mm: close PageTail race
[linux/fpc-iii.git] / kernel / printk / printk.c
blob4dae9cbe9259f6a80712589370a39c705132f631
1 /*
2 * linux/kernel/printk.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
49 #include <asm/uaccess.h>
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/printk.h>
54 #include "console_cmdline.h"
55 #include "braille.h"
57 /* printk's without a loglevel use this.. */
58 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
60 /* We show everything that is MORE important than this.. */
61 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
62 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
64 int console_printk[4] = {
65 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
66 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
67 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
68 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
72 * Low level drivers may need that to know if they can schedule in
73 * their unblank() callback or not. So let's export it.
75 int oops_in_progress;
76 EXPORT_SYMBOL(oops_in_progress);
79 * console_sem protects the console_drivers list, and also
80 * provides serialisation for access to the entire console
81 * driver system.
83 static DEFINE_SEMAPHORE(console_sem);
84 struct console *console_drivers;
85 EXPORT_SYMBOL_GPL(console_drivers);
87 #ifdef CONFIG_LOCKDEP
88 static struct lockdep_map console_lock_dep_map = {
89 .name = "console_lock"
91 #endif
94 * This is used for debugging the mess that is the VT code by
95 * keeping track if we have the console semaphore held. It's
96 * definitely not the perfect debug tool (we don't know if _WE_
97 * hold it are racing, but it helps tracking those weird code
98 * path in the console code where we end up in places I want
99 * locked without the console sempahore held
101 static int console_locked, console_suspended;
104 * If exclusive_console is non-NULL then only this console is to be printed to.
106 static struct console *exclusive_console;
109 * Array of consoles built from command line options (console=)
112 #define MAX_CMDLINECONSOLES 8
114 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
116 static int selected_console = -1;
117 static int preferred_console = -1;
118 int console_set_on_cmdline;
119 EXPORT_SYMBOL(console_set_on_cmdline);
121 /* Flag: console code may call schedule() */
122 static int console_may_schedule;
125 * The printk log buffer consists of a chain of concatenated variable
126 * length records. Every record starts with a record header, containing
127 * the overall length of the record.
129 * The heads to the first and last entry in the buffer, as well as the
130 * sequence numbers of these both entries are maintained when messages
131 * are stored..
133 * If the heads indicate available messages, the length in the header
134 * tells the start next message. A length == 0 for the next message
135 * indicates a wrap-around to the beginning of the buffer.
137 * Every record carries the monotonic timestamp in microseconds, as well as
138 * the standard userspace syslog level and syslog facility. The usual
139 * kernel messages use LOG_KERN; userspace-injected messages always carry
140 * a matching syslog facility, by default LOG_USER. The origin of every
141 * message can be reliably determined that way.
143 * The human readable log message directly follows the message header. The
144 * length of the message text is stored in the header, the stored message
145 * is not terminated.
147 * Optionally, a message can carry a dictionary of properties (key/value pairs),
148 * to provide userspace with a machine-readable message context.
150 * Examples for well-defined, commonly used property names are:
151 * DEVICE=b12:8 device identifier
152 * b12:8 block dev_t
153 * c127:3 char dev_t
154 * n8 netdev ifindex
155 * +sound:card0 subsystem:devname
156 * SUBSYSTEM=pci driver-core subsystem name
158 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
159 * follows directly after a '=' character. Every property is terminated by
160 * a '\0' character. The last property is not terminated.
162 * Example of a message structure:
163 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
164 * 0008 34 00 record is 52 bytes long
165 * 000a 0b 00 text is 11 bytes long
166 * 000c 1f 00 dictionary is 23 bytes long
167 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
168 * 0010 69 74 27 73 20 61 20 6c "it's a l"
169 * 69 6e 65 "ine"
170 * 001b 44 45 56 49 43 "DEVIC"
171 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
172 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
173 * 67 "g"
174 * 0032 00 00 00 padding to next message header
176 * The 'struct printk_log' buffer header must never be directly exported to
177 * userspace, it is a kernel-private implementation detail that might
178 * need to be changed in the future, when the requirements change.
180 * /dev/kmsg exports the structured data in the following line format:
181 * "level,sequnum,timestamp;<message text>\n"
183 * The optional key/value pairs are attached as continuation lines starting
184 * with a space character and terminated by a newline. All possible
185 * non-prinatable characters are escaped in the "\xff" notation.
187 * Users of the export format should ignore possible additional values
188 * separated by ',', and find the message after the ';' character.
191 enum log_flags {
192 LOG_NOCONS = 1, /* already flushed, do not print to console */
193 LOG_NEWLINE = 2, /* text ended with a newline */
194 LOG_PREFIX = 4, /* text started with a prefix */
195 LOG_CONT = 8, /* text is a fragment of a continuation line */
198 struct printk_log {
199 u64 ts_nsec; /* timestamp in nanoseconds */
200 u16 len; /* length of entire record */
201 u16 text_len; /* length of text buffer */
202 u16 dict_len; /* length of dictionary buffer */
203 u8 facility; /* syslog facility */
204 u8 flags:5; /* internal record flags */
205 u8 level:3; /* syslog level */
209 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
210 * used in interesting ways to provide interlocking in console_unlock();
212 static DEFINE_RAW_SPINLOCK(logbuf_lock);
214 #ifdef CONFIG_PRINTK
215 DECLARE_WAIT_QUEUE_HEAD(log_wait);
216 /* the next printk record to read by syslog(READ) or /proc/kmsg */
217 static u64 syslog_seq;
218 static u32 syslog_idx;
219 static enum log_flags syslog_prev;
220 static size_t syslog_partial;
222 /* index and sequence number of the first record stored in the buffer */
223 static u64 log_first_seq;
224 static u32 log_first_idx;
226 /* index and sequence number of the next record to store in the buffer */
227 static u64 log_next_seq;
228 static u32 log_next_idx;
230 /* the next printk record to write to the console */
231 static u64 console_seq;
232 static u32 console_idx;
233 static enum log_flags console_prev;
235 /* the next printk record to read after the last 'clear' command */
236 static u64 clear_seq;
237 static u32 clear_idx;
239 #define PREFIX_MAX 32
240 #define LOG_LINE_MAX 1024 - PREFIX_MAX
242 /* record buffer */
243 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
244 #define LOG_ALIGN 4
245 #else
246 #define LOG_ALIGN __alignof__(struct printk_log)
247 #endif
248 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
249 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
250 static char *log_buf = __log_buf;
251 static u32 log_buf_len = __LOG_BUF_LEN;
253 /* cpu currently holding logbuf_lock */
254 static volatile unsigned int logbuf_cpu = UINT_MAX;
256 /* human readable text of the record */
257 static char *log_text(const struct printk_log *msg)
259 return (char *)msg + sizeof(struct printk_log);
262 /* optional key/value pair dictionary attached to the record */
263 static char *log_dict(const struct printk_log *msg)
265 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
268 /* get record by index; idx must point to valid msg */
269 static struct printk_log *log_from_idx(u32 idx)
271 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
274 * A length == 0 record is the end of buffer marker. Wrap around and
275 * read the message at the start of the buffer.
277 if (!msg->len)
278 return (struct printk_log *)log_buf;
279 return msg;
282 /* get next record; idx must point to valid msg */
283 static u32 log_next(u32 idx)
285 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
287 /* length == 0 indicates the end of the buffer; wrap */
289 * A length == 0 record is the end of buffer marker. Wrap around and
290 * read the message at the start of the buffer as *this* one, and
291 * return the one after that.
293 if (!msg->len) {
294 msg = (struct printk_log *)log_buf;
295 return msg->len;
297 return idx + msg->len;
300 /* insert record into the buffer, discard old ones, update heads */
301 static void log_store(int facility, int level,
302 enum log_flags flags, u64 ts_nsec,
303 const char *dict, u16 dict_len,
304 const char *text, u16 text_len)
306 struct printk_log *msg;
307 u32 size, pad_len;
309 /* number of '\0' padding bytes to next message */
310 size = sizeof(struct printk_log) + text_len + dict_len;
311 pad_len = (-size) & (LOG_ALIGN - 1);
312 size += pad_len;
314 while (log_first_seq < log_next_seq) {
315 u32 free;
317 if (log_next_idx > log_first_idx)
318 free = max(log_buf_len - log_next_idx, log_first_idx);
319 else
320 free = log_first_idx - log_next_idx;
322 if (free > size + sizeof(struct printk_log))
323 break;
325 /* drop old messages until we have enough contiuous space */
326 log_first_idx = log_next(log_first_idx);
327 log_first_seq++;
330 if (log_next_idx + size + sizeof(struct printk_log) >= log_buf_len) {
332 * This message + an additional empty header does not fit
333 * at the end of the buffer. Add an empty header with len == 0
334 * to signify a wrap around.
336 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
337 log_next_idx = 0;
340 /* fill message */
341 msg = (struct printk_log *)(log_buf + log_next_idx);
342 memcpy(log_text(msg), text, text_len);
343 msg->text_len = text_len;
344 memcpy(log_dict(msg), dict, dict_len);
345 msg->dict_len = dict_len;
346 msg->facility = facility;
347 msg->level = level & 7;
348 msg->flags = flags & 0x1f;
349 if (ts_nsec > 0)
350 msg->ts_nsec = ts_nsec;
351 else
352 msg->ts_nsec = local_clock();
353 memset(log_dict(msg) + dict_len, 0, pad_len);
354 msg->len = sizeof(struct printk_log) + text_len + dict_len + pad_len;
356 /* insert message */
357 log_next_idx += msg->len;
358 log_next_seq++;
361 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
362 int dmesg_restrict = 1;
363 #else
364 int dmesg_restrict;
365 #endif
367 static int syslog_action_restricted(int type)
369 if (dmesg_restrict)
370 return 1;
372 * Unless restricted, we allow "read all" and "get buffer size"
373 * for everybody.
