_busy_loop(sock
->sk
)) {
1013 /* this socket can poll_ll so tell the system call */
1014 busy_flag
= POLL_BUSY_LOOP
;
1016 /* once, only if requested by syscall */
1017 if (wait
&& (wait
->_key
& POLL_BUSY_LOOP
))
1018 sk_busy_loop(sock
->sk
, 1);
1021 return busy_flag
| sock
->ops
->poll(file
, sock
, wait
);
1024 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1026 struct socket
*sock
= file
->private_data
;
1028 return sock
->ops
->mmap(file
, sock
, vma
);
1031 static int sock_close(struct inode
*inode
, struct file
*filp
)
1033 sock_release(SOCKET_I(inode
));
1038 * Update the socket async list
1040 * Fasync_list locking strategy.
1042 * 1. fasync_list is modified only under process context socket lock
1043 * i.e. under semaphore.
1044 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1045 * or under socket lock
1048 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1050 struct socket
*sock
= filp
->private_data
;
1051 struct sock
*sk
= sock
->sk
;
1052 struct socket_wq
*wq
;
1058 wq
= rcu_dereference_protected(sock
->wq
, lockdep_sock_is_held(sk
));
1059 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1061 if (!wq
->fasync_list
)
1062 sock_reset_flag(sk
, SOCK_FASYNC
);
1064 sock_set_flag(sk
, SOCK_FASYNC
);
1070 /* This function may be called only under rcu_lock */
1072 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1074 if (!wq
|| !wq
->fasync_list
)
1078 case SOCK_WAKE_WAITD
:
1079 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1082 case SOCK_WAKE_SPACE
:
1083 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1088 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1091 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1096 EXPORT_SYMBOL(sock_wake_async
);
1098 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1099 struct socket
**res
, int kern
)
1102 struct socket
*sock
;
1103 const struct net_proto_family
*pf
;
1106 * Check protocol is in range
1108 if (family
< 0 || family
>= NPROTO
)
1109 return -EAFNOSUPPORT
;
1110 if (type
< 0 || type
>= SOCK_MAX
)
1115 This uglymoron is moved from INET layer to here to avoid
1116 deadlock in module load.
1118 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1119 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1124 err
= security_socket_create(family
, type
, protocol
, kern
);
1129 * Allocate the socket and allow the family to set things up. if
1130 * the protocol is 0, the family is instructed to select an appropriate
1133 sock
= sock_alloc();
1135 net_warn_ratelimited("socket: no more sockets\n");
1136 return -ENFILE
; /* Not exactly a match, but its the
1137 closest posix thing */
1142 #ifdef CONFIG_MODULES
1143 /* Attempt to load a protocol module if the find failed.
1145 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1146 * requested real, full-featured networking support upon configuration.
1147 * Otherwise module support will break!
1149 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1150 request_module("net-pf-%d", family
);
1154 pf
= rcu_dereference(net_families
[family
]);
1155 err
= -EAFNOSUPPORT
;
1160 * We will call the ->create function, that possibly is in a loadable
1161 * module, so we have to bump that loadable module refcnt first.
1163 if (!try_module_get(pf
->owner
))
1166 /* Now protected by module ref count */
1169 err
= pf
->create(net
, sock
, protocol
, kern
);
1171 goto out_module_put
;
1174 * Now to bump the refcnt of the [loadable] module that owns this
1175 * socket at sock_release time we decrement its refcnt.
1177 if (!try_module_get(sock
->ops
->owner
))
1178 goto out_module_busy
;
1181 * Now that we're done with the ->create function, the [loadable]
1182 * module can have its refcnt decremented
1184 module_put(pf
->owner
);
1185 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1187 goto out_sock_release
;
1193 err
= -EAFNOSUPPORT
;
1196 module_put(pf
->owner
);
1203 goto out_sock_release
;
1205 EXPORT_SYMBOL(__sock_create
);
1207 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1209 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1211 EXPORT_SYMBOL(sock_create
);
1213 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1215 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1217 EXPORT_SYMBOL(sock_create_kern
);
1219 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1222 struct socket
*sock
;
1225 /* Check the SOCK_* constants for consistency. */
1226 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1227 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1228 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1229 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1231 flags
= type
& ~SOCK_TYPE_MASK
;
1232 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1234 type
&= SOCK_TYPE_MASK
;
1236 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1237 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1239 retval
= sock_create(family
, type
, protocol
, &sock
);
1243 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1248 /* It may be already another descriptor 8) Not kernel problem. */
1257 * Create a pair of connected sockets.
1260 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1261 int __user
*, usockvec
)
1263 struct socket
*sock1
, *sock2
;
1265 struct file
*newfile1
, *newfile2
;
1268 flags
= type
& ~SOCK_TYPE_MASK
;
1269 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1271 type
&= SOCK_TYPE_MASK
;
1273 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1274 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1277 * Obtain the first socket and check if the underlying protocol
1278 * supports the socketpair call.