375 return type != SYSLOG_ACTION_READ_ALL &&
376 type != SYSLOG_ACTION_SIZE_BUFFER;
379 static int check_syslog_permissions(int type, bool from_file)
382 * If this is from /proc/kmsg and we've already opened it, then we've
383 * already done the capabilities checks at open time.
385 if (from_file && type != SYSLOG_ACTION_OPEN)
386 return 0;
388 if (syslog_action_restricted(type)) {
389 if (capable(CAP_SYSLOG))
390 return 0;
392 * For historical reasons, accept CAP_SYS_ADMIN too, with
393 * a warning.
395 if (capable(CAP_SYS_ADMIN)) {
396 pr_warn_once("%s (%d): Attempt to access syslog with "
397 "CAP_SYS_ADMIN but no CAP_SYSLOG "
398 "(deprecated).\n",
399 current->comm, task_pid_nr(current));
400 return 0;
402 return -EPERM;
404 return security_syslog(type);
408 /* /dev/kmsg - userspace message inject/listen interface */
409 struct devkmsg_user {
410 u64 seq;
411 u32 idx;
412 enum log_flags prev;
413 struct mutex lock;
414 char buf[8192];
417 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
418 unsigned long count, loff_t pos)
420 char *buf, *line;
421 int i;
422 int level = default_message_loglevel;
423 int facility = 1; /* LOG_USER */
424 size_t len = iov_length(iv, count);
425 ssize_t ret = len;
427 if (len > LOG_LINE_MAX)
428 return -EINVAL;
429 buf = kmalloc(len+1, GFP_KERNEL);
430 if (buf == NULL)
431 return -ENOMEM;
433 line = buf;
434 for (i = 0; i < count; i++) {
435 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
436 ret = -EFAULT;
437 goto out;
439 line += iv[i].iov_len;
443 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
444 * the decimal value represents 32bit, the lower 3 bit are the log
445 * level, the rest are the log facility.
447 * If no prefix or no userspace facility is specified, we
448 * enforce LOG_USER, to be able to reliably distinguish
449 * kernel-generated messages from userspace-injected ones.
451 line = buf;
452 if (line[0] == '<') {
453 char *endp = NULL;
455 i = simple_strtoul(line+1, &endp, 10);
456 if (endp && endp[0] == '>') {
457 level = i & 7;
458 if (i >> 3)
459 facility = i >> 3;
460 endp++;
461 len -= endp - line;
462 line = endp;
465 line[len] = '\0';
467 printk_emit(facility, level, NULL, 0, "%s", line);
468 out:
469 kfree(buf);
470 return ret;
473 static ssize_t devkmsg_read(struct file *file, char __user *buf,
474 size_t count, loff_t *ppos)
476 struct devkmsg_user *user = file->private_data;
477 struct printk_log *msg;
478 u64 ts_usec;
479 size_t i;
480 char cont = '-';
481 size_t len;
482 ssize_t ret;
484 if (!user)
485 return -EBADF;
487 ret = mutex_lock_interruptible(&user->lock);
488 if (ret)
489 return ret;
490 raw_spin_lock_irq(&logbuf_lock);
491 while (user->seq == log_next_seq) {
492 if (file->f_flags & O_NONBLOCK) {
493 ret = -EAGAIN;
494 raw_spin_unlock_irq(&logbuf_lock);
495 goto out;
498 raw_spin_unlock_irq(&logbuf_lock);
499 ret = wait_event_interruptible(log_wait,
500 user->seq != log_next_seq);
501 if (ret)
502 goto out;
503 raw_spin_lock_irq(&logbuf_lock);
506 if (user->seq < log_first_seq) {
507 /* our last seen message is gone, return error and reset */
508 user->idx = log_first_idx;
509 user->seq = log_first_seq;
510 ret = -EPIPE;
511 raw_spin_unlock_irq(&logbuf_lock);
512 goto out;
515 msg = log_from_idx(user->idx);
516 ts_usec = msg->ts_nsec;
517 do_div(ts_usec, 1000);
520 * If we couldn't merge continuation line fragments during the print,
521 * export the stored flags to allow an optional external merge of the
522 * records. Merging the records isn't always neccessarily correct, like
523 * when we hit a race during printing. In most cases though, it produces
524 * better readable output. 'c' in the record flags mark the first
525 * fragment of a line, '+' the following.
527 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
528 cont = 'c';
529 else if ((msg->flags & LOG_CONT) ||
530 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
531 cont = '+';
533 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
534 (msg->facility << 3) | msg->level,
535 user->seq, ts_usec, cont);
536 user->prev = msg->flags;
538 /* escape non-printable characters */
539 for (i = 0; i < msg->text_len; i++) {
540 unsigned char c = log_text(msg)[i];
542 if (c < ' ' || c >= 127 || c == '\\')
543 len += sprintf(user->buf + len, "\\x%02x", c);
544 else
545 user->buf[len++] = c;
547 user->buf[len++] = '\n';
549 if (msg->dict_len) {
550 bool line = true;
552 for (i = 0; i < msg->dict_len; i++) {
553 unsigned char c = log_dict(msg)[i];
555 if (line) {
556 user->buf[len++] = ' ';
557 line = false;
560 if (c == '\0') {
561 user->buf[len++] = '\n';
562 line = true;
563 continue;
566 if (c < ' ' || c >= 127 || c == '\\') {
567 len += sprintf(user->buf + len, "\\x%02x", c);
568 continue;
571 user->buf[len++] = c;
573 user->buf[len++] = '\n';
576 user->idx = log_next(user->idx);
577 user->seq++;
578 raw_spin_unlock_irq(&logbuf_lock);
580 if (len > count) {
581 ret = -EINVAL;
582 goto out;
585 if (copy_to_user(buf, user->buf, len)) {
586 ret = -EFAULT;
587 goto out;
589 ret = len;
590 out:
591 mutex_unlock(&user->lock);
592 return ret;
595 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
597 struct devkmsg_user *user = file->private_data;
598 loff_t ret = 0;
600 if (!user)
601 return -EBADF;
602 if (offset)
603 return -ESPIPE;
605 raw_spin_lock_irq(&logbuf_lock);
606 switch (whence) {
607 case SEEK_SET:
608 /* the first record */
609 user->idx = log_first_idx;
610 user->seq = log_first_seq;
611 break;
612 case SEEK_DATA:
614 * The first record after the last SYSLOG_ACTION_CLEAR,
615 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
616 * changes no global state, and does not clear anything.
618 user->idx = clear_idx;
619 user->seq = clear_seq;
620 break;
621 case SEEK_END:
622 /* after the last record */
623 user->idx = log_next_idx;
624 user->seq = log_next_seq;
625 break;
626 default:
627 ret = -EINVAL;
629 raw_spin_unlock_irq(&logbuf_lock);
630 return ret;
633 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
635 struct devkmsg_user *user = file->private_data;
636 int ret = 0;
638 if (!user)
639 return POLLERR|POLLNVAL;
641 poll_wait(file, &log_wait, wait);
643 raw_spin_lock_irq(&logbuf_lock);
644 if (user->seq < log_next_seq) {
645 /* return error when data has vanished underneath us */
646 if (user->seq < log_first_seq)
647 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
648 else
649 ret = POLLIN|POLLRDNORM;
651 raw_spin_unlock_irq(&logbuf_lock);
653 return ret;
656 static int devkmsg_open(struct inode *inode, struct file *file)
658 struct devkmsg_user *user;
659 int err;
661 /* write-only does not need any file context */
662 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
663 return 0;
665 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
666 SYSLOG_FROM_READER);
667 if (err)
668 return err;
670 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
671 if (!user)
672 return -ENOMEM;
674 mutex_init(&user->lock);
676 raw_spin_lock_irq(&logbuf_lock);
677 user->idx = log_first_idx;
678 user->seq = log_first_seq;
679 raw_spin_unlock_irq(&logbuf_lock);
681 file->private_data = user;
682 return 0;
685 static int devkmsg_release(struct inode *inode, struct file *file)
687 struct devkmsg_user *user = file->private_data;
689 if (!user)
690 return 0;
692 mutex_destroy(&user->lock);
693 kfree(user);
694 return 0;
697 const struct file_operations kmsg_fops = {
698 .open = devkmsg_open,
699 .read = devkmsg_read,
700 .aio_write = devkmsg_writev,
701 .llseek = devkmsg_llseek,
702 .poll = devkmsg_poll,
703 .release = devkmsg_release,
706 #ifdef CONFIG_KEXEC
708 * This appends the listed symbols to /proc/vmcore
710 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
711 * obtain access to symbols that are otherwise very difficult to locate. These
712 * symbols are specifically used so that utilities can access and extract the
713 * dmesg log from a vmcore file after a crash.
715 void log_buf_kexec_setup(void)
717 VMCOREINFO_SYMBOL(log_buf);
718 VMCOREINFO_SYMBOL(log_buf_len);
719 VMCOREINFO_SYMBOL(log_first_idx);
720 VMCOREINFO_SYMBOL(log_next_idx);
722 * Export struct printk_log size and field offsets. User space tools can
723 * parse it and detect any changes to structure down the line.
725 VMCOREINFO_STRUCT_SIZE(printk_log);
726 VMCOREINFO_OFFSET(printk_log, ts_nsec);
727 VMCOREINFO_OFFSET(printk_log, len);
728 VMCOREINFO_OFFSET(printk_log, text_len);
729 VMCOREINFO_OFFSET(printk_log, dict_len);
731 #endif
733 /* requested log_buf_len from kernel cmdline */
734 static unsigned long __initdata new_log_buf_len;
736 /* save requested log_buf_len since it's too early to process it */
737 static int __init log_buf_len_setup(char *str)
739 unsigned size = memparse(str, &str);
741 if (size)
742 size = roundup_pow_of_two(size);
743 if (size > log_buf_len)
744 new_log_buf_len = size;
746 return 0;
748 early_param("log_buf_len", log_buf_len_setup);
750 void __init setup_log_buf(int early)
752 unsigned long flags;
753 char *new_log_buf;
754 int free;
756 if (!new_log_buf_len)
757 return;
759 if (early) {
760 new_log_buf =
761 memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
762 } else {
763 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
766 if (unlikely(!new_log_buf)) {
767 pr_err("log_buf_len: %ld bytes not available\n",
768 new_log_buf_len);
769 return;
772 raw_spin_lock_irqsave(&logbuf_lock, flags);
773 log_buf_len = new_log_buf_len;
774 log_buf = new_log_buf;
775 new_log_buf_len = 0;
776 free = __LOG_BUF_LEN - log_next_idx;
777 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
778 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
780 pr_info("log_buf_len: %d\n", log_buf_len);
781 pr_info("early log buf free: %d(%d%%)\n",
782 free, (free * 100) / __LOG_BUF_LEN);
785 static bool __read_mostly ignore_loglevel;
787 static int __init ignore_loglevel_setup(char *str)
789 ignore_loglevel = 1;
790 pr_info("debug: ignoring loglevel setting.\n");
792 return 0;
795 early_param("ignore_loglevel", ignore_loglevel_setup);
796 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
797 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
798 "print all kernel messages to the console.");
800 #ifdef CONFIG_BOOT_PRINTK_DELAY
802 static int boot_delay; /* msecs delay after each printk during bootup */
803 static unsigned long long loops_per_msec; /* based on boot_delay */
805 static int __init boot_delay_setup(char *str)
807 unsigned long lpj;
809 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
810 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
812 get_option(&str, &boot_delay);
813 if (boot_delay > 10 * 1000)
814 boot_delay = 0;
816 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
817 "HZ: %d, loops_per_msec: %llu\n",
818 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
819 return 0;
821 early_param("boot_delay", boot_delay_setup);
823 static void boot_delay_msec(int level)
825 unsigned long long k;
826 unsigned long timeout;
828 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
829 || (level >= console_loglevel && !ignore_loglevel)) {
830 return;
833 k = (unsigned long long)loops_per_msec * boot_delay;
835 timeout = jiffies + msecs_to_jiffies(boot_delay);
836 while (k) {
837 k--;
838 cpu_relax();
840 * use (volatile) jiffies to prevent
841 * compiler reduction; loop termination via jiffies
842 * is secondary and may or may not happen.
844 if (time_after(jiffies, timeout))
845 break;
846 touch_nmi_watchdog();
849 #else
850 static inline void boot_delay_msec(int level)
853 #endif
855 #if defined(CONFIG_PRINTK_TIME)
856 static bool printk_time = 1;
857 #else
858 static bool printk_time;
859 #endif
860 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
862 static size_t print_time(u64 ts, char *buf)
864 unsigned long rem_nsec;
866 if (!printk_time)
867 return 0;
869 rem_nsec = do_div(ts, 1000000000);
871 if (!buf)
872 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
874 return sprintf(buf, "[%5lu.%06lu] ",
875 (unsigned long)ts, rem_nsec / 1000);
878 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
880 size_t len = 0;
881 unsigned int prefix = (msg->facility << 3) | msg->level;
883 if (syslog) {
884 if (buf) {
885 len += sprintf(buf, "<%u>", prefix);
886 } else {
887 len += 3;
888 if (prefix > 999)
889 len += 3;
890 else if (prefix > 99)
891 len += 2;
892 else if (prefix > 9)
893 len++;
897 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
898 return len;
901 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
902 bool syslog, char *buf, size_t size)
904 const char *text = log_text(msg);
905 size_t text_size = msg->text_len;
906 bool prefix = true;
907 bool newline = true;
908 size_t len = 0;
910 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
911 prefix = false;
913 if (msg->flags & LOG_CONT) {
914 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
915 prefix = false;
917 if (!(msg->flags & LOG_NEWLINE))
918 newline = false;
921 do {
922 const char *next = memchr(text, '\n', text_size);
923 size_t text_len;
925 if (next) {
926 text_len = next - text;
927 next++;
928 text_size -= next - text;
929 } else {
930 text_len = text_size;
933 if (buf) {
934 if (print_prefix(msg, syslog, NULL) +
935 text_len + 1 >= size - len)
936 break;
938 if (prefix)
939 len += print_prefix(msg, syslog, buf + len);
940 memcpy(buf + len, text, text_len);
941 len += text_len;
942 if (next || newline)
943 buf[len++] = '\n';
944 } else {
945 /* SYSLOG_ACTION_* buffer size only calculation */
946 if (prefix)
947 len += print_prefix(msg, syslog, NULL);
948 len += text_len;
949 if (next || newline)
950 len++;
953 prefix = true;
954 text = next;
955 } while (text);
957 return len;
960 static int syslog_print(char __user *buf, int size)
962 char *text;
963 struct printk_log *msg;
964 int len = 0;
966 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
967 if (!text)
968 return -ENOMEM;
970 while (size > 0) {
971 size_t n;
972 size_t skip;
974 raw_spin_lock_irq(&logbuf_lock);
975 if (syslog_seq < log_first_seq) {
976 /* messages are gone, move to first one */
977 syslog_seq = log_first_seq;
978 syslog_idx = log_first_idx;
979 syslog_prev = 0;
980 syslog_partial = 0;
982 if (syslog_seq == log_next_seq) {
983 raw_spin_unlock_irq(&logbuf_lock);
984 break;
987 skip = syslog_partial;
988 msg = log_from_idx(syslog_idx);
989 n = msg_print_text(msg, syslog_prev, true, text,
990 LOG_LINE_MAX + PREFIX_MAX);
991 if (n - syslog_partial <= size) {
992 /* message fits into buffer, move forward */
993 syslog_idx = log_next(syslog_idx);
994 syslog_seq++;
995 syslog_prev = msg->flags;
996 n -= syslog_partial;
997 syslog_partial = 0;
998 } else if (!len){
999 /* partial read(), remember position */
1000 n = size;
1001 syslog_partial += n;
1002 } else
1003 n = 0;
1004 raw_spin_unlock_irq(&logbuf_lock);
1006 if (!n)
1007 break;
1009 if (copy_to_user(buf, text + skip, n)) {
1010 if (!len)
1011 len = -EFAULT;
1012 break;
1015 len += n;
1016 size -= n;
1017 buf += n;
1020 kfree(text);
1021 return len;
1024 static int syslog_print_all(char __user *buf, int size, bool clear)
1026 char *text;
1027 int len = 0;
1029 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1030 if (!text)
1031 return -ENOMEM;
1033 raw_spin_lock_irq(&logbuf_lock);
1034 if (buf) {
1035 u64 next_seq;
1036 u64 seq;
1037 u32 idx;
1038 enum log_flags prev;
1040 if (clear_seq < log_first_seq) {
1041 /* messages are gone, move to first available one */
1042 clear_seq = log_first_seq;
1043 clear_idx = log_first_idx;
1047 * Find first record that fits, including all following records,
1048 * into the user-provided buffer for this dump.