1281 err
= sock_create(family
, type
, protocol
, &sock1
);
1285 err
= sock_create(family
, type
, protocol
, &sock2
);
1289 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1291 goto out_release_both
;
1293 fd1
= get_unused_fd_flags(flags
);
1294 if (unlikely(fd1
< 0)) {
1296 goto out_release_both
;
1299 fd2
= get_unused_fd_flags(flags
);
1300 if (unlikely(fd2
< 0)) {
1302 goto out_put_unused_1
;
1305 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1306 if (IS_ERR(newfile1
)) {
1307 err
= PTR_ERR(newfile1
);
1308 goto out_put_unused_both
;
1311 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1312 if (IS_ERR(newfile2
)) {
1313 err
= PTR_ERR(newfile2
);
1317 err
= put_user(fd1
, &usockvec
[0]);
1321 err
= put_user(fd2
, &usockvec
[1]);
1325 audit_fd_pair(fd1
, fd2
);
1327 fd_install(fd1
, newfile1
);
1328 fd_install(fd2
, newfile2
);
1329 /* fd1 and fd2 may be already another descriptors.
1330 * Not kernel problem.
1346 sock_release(sock2
);
1349 out_put_unused_both
:
1354 sock_release(sock2
);
1356 sock_release(sock1
);
1362 * Bind a name to a socket. Nothing much to do here since it's
1363 * the protocol's responsibility to handle the local address.
1365 * We move the socket address to kernel space before we call
1366 * the protocol layer (having also checked the address is ok).
1369 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1371 struct socket
*sock
;
1372 struct sockaddr_storage address
;
1373 int err
, fput_needed
;
1375 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1377 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1379 err
= security_socket_bind(sock
,
1380 (struct sockaddr
*)&address
,
1383 err
= sock
->ops
->bind(sock
,
1387 fput_light(sock
->file
, fput_needed
);
1393 * Perform a listen. Basically, we allow the protocol to do anything
1394 * necessary for a listen, and if that works, we mark the socket as
1395 * ready for listening.
1398 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1400 struct socket
*sock
;
1401 int err
, fput_needed
;
1404 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1406 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1407 if ((unsigned int)backlog
> somaxconn
)
1408 backlog
= somaxconn
;
1410 err
= security_socket_listen(sock
, backlog
);
1412 err
= sock
->ops
->listen(sock
, backlog
);
1414 fput_light(sock
->file
, fput_needed
);
1420 * For accept, we attempt to create a new socket, set up the link
1421 * with the client, wake up the client, then return the new
1422 * connected fd. We collect the address of the connector in kernel
1423 * space and move it to user at the very end. This is unclean because
1424 * we open the socket then return an error.
1426 * 1003.1g adds the ability to recvmsg() to query connection pending
1427 * status to recvmsg. We need to add that support in a way thats
1428 * clean when we restucture accept also.
1431 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1432 int __user
*, upeer_addrlen
, int, flags
)
1434 struct socket
*sock
, *newsock
;
1435 struct file
*newfile
;
1436 int err
, len
, newfd
, fput_needed
;
1437 struct sockaddr_storage address
;
1439 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1442 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1443 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1445 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1450 newsock
= sock_alloc();
1454 newsock
->type
= sock
->type
;
1455 newsock
->ops
= sock
->ops
;
1458 * We don't need try_module_get here, as the listening socket (sock)
1459 * has the protocol module (sock->ops->owner) held.
1461 __module_get(newsock
->ops
->owner
);
1463 newfd
= get_unused_fd_flags(flags
);
1464 if (unlikely(newfd
< 0)) {
1466 sock_release(newsock
);
1469 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1470 if (IS_ERR(newfile
)) {
1471 err
= PTR_ERR(newfile
);
1472 put_unused_fd(newfd
);
1473 sock_release(newsock
);
1477 err
= security_socket_accept(sock
, newsock
);
1481 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1485 if (upeer_sockaddr
) {
1486 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1488 err
= -ECONNABORTED
;
1491 err
= move_addr_to_user(&address
,
1492 len
, upeer_sockaddr
, upeer_addrlen
);
1497 /* File flags are not inherited via accept() unlike another OSes. */
1499 fd_install(newfd
, newfile
);
1503 fput_light(sock
->file
, fput_needed
);
1508 put_unused_fd(newfd
);
1512 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1513 int __user
*, upeer_addrlen
)
1515 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1519 * Attempt to connect to a socket with the server address. The address
1520 * is in user space so we verify it is OK and move it to kernel space.
1522 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1525 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1526 * other SEQPACKET protocols that take time to connect() as it doesn't
1527 * include the -EINPROGRESS status for such sockets.
1530 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1533 struct socket
*sock
;
1534 struct sockaddr_storage address
;
1535 int err
, fput_needed
;
1537 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1540 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1545 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1549 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1550 sock
->file
->f_flags
);
1552 fput_light(sock
->file
, fput_needed
);
1558 * Get the local address ('name') of a socket object. Move the obtained
1559 * name to user space.
1562 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1563 int __user
*, usockaddr_len
)
1565 struct socket
*sock
;
1566 struct sockaddr_storage address
;
1567 int len
, err
, fput_needed
;
1569 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1573 err
= security_socket_getsockname(sock
);
1577 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1580 err
= move_addr_to_user(&address
, len
, usockaddr
, usockaddr_len
);
1583 fput_light(sock
->file
, fput_needed
);
1589 * Get the remote address ('name') of a socket object. Move the obtained
1590 * name to user space.
1593 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1594 int __user
*, usockaddr_len
)
1596 struct socket
*sock
;
1597 struct sockaddr_storage address
;
1598 int len
, err
, fput_needed
;
1600 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1602 err
= security_socket_getpeername(sock
);
1604 fput_light(sock
->file
, fput_needed
);
1609 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1612 err
= move_addr_to_user(&address
, len
, usockaddr
,
1614 fput_light(sock
->file
, fput_needed
);
1620 * Send a datagram to a given address. We move the address into kernel
1621 * space and check the user space data area is readable before invoking
1625 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1626 unsigned int, flags
, struct sockaddr __user
*, addr
,
1629 struct socket
*sock
;
1630 struct sockaddr_storage address
;
1636 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1639 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1643 msg
.msg_name
= NULL
;
1644 msg
.msg_control
= NULL
;
1645 msg
.msg_controllen
= 0;
1646 msg
.msg_namelen
= 0;
1648 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1651 msg
.msg_name
= (struct sockaddr
*)&address
;
1652 msg
.msg_namelen
= addr_len
;
1654 if (sock
->file
->f_flags
& O_NONBLOCK
)
1655 flags
|= MSG_DONTWAIT
;
1656 msg
.msg_flags
= flags
;
1657 err
= sock_sendmsg(sock
, &msg
);
1660 fput_light(sock
->file
, fput_needed
);
1666 * Send a datagram down a socket.
1669 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1670 unsigned int, flags
)
1672 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1676 * Receive a frame from the socket and optionally record the address of the
1677 * sender. We verify the buffers are writable and if needed move the
1678 * sender address from kernel to user space.
1681 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1682 unsigned int, flags
, struct sockaddr __user
*, addr
,
1683 int __user
*, addr_len
)
1685 struct socket
*sock
;
1688 struct sockaddr_storage address
;
1692 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
1695 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1699 msg
.msg_control
= NULL
;
1700 msg
.msg_controllen
= 0;
1701 /* Save some cycles and don't copy the address if not needed */
1702 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1703 /* We assume all kernel code knows the size of sockaddr_storage */
1704 msg
.msg_namelen
= 0;
1705 msg
.msg_iocb
= NULL
;
1707 if (sock
->file
->f_flags
& O_NONBLOCK
)
1708 flags
|= MSG_DONTWAIT
;
1709 err
= sock_recvmsg(sock
, &msg
, flags
);
1711 if (err
>= 0 && addr
!= NULL
) {
1712 err2
= move_addr_to_user(&address
,
1713 msg
.msg_namelen
, addr
, addr_len
);
1718 fput_light(sock
->file
, fput_needed
);
1724 * Receive a datagram from a socket.
1727 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
1728 unsigned int, flags
)
1730 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1734 * Set a socket option. Because we don't know the option lengths we have
1735 * to pass the user mode parameter for the protocols to sort out.
1738 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1739 char __user
*, optval
, int, optlen
)
1741 int err
, fput_needed
;
1742 struct socket
*sock
;
1747 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1749 err
= security_socket_setsockopt(sock
, level
, optname
);
1753 if (level
== SOL_SOCKET
)
1755 sock_setsockopt(sock
, level
, optname
, optval
,
1759 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1762 fput_light(sock
->file
, fput_needed
);
1768 * Get a socket option. Because we don't know the option lengths we have
1769 * to pass a user mode parameter for the protocols to sort out.
1772 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1773 char __user
*, optval
, int __user
*, optlen
)
1775 int err
, fput_needed
;
1776 struct socket
*sock
;
1778 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1780 err
= security_socket_getsockopt(sock
, level
, optname
);
1784 if (level
== SOL_SOCKET
)
1786 sock_getsockopt(sock
, level
, optname
, optval
,
1790 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1793 fput_light(sock
->file
, fput_needed
);
1799 * Shutdown a socket.
1802 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1804 int err
, fput_needed
;
1805 struct socket
*sock
;
1807 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1809 err
= security_socket_shutdown(sock
, how
);
1811 err
= sock
->ops
->shutdown(sock
, how
);
1812 fput_light(sock
->file
, fput_needed
);
1817 /* A couple of helpful macros for getting the address of the 32/64 bit
1818 * fields which are the same type (int / unsigned) on our platforms.