1050 seq = clear_seq;
1051 idx = clear_idx;
1052 prev = 0;
1053 while (seq < log_next_seq) {
1054 struct printk_log *msg = log_from_idx(idx);
1056 len += msg_print_text(msg, prev, true, NULL, 0);
1057 prev = msg->flags;
1058 idx = log_next(idx);
1059 seq++;
1062 /* move first record forward until length fits into the buffer */
1063 seq = clear_seq;
1064 idx = clear_idx;
1065 prev = 0;
1066 while (len > size && seq < log_next_seq) {
1067 struct printk_log *msg = log_from_idx(idx);
1069 len -= msg_print_text(msg, prev, true, NULL, 0);
1070 prev = msg->flags;
1071 idx = log_next(idx);
1072 seq++;
1075 /* last message fitting into this dump */
1076 next_seq = log_next_seq;
1078 len = 0;
1079 while (len >= 0 && seq < next_seq) {
1080 struct printk_log *msg = log_from_idx(idx);
1081 int textlen;
1083 textlen = msg_print_text(msg, prev, true, text,
1084 LOG_LINE_MAX + PREFIX_MAX);
1085 if (textlen < 0) {
1086 len = textlen;
1087 break;
1089 idx = log_next(idx);
1090 seq++;
1091 prev = msg->flags;
1093 raw_spin_unlock_irq(&logbuf_lock);
1094 if (copy_to_user(buf + len, text, textlen))
1095 len = -EFAULT;
1096 else
1097 len += textlen;
1098 raw_spin_lock_irq(&logbuf_lock);
1100 if (seq < log_first_seq) {
1101 /* messages are gone, move to next one */
1102 seq = log_first_seq;
1103 idx = log_first_idx;
1104 prev = 0;
1109 if (clear) {
1110 clear_seq = log_next_seq;
1111 clear_idx = log_next_idx;
1113 raw_spin_unlock_irq(&logbuf_lock);
1115 kfree(text);
1116 return len;
1119 int do_syslog(int type, char __user *buf, int len, bool from_file)
1121 bool clear = false;
1122 static int saved_console_loglevel = -1;
1123 int error;
1125 error = check_syslog_permissions(type, from_file);
1126 if (error)
1127 goto out;
1129 error = security_syslog(type);
1130 if (error)
1131 return error;
1133 switch (type) {
1134 case SYSLOG_ACTION_CLOSE: /* Close log */
1135 break;
1136 case SYSLOG_ACTION_OPEN: /* Open log */
1137 break;
1138 case SYSLOG_ACTION_READ: /* Read from log */
1139 error = -EINVAL;
1140 if (!buf || len < 0)
1141 goto out;
1142 error = 0;
1143 if (!len)
1144 goto out;
1145 if (!access_ok(VERIFY_WRITE, buf, len)) {
1146 error = -EFAULT;
1147 goto out;
1149 error = wait_event_interruptible(log_wait,
1150 syslog_seq != log_next_seq);
1151 if (error)
1152 goto out;
1153 error = syslog_print(buf, len);
1154 break;
1155 /* Read/clear last kernel messages */
1156 case SYSLOG_ACTION_READ_CLEAR:
1157 clear = true;
1158 /* FALL THRU */
1159 /* Read last kernel messages */
1160 case SYSLOG_ACTION_READ_ALL:
1161 error = -EINVAL;
1162 if (!buf || len < 0)
1163 goto out;
1164 error = 0;
1165 if (!len)
1166 goto out;
1167 if (!access_ok(VERIFY_WRITE, buf, len)) {
1168 error = -EFAULT;
1169 goto out;
1171 error = syslog_print_all(buf, len, clear);
1172 break;
1173 /* Clear ring buffer */
1174 case SYSLOG_ACTION_CLEAR:
1175 syslog_print_all(NULL, 0, true);
1176 break;
1177 /* Disable logging to console */
1178 case SYSLOG_ACTION_CONSOLE_OFF:
1179 if (saved_console_loglevel == -1)
1180 saved_console_loglevel = console_loglevel;
1181 console_loglevel = minimum_console_loglevel;
1182 break;
1183 /* Enable logging to console */
1184 case SYSLOG_ACTION_CONSOLE_ON:
1185 if (saved_console_loglevel != -1) {
1186 console_loglevel = saved_console_loglevel;
1187 saved_console_loglevel = -1;
1189 break;
1190 /* Set level of messages printed to console */
1191 case SYSLOG_ACTION_CONSOLE_LEVEL:
1192 error = -EINVAL;
1193 if (len < 1 || len > 8)
1194 goto out;
1195 if (len < minimum_console_loglevel)
1196 len = minimum_console_loglevel;
1197 console_loglevel = len;
1198 /* Implicitly re-enable logging to console */
1199 saved_console_loglevel = -1;
1200 error = 0;
1201 break;
1202 /* Number of chars in the log buffer */
1203 case SYSLOG_ACTION_SIZE_UNREAD:
1204 raw_spin_lock_irq(&logbuf_lock);
1205 if (syslog_seq < log_first_seq) {
1206 /* messages are gone, move to first one */
1207 syslog_seq = log_first_seq;
1208 syslog_idx = log_first_idx;
1209 syslog_prev = 0;
1210 syslog_partial = 0;
1212 if (from_file) {
1214 * Short-cut for poll(/"proc/kmsg") which simply checks
1215 * for pending data, not the size; return the count of
1216 * records, not the length.
1218 error = log_next_idx - syslog_idx;
1219 } else {
1220 u64 seq = syslog_seq;
1221 u32 idx = syslog_idx;
1222 enum log_flags prev = syslog_prev;
1224 error = 0;
1225 while (seq < log_next_seq) {
1226 struct printk_log *msg = log_from_idx(idx);
1228 error += msg_print_text(msg, prev, true, NULL, 0);
1229 idx = log_next(idx);
1230 seq++;
1231 prev = msg->flags;
1233 error -= syslog_partial;
1235 raw_spin_unlock_irq(&logbuf_lock);
1236 break;
1237 /* Size of the log buffer */
1238 case SYSLOG_ACTION_SIZE_BUFFER:
1239 error = log_buf_len;
1240 break;
1241 default:
1242 error = -EINVAL;
1243 break;
1245 out:
1246 return error;
1249 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1251 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1255 * Call the console drivers, asking them to write out
1256 * log_buf[start] to log_buf[end - 1].
1257 * The console_lock must be held.
1259 static void call_console_drivers(int level, const char *text, size_t len)
1261 struct console *con;
1263 trace_console(text, len);
1265 if (level >= console_loglevel && !ignore_loglevel)
1266 return;
1267 if (!console_drivers)
1268 return;
1270 for_each_console(con) {
1271 if (exclusive_console && con != exclusive_console)
1272 continue;
1273 if (!(con->flags & CON_ENABLED))
1274 continue;
1275 if (!con->write)
1276 continue;
1277 if (!cpu_online(smp_processor_id()) &&
1278 !(con->flags & CON_ANYTIME))
1279 continue;
1280 con->write(con, text, len);
1285 * Zap console related locks when oopsing. Only zap at most once
1286 * every 10 seconds, to leave time for slow consoles to print a
1287 * full oops.
1289 static void zap_locks(void)
1291 static unsigned long oops_timestamp;
1293 if (time_after_eq(jiffies, oops_timestamp) &&
1294 !time_after(jiffies, oops_timestamp + 30 * HZ))
1295 return;
1297 oops_timestamp = jiffies;
1299 debug_locks_off();
1300 /* If a crash is occurring, make sure we can't deadlock */
1301 raw_spin_lock_init(&logbuf_lock);
1302 /* And make sure that we print immediately */
1303 sema_init(&console_sem, 1);
1306 /* Check if we have any console registered that can be called early in boot. */
1307 static int have_callable_console(void)
1309 struct console *con;
1311 for_each_console(con)
1312 if (con->flags & CON_ANYTIME)
1313 return 1;
1315 return 0;
1319 * Can we actually use the console at this time on this cpu?
1321 * Console drivers may assume that per-cpu resources have
1322 * been allocated. So unless they're explicitly marked as
1323 * being able to cope (CON_ANYTIME) don't call them until
1324 * this CPU is officially up.
1326 static inline int can_use_console(unsigned int cpu)
1328 return cpu_online(cpu) || have_callable_console();
1332 * Try to get console ownership to actually show the kernel
1333 * messages from a 'printk'. Return true (and with the
1334 * console_lock held, and 'console_locked' set) if it
1335 * is successful, false otherwise.
1337 * This gets called with the 'logbuf_lock' spinlock held and
1338 * interrupts disabled. It should return with 'lockbuf_lock'
1339 * released but interrupts still disabled.
1341 static int console_trylock_for_printk(unsigned int cpu)
1342 __releases(&logbuf_lock)
1344 int retval = 0, wake = 0;
1346 if (console_trylock()) {
1347 retval = 1;
1350 * If we can't use the console, we need to release
1351 * the console semaphore by hand to avoid flushing
1352 * the buffer. We need to hold the console semaphore
1353 * in order to do this test safely.
1355 if (!can_use_console(cpu)) {
1356 console_locked = 0;
1357 wake = 1;
1358 retval = 0;
1361 logbuf_cpu = UINT_MAX;
1362 raw_spin_unlock(&logbuf_lock);
1363 if (wake)
1364 up(&console_sem);
1365 return retval;
1368 int printk_delay_msec __read_mostly;
1370 static inline void printk_delay(void)
1372 if (unlikely(printk_delay_msec)) {
1373 int m = printk_delay_msec;
1375 while (m--) {
1376 mdelay(1);
1377 touch_nmi_watchdog();
1383 * Continuation lines are buffered, and not committed to the record buffer
1384 * until the line is complete, or a race forces it. The line fragments
1385 * though, are printed immediately to the consoles to ensure everything has
1386 * reached the console in case of a kernel crash.
1388 static struct cont {
1389 char buf[LOG_LINE_MAX];
1390 size_t len; /* length == 0 means unused buffer */
1391 size_t cons; /* bytes written to console */
1392 struct task_struct *owner; /* task of first print*/
1393 u64 ts_nsec; /* time of first print */
1394 u8 level; /* log level of first message */
1395 u8 facility; /* log level of first message */
1396 enum log_flags flags; /* prefix, newline flags */
1397 bool flushed:1; /* buffer sealed and committed */
1398 } cont;
1400 static void cont_flush(enum log_flags flags)
1402 if (cont.flushed)
1403 return;
1404 if (cont.len == 0)
1405 return;
1407 if (cont.cons) {
1409 * If a fragment of this line was directly flushed to the
1410 * console; wait for the console to pick up the rest of the
1411 * line. LOG_NOCONS suppresses a duplicated output.
1413 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1414 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1415 cont.flags = flags;
1416 cont.flushed = true;
1417 } else {
1419 * If no fragment of this line ever reached the console,
1420 * just submit it to the store and free the buffer.
1422 log_store(cont.facility, cont.level, flags, 0,
1423 NULL, 0, cont.buf, cont.len);
1424 cont.len = 0;
1428 static bool cont_add(int facility, int level, const char *text, size_t len)
1430 if (cont.len && cont.flushed)
1431 return false;
1433 if (cont.len + len > sizeof(cont.buf)) {
1434 /* the line gets too long, split it up in separate records */
1435 cont_flush(LOG_CONT);
1436 return false;
1439 if (!cont.len) {
1440 cont.facility = facility;
1441 cont.level = level;
1442 cont.owner = current;
1443 cont.ts_nsec = local_clock();
1444 cont.flags = 0;
1445 cont.cons = 0;
1446 cont.flushed = false;
1449 memcpy(cont.buf + cont.len, text, len);
1450 cont.len += len;
1452 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1453 cont_flush(LOG_CONT);
1455 return true;
1458 static size_t cont_print_text(char *text, size_t size)
1460 size_t textlen = 0;
1461 size_t len;
1463 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1464 textlen += print_time(cont.ts_nsec, text);
1465 size -= textlen;
1468 len = cont.len - cont.cons;
1469 if (len > 0) {
1470 if (len+1 > size)
1471 len = size-1;
1472 memcpy(text + textlen, cont.buf + cont.cons, len);
1473 textlen += len;
1474 cont.cons = cont.len;
1477 if (cont.flushed) {
1478 if (cont.flags & LOG_NEWLINE)
1479 text[textlen++] = '\n';
1480 /* got everything, release buffer */
1481 cont.len = 0;
1483 return textlen;
1486 asmlinkage int vprintk_emit(int facility, int level,
1487 const char *dict, size_t dictlen,
1488 const char *fmt, va_list args)
1490 static int recursion_bug;
1491 static char textbuf[LOG_LINE_MAX];
1492 char *text = textbuf;
1493 size_t text_len;
1494 enum log_flags lflags = 0;
1495 unsigned long flags;
1496 int this_cpu;
1497 int printed_len = 0;
1499 boot_delay_msec(level);
1500 printk_delay();
1502 /* This stops the holder of console_sem just where we want him */
1503 local_irq_save(flags);
1504 this_cpu = smp_processor_id();
1507 * Ouch, printk recursed into itself!