1820 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1821 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1822 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1824 struct used_address
{
1825 struct sockaddr_storage name
;
1826 unsigned int name_len
;
1829 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1830 struct user_msghdr __user
*umsg
,
1831 struct sockaddr __user
**save_addr
,
1834 struct sockaddr __user
*uaddr
;
1835 struct iovec __user
*uiov
;
1839 if (!access_ok(VERIFY_READ
, umsg
, sizeof(*umsg
)) ||
1840 __get_user(uaddr
, &umsg
->msg_name
) ||
1841 __get_user(kmsg
->msg_namelen
, &umsg
->msg_namelen
) ||
1842 __get_user(uiov
, &umsg
->msg_iov
) ||
1843 __get_user(nr_segs
, &umsg
->msg_iovlen
) ||
1844 __get_user(kmsg
->msg_control
, &umsg
->msg_control
) ||
1845 __get_user(kmsg
->msg_controllen
, &umsg
->msg_controllen
) ||
1846 __get_user(kmsg
->msg_flags
, &umsg
->msg_flags
))
1850 kmsg
->msg_namelen
= 0;
1852 if (kmsg
->msg_namelen
< 0)
1855 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
1856 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
1861 if (uaddr
&& kmsg
->msg_namelen
) {
1863 err
= move_addr_to_kernel(uaddr
, kmsg
->msg_namelen
,
1869 kmsg
->msg_name
= NULL
;
1870 kmsg
->msg_namelen
= 0;
1873 if (nr_segs
> UIO_MAXIOV
)
1876 kmsg
->msg_iocb
= NULL
;
1878 return import_iovec(save_addr
? READ
: WRITE
, uiov
, nr_segs
,
1879 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
1882 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
1883 struct msghdr
*msg_sys
, unsigned int flags
,
1884 struct used_address
*used_address
,
1885 unsigned int allowed_msghdr_flags
)
1887 struct compat_msghdr __user
*msg_compat
=
1888 (struct compat_msghdr __user
*)msg
;
1889 struct sockaddr_storage address
;
1890 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1891 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1892 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1893 /* 20 is size of ipv6_pktinfo */
1894 unsigned char *ctl_buf
= ctl
;
1898 msg_sys
->msg_name
= &address
;
1900 if (MSG_CMSG_COMPAT
& flags
)
1901 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
1903 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
1909 if (msg_sys
->msg_controllen
> INT_MAX
)
1911 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
1912 ctl_len
= msg_sys
->msg_controllen
;
1913 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1915 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
1919 ctl_buf
= msg_sys
->msg_control
;
1920 ctl_len
= msg_sys
->msg_controllen
;
1921 } else if (ctl_len
) {
1922 if (ctl_len
> sizeof(ctl
)) {
1923 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1924 if (ctl_buf
== NULL
)
1929 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1930 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1931 * checking falls down on this.
1933 if (copy_from_user(ctl_buf
,
1934 (void __user __force
*)msg_sys
->msg_control
,
1937 msg_sys
->msg_control
= ctl_buf
;
1939 msg_sys
->msg_flags
= flags
;
1941 if (sock
->file
->f_flags
& O_NONBLOCK
)
1942 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
1944 * If this is sendmmsg() and current destination address is same as
1945 * previously succeeded address, omit asking LSM's decision.
1946 * used_address->name_len is initialized to UINT_MAX so that the first
1947 * destination address never matches.
1949 if (used_address
&& msg_sys
->msg_name
&&
1950 used_address
->name_len
== msg_sys
->msg_namelen
&&
1951 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
1952 used_address
->name_len
)) {
1953 err
= sock_sendmsg_nosec(sock
, msg_sys
);
1956 err
= sock_sendmsg(sock
, msg_sys
);
1958 * If this is sendmmsg() and sending to current destination address was
1959 * successful, remember it.
1961 if (used_address
&& err
>= 0) {
1962 used_address
->name_len
= msg_sys
->msg_namelen
;
1963 if (msg_sys
->msg_name
)
1964 memcpy(&used_address
->name
, msg_sys
->msg_name
,
1965 used_address
->name_len
);
1970 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1977 * BSD sendmsg interface
1980 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
1982 int fput_needed
, err
;
1983 struct msghdr msg_sys
;
1984 struct socket
*sock
;
1986 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1990 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
1992 fput_light(sock
->file
, fput_needed
);
1997 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
1999 if (flags
& MSG_CMSG_COMPAT
)
2001 return __sys_sendmsg(fd
, msg
, flags
);
2005 * Linux sendmmsg interface
2008 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2011 int fput_needed
, err
, datagrams
;
2012 struct socket
*sock
;
2013 struct mmsghdr __user
*entry
;
2014 struct compat_mmsghdr __user
*compat_entry
;
2015 struct msghdr msg_sys
;
2016 struct used_address used_address
;
2017 unsigned int oflags
= flags
;
2019 if (vlen
> UIO_MAXIOV
)
2024 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2028 used_address
.name_len
= UINT_MAX
;
2030 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2034 while (datagrams
< vlen
) {
2035 if (datagrams
== vlen
- 1)
2038 if (MSG_CMSG_COMPAT
& flags
) {
2039 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2040 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2043 err
= __put_user(err
, &compat_entry
->msg_len
);
2046 err
= ___sys_sendmsg(sock
,
2047 (struct user_msghdr __user
*)entry
,
2048 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2051 err