1509 if (unlikely(logbuf_cpu == this_cpu)) {
1511 * If a crash is occurring during printk() on this CPU,
1512 * then try to get the crash message out but make sure
1513 * we can't deadlock. Otherwise just return to avoid the
1514 * recursion and return - but flag the recursion so that
1515 * it can be printed at the next appropriate moment:
1517 if (!oops_in_progress && !lockdep_recursing(current)) {
1518 recursion_bug = 1;
1519 goto out_restore_irqs;
1521 zap_locks();
1524 lockdep_off();
1525 raw_spin_lock(&logbuf_lock);
1526 logbuf_cpu = this_cpu;
1528 if (recursion_bug) {
1529 static const char recursion_msg[] =
1530 "BUG: recent printk recursion!";
1532 recursion_bug = 0;
1533 printed_len += strlen(recursion_msg);
1534 /* emit KERN_CRIT message */
1535 log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1536 NULL, 0, recursion_msg, printed_len);
1540 * The printf needs to come first; we need the syslog
1541 * prefix which might be passed-in as a parameter.
1543 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1545 /* mark and strip a trailing newline */
1546 if (text_len && text[text_len-1] == '\n') {
1547 text_len--;
1548 lflags |= LOG_NEWLINE;
1551 /* strip kernel syslog prefix and extract log level or control flags */
1552 if (facility == 0) {
1553 int kern_level = printk_get_level(text);
1555 if (kern_level) {
1556 const char *end_of_header = printk_skip_level(text);
1557 switch (kern_level) {
1558 case '0' ... '7':
1559 if (level == -1)
1560 level = kern_level - '0';
1561 case 'd': /* KERN_DEFAULT */
1562 lflags |= LOG_PREFIX;
1563 case 'c': /* KERN_CONT */
1564 break;
1566 text_len -= end_of_header - text;
1567 text = (char *)end_of_header;
1571 if (level == -1)
1572 level = default_message_loglevel;
1574 if (dict)
1575 lflags |= LOG_PREFIX|LOG_NEWLINE;
1577 if (!(lflags & LOG_NEWLINE)) {
1579 * Flush the conflicting buffer. An earlier newline was missing,
1580 * or another task also prints continuation lines.
1582 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1583 cont_flush(LOG_NEWLINE);
1585 /* buffer line if possible, otherwise store it right away */
1586 if (!cont_add(facility, level, text, text_len))
1587 log_store(facility, level, lflags | LOG_CONT, 0,
1588 dict, dictlen, text, text_len);
1589 } else {
1590 bool stored = false;
1593 * If an earlier newline was missing and it was the same task,
1594 * either merge it with the current buffer and flush, or if
1595 * there was a race with interrupts (prefix == true) then just
1596 * flush it out and store this line separately.
1597 * If the preceding printk was from a different task and missed
1598 * a newline, flush and append the newline.
1600 if (cont.len) {
1601 if (cont.owner == current && !(lflags & LOG_PREFIX))
1602 stored = cont_add(facility, level, text,
1603 text_len);
1604 cont_flush(LOG_NEWLINE);
1607 if (!stored)
1608 log_store(facility, level, lflags, 0,
1609 dict, dictlen, text, text_len);
1611 printed_len += text_len;
1614 * Try to acquire and then immediately release the console semaphore.
1615 * The release will print out buffers and wake up /dev/kmsg and syslog()
1616 * users.
1618 * The console_trylock_for_printk() function will release 'logbuf_lock'
1619 * regardless of whether it actually gets the console semaphore or not.
1621 if (console_trylock_for_printk(this_cpu))
1622 console_unlock();
1624 lockdep_on();
1625 out_restore_irqs:
1626 local_irq_restore(flags);
1628 return printed_len;
1630 EXPORT_SYMBOL(vprintk_emit);
1632 asmlinkage int vprintk(const char *fmt, va_list args)
1634 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1636 EXPORT_SYMBOL(vprintk);
1638 asmlinkage int printk_emit(int facility, int level,
1639 const char *dict, size_t dictlen,
1640 const char *fmt, ...)
1642 va_list args;
1643 int r;
1645 va_start(args, fmt);
1646 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1647 va_end(args);
1649 return r;
1651 EXPORT_SYMBOL(printk_emit);
1654 * printk - print a kernel message
1655 * @fmt: format string
1657 * This is printk(). It can be called from any context. We want it to work.
1659 * We try to grab the console_lock. If we succeed, it's easy - we log the
1660 * output and call the console drivers. If we fail to get the semaphore, we
1661 * place the output into the log buffer and return. The current holder of
1662 * the console_sem will notice the new output in console_unlock(); and will
1663 * send it to the consoles before releasing the lock.
1665 * One effect of this deferred printing is that code which calls printk() and
1666 * then changes console_loglevel may break. This is because console_loglevel
1667 * is inspected when the actual printing occurs.
1669 * See also:
1670 * printf(3)
1672 * See the vsnprintf() documentation for format string extensions over C99.
1674 asmlinkage int printk(const char *fmt, ...)
1676 va_list args;
1677 int r;
1679 #ifdef CONFIG_KGDB_KDB
1680 if (unlikely(kdb_trap_printk)) {
1681 va_start(args, fmt);
1682 r = vkdb_printf(fmt, args);
1683 va_end(args);
1684 return r;
1686 #endif
1687 va_start(args, fmt);
1688 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1689 va_end(args);
1691 return r;
1693 EXPORT_SYMBOL(printk);
1695 #else /* CONFIG_PRINTK */
1697 #define LOG_LINE_MAX 0
1698 #define PREFIX_MAX 0
1699 #define LOG_LINE_MAX 0
1700 static u64 syslog_seq;
1701 static u32 syslog_idx;
1702 static u64 console_seq;
1703 static u32 console_idx;
1704 static enum log_flags syslog_prev;
1705 static u64 log_first_seq;
1706 static u32 log_first_idx;
1707 static u64 log_next_seq;
1708 static enum log_flags console_prev;
1709 static struct cont {
1710 size_t len;
1711 size_t cons;
1712 u8 level;
1713 bool flushed:1;
1714 } cont;
1715 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1716 static u32 log_next(u32 idx) { return 0; }
1717 static void call_console_drivers(int level, const char *text, size_t len) {}
1718 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1719 bool syslog, char *buf, size_t size) { return 0; }
1720 static size_t cont_print_text(char *text, size_t size) { return 0; }
1722 #endif /* CONFIG_PRINTK */
1724 #ifdef CONFIG_EARLY_PRINTK
1725 struct console *early_console;
1727 void early_vprintk(const char *fmt, va_list ap)
1729 if (early_console) {
1730 char buf[512];
1731 int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1733 early_console->write(early_console, buf, n);
1737 asmlinkage void early_printk(const char *fmt, ...)
1739 va_list ap;
1741 va_start(ap, fmt);
1742 early_vprintk(fmt, ap);
1743 va_end(ap);
1745 #endif
1747 static int __add_preferred_console(char *name, int idx, char *options,
1748 char *brl_options)
1750 struct console_cmdline *c;
1751 int i;
1754 * See if this tty is not yet registered, and
1755 * if we have a slot free.
1757 for (i = 0, c = console_cmdline;
1758 i < MAX_CMDLINECONSOLES && c->name[0];
1759 i++, c++) {
1760 if (strcmp(c->name, name) == 0 && c->index == idx) {
1761 if (!brl_options)
1762 selected_console = i;
1763 return 0;
1766 if (i == MAX_CMDLINECONSOLES)
1767 return -E2BIG;
1768 if (!brl_options)
1769 selected_console = i;
1770 strlcpy(c->name, name, sizeof(c->name));
1771 c->options = options;
1772 braille_set_options(c, brl_options);
1774 c->index = idx;
1775 return 0;
1778 * Set up a list of consoles. Called from init/main.c
1780 static int __init console_setup(char *str)
1782 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1783 char *s, *options, *brl_options = NULL;
1784 int idx;
1786 if (_braille_console_setup(&str, &brl_options))
1787 return 1;
1790 * Decode str into name, index, options.
1792 if (str[0] >= '0' && str[0] <= '9') {
1793 strcpy(buf, "ttyS");
1794 strncpy(buf + 4, str, sizeof(buf) - 5);
1795 } else {
1796 strncpy(buf, str, sizeof(buf) - 1);
1798 buf[sizeof(buf) - 1] = 0;
1799 if ((options = strchr(str, ',')) != NULL)
1800 *(options++) = 0;
1801 #ifdef __sparc__
1802 if (!strcmp(str, "ttya"))
1803 strcpy(buf, "ttyS0");
1804 if (!strcmp(str, "ttyb"))
1805 strcpy(buf, "ttyS1");
1806 #endif
1807 for (s = buf; *s; s++)
1808 if ((*s >= '0' && *s <= '9') || *s == ',')
1809 break;
1810 idx = simple_strtoul(s, NULL, 10);
1811 *s = 0;
1813 __add_preferred_console(buf, idx, options, brl_options);
1814 console_set_on_cmdline = 1;
1815 return 1;
1817 __setup("console=", console_setup);
1820 * add_preferred_console - add a device to the list of preferred consoles.