= put_user(err
, &entry
->msg_len
);
2058 if (msg_data_left(&msg_sys
))
2063 fput_light(sock
->file
, fput_needed
);
2065 /* We only return an error if no datagrams were able to be sent */
2072 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2073 unsigned int, vlen
, unsigned int, flags
)
2075 if (flags
& MSG_CMSG_COMPAT
)
2077 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2080 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2081 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2083 struct compat_msghdr __user
*msg_compat
=
2084 (struct compat_msghdr __user
*)msg
;
2085 struct iovec iovstack
[UIO_FASTIOV
];
2086 struct iovec
*iov
= iovstack
;
2087 unsigned long cmsg_ptr
;
2091 /* kernel mode address */
2092 struct sockaddr_storage addr
;
2094 /* user mode address pointers */
2095 struct sockaddr __user
*uaddr
;
2096 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2098 msg_sys
->msg_name
= &addr
;
2100 if (MSG_CMSG_COMPAT
& flags
)
2101 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2103 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2107 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2108 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2110 /* We assume all kernel code knows the size of sockaddr_storage */
2111 msg_sys
->msg_namelen
= 0;
2113 if (sock
->file
->f_flags
& O_NONBLOCK
)
2114 flags
|= MSG_DONTWAIT
;
2115 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
, flags
);
2120 if (uaddr
!= NULL
) {
2121 err
= move_addr_to_user(&addr
,
2122 msg_sys
->msg_namelen
, uaddr
,
2127 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2131 if (MSG_CMSG_COMPAT
& flags
)
2132 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2133 &msg_compat
->msg_controllen
);
2135 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2136 &msg
->msg_controllen
);
2147 * BSD recvmsg interface
2150 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
2152 int fput_needed
, err
;
2153 struct msghdr msg_sys
;
2154 struct socket
*sock
;
2156 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2160 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2162 fput_light(sock
->file
, fput_needed
);
2167 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2168 unsigned int, flags
)
2170 if (flags
& MSG_CMSG_COMPAT
)
2172 return __sys_recvmsg(fd
, msg
, flags
);
2176 * Linux recvmmsg interface
2179 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2180 unsigned int flags
, struct timespec
*timeout
)
2182 int fput_needed
, err
, datagrams
;
2183 struct socket
*sock
;
2184 struct mmsghdr __user
*entry
;
2185 struct compat_mmsghdr __user
*compat_entry
;
2186 struct msghdr msg_sys
;
2187 struct timespec64 end_time
;
2188 struct timespec64 timeout64
;
2191 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2197 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2201 err
= sock_error(sock
->sk
);
2208 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2210 while (datagrams
< vlen
) {
2212 * No need to ask LSM for more than the first datagram.
2214 if (MSG_CMSG_COMPAT
& flags
) {
2215 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2216 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2220 err
= __put_user(err
, &compat_entry
->msg_len
);
2223 err
= ___sys_recvmsg(sock
,
2224 (struct user_msghdr __user
*)entry
,
2225 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2229 err
= put_user(err
, &entry
->msg_len
);
2237 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2238 if (flags
& MSG_WAITFORONE
)
2239 flags
|= MSG_DONTWAIT
;
2242 ktime_get_ts64(&timeout64
);
2243 *timeout
= timespec64_to_timespec(
2244 timespec64_sub(end_time
, timeout64
));
2245 if (timeout
->tv_sec
< 0) {
2246 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2250 /* Timeout, return less than vlen datagrams */
2251 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2255 /* Out of band data, return right away */
2256 if (msg_sys
.msg_flags
& MSG_OOB
)
2264 if (datagrams
== 0) {
2270 * We may return less entries than requested (vlen) if the
2271 * sock is non block and there aren't enough datagrams...
2273 if (err
!= -EAGAIN
) {
2275 * ... or if recvmsg returns an error after we
2276 * received some datagrams, where we record the
2277 * error to return on the next call or if the
2278 * app asks about it using getsockopt(SO_ERROR).
2280 sock
->sk
->sk_err
= -err
;
2283 fput_light(sock
->file
, fput_needed
);
2288 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2289 unsigned int, vlen
, unsigned int, flags
,
2290 struct timespec __user
*, timeout
)
2293 struct timespec timeout_sys
;
2295 if (flags
& MSG_CMSG_COMPAT
)
2299 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2301 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2304 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2306 if (datagrams
> 0 &&
2307 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2308 datagrams
= -EFAULT
;
2313 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2314 /* Argument list sizes for sys_socketcall */
2315 #define AL(x) ((x) * sizeof(unsigned long))
2316 static const unsigned char nargs
[21] = {
2317 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2318 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2319 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2326 * System call vectors.
2328 * Argument checking cleaned up. Saved 20% in size.
2329 * This function doesn't need to set the kernel lock because
2330 * it is set by the callees.