1821 * @name: device name
1822 * @idx: device index
1823 * @options: options for this console
1825 * The last preferred console added will be used for kernel messages
1826 * and stdin/out/err for init. Normally this is used by console_setup
1827 * above to handle user-supplied console arguments; however it can also
1828 * be used by arch-specific code either to override the user or more
1829 * commonly to provide a default console (ie from PROM variables) when
1830 * the user has not supplied one.
1832 int add_preferred_console(char *name, int idx, char *options)
1834 return __add_preferred_console(name, idx, options, NULL);
1837 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1839 struct console_cmdline *c;
1840 int i;
1842 for (i = 0, c = console_cmdline;
1843 i < MAX_CMDLINECONSOLES && c->name[0];
1844 i++, c++)
1845 if (strcmp(c->name, name) == 0 && c->index == idx) {
1846 strlcpy(c->name, name_new, sizeof(c->name));
1847 c->name[sizeof(c->name) - 1] = 0;
1848 c->options = options;
1849 c->index = idx_new;
1850 return i;
1852 /* not found */
1853 return -1;
1856 bool console_suspend_enabled = 1;
1857 EXPORT_SYMBOL(console_suspend_enabled);
1859 static int __init console_suspend_disable(char *str)
1861 console_suspend_enabled = 0;
1862 return 1;
1864 __setup("no_console_suspend", console_suspend_disable);
1865 module_param_named(console_suspend, console_suspend_enabled,
1866 bool, S_IRUGO | S_IWUSR);
1867 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1868 " and hibernate operations");
1871 * suspend_console - suspend the console subsystem
1873 * This disables printk() while we go into suspend states
1875 void suspend_console(void)
1877 if (!console_suspend_enabled)
1878 return;
1879 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1880 console_lock();
1881 console_suspended = 1;
1882 up(&console_sem);
1885 void resume_console(void)
1887 if (!console_suspend_enabled)
1888 return;
1889 down(&console_sem);
1890 console_suspended = 0;
1891 console_unlock();
1895 * console_cpu_notify - print deferred console messages after CPU hotplug
1896 * @self: notifier struct
1897 * @action: CPU hotplug event
1898 * @hcpu: unused
1900 * If printk() is called from a CPU that is not online yet, the messages
1901 * will be spooled but will not show up on the console. This function is
1902 * called when a new CPU comes online (or fails to come up), and ensures
1903 * that any such output gets printed.
1905 static int console_cpu_notify(struct notifier_block *self,
1906 unsigned long action, void *hcpu)
1908 switch (action) {
1909 case CPU_ONLINE:
1910 case CPU_DEAD:
1911 case CPU_DOWN_FAILED:
1912 case CPU_UP_CANCELED:
1913 console_lock();
1914 console_unlock();
1916 return NOTIFY_OK;
1920 * console_lock - lock the console system for exclusive use.
1922 * Acquires a lock which guarantees that the caller has
1923 * exclusive access to the console system and the console_drivers list.
1925 * Can sleep, returns nothing.
1927 void console_lock(void)
1929 might_sleep();
1931 down(&console_sem);
1932 if (console_suspended)
1933 return;
1934 console_locked = 1;
1935 console_may_schedule = 1;
1936 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1938 EXPORT_SYMBOL(console_lock);
1941 * console_trylock - try to lock the console system for exclusive use.
1943 * Tried to acquire a lock which guarantees that the caller has
1944 * exclusive access to the console system and the console_drivers list.
1946 * returns 1 on success, and 0 on failure to acquire the lock.
1948 int console_trylock(void)
1950 if (down_trylock(&console_sem))
1951 return 0;
1952 if (console_suspended) {
1953 up(&console_sem);
1954 return 0;
1956 console_locked = 1;
1957 console_may_schedule = 0;
1958 mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1959 return 1;
1961 EXPORT_SYMBOL(console_trylock);
1963 int is_console_locked(void)
1965 return console_locked;
1968 static void console_cont_flush(char *text, size_t size)
1970 unsigned long flags;
1971 size_t len;
1973 raw_spin_lock_irqsave(&logbuf_lock, flags);
1975 if (!cont.len)
1976 goto out;
1979 * We still queue earlier records, likely because the console was
1980 * busy. The earlier ones need to be printed before this one, we
1981 * did not flush any fragment so far, so just let it queue up.
1983 if (console_seq < log_next_seq && !cont.cons)
1984 goto out;
1986 len = cont_print_text(text, size);
1987 raw_spin_unlock(&logbuf_lock);
1988 stop_critical_timings();
1989 call_console_drivers(cont.level, text, len);
1990 start_critical_timings();
1991 local_irq_restore(flags);
1992 return;
1993 out:
1994 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1998 * console_unlock - unlock the console system
2000 * Releases the console_lock which the caller holds on the console system
2001 * and the console driver list.
2003 * While the console_lock was held, console output may have been buffered
2004 * by printk(). If this is the case, console_unlock(); emits
2005 * the output prior to releasing the lock.
2007 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2009 * console_unlock(); may be called from any context.
2011 void console_unlock(void)
2013 static char text[LOG_LINE_MAX + PREFIX_MAX];
2014 static u64 seen_seq;
2015 unsigned long flags;
2016 bool wake_klogd = false;
2017 bool retry;
2019 if (console_suspended) {
2020 up(&console_sem);
2021 return;
2024 console_may_schedule = 0;
2026 /* flush buffered message fragment immediately to console */
2027 console_cont_flush(text, sizeof(text));
2028 again:
2029 for (;;) {
2030 struct printk_log *msg;
2031 size_t len;
2032 int level;
2034 raw_spin_lock_irqsave(&logbuf_lock, flags);
2035 if (seen_seq != log_next_seq) {
2036 wake_klogd = true;
2037 seen_seq = log_next_seq;
2040 if (console_seq < log_first_seq) {
2041 /* messages are gone, move to first one */
2042 console_seq = log_first_seq;
2043 console_idx = log_first_idx;
2044 console_prev = 0;
2046 skip:
2047 if (console_seq == log_next_seq)
2048 break;
2050 msg = log_from_idx(console_idx);
2051 if (msg->flags & LOG_NOCONS) {
2053 * Skip record we have buffered and already printed
2054 * directly to the console when we received it.
2056 console_idx = log_next(console_idx);
2057 console_seq++;
2059 * We will get here again when we register a new
2060 * CON_PRINTBUFFER console. Clear the flag so we
2061 * will properly dump everything later.
2063 msg->flags &= ~LOG_NOCONS;
2064 console_prev = msg->flags;
2065 goto skip;
2068 level = msg->level;
2069 len = msg_print_text(msg, console_prev, false,
2070 text, sizeof(text));
2071 console_idx = log_next(console_idx);
2072 console_seq++;
2073 console_prev = msg->flags;
2074 raw_spin_unlock(&logbuf_lock);
2076 stop_critical_timings(); /* don't trace print latency */
2077 call_console_drivers(level, text, len);
2078 start_critical_timings();
2079 local_irq_restore(flags);
2081 console_locked = 0;
2082 mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2084 /* Release the exclusive_console once it is used */
2085 if (unlikely(exclusive_console))
2086 exclusive_console = NULL;
2088 raw_spin_unlock(&logbuf_lock);
2090 up(&console_sem);
2093 * Someone could have filled up the buffer again, so re-check if there's
2094 * something to flush. In case we cannot trylock the console_sem again,
2095 * there's a new owner and the console_unlock() from them will do the
2096 * flush, no worries.
2098 raw_spin_lock(&logbuf_lock);
2099 retry = console_seq != log_next_seq;
2100 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2102 if (retry && console_trylock())
2103 goto again;
2105 if (wake_klogd)
2106 wake_up_klogd();
2108 EXPORT_SYMBOL(console_unlock);
2111 * console_conditional_schedule - yield the CPU if required
2113 * If the console code is currently allowed to sleep, and
2114 * if this CPU should yield the CPU to another task, do
2115 * so here.
2117 * Must be called within console_lock();.
2119 void __sched console_conditional_schedule(void)
2121 if (console_may_schedule)
2122 cond_resched();
2124 EXPORT_SYMBOL(console_conditional_schedule);
2126 void console_unblank(void)
2128 struct console *c;
2131 * console_unblank can no longer be called in interrupt context unless
2132 * oops_in_progress is set to 1..
2134 if (oops_in_progress) {
2135 if (down_trylock(&console_sem) != 0)
2136 return;
2137 } else
2138 console_lock();
2140 console_locked = 1;
2141 console_may_schedule = 0;
2142 for_each_console(c)
2143 if ((c->flags & CON_ENABLED) && c->unblank)
2144 c->unblank();
2145 console_unlock();
2149 * Return the console tty driver structure and its associated index
2151 struct tty_driver *console_device(int *index)
2153 struct console *c;
2154 struct tty_driver *driver = NULL;
2156 console_lock();
2157 for_each_console(c) {
2158 if (!c->device)
2159 continue;
2160 driver = c->device(c, index);
2161 if (driver)
2162 break;
2164 console_unlock();
2165 return driver;
2169 * Prevent further output on the passed console device so that (for example)
2170 * serial drivers can disable console output before suspending a port, and can
2171 * re-enable output afterwards.
2173 void console_stop(struct console *console)
2175 console_lock();
2176 console->flags &= ~CON_ENABLED;
2177 console_unlock();
2179 EXPORT_SYMBOL(console_stop);
2181 void console_start(struct console *console)
2183 console_lock();
2184 console->flags |= CON_ENABLED;
2185 console_unlock();
2187 EXPORT_SYMBOL(console_start);
2189 static int __read_mostly keep_bootcon;
2191 static int __init keep_bootcon_setup(char *str)
2193 keep_bootcon = 1;
2194 pr_info("debug: skip boot console de-registration.\n");
2196 return 0;
2199 early_param("keep_bootcon", keep_bootcon_setup);
2202 * The console driver calls this routine during kernel initialization
2203 * to register the console printing procedure with printk() and to
2204 * print any messages that were printed by the kernel before the
2205 * console driver was initialized.
2207 * This can happen pretty early during the boot process (because of
2208 * early_printk) - sometimes before setup_arch() completes - be careful
2209 * of what kernel features are used - they may not be initialised yet.
2211 * There are two types of consoles - bootconsoles (early_printk) and
2212 * "real" consoles (everything which is not a bootconsole) which are
2213 * handled differently.
2214 * - Any number of bootconsoles can be registered at any time.
2215 * - As soon as a "real" console is registered, all bootconsoles
2216 * will be unregistered automatically.
2217 * - Once a "real" console is registered, any attempt to register a
2218 * bootconsoles will be rejected
2220 void register_console(struct console *newcon)
2222 int i;
2223 unsigned long flags;
2224 struct console *bcon = NULL;
2225 struct console_cmdline *c;
2227 if (console_drivers)
2228 for_each_console(bcon)
2229 if (WARN(bcon == newcon,
2230 "console '%s%d' already registered\n",
2231 bcon->name, bcon->index))
2232 return;
2235 * before we register a new CON_BOOT console, make sure we don't
2236 * already have a valid console
2238 if (console_drivers && newcon->flags & CON_BOOT) {
2239 /* find the last or real console */
2240 for_each_console(bcon) {
2241 if (!(bcon->flags & CON_BOOT)) {
2242 pr_info("Too late to register bootconsole %s%d\n",
2243 newcon->name, newcon->index);
2244 return;
2249 if (console_drivers && console_drivers->flags & CON_BOOT)
2250 bcon = console_drivers;
2252 if (preferred_console < 0 || bcon || !console_drivers)
2253 preferred_console = selected_console;
2255 if (newcon->early_setup)
2256 newcon->early_setup();
2259 * See if we want to use this console driver. If we
2260 * didn't select a console we take the first one
2261 * that registers here.
2263 if (preferred_console < 0) {
2264 if (newcon->index < 0)
2265 newcon->index = 0;
2266 if (newcon->setup == NULL ||
2267 newcon->setup(newcon, NULL) == 0) {
2268 newcon->flags |= CON_ENABLED;
2269 if (newcon->device) {
2270 newcon->flags |= CON_CONSDEV;
2271 preferred_console = 0;
2277 * See if this console matches one we selected on
2278 * the command line.
2280 for (i = 0, c = console_cmdline;
2281 i < MAX_CMDLINECONSOLES && c->name[0];
2282 i++, c++) {
2283 if (strcmp(c->name, newcon->name) != 0)
2284 continue;
2285 if (newcon->index >= 0 &&
2286 newcon->index != c->index)
2287 continue;
2288 if (newcon->index < 0)
2289 newcon->index = c->index;
2291 if (_braille_register_console(newcon, c))
2292 return;
2294 if (newcon->setup &&
2295 newcon->setup(newcon, console_cmdline[i].options) != 0)
2296 break;
2297 newcon->flags |= CON_ENABLED;
2298 newcon->index = c->index;
2299 if (i == selected_console) {
2300 newcon->flags |= CON_CONSDEV;
2301 preferred_console = selected_console;
2303 break;
2306 if (!(newcon->flags & CON_ENABLED))
2307 return;
2310 * If we have a bootconsole, and are switching to a real console,
2311 * don't print everything out again, since when the boot console, and
2312 * the real console are the same physical device, it's annoying to
2313 * see the beginning boot messages twice
2315 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2316 newcon->flags &= ~CON_PRINTBUFFER;
2319 * Put this console in the list - keep the
2320 * preferred driver at the head of the list.
2322 console_lock();
2323 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2324 newcon->next = console_drivers;
2325 console_drivers = newcon;
2326 if (newcon->next)
2327 newcon->next->flags &= ~CON_CONSDEV;
2328 } else {
2329 newcon->next = console_drivers->next;
2330 console_drivers->next = newcon;
2332 if (newcon->flags & CON_PRINTBUFFER) {
2334 * console_unlock(); will print out the buffered messages
2335 * for us.
2337 raw_spin_lock_irqsave(&logbuf_lock, flags);
2338 console_seq = syslog_seq;
2339 console_idx = syslog_idx;
2340 console_prev = syslog_prev;
2341 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2343 * We're about to replay the log buffer. Only do this to the
2344 * just-registered console to avoid excessive message spam to
2345 * the already-registered consoles.
2347 exclusive_console = newcon;
2349 console_unlock();
2350 console_sysfs_notify();
2353 * By unregistering the bootconsoles after we enable the real console
2354 * we get the "console xxx enabled" message on all the consoles -
2355 * boot consoles, real consoles, etc - this is to ensure that end
2356 * users know there might be something in the kernel's log buffer that
2357 * went to the bootconsole (that they do not see on the real console)
2359 pr_info("%sconsole [%s%d] enabled\n",
2360 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2361 newcon->name, newcon->index);
2362 if (bcon &&
2363 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2364 !keep_bootcon) {
2365 /* We need to iterate through all boot consoles, to make
2366 * sure we print everything out, before we unregister them.
2368 for_each_console(bcon)
2369 if (bcon->flags & CON_BOOT)
2370 unregister_console(bcon);
2373 EXPORT_SYMBOL(register_console);
2375 int unregister_console(struct console *console)
2377 struct console *a, *b;
2378 int res;
2380 pr_info("%sconsole [%s%d] disabled\n",
2381 (console->flags & CON_BOOT) ? "boot" : "" ,
2382 console->name, console->index);
2384 res = _braille_unregister_console(console);
2385 if (res)
2386 return res;
2388 res = 1;
2389 console_lock();
2390 if (console_drivers == console) {
2391 console_drivers=console->next;
2392 res = 0;
2393 } else if (console_drivers) {
2394 for (a=console_drivers->next, b=console_drivers ;
2395 a; b=a, a=b->next) {
2396 if (a == console) {
2397 b->next = a->next;
2398 res = 0;
2399 break;
2405 * If this isn't the last console and it has CON_CONSDEV set, we
2406 * need to set it on the next preferred console.
2408 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2409 console_drivers->flags |= CON_CONSDEV;
2411 console_unlock();
2412 console_sysfs_notify();
2413 return res;
2415 EXPORT_SYMBOL(unregister_console);
2417 static int __init printk_late_init(void)
2419 struct console *con;
2421 for_each_console(con) {
2422 if (!keep_bootcon && con->flags & CON_BOOT) {
2423 unregister_console(con);
2426 hotcpu_notifier(console_cpu_notify, 0);
2427 return 0;
2429 late_initcall(printk_late_init);
2431 #if defined CONFIG_PRINTK
2433 * Delayed printk version, for scheduler-internal messages:
2435 #define PRINTK_BUF_SIZE 512
2437 #define PRINTK_PENDING_WAKEUP 0x01
2438 #define PRINTK_PENDING_SCHED 0x02
2440 static DEFINE_PER_CPU(int, printk_pending);
2441 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2443 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2445 int pending = __this_cpu_xchg(printk_pending, 0);
2447 if (pending & PRINTK_PENDING_SCHED) {
2448 char *buf = __get_cpu_var(printk_sched_buf);
2449 pr_warn("[sched_delayed] %s", buf);
2452 if (pending & PRINTK_PENDING_WAKEUP)
2453 wake_up_interruptible(&log_wait);
2456 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2457 .func = wake_up_klogd_work_func,
2458 .flags = IRQ_WORK_LAZY,
2461 void wake_up_klogd(void)
2463 preempt_disable();
2464 if (waitqueue_active(&log_wait)) {
2465 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2466 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2468 preempt_enable();
2471 int printk_sched(const char *fmt, ...)
2473 unsigned long flags;
2474 va_list args;
2475 char *buf;
2476 int r;
2478 local_irq_save(flags);
2479 buf = __get_cpu_var(printk_sched_buf);
2481 va_start(args, fmt);
2482 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2483 va_end(args);
2485 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2486 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2487 local_irq_restore(flags);
2489 return r;
2493 * printk rate limiting, lifted from the networking subsystem.
2495 * This enforces a rate limit: not more than 10 kernel messages
2496 * every 5s to make a denial-of-service attack impossible.
2498 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2500 int __printk_ratelimit(const char *func)
2502 return ___ratelimit(&printk_ratelimit_state, func);
2504 EXPORT_SYMBOL(__printk_ratelimit);
2507 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2508 * @caller_jiffies: pointer to caller's state
2509 * @interval_msecs: minimum interval between prints
2511 * printk_timed_ratelimit() returns true if more than @interval_msecs
2512 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2513 * returned true.
2515 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2516 unsigned int interval_msecs)
2518 if (*caller_jiffies == 0
2519 || !time_in_range(jiffies, *caller_jiffies,
2520 *caller_jiffies
2521 + msecs_to_jiffies(interval_msecs))) {
2522 *caller_jiffies = jiffies;
2523 return true;
2525 return false;
2527 EXPORT_SYMBOL(printk_timed_ratelimit);
2529 static DEFINE_SPINLOCK(dump_list_lock);
2530 static LIST_HEAD(dump_list);
2533 * kmsg_dump_register - register a kernel log dumper.