2333 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2335 unsigned long a
[AUDITSC_ARGS
];
2336 unsigned long a0
, a1
;
2340 if (call
< 1 || call
> SYS_SENDMMSG
)
2342 call
= array_index_nospec(call
, SYS_SENDMMSG
+ 1);
2345 if (len
> sizeof(a
))
2348 /* copy_from_user should be SMP safe. */
2349 if (copy_from_user(a
, args
, len
))
2352 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2361 err
= sys_socket(a0
, a1
, a
[2]);
2364 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2367 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2370 err
= sys_listen(a0
, a1
);
2373 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2374 (int __user
*)a
[2], 0);
2376 case SYS_GETSOCKNAME
:
2378 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2379 (int __user
*)a
[2]);
2381 case SYS_GETPEERNAME
:
2383 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2384 (int __user
*)a
[2]);
2386 case SYS_SOCKETPAIR
:
2387 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2390 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2393 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2394 (struct sockaddr __user
*)a
[4], a
[5]);
2397 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2400 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2401 (struct sockaddr __user
*)a
[4],
2402 (int __user
*)a
[5]);
2405 err
= sys_shutdown(a0
, a1
);
2407 case SYS_SETSOCKOPT
:
2408 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2410 case SYS_GETSOCKOPT
:
2412 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2413 (int __user
*)a
[4]);
2416 err
= sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2419 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2422 err
= sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2425 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2426 (struct timespec __user
*)a
[4]);
2429 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2430 (int __user
*)a
[2], a
[3]);
2439 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2442 * sock_register - add a socket protocol handler
2443 * @ops: description of protocol
2445 * This function is called by a protocol handler that wants to
2446 * advertise its address family, and have it linked into the
2447 * socket interface. The value ops->family corresponds to the
2448 * socket system call protocol family.
2450 int sock_register(const struct net_proto_family
*ops
)
2454 if (ops
->family
>= NPROTO
) {
2455 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2459 spin_lock(&net_family_lock
);
2460 if (rcu_dereference_protected(net_families
[ops
->family
],
2461 lockdep_is_held(&net_family_lock
)))
2464 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2467 spin_unlock(&net_family_lock
);
2469 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2472 EXPORT_SYMBOL(sock_register
);
2475 * sock_unregister - remove a protocol handler
2476 * @family: protocol family to remove
2478 * This function is called by a protocol handler that wants to
2479 * remove its address family, and have it unlinked from the
2480 * new socket creation.
2482 * If protocol handler is a module, then it can use module reference
2483 * counts to protect against new references. If protocol handler is not
2484 * a module then it needs to provide its own protection in
2485 * the ops->create routine.
2487 void sock_unregister(int family
)
2489 BUG_ON(family
< 0 || family
>= NPROTO
);
2491 spin_lock(&net_family_lock
);
2492 RCU_INIT_POINTER(net_families
[family
], NULL
);
2493 spin_unlock(&net_family_lock
);
2497 pr_info("NET: Unregistered protocol family %d\n", family
);
2499 EXPORT_SYMBOL(sock_unregister
);
2501 static int __init
sock_init(void)
2505 * Initialize the network sysctl infrastructure.
2507 err
= net_sysctl_init();
2512 * Initialize skbuff SLAB cache
2517 * Initialize the protocols module.
2522 err
= register_filesystem(&sock_fs_type
);
2525 sock_mnt
= kern_mount(&sock_fs_type
);
2526 if (IS_ERR(sock_mnt
)) {
2527 err
= PTR_ERR(sock_mnt
);
2531 /* The real protocol initialization is performed in later initcalls.
2534 #ifdef CONFIG_NETFILTER
2535 err
= netfilter_init();
2540 ptp_classifier_init();
2546 unregister_filesystem(&sock_fs_type
);
2551 core_initcall(sock_init
); /* early initcall */
2553 static int __init
jit_init(void)
2555 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2560 pure_initcall(jit_init
);
2562 #ifdef CONFIG_PROC_FS
2563 void socket_seq_show(struct seq_file
*seq
)
2568 for_each_possible_cpu(cpu
)
2569 counter
+= per_cpu(sockets_in_use
, cpu
);
2571 /* It can be negative, by the way. 8) */
2575 seq_printf(seq
, "sockets: used %d\n", counter
);
2577 #endif /* CONFIG_PROC_FS */
2579 #ifdef CONFIG_COMPAT
2580 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2581 unsigned int cmd
, void __user
*up
)
2583 mm_segment_t old_fs
= get_fs();
2588 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2591 err
= compat_put_timeval(&ktv
, up
);
2596 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2597 unsigned int cmd
, void __user
*up
)
2599 mm_segment_t old_fs
= get_fs();
2600 struct timespec kts
;
2604 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2607 err
= compat_put_timespec(&kts
, up
);
2612 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2614 struct ifreq __user
*uifr
;
2617 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2618 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2621 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2625 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2631 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2633 struct compat_ifconf ifc32
;
2635 struct ifconf __user
*uifc
;
2636 struct compat_ifreq __user
*ifr32
;
2637 struct ifreq __user
*ifr
;
2641 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2644 memset(&ifc
, 0, sizeof(ifc
));
2645 if (ifc32
.ifcbuf
== 0) {
2649 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2651 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2652 sizeof(struct ifreq
);
2653 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2655 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2656 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2657 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2658 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2664 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2667 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2671 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2675 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2677 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2678 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2679 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2685 if (ifc32
.ifcbuf
== 0) {
2686 /* Translate from 64-bit structure multiple to
2690 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2695 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2701 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2703 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2704 bool convert_in
= false, convert_out
= false;
2705 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2706 struct ethtool_rxnfc __user
*rxnfc
;
2707 struct ifreq __user
*ifr
;
2708 u32 rule_cnt
= 0, actual_rule_cnt
;
2713 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2716 compat_rxnfc
= compat_ptr(data
);
2718 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2721 /* Most ethtool structures are defined without padding.
2722 * Unfortunately struct ethtool_rxnfc is an exception.