2534 * @dumper: pointer to the kmsg_dumper structure
2536 * Adds a kernel log dumper to the system. The dump callback in the
2537 * structure will be called when the kernel oopses or panics and must be
2538 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2540 int kmsg_dump_register(struct kmsg_dumper *dumper)
2542 unsigned long flags;
2543 int err = -EBUSY;
2545 /* The dump callback needs to be set */
2546 if (!dumper->dump)
2547 return -EINVAL;
2549 spin_lock_irqsave(&dump_list_lock, flags);
2550 /* Don't allow registering multiple times */
2551 if (!dumper->registered) {
2552 dumper->registered = 1;
2553 list_add_tail_rcu(&dumper->list, &dump_list);
2554 err = 0;
2556 spin_unlock_irqrestore(&dump_list_lock, flags);
2558 return err;
2560 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2563 * kmsg_dump_unregister - unregister a kmsg dumper.
2564 * @dumper: pointer to the kmsg_dumper structure
2566 * Removes a dump device from the system. Returns zero on success and
2567 * %-EINVAL otherwise.
2569 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2571 unsigned long flags;
2572 int err = -EINVAL;
2574 spin_lock_irqsave(&dump_list_lock, flags);
2575 if (dumper->registered) {
2576 dumper->registered = 0;
2577 list_del_rcu(&dumper->list);
2578 err = 0;
2580 spin_unlock_irqrestore(&dump_list_lock, flags);
2581 synchronize_rcu();
2583 return err;
2585 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2587 static bool always_kmsg_dump;
2588 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2591 * kmsg_dump - dump kernel log to kernel message dumpers.
2592 * @reason: the reason (oops, panic etc) for dumping
2594 * Call each of the registered dumper's dump() callback, which can
2595 * retrieve the kmsg records with kmsg_dump_get_line() or
2596 * kmsg_dump_get_buffer().
2598 void kmsg_dump(enum kmsg_dump_reason reason)
2600 struct kmsg_dumper *dumper;
2601 unsigned long flags;
2603 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2604 return;
2606 rcu_read_lock();
2607 list_for_each_entry_rcu(dumper, &dump_list, list) {
2608 if (dumper->max_reason && reason > dumper->max_reason)
2609 continue;
2611 /* initialize iterator with data about the stored records */
2612 dumper->active = true;
2614 raw_spin_lock_irqsave(&logbuf_lock, flags);
2615 dumper->cur_seq = clear_seq;
2616 dumper->cur_idx = clear_idx;
2617 dumper->next_seq = log_next_seq;
2618 dumper->next_idx = log_next_idx;
2619 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2621 /* invoke dumper which will iterate over records */
2622 dumper->dump(dumper, reason);
2624 /* reset iterator */
2625 dumper->active = false;
2627 rcu_read_unlock();
2631 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2632 * @dumper: registered kmsg dumper
2633 * @syslog: include the "<4>" prefixes
2634 * @line: buffer to copy the line to
2635 * @size: maximum size of the buffer
2636 * @len: length of line placed into buffer
2638 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2639 * record, and copy one record into the provided buffer.
2641 * Consecutive calls will return the next available record moving
2642 * towards the end of the buffer with the youngest messages.
2644 * A return value of FALSE indicates that there are no more records to
2645 * read.
2647 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2649 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2650 char *line, size_t size, size_t *len)
2652 struct printk_log *msg;
2653 size_t l = 0;
2654 bool ret = false;
2656 if (!dumper->active)
2657 goto out;
2659 if (dumper->cur_seq < log_first_seq) {
2660 /* messages are gone, move to first available one */
2661 dumper->cur_seq = log_first_seq;
2662 dumper->cur_idx = log_first_idx;
2665 /* last entry */
2666 if (dumper->cur_seq >= log_next_seq)
2667 goto out;
2669 msg = log_from_idx(dumper->cur_idx);
2670 l = msg_print_text(msg, 0, syslog, line, size);
2672 dumper->cur_idx = log_next(dumper->cur_idx);
2673 dumper->cur_seq++;
2674 ret = true;
2675 out:
2676 if (len)
2677 *len = l;
2678 return ret;
2682 * kmsg_dump_get_line - retrieve one kmsg log line
2683 * @dumper: registered kmsg dumper
2684 * @syslog: include the "<4>" prefixes
2685 * @line: buffer to copy the line to
2686 * @size: maximum size of the buffer
2687 * @len: length of line placed into buffer
2689 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2690 * record, and copy one record into the provided buffer.
2692 * Consecutive calls will return the next available record moving
2693 * towards the end of the buffer with the youngest messages.
2695 * A return value of FALSE indicates that there are no more records to
2696 * read.
2698 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2699 char *line, size_t size, size_t *len)
2701 unsigned long flags;
2702 bool ret;
2704 raw_spin_lock_irqsave(&logbuf_lock, flags);
2705 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2706 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2708 return ret;
2710 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2713 * kmsg_dump_get_buffer - copy kmsg log lines
2714 * @dumper: registered kmsg dumper
2715 * @syslog: include the "<4>" prefixes
2716 * @buf: buffer to copy the line to
2717 * @size: maximum size of the buffer
2718 * @len: length of line placed into buffer
2720 * Start at the end of the kmsg buffer and fill the provided buffer
2721 * with as many of the the *youngest* kmsg records that fit into it.
2722 * If the buffer is large enough, all available kmsg records will be
2723 * copied with a single call.
2725 * Consecutive calls will fill the buffer with the next block of
2726 * available older records, not including the earlier retrieved ones.
2728 * A return value of FALSE indicates that there are no more records to
2729 * read.
2731 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2732 char *buf, size_t size, size_t *len)
2734 unsigned long flags;
2735 u64 seq;
2736 u32 idx;
2737 u64 next_seq;
2738 u32 next_idx;
2739 enum log_flags prev;
2740 size_t l = 0;
2741 bool ret = false;
2743 if (!dumper->active)
2744 goto out;
2746 raw_spin_lock_irqsave(&logbuf_lock, flags);
2747 if (dumper->cur_seq < log_first_seq) {
2748 /* messages are gone, move to first available one */
2749 dumper->cur_seq = log_first_seq;
2750 dumper->cur_idx = log_first_idx;
2753 /* last entry */
2754 if (dumper->cur_seq >= dumper->next_seq) {
2755 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2756 goto out;
2759 /* calculate length of entire buffer */
2760 seq = dumper->cur_seq;
2761 idx = dumper->cur_idx;
2762 prev = 0;
2763 while (seq < dumper->next_seq) {
2764 struct printk_log *msg = log_from_idx(idx);
2766 l += msg_print_text(msg, prev, true, NULL, 0);
2767 idx = log_next(idx);
2768 seq++;
2769 prev = msg->flags;
2772 /* move first record forward until length fits into the buffer */
2773 seq = dumper->cur_seq;
2774 idx = dumper->cur_idx;
2775 prev = 0;
2776 while (l > size && seq < dumper->next_seq) {
2777 struct printk_log *msg = log_from_idx(idx);
2779 l -= msg_print_text(msg, prev, true, NULL, 0);
2780 idx = log_next(idx);
2781 seq++;
2782 prev = msg->flags;
2785 /* last message in next interation */
2786 next_seq = seq;
2787 next_idx = idx;
2789 l = 0;
2790 while (seq < dumper->next_seq) {
2791 struct printk_log *msg = log_from_idx(idx);
2793 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2794 idx = log_next(idx);
2795 seq++;
2796 prev = msg->flags;
2799 dumper->next_seq = next_seq;
2800 dumper->next_idx = next_idx;
2801 ret = true;
2802 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2803 out:
2804 if (len)
2805 *len = l;
2806 return ret;
2808 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2811 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2812 * @dumper: registered kmsg dumper
2814 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2815 * kmsg_dump_get_buffer() can be called again and used multiple
2816 * times within the same dumper.dump() callback.
2818 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2820 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2822 dumper->cur_seq = clear_seq;
2823 dumper->cur_idx = clear_idx;
2824 dumper->next_seq = log_next_seq;
2825 dumper->next_idx = log_next_idx;
2829 * kmsg_dump_rewind - reset the interator
2830 * @dumper: registered kmsg dumper
2832 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2833 * kmsg_dump_get_buffer() can be called again and used multiple
2834 * times within the same dumper.dump() callback.
2836 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2838 unsigned long flags;
2840 raw_spin_lock_irqsave(&logbuf_lock, flags);
2841 kmsg_dump_rewind_nolock(dumper);
2842 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2844 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2846 static char dump_stack_arch_desc_str[128];
2849 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2850 * @fmt: printf-style format string
2851 * @...: arguments for the format string
2853 * The configured string will be printed right after utsname during task
2854 * dumps. Usually used to add arch-specific system identifiers. If an
2855 * arch wants to make use of such an ID string, it should initialize this
2856 * as soon as possible during boot.
2858 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2860 va_list args;
2862 va_start(args, fmt);
2863 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2864 fmt, args);
2865 va_end(args);
2869 * dump_stack_print_info - print generic debug info for dump_stack()
2870 * @log_lvl: log level
2872 * Arch-specific dump_stack() implementations can use this function to
2873 * print out the same debug information as the generic dump_stack().
2875 void dump_stack_print_info(const char *log_lvl)
2877 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2878 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2879 print_tainted(), init_utsname()->release,
2880 (int)strcspn(init_utsname()->version, " "),
2881 init_utsname()->version);
2883 if (dump_stack_arch_desc_str[0] != '\0')
2884 printk("%sHardware name: %s\n",
2885 log_lvl, dump_stack_arch_desc_str);
2887 print_worker_info(log_lvl, current);
2891 * show_regs_print_info - print generic debug info for show_regs()
2892 * @log_lvl: log level
2894 * show_regs() implementations can use this function to print out generic
2895 * debug information.
2897 void show_regs_print_info(const char *log_lvl)
2899 dump_stack_print_info(log_lvl);
2901 printk("%stask: %p ti: %p task.ti: %p\n",
2902 log_lvl, current, current_thread_info(),
2903 task_thread_info(current));
2906 #endif