2727 case ETHTOOL_GRXCLSRLALL
:
2728 /* Buffer size is variable */
2729 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2731 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2733 buf_size
+= rule_cnt
* sizeof(u32
);
2735 case ETHTOOL_GRXRINGS
:
2736 case ETHTOOL_GRXCLSRLCNT
:
2737 case ETHTOOL_GRXCLSRULE
:
2738 case ETHTOOL_SRXCLSRLINS
:
2741 case ETHTOOL_SRXCLSRLDEL
:
2742 buf_size
+= sizeof(struct ethtool_rxnfc
);
2747 ifr
= compat_alloc_user_space(buf_size
);
2748 rxnfc
= (void __user
*)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2750 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2753 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2754 &ifr
->ifr_ifru
.ifru_data
))
2758 /* We expect there to be holes between fs.m_ext and
2759 * fs.ring_cookie and at the end of fs, but nowhere else.
2761 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2762 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2763 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2764 sizeof(rxnfc
->fs
.m_ext
));
2766 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2767 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2768 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2769 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2771 if (copy_in_user(rxnfc
, compat_rxnfc
,
2772 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2773 (void __user
*)rxnfc
) ||
2774 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2775 &compat_rxnfc
->fs
.ring_cookie
,
2776 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2777 (void __user
*)&rxnfc
->fs
.ring_cookie
))
2779 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2780 if (put_user(rule_cnt
, &rxnfc
->rule_cnt
))
2782 } else if (copy_in_user(&rxnfc
->rule_cnt
,
2783 &compat_rxnfc
->rule_cnt
,
2784 sizeof(rxnfc
->rule_cnt
)))
2788 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2793 if (copy_in_user(compat_rxnfc
, rxnfc
,
2794 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2795 (const void __user
*)rxnfc
) ||
2796 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2797 &rxnfc
->fs
.ring_cookie
,
2798 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2799 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2800 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2801 sizeof(rxnfc
->rule_cnt
)))
2804 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2805 /* As an optimisation, we only copy the actual
2806 * number of rules that the underlying
2807 * function returned. Since Mallory might
2808 * change the rule count in user memory, we
2809 * check that it is less than the rule count
2810 * originally given (as the user buffer size),
2811 * which has been range-checked.
2813 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2815 if (actual_rule_cnt
< rule_cnt
)
2816 rule_cnt
= actual_rule_cnt
;
2817 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2818 &rxnfc
->rule_locs
[0],
2819 rule_cnt
* sizeof(u32
)))
2827 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2830 compat_uptr_t uptr32
;
2831 struct ifreq __user
*uifr
;
2833 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2834 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2837 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2840 uptr
= compat_ptr(uptr32
);
2842 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2845 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2848 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2849 struct compat_ifreq __user
*ifr32
)
2852 mm_segment_t old_fs
;
2856 case SIOCBONDENSLAVE
:
2857 case SIOCBONDRELEASE
:
2858 case SIOCBONDSETHWADDR
:
2859 case SIOCBONDCHANGEACTIVE
:
2860 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2865 err
= dev_ioctl(net
, cmd
,
2866 (struct ifreq __user __force
*) &kifr
);
2871 return -ENOIOCTLCMD
;
2875 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2876 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
2877 struct compat_ifreq __user
*u_ifreq32
)
2879 struct ifreq __user
*u_ifreq64
;
2880 char tmp_buf
[IFNAMSIZ
];
2881 void __user
*data64
;
2884 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
2887 if (get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
2889 data64
= compat_ptr(data32
);
2891 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
2893 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
2896 if (put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
2899 return dev_ioctl(net
, cmd
, u_ifreq64
);
2902 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
2903 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
2905 struct ifreq __user
*uifr
;
2908 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2909 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2912 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2923 case SIOCGIFBRDADDR
:
2924 case SIOCGIFDSTADDR
:
2925 case SIOCGIFNETMASK
:
2930 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
2938 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
2939 struct compat_ifreq __user
*uifr32
)
2942 struct compat_ifmap __user
*uifmap32
;
2943 mm_segment_t old_fs
;
2946 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
2947 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
2948 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2949 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2950 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2951 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2952 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2953 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2959 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
2962 if (cmd
== SIOCGIFMAP
&& !err
) {
2963 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
2964 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2965 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2966 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2967 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2968 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2969 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2978 struct sockaddr rt_dst
; /* target address */
2979 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
2980 struct sockaddr rt_genmask
; /* target network mask (IP) */
2981 unsigned short rt_flags
;
2984 unsigned char rt_tos
;
2985 unsigned char rt_class
;
2987 short rt_metric
; /* +1 for binary compatibility! */
2988 /* char * */ u32 rt_dev
; /* forcing the device at add */
2989 u32 rt_mtu
; /* per route MTU/Window */
2990 u32 rt_window
; /* Window clamping */
2991 unsigned short rt_irtt
; /* Initial RTT */
2994 struct in6_rtmsg32
{
2995 struct in6_addr rtmsg_dst
;
2996 struct in6_addr rtmsg_src
;
2997 struct in6_addr rtmsg_gateway
;
3007 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3008 unsigned int cmd
, void __user
*argp
)
3012 struct in6_rtmsg r6
;
3016 mm_segment_t old_fs
= get_fs();
3018 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3019 struct in6_rtmsg32 __user
*ur6
= argp
;
3020 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3021 3 * sizeof(struct in6_addr
));
3022 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3023 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3024 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3025 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3026 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3027 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3028 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3032 struct rtentry32 __user
*ur4
= argp
;
3033 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3034 3 * sizeof(struct sockaddr
));
3035 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3036 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3037 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3038 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3039 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3040 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3042 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3043 r4
.rt_dev
= (char __user __force
*)devname
;
3057 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3064 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3065 * for some operations; this forces use of the newer bridge-utils that
3066 * use compatible ioctls
3068 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3072 if (get_user(tmp
, argp
))
3074 if (tmp
== BRCTL_GET_VERSION
)
3075 return BRCTL_VERSION
+ 1;
3079 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3080 unsigned int cmd
, unsigned long arg
)
3082 void __user
*argp
= compat_ptr(arg
);
3083 struct sock
*sk
= sock
->sk
;
3084 struct net
*net
= sock_net(sk
);
3086 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3087 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3092 return old_bridge_ioctl(argp
);
3094 return dev_ifname32(net
, argp
);
3096 return dev_ifconf(net
, argp
);
3098 return ethtool_ioctl(net
, argp
);
3100 return compat_siocwandev(net
, argp
);
3103 return compat_sioc_ifmap(net
, cmd
, argp
);
3104 case SIOCBONDENSLAVE
:
3105 case SIOCBONDRELEASE
:
3106 case SIOCBONDSETHWADDR
:
3107 case SIOCBONDCHANGEACTIVE
:
3108 return bond_ioctl(net
, cmd
, argp
);
3111 return routing_ioctl(net
, sock
, cmd
, argp
);
3113 return do_siocgstamp(net
, sock
, cmd
, argp
);
3115 return do_siocgstampns(net
, sock
, cmd
, argp
);
3116 case SIOCBONDSLAVEINFOQUERY
:
3117 case SIOCBONDINFOQUERY
:
3120 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3132 return sock_ioctl(file
, cmd
, arg
);
3149 case SIOCSIFHWBROADCAST
:
3151 case SIOCGIFBRDADDR
:
3152 case SIOCSIFBRDADDR
:
3153 case SIOCGIFDSTADDR
:
3154 case SIOCSIFDSTADDR
:
3155 case SIOCGIFNETMASK
:
3156 case SIOCSIFNETMASK
:
3167 return dev_ifsioc(net
, sock
, cmd
, argp
);
3173 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3176 return -ENOIOCTLCMD
;
3179 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3182 struct socket
*sock
= file
->private_data
;
3183 int ret
= -ENOIOCTLCMD
;
3190 if (sock
->ops
->compat_ioctl
)
3191 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3193 if (ret
== -ENOIOCTLCMD
&&
3194 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3195 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3197 if (ret
== -ENOIOCTLCMD
)
3198 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3204 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3206 return sock
->ops
->bind(sock
, addr
, addrlen
);
3208 EXPORT_SYMBOL(kernel_bind
);
3210 int kernel_listen(struct socket
*sock
, int backlog
)
3212 return sock
->ops
->listen(sock
, backlog
);
3214 EXPORT_SYMBOL(kernel_listen
);
3216 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3218 struct sock
*sk
= sock
->sk
;
3221 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3226 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3228 sock_release(*newsock
);
3233 (*newsock
)->ops
= sock
->ops
;
3234 __module_get((*newsock
)->ops
->owner
);
3239 EXPORT_SYMBOL(kernel_accept
);
3241 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3244 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3246 EXPORT_SYMBOL(kernel_connect
);
3248 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3251 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3253 EXPORT_SYMBOL(kernel_getsockname
);
3255 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3258 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3260 EXPORT_SYMBOL(kernel_getpeername
);
3262 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3263 char *optval
, int *optlen
)
3265 mm_segment_t oldfs
= get_fs();
3266 char __user
*uoptval
;
3267 int __user
*uoptlen
;
3270 uoptval
= (char __user __force
*) optval
;
3271 uoptlen
= (int __user __force
*) optlen
;
3274 if (level
== SOL_SOCKET
)
3275 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3277 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3282 EXPORT_SYMBOL(kernel_getsockopt
);
3284 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3285 char *optval
, unsigned int optlen
)
3287 mm_segment_t oldfs
= get_fs();
3288 char __user
*uoptval
;
3291 uoptval
= (char __user __force
*) optval
;
3294 if (level
== SOL_SOCKET
)
3295 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3297 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3302 EXPORT_SYMBOL(kernel_setsockopt
);
3304 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3305 size_t size
, int flags
)
3307 if (sock
->ops
->sendpage
)
3308 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3310 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3312 EXPORT_SYMBOL(kernel_sendpage
);
3314 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3316 mm_segment_t oldfs
= get_fs();
3320 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3325 EXPORT_SYMBOL(kernel_sock_ioctl
);
3327 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3329 return sock
->ops
->shutdown(sock
, how
);
3331 EXPORT_SYMBOL(kernel_sock_shutdown
